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Abstract

This paper presents a compliance optimization methodology considering an

initial stress field. Assuming a local dependency of the initial stress with the

optimization parameters, the obtained numerical procedure is composed of

finite element stress calculations and local minimization problems that are

solved analytically or using a simple bisection procedure. This optimization

algorithm is then found to be numerically very efficient. Two optimization

problems that fall in the scope of the proposed methodology are considered:

topology optimization of the isotropic mixture of two isotropic linear elastic

materials (one of the material possibly being void) and orientational opti-

mization (i.e. distribution of anisotropy) with an orthotropic linear elastic

material. Numerical examples illustrating the optimization methodology in

the case of thermo-elastic stress loads are presented.
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1. Introduction

In the last two decades, topology optimization has been extensively used

and generalized to design dependent loads, such as transmissible sliding force,

body load and surface pressure load. A review of such optimizations can be

found in Gao and Zhang (2010) and references therein.

An initial stress field is an other class of design dependent load that arise

in many mechanical fields (e.g. thermo-elastic stress load in weakly coupled

thermo-elasticity, mechanically prestressed structures or residual prestress

arising because of manufacturing processes). In the field of thermo-elastic

stress loads that will be considered as an application of the proposed opti-

mization methodology, different authors developed different kind of thermo-

elastic compliance optimization procedures. Following Bendsøe and Kikuchi

(1988), Rodrigues and Fernandes (1995) incorporated the thermal effects in

the topology design by using the introduction of a material distribution model

within a periodic micro-structure in an optimization algorithm based on op-

timality conditions. Jog (1996) considered distributed parameters topology

optimization in the case of non-linear thermo-elasticity using the perimeter

method. In such a case, sensitivity analysis techniques were used to formulate

stationarity conditions. Pedersen (2001, 2002) considered partial compliance

(i.e. the part related to the external forces, without the thermo-elastic stress

load) to perform topology optimization of plates with prestress using the

method of moving asymptotes (MMA) and topology optimization of lam-

inated plates with prestress using a Newton-Raphson procedure. More re-

cently, Pedersen and Pedersen (2010) derived the local compliance sensitivity

analysis using its link to strain energy density and defined two thermoelastic
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compliance optimization methodology: one based on optimality criterion for

compliance and a second one based on recursive iterations for uniform energy

density which is close to fullfill strength maximization. An other optimization

strategy was developed by Cho and Choi (2005) in order to take into account

the varying in space temperature field (for weakly coupled thermo-elasticity)

using an adjoint sensitivity analysis method. Gao and Zhang (2010) con-

sidered topology optimization involving thermo-elastic stress loads. They

developed a sensitivity analysis of the thermo-elastic compliance in the case

of a steady state heat conduction and used it within the method of diag-

onal quadratic approximation (MDQA). For completeness, we refer also to

the work of Li et al. (2001) which considered an other optimization criterion

than the thermo-elastic compliance (an evolutionary optimization procedure

based on the fully stress design criterion was used to take into account the

varying in time temperature field effects on the topology design) and to the

work of Sigmund and Torquato (1997) which propose a topology optimiza-

tion methodology using sequential linear programming that allows to find the

distribution of material phases that optimizes some specific thermo-elastic

properties, such as zero, negative or maximum thermal expansion.

On the other hand, in the case of linear elasticity, two different approaches

of compliance minimization coexist, depending on the choice of a stress based

formulation (Allaire, 2002) or a strain based formulation (Bendsøe, 1995).

Using the energy theorems, an iterative optimization algorithm which com-

bines local minimizations for the stress based formulation (or local maximiza-

tions for the strain based formulation) and global minimizations is defined.

In section 2, we show how to extend the stress based formulation of com-
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pliance optimization with an initial stress field. Considering linearised elas-

ticity, we formulate a relationship between the compliance and the comple-

mentary energy in the presence of an initial stress field (section 2.1). The

compliance minimization problem with an initial stress field is put into a

double minimization problem of a positive quantity with respect to the total

stress field and the optimization parameters (section 2.2). Assuming that

the initial stress field depends locally on the distributed optimization pa-

rameters, we extend the optimization algorithm introduced by Allaire et al.

(1993, 1997) (which consists in iterative global minimization with respect to

the total stress with fixed optimization parameters and local minimizations

with respect to optimization parameters with a fixed total stress) to the case

of linear elasticity with a design dependent initial stress field (section 2.3).

In sections 3 and 4, we show how to solve analytically or using a simple

bisection procedure the local minimization of elastic energy (with an initial

stress field) with respect to the optimization parameters with a fixed total

stress field in two important cases:

• topology optimization of the isotropic mixture of two isotropic linear

elastic materials, one of the material possibly being void (section 3),

• orientational optimization (i.e. distribution of anisotropy) with an or-

thotropic linear elastic material (section 4).

