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Abstract

One studies the structure of 2D symmetric fourth order tensors, i.e. having both minor and major indicial symme-
tries. Verchery polar decomposition is rewritten in a tensorial form entitled Tensorial Polar Decomposition. Main
result is that any 2D symmetric fourth order tensor can be written in terms of second order tensors only in a de-
composition that makes explicitly appear invariants and symmetry classes. The link with harmonic decomposition
is made thanks to Kelvin decomposition of its harmonic term.

On étudie la structure des tenseurs 2D symétriques d’ordre 4, i.e. ayant aussi bien la symétrie indicielle
mineure que la symétrie majeure. La décomposition polaire de Verchery est réécrite sous forme tensorielle nommée
Décomposition Polaire Tensorielle. Le résultat principal est que tout tenseur 2D symétrique d’ordre 4, peut s’écrire
à l’aide de tenseurs d’ordre 2 uniquement dans une décomposition faisant apparaı̂tre explicitement les invariants et
les classes de symétrie. Le lien avec la décomposition harmonique est fait en utilisant la décomposition de Kelvin
de son terme harmonique.
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Introduction

The structure of 3D fourth order elasticity tensor has been intensively studied since XIXth century controversy
on the number of independent elasticity constants. Major and minor symmetries reduce to 21 the number of
material parameters (symmetric tensors T referred to as multi-constant tensors), when an elasticity tensor having
all Cauchy indicial symmetries Ti jkl = Tik jl only has 15 material parameters (supersymmetric or rari-constant
tensors).

A well known tool for the study of symmetry classes is isomorphic harmonic decomposition 2H0 ⊕ 2H2 ⊕H4

of symmetric tensors space[1, 2, 3, 4], defining scalar (real) space as H0, second order harmonic tensors h ∈ H2

as traceless (deviatoric,
∑

k hkk = 0) symmetric tensors and fourth order harmonic tensors H ∈ H4 as traceless
supersymmetric/rari-constant tensors (Hi jkl = Hik jl,

∑
k Hkki j =

∑
k Hkik j = 0). In other words any symmetric tensor

T, such as triclinic elasticity tensor, can be represented by two Lamé isotropic constants ∈ H0, by two second
order harmonic tensors ∈ H2 and by one fourth order harmonic tensor ∈ H4.

In 2D some simplifications arise as scalar expressions for the components Ti jkl(θ) of symmetric tensor T
(having both minor and major symmetries) may be derived by making explicitly appear the dependency upon
frame angle θ [5] and upon invariants [6, 7, 8, 9]. Theses expressions do not have a complete tensorial counterpart
in the literature [10].

In present note, we therefore propose a tensorial rewriting and an associated interpretation of Verchery polar
decomposition for 2D fourth order tensors with both minor and major indicial symmetries. It is shown in section
2 that any 2D symmetric tensor T (resp. any 2D harmonic fourth order tensor H ∈ H4(2D)) can be expressed
by means of 2 scalar invariants and of 2 second order deviatoric tensors ∈ H2(2D) (resp. of only 1 second order
deviatoric tensor h0 ∈ H2(2D)). The link with harmonic decomposition is made in section 4. The general tensorial
expression of harmonic elements ∈ H4(2D) is retrieved in section 5 by use of Kelvin decomposition.

Tensorial products ⊗, ⊗, ⊗ will be used. They are defined as follows: (X⊗Y)i jkl = XikY jl, (X⊗Y)i jkl = XilY jk,
X⊗Y = 1

2 (X⊗Y + X⊗Y).

1. 2D quadratic form using the polar formalism

Let us consider any 2D fourth order tensor T with minor and major symmetries. In the polar formalism
[6, 7], 5 invariants are defined: 4 of them are elastic moduli (t0, t1, r0, r1) and the last one is the angular difference
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ϕ0 − ϕ1(each ϕn is not an invariant by itself, see discussion on joint invariant at end section 2). A basic result of
the polar formalism is the expression of the Cartesian components of T in terms of polar parameters, in a frame
rotated of an angle θ:

T1111(θ)=t0+2t1+r0 cos 4 (ϕ0−θ) +4r1 cos 2 (ϕ1−θ)
T1112(θ)=r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ)
T1122(θ)=−t0+2t1−r0 cos 4 (ϕ0−θ)
T1212(θ)=t0−r0 cos 4 (ϕ0−θ)
T1222(θ)=−r0 sin 4 (ϕ0−θ) +2r1 sin 2 (ϕ1−θ)
T2222(θ)=t0+2t1+r0 cos 4 (ϕ0−θ)−4r1 cos 2 (ϕ1−θ)

(1)

t0 and t1 terms are frame independent (they define isotropic part of T from a generalization of Lamé constants to
anisotropy), r1 terms rotates in cos 2 (ϕ1−θ) and sin 2 (ϕ1−θ) as second order tensors do (Eq. 2), r0 term rotates
twice more in cos 4 (ϕ0−θ) and sin 4 (ϕ0−θ). In given frame θ the knowledge of the 6 independent coefficients of
any 2D symmetric tensor T is equivalent to the knowledge of the 5 invariants (t0, t1, r0, r1, ϕ0 − ϕ1) and of one
angle, either ϕ0 − θ or ϕ1 − θ.

