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Tensorial Polar Decomposition of 2D fourth order tensors
Décomposition Polaire Tensorielle des tenseurs 2D d’ordre 4
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Abstract

One studies the structure of 2D symmetric fourth order tensors, i.e. having both minor and major indicial symme-
tries. Verchery polar decomposition is rewritten in a tensorial form entitled Tensorial Polar Decomposition. Main
result is that any 2D symmetric fourth order tensor can be written in terms of second order tensors only in a de-
composition that makes explicitly appear invariants and symmetry classes. The link with harmonic decomposition
is made thanks to Kelvin decomposition of its harmonic term.

On étudie la structure des tenseurs 2D symétriques d’ordre 4, i.e. ayant aussi bien la symétrie indicielle
mineure que la symétrie majeure. La décomposition polaire de Verchery est réécrite sous forme tensorielle nommée
Décomposition Polaire Tensorielle. Le résultat principal est que tout tenseur 2D symétrique d’ordre 4, peut s’écrire
a I’aide de tenseurs d’ordre 2 uniquement dans une décomposition faisant apparaitre explicitement les invariants et
les classes de symétrie. Le lien avec la décomposition harmonique est fait en utilisant la décomposition de Kelvin
de son terme harmonique.

Keywords: polar decomposition, invariants, harmonic decomposition, Kelvin decomposition
décomposition polaire, invariants, décomposition harmonique, décomposition de Kelvin

Introduction

The structure of 3D fourth order elasticity tensor has been intensively studied since XIX"* century controversy
on the number of independent elasticity constants. Major and minor symmetries reduce to 21 the number of
material parameters (symmetric tensors T referred to as multi-constant tensors), when an elasticity tensor having
all Cauchy indicial symmetries T;j; = Tij only has 15 material parameters (supersymmetric or rari-constant
tensors).

A well known tool for the study of symmetry classes is isomorphic harmonic decomposition 2H’ @ 2H? @ H*
of symmetric tensors space[1, 2, 3, 4], defining scalar (real) space as H°, second order harmonic tensors h € H?
as traceless (deviatoric, Y g = 0) symmetric tensors and fourth order harmonic tensors I € H* as traceless
supersymmetric/rari-constant tensors (H;jx; = Hixjr, 2% Hij = 2x Hiirj = 0). In other words any symmetric tensor
T, such as triclinic elasticity tensor, can be represented by two Lamé isotropic constants € HP°, by two second
order harmonic tensors € H? and by one fourth order harmonic tensor € H*.

In 2D some simplifications arise as scalar expressions for the components T;;;(f) of symmetric tensor T
(having both minor and major symmetries) may be derived by making explicitly appear the dependency upon
frame angle 0 [5] and upon invariants [6, 7, 8, 9]. Theses expressions do not have a complete tensorial counterpart
in the literature [10].

In present note, we therefore propose a tensorial rewriting and an associated interpretation of Verchery polar
decomposition for 2D fourth order tensors with both minor and major indicial symmetries. It is shown in section
2 that any 2D symmetric tensor T (resp. any 2D harmonic fourth order tensor H € H*?P) can be expressed
by means of 2 scalar invariants and of 2 second order deviatoric tensors € H>?P (resp. of only 1 second order
deviatoric tensor hy € H*?P). The link with harmonic decomposition is made in section 4. The general tensorial
expression of harmonic elements € H*?P) is retrieved in section 5 by use of Kelvin decomposition.

Tensorial products ®, ®, ® will be used. They are defined as follows: (X®Y); s = Xu Y1, X®Y);jir = XYk,

XQY = 1(XgY + X®Y).