Still in 2D, a general expression for any symmetric second order tensor s, making appear explicitly frame angle
θ, is

s = sm111 + s′ = sm111 + seq

[
cos 2(ϕ − θ)) sin 2(ϕ − θ)
sin 2(ϕ − θ) − cos 2(ϕ − θ)

]
with

sm = 1
2 tr s

seq =

√
1
2 s′ : s′

(2)

with first (mean) and second (2D von Mises) invariants defined as sm and seq and where ϕ is the orientation of
principal basis of s (it is not an invariant of s). The expression of associated quadratic form is:

1
2

s : T : s = 2t0s2
eq + 4t1s2

m + 2r0s2
eq cos 4 (ϕ0 − ϕ) + 8r1smseq cos 2 (ϕ1 − ϕ) (3)

Explicit formulae giving polar invariants as a function of components Ti jkl can be found in [7].

2. Proposed Tensorial Polar Decomposition

Introducing the two second order deviatoric tensors R0, R1,

R0 = R′0 =

[
cos 2(ϕ0 − θ) sin 2(ϕ0 − θ)
sin 2(ϕ0 − θ) − cos 2(ϕ0 − θ)

]
R1 = R′1 =

[
cos 2(ϕ1 − θ) sin 2(ϕ1 − θ)
sin 2(ϕ1 − θ) − cos 2(ϕ1 − θ)

]
(4)

of 2D von Mises equivalent norm R0eq = R1eq = 1, and of principal direction ϕ0, ϕ1, of course possibly different
from principal direction ϕ of tensor s. One has first equalities concerning r1-term,

(s : R′1) tr s = tr(s · R′1 · s) = 4smseq cos 2 (ϕ1 − ϕ) (5)

From (s : R′0)2 = 4s2
eq cos2 2(ϕ0 − ϕ) = 2s2

eq (1 + cos 4(ϕ0 − ϕ)) and 2s2
eq = s′ : s′ second equality concerning

r0-term is
2r0s2

eq cos 4 (ϕ0 − ϕ) = r0

[(
s : R′0

)2
− s′ : s′

]
(6)

Quadratic form (3) can therefore be rewritten into following intrinsic form

1
2

s : T : s = t0 s′ : s′ + t1 (tr s)2 + r0

[(
s : R′0

)2
− s′ : s′

]
+ 2r1 tr

(
s · R′1 · s

)
(7)

From last equation the intrinsic form of polar decomposition of a symmetric fourth order tensor T is obtained in
terms of polar invariants t0, t1, r0 and r1 and of the two second order deviatoric tensors R′0 and R′1,

T = 2t0J + 2t1111 ⊗ 111 + 2r0

[
R′0 ⊗ R′0 − J

]
+ 2r1

(
111 ⊗ R′1 + R′1 ⊗ 111

)
(8)

It is equivalent in present 2D case to

T = 2t0J + 2t1111 ⊗ 111 + 2r0

[
R′0 ⊗ R′0 − J

]
+ 2r1

(
111 ⊗ R′1 + R′1 ⊗ 111

)
(9)

thanks to the mathematical property (5) valid ∀s, which implies

111 ⊗ R′1 + R′1 ⊗ 111 = 111 ⊗ R′1 + R′1 ⊗ 111 (10)

Eq.(10) is not intrinsic to tensorial products, it stands only in 2D. The tensor J = I − 1
2111 ⊗ 111 (defined here in 2D)

takes the deviatoric part of any second order tensor X (i.e. J : X = X′).
Equation (8)-(9) define Tensorial Polar Decomposition of any 2D tensor T having both minor and major

symmetries. As both r0- and r1-terms are found rari-constant, rari-constancy Ti jkl = Tik jl resumes to t0 = t1.
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Note that joint invariant R′0 : R′1 reads

R′0 : R′1 = 2 cos 2 (ϕ0 − ϕ1) (11)

It is an invariant of tensor T, as is the polar angular invariant ϕ0 − ϕ1.
The intrinsic form of the polar decomposition makes explicitly appear polar moduli and angles, therefore the

material symmetries, including ordinary orthotropies ϕ0−ϕ1 = k π
4 , k ∈ {0, 1} [7]. For instance ifT is 2D elasticity

tensor: isotropy is r0 = r1 = 0, square symmetry is r1 = 0, r0−orthotropy is r0 = 0, ordinary orthotropy with k = 0
is R′0 = R′1 and ordinary orthotropy with k = 1 is R′0 : R′1 = 0.

3. Orthogonality of generators

Tensorial Polar Decomposition (9) can be recast as the sum of polar moduli 2gn times generators G(n) which
are fourth order tensors (factors 2 appear for consistency with original Verchery work, polar moduli gn standing
either for tn or for rn),

T =

3∑
0

2gnG
(n) =

2∑
1

2tnG
(n)
t +

2∑
1

2rnG
(n)
r (12)

Fourth order generator tensors G(n) are of two kinds: the G(n)
t are definite positive and do not depend upon frame

orientation θ, while the G(n)
r = G(n)

r (θ) are frame dependent

G
(0)
t = J , G

(1)
t = 111 ⊗ 111 , G

(0)
r = R′0 ⊗ R′0 − J , G

(1)
r = 111 ⊗ R′1 + R′1 ⊗ 111 (13)

The generators are orthogonal with respect to scalar product :: as

G
(n) :: G(m) =

2∑
i=1

2∑
j=1

2∑
k=1

2∑
l=1

G(n)
i jkl G(m)

i jkl = 0 ∀ m , n (14)

They all have a constant norm, frame independent, as

G
(0)
t :: G(0)

t = 2 G
(1)
t :: G(1)

t = 4 G
(0)
r :: G(0)

r = 2 G
(1)
r :: G(1)

r = 8 (15)

4. Link with harmonic decomposition

In 3D there are only two independent traces d = tr12T = tr34T (of components
∑3

k=1 Tkki j) and v = tr13T =

tr23T = tr14T = tr24T (of components
∑3

k=1 Tkik j) for symmetric tensor T. Symmetric second order tensor d is
dilatation tensor, of deviatoric part d′, symmetric second order tensor v is Voigt tensor, of deviatoric part v′. 3D
Harmonic decomposition 2H0 ⊕ 2H2 ⊕H4 of fourth order tensors vector space reads then [2, 3, 4]

T = λ111 ⊗ 111 + 2µ111⊗111 + 111 ⊗ h1 + h1 ⊗ 111 + 111⊗h2 + h2⊗111 + 111⊗h2 + h2⊗111 +H (16)

or in an equivalent manner

T = λ111 ⊗ 111 + 2µ I + 111 ⊗ h1 + h1 ⊗ 111 + 2
(
111⊗h2 + h2⊗111

)
+H (17)

with as constants λ = 1
30 (4 tr d − 2 tr v) and µ = 1

30 (3 tr v − tr d), as traceless symmetric second order tensors
h1 = h′1 = 1

7 (5d′ − 4v′) ∈ H2 and h2 = h′2 = 1
7 (3v′ − d′) ∈ H2 and as traceless rari-constant tensor H ∈ H4.

In 2D (see [10]), in a consistent manner with mathematical property (10) and 2D equality v′ = d′ if one still
sets d = tr12T, v = tr13T of components di j =

∑2
k=1 Tkki j and vi j =

∑2
k=1 Tkik j, harmonic decomposition of fourth

order tensors vector space reads 2H0 ⊕H2(2D) ⊕H4(2D) or

T = λ111 ⊗ 111 + 2µ I + 111 ⊗ h + h ⊗ 111 +H (18)

with as 2D constants λ = 1
2 (tr d − tr v) and µ = 1

2 (2 tr v − tr d), as 2D harmonic tensors h = d′/2 = v′/2 ∈ H2(2D)

and H ∈ H4(2D). One easily recognizes constant and linear terms of Tensorial Polar Decomposition (9), using
I = J + 1

2 111 ⊗ 111, with

t0 = µ , t1 =
λ + µ

2
, 2r1 = heq , 2r1R′1 = h . (19)

The harmonic H4(2D)-term is explicited in section 2 thanks to polar decomposition by means of an extra traceless
second order tensor h0 = h′0 =

√
2r0 R′0 ∈ H

2(2D) as

H = 2r0

[
R′0 ⊗ R′0 − J

]
= h0 ⊗ h0 −

1
2

h0 : h0 J tr12H = tr13H = 0 (20)

This shows that Tensorial Polar Decomposition of 2D symmetric fourth order tensors is direct sum 2H0 ⊕ 2H2(2D) .
We propose in next section to use Kelvin decomposition in order to derive the explicit r0−form of H and to

prove that r0 ≥ 0, as needed.
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5. Retrieving the explicit r0-form of H ∈ H4(2D)

Harmonic fourth order tensor H introduced in previous section is

H = T − λ111 ⊗ 111 − 2µ I − 111 ⊗ h − h ⊗ 111 (21)

Let us use its harmonic properties tr12H = tr13H = 0 and the remark that they correspond to the orthogonality of
generator G(0)

r with respect to both constant generators G(0)
t = J and G(1)

t = 111 ⊗ 111.
Kelvin (spectral) decomposition of H [11, 12, 13, 14, 8], gives, here in 2D,