1. 2D quadratic form using the polar formalism

Let us consider any 2D fourth order tensor T with minor and major symmetries. In the polar formalism
[6, 7], 5 invariants are defined: 4 of them are elastic moduli (7, 7, 1, r;) and the last one is the angular difference
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©o — ¢i1(each ¢, is not an invariant by itself, see discussion on joint invariant at end section 2). A basic result of
the polar formalism is the expression of the Cartesian components of T in terms of polar parameters, in a frame
rotated of an angle 6:

T1111(0)=ty+2t,+r¢cos 4 ((,00—9) +4r; cos?2 ((,01 —0)

T1112(0)=r0 sin4 (po—0) +2r sin 2 (¢, —0)

T1122(0)=—to+2t1—r cos 4 (po—6) )

T1212(0)=to—ro cos 4 (¢o—6)

T1222(0)==rp sin 4 (po—0) +2r1 sin 2 (¢1—6)

T2222(9)=t0+2t1 +rgcos4 ((,00—9) —4r; cos?2 ((,01 —0)

to and f; terms are frame independent (they define isotropic part of T from a generalization of Lamé constants to
anisotropy), r; terms rotates in cos 2 (¢;—6) and sin 2 (¢;—6) as second order tensors do (Eq. 2), ry term rotates
twice more in cos 4 (¢o—6) and sin4 (pp—6). In given frame 0 the knowledge of the 6 independent coefficients of
any 2D symmetric tensor T is equivalent to the knowledge of the 5 invariants (¢, 1, 7o, 71,0 — ¢1) and of one
angle, either ¢y — 6 or ¢; — 6.
Still in 2D, a general expression for any symmetric second order tensor s, making appear explicitly frame angle
0, is
S=s5ul +8 = 5,1+ 5,4

sin2(¢ —60) —cos2(p —6) 1

1
_ . _ Sm = 51rs
cos2(¢ —6))  sin2(p —06) ] with 2 — )
Seq = ES .S

with first (mean) and second (2D von Mises) invariants defined as s,, and s., and where ¢ is the orientation of
principal basis of s (it is not an invariant of s). The expression of associated quadratic form is:

2

1
=s: T:s= 2t0s§q + 45,

5 + 2r0s§q cos4 (o — @) + 8718y Seq OS2 (91 — @) 3)

Explicit formulae giving polar invariants as a function of components Tjj; can be found in [7].

2. Proposed Tensorial Polar Decomposition

Introducing the two second order deviatoric tensors Ry, Ry,

cos 2(py — 0) sin 2(¢py — 6)
sin2(g¢g —6) —cos2(py — 6)

cos 2(p1 — 0) sin2(¢ — 6)

Ro =R, = sin2(g1 —0) —cos (e — ) @

R, =R| = [
of 2D von Mises equivalent norm Ro.; = R,y = 1, and of principal direction o, ¢, of course possibly different
from principal direction ¢ of tensor s. One has first equalities concerning r|-term,

(s:R)) trs =tr(s - R} - 8) = 45,8, c0s 2 (g1 — ¢) 5)

From (s : R))* = 457, cos” 2(¢o — ¢) = 255, (1 +cos4(go — ¢)) and 257, = s’ : 8" second equality concerning
ro-term is

2 . ’ 2 7.
2r0seq cos4 (¢g— @) =rg [(s : Ro) -s':s ] 6)
Quadratic form (3) can therefore be rewritten into following intrinsic form
1 ’ ’ 2 ’ 2 ’ ’ ’
55:T:s=tos :8’ + 1 (trs) +r0[(s:R0) - :s]+2r1tr(s-R1 -8) @)

From last equation the intrinsic form of polar decomposition of a symmetric fourth order tensor T is obtained in
terms of polar invariants fy, 1, ro and r; and of the two second order deviatoric tensors R(’) and R,

T =21J +261®1+2r0 [Ry®R; - J| +2r1 (18R + R| 8 1) 8)
It is equivalent in present 2D case to
T =2tJ +201® 1+ 2rg [Ry @Ry = J| + 211 (1 @R} + R{ ®1) ©)
thanks to the mathematical property (5) valid Vs, which implies
19R]+R®1=10R|+R|®1 (10)
Eq.(10) is not intrinsic to tensorial products, it stands only in 2D. The tensor J = I — %1 ® 1 (defined here in 2D)
takes the deviatoric part of any second order tensor X (i.e. J : X = X").

Equation (8)-(9) define Tensorial Polar Decomposition of any 2D tensor T having both minor and major
symmetries. As both rp- and r;-terms are found rari-constant, rari-constancy T;j; = Tj; resumes to 7o = 1.
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Note that joint invariant R}, : R} reads
R : R} =2cos2(¢o — ¢1) 11

It is an invariant of tensor T, as is the polar angular invariant ¢y — ¢;.

The intrinsic form of the polar decomposition makes explicitly appear polar moduli and angles, therefore the
material symmetries, including ordinary orthotropies ¢y —¢; = k ’Z', k € {0, 1} [7]. For instance if T is 2D elasticity
tensor: isotropy is ro = r; = 0, square symmetry is r; = 0, ro—orthotropy is ry = 0, ordinary orthotropy with k = 0
is R{ = R| and ordinary orthotropy with k = 1is R;, : R} = 0.

3. Orthogonality of generators

Tensorial Polar Decomposition (9) can be recast as the sum of polar moduli 2g, times generators G which
are fourth order tensors (factors 2 appear for consistency with original Verchery work, polar moduli g, standing
either for ¢, or for r,,),

3 2 2
T =) 26,G" = 2,G" + > 2r,GP (12)
0 1 1

Fourth order generator tensors G are of two kinds: the G

orientation 6§, while the G = G (6) are frame dependent

are definite positive and do not depend upon frame

G%=1, GP=101, GP=R,oR,-J, GP=19R,+R/sl (13)
The generators are orthogonal with respect to scalar product :: as

2 2
DG G =0 Ym#n (14)
k=1 I=1

G g = Z

L

2
=1 j

2
=1
They all have a constant norm, frame independent, as

GY: g2 =2 GV g =4 GO G0 =2 GG =8 (15)

4. Link with harmonic decomposition

In 3D there are only two independent traces d = trj; T = tr3s T (of components Zi:l Twij) and v = tr3T =

tr3 T = trjs T = trps T (of components Zi: 1 Trikj) for symmetric tensor T'. Symmetric second order tensor d is
dilatation tensor, of deviatoric part d’, symmetric second order tensor v is Voigt tensor, of deviatoric part v'. 3D
Harmonic decomposition 2H° @ 2H? @ H* of fourth order tensors vector space reads then [2, 3, 4]

T=A1®1+2ul®l +1®h; +h; ®1 + 1®h, + h,®1 + 1&h, + h,®1 + H (16)
or in an equivalent manner

T=1®1+2ul+1&h +h 1+2(18h, + 1)+ H (17)

with as constants 1 = 31—0(4 trd — 2trv) and u = %(3 trv — trd), as traceless symmetric second order tensors
h; =h| = 1(5d' - 4v’) e H? and h, = h}, = 1(3v' — ') € H? and as traceless rari-constant tensor IH € H*.

In 2D (see [10]), in a consistent manner with mathematical property (10) and 2D equality v/ = d’ if one still
setsd = troT, v = tr;3T of components d;; = Z,%Zl Tiij and v = Z,%zl Trixj, harmonic decomposition of fourth
order tensors vector space reads 2H @ H??P) @ H*CD) or

T=A1®1+2ul+1®h+h®1+H (18)

with as 2D constants A = %(trd —trv)and u = %(2 trv — trd), as 2D harmonic tensors h = d’/2 = v//2 € H*?D

and H € H*?®. One easily recognizes constant and linear terms of Tensorial Polar Decomposition (9), using

I=J+11®1, with

A+pu
5

The harmonic H*®P)-term is explicited in section 2 thanks to polar decomposition by means of an extra traceless

second order tensor hy = hfy = V2rg R} € H**P as

fh=u, H = 2r1 = hey, 2rR| =h. (19)

1
H = 2ro [Ry®@ Ry~ J| =hy @ hy - ShothoJ trpH = tr3H =0 (20)

This shows that Tensorial Polar Decomposition of 2D symmetric fourth order tensors is direct sum 2H° @ 2H?D)
We propose in next section to use Kelvin decomposition in order to derive the explicit ro—form of H and to
prove that ry > 0, as needed.