H =

2∑
I=0

ΛIeI ⊗ eI eI : eJ = δIJ (22)

with H : eI = ΛIeI (no sum) defining Kevin moduli ΛI and modes eI . Traceless condition H : 111 = 111 : H =
tr12H = 0 implies that 111 is a eigentensor (a Kelvin mode) of H, associated to Kelvin modulus Λ2 = 0 and that the
first two eigentensors eI are deviatoric, eI = eI′. The mathematical property that Kelvin projectors give a partition
of unit tensor reads then

e1′ ⊗ e1′ = I −
1
2

111 ⊗ 111 − e0′ ⊗ e0′ = J − e0′ ⊗ e0′ (23)

so that Kelvin decomposition (22) becomes

H = (Λ0 − Λ1) e0′ ⊗ e0′ + Λ1J (24)

By construction, H is orthogonal to generator G(0)
t = J = I − 1

2111 ⊗ 111. This gives

H :: J =(Λ0 − Λ1) e0′ ⊗ e0′ :: J + Λ1J :: J = 0

=(Λ0 − Λ1) e0′ : e0′ + 2Λ1 = (Λ0 − Λ1) + 2Λ1 = 0
(25)

This shows that Λ1 = −Λ0 so that one just has proven that any H ∈ H4(2D) has for expression

H = Λ0

[
2e0′ ⊗ e0′ − J

]
(26)

Setting R′0 =
√

2 e0′ as deviatoric second order tensor of equivalent norm R0eq = 1, ends up to

H = 2r0

[
R′0 ⊗ R′0 − J

]
r0 =

Λ0

2
(27)

There are two possibilities for the definition of tensor R′0 and of modulus r0 as there are two Kelvin modes
I = 0 and I = 1 orthogonal to Kelvin mode e2 = 111/

√
2. Only the one at positive eigenvalue, set as I = 0, Λ0 ≥ 0

(leaving then Λ1 ≤ 0 for I = 1) gives a positive r0 as retained in standard polar decomposition of 2D symmetric
tensors and as needed at the end of previous section. Polar modulus r0 = Λ0/2 ≥ 0 is therefore shown to be half
positive eigenvalue of harmonic fourth order tensor H and R′0 is associated Kelvin mode multiplied by

√
2.

Altogether with expression (21) due to harmonic decomposition, present derivations (and key Eq. (27)) are an
alternate proof of Verchery polar decomposition, using tensorial mathematical tools instead of a complex variable
method in case of original proof.

6. Conclusion

We have proposed a tensorial intrinsic form for Verchery polar decomposition of any 2D fourth order symmetric
tensor T. Two proofs are given, a first one from the rewriting of quadratic form (3) associated with tensor T, a
second one combining both harmonic and Kelvin decompositions.

Compared to harmonic decomposition the main results are:

– the generators obtained are found orthogonal to each other (in sense of scalar product :: for fourth order
tensors) and of constant norm, independent from frame angle,

– the polar invariants of tensorT explicitly appear, making easy the study of symmetry classes and sub-classes,

– the structure of harmonic fourth order tensor H ∈ H4(2D) is given: any traceless rari-constant (harmonic)
tensor H is shown to be expressed thanks to a single deviatoric (harmonic) second order tensor h0 or in an
equivalent manner in polar formalism thanks to polar invariant r0 and to deviatoric tensor R′0 of unit 2D von
Mises norm.

As a conclusion any 2D symmetric fourth order tensor can be expressed thanks to 2 scalars and to 2 symmetric
second order deviatoric tensors in a decomposition that makes explicitly appear invariants and symmetry classes.

4



References

[1] R. Baerheim, Harmonic decomposition of the anisotropic elasticity tensor. Q. J. Mech. Appl. Math, 46(3), 391-418, 1993.
[2] J.P. Boehler, A.A. Kirillov Jr, E.T. Onat, On the polynomial invariants of the elasticity tensor. J. Elast., 34(2), 97-110, 1994.
[3] S. Forte, M. Vianello, Symmetry classes for elasticity tensors. J. Elas., 43(2), 81-108, 1996.
[4] N. Auffray, B. Kolev, M. Petitot, On Anisotropic Polynomial Relations for the Elasticity Tensor, J. Elas., 115 (1), pp.77-103, 2014.
[5] S.W. Tsai, N.J. Pagano, Invariant properties of composite materials, in: Tsai, S.W., Halpin, J.C. and Pagano, N.J. (eds), Composite

Materials Workshop. Technomic, USA, pp. 233-253, 1968.
[6] G. Verchery, Les invariants des tenseurs d’ordre 4 du type de l’élasticité. In: Proceedings of Euromech 115, Villard-de-Lans. Published
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