5. Retrieving the explicit ry-form of H € H*?D
Harmonic fourth order tensor H introduced in previous section is
H=T-A1®1-2ul-19h-h®1l 21

Let us use its harmonic properties trj;IH = trj3H = 0 and the remark that they correspond to the orthogonality of

generator G with respect to both constant generators G'” = J and G = 1®1.
Kelvin (spectral) decomposition of H [11, 12, 13, 14, 8], gives, here in 2D,

2
H= ZA,e' el e el =4, (22)
1=0

with H : ¢/ = Ase! (no sum) defining Kevin moduli A; and modes e/. Traceless condition H : 1 = 1 : H =
trj H = 0 implies that 1 is a eigentensor (a Kelvin mode) of H, associated to Kelvin modulus A; = 0 and that the
first two eigentensors e/ are deviatoric, €/ = e/’. The mathematical property that Kelvin projectors give a partition
of unit tensor reads then

e"®e"=]I—%1®l—eo’®e0'=.11—eo’®e0' (23)
so that Kelvin decomposition (22) becomes
H=Ao-ADe” ®@e” + AT (24)
By construction, IH is orthogonal to generator Gﬁo) =J=1I- %1 ® 1. This gives

H:J=Ao-ADe”@e” = T+A T =T =0

(25)
=(Ag—ADe” :e” +2A, = (Ag—A))+2A, =0
This shows that A; = —Ag so that one just has proven that any H € H*® has for expression
H = Ao [2¢” @ ¢” - J] (26)
Setting R}, = V2 e” as deviatoric second order tensor of equivalent norm Roeq = 1, ends up to
Py Ao
H = 2ro [Rj ® R}, - J| o= (27)

There are two possibilities for the definition of tensor R}, and of modulus ry as there are two Kelvin modes

I =0and I = 1 orthogonal to Kelvin mode €*> = 1/ V2. Only the one at positive eigenvalue, set as = 0, Ag > 0
(leaving then A; < 0 for I = 1) gives a positive ry as retained in standard polar decomposition of 2D symmetric
tensors and as needed at the end of previous section. Polar modulus ryp = Ag/2 > 0 is therefore shown to be half
positive eigenvalue of harmonic fourth order tensor IH and Ry is associated Kelvin mode multiplied by V2.

Altogether with expression (21) due to harmonic decomposition, present derivations (and key Eq. (27)) are an
alternate proof of Verchery polar decomposition, using tensorial mathematical tools instead of a complex variable
method in case of original proof.

6. Conclusion

We have proposed a tensorial intrinsic form for Verchery polar decomposition of any 2D fourth order symmetric
tensor T'. Two proofs are given, a first one from the rewriting of quadratic form (3) associated with tensor T, a
second one combining both harmonic and Kelvin decompositions.

Compared to harmonic decomposition the main results are:

— the generators obtained are found orthogonal to each other (in sense of scalar product :: for fourth order
tensors) and of constant norm, independent from frame angle,

— the polar invariants of tensor T explicitly appear, making easy the study of symmetry classes and sub-classes,

— the structure of harmonic fourth order tensor I € H*?P is given: any traceless rari-constant (harmonic)
tensor H is shown to be expressed thanks to a single deviatoric (harmonic) second order tensor hy or in an
equivalent manner in polar formalism thanks to polar invariant ry and to deviatoric tensor R{j of unit 2D von
Mises norm.

As a conclusion any 2D symmetric fourth order tensor can be expressed thanks to 2 scalars and to 2 symmetric
second order deviatoric tensors in a decomposition that makes explicitly appear invariants and symmetry classes.
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