This optimization methodology leads to a high numerical efficiency of the

numerical procedure, in which one iterates finite elements calculations of

stresses and local minimizations which are numerically cost free.

Numerical examples in the case of a thermo-elastic stress load validating
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the proposed optimization procedure in the two previous cases are presented

in section 3.4 and 4.3.

2. Optimization methodology

2.1. Elasticity problem

We introduce in this section the elasticity problem with an initial stress

field, in order to derive the variational formulations and the relation between

the compliance and the complementary energy that will be necessary for the

definition of the optimization problem.

2.1.1. Constitutive equations

Notations used in this paper are the following: bold indicates vectors (e.g.

displacement u), one underbar indicates second order tensors (e.g. strain ǫ,

stress σ and initial stress σini) and a double underbar indicates fourth order

tensors (e.g. stiffness tensor a and compliance tensor A).

Considering a 3D medium Ω, the external boundary is split into two

surfaces Γ0 and Γ1. On Γ0 is imposed a zero displacement, on Γ1 a surface

load F and inside Ω a volume load f . We make the assumption of small

strains and small displacements.

The constitutive equations are:

Equilibrium.

div σ + f = 0 in Ω (1)

Boundary conditions in terms of displacements.

u = 0 on Γ0 (2)
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Boundary conditions in terms of forces.

σ n = F on Γ1 (3)

The initial stress field σini is introduced in the behaviour law :

σ = a : ǫ+ σini with ǫij =
1

2
(ui,j + uj,i) (4)

The elasticity problem (P ) of a structure with an initial stress field is

defined with the equations (1)-(4).

2.1.2. Variational formulations

We introduce in this section the variational formulations used to define

the optimization methodology. The key points for the optimization problem

formulation are the complementary energy theorem and the relation between

the compliance and the complementary energy.

Variational formulation in terms of displacements. If u is solution of the

problem (P ) then







u ∈ Uad

a(u, v) = L(v) ∀v ∈ Uad

(5)

with















a(u, v) =

∫

Ω

ǫ(u) : a : ǫ(v)dV

L(v) =

∫

Ω

f .v dV +

∫

Γ1

F .v dS −
∫

Ω

σini : ǫ(v) dV
(6)

in which Uad = {v|v = (v1, v2, v3); v = 0 on Γ0}
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Variational formulation in terms of stresses. Let introduce one possible ad-

missible stress tensor τ 0 ∈ Σad. If σ is solution of the problem (P ) then







σ ∈ Σad

A(σ, τ − τ 0) = L(τ − τ 0) ∀τ ∈ Σad

(7)

with















A(σ, τ) =

∫

Ω

σ : A : τ dV

L(σ) =
∫

Ω

σ : A : σini dV

(8)

in which

Σad = {τij (i, j = 1, 2, 3), τij = τji, div τ + f = 0 in Ω, τ n = F on Γ1}

Complementary energy theorem. If σ is solution of the problem (P ) then







σ ∈ Σad

J(σ) ≤ J(τ) ∀τ ∈ Σad

with J(σ) =
1

2
A(σ, σ)− L(σ) (9)

2.1.3. Relation between the compliance and the complementary energy

The compliance L(u) (defined in equation (6)) and the complementary

energy J(σ) (defined in equation (8)) are linked by the relation:

L(u) = 2J(σ) +

∫

Ω

σini : A : σini dV (10)

Proof:

L(u) = a(u,u) =

∫

Ω

ǫ(u) : a : ǫ(u) dV =

∫

Ω

(σ − σini) : A : (σ − σini) dV

=

[
∫

Ω

σ : A : σ dV − 2

∫

Ω

σ : A : σini dV

]

+

∫

Ω

σini : A : σini dV
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2.2. Optimization problem

We consider bounded distributed optimization parameters β ∈ [βmin, βmax].

The compliance is chosen as a measure of the global rigidity of the elastic

structure with an initial stress field. In order to limit the total amount of

some of the optimization parameters, a cost term is introduced in the defini-

tion of the criterion with the help of some positive smooth function cost(β).

The optimization problem is written:

min
β∈[βmin,βmax]

[
∫

Ω

f .u dV +

∫

Γ1

F .u dS −
∫

Ω

σini : ǫ(u) dV +

∫

Ω

cost(β) dV

]

(11)

Considering the relation (10) between the compliance and the complemen-

tary energy and the complementary energy theorem (9), the optimization

problem reads:

min
β∈[βmin,βmax]

[

min
τ∈Σad

[

2J(τ) +

∫

Ω

σini : A : σini dV

]

+

∫

Ω

cost(β) dV

]

(12)

which takes the form:

min
β∈[βmin,βmax]

min
τ∈Σad

[

2J(τ) +

∫

Ω

σini : A : σini dV +

∫

Ω

cost(β) dV

]

(13)

or finally:

min
β∈[βmin,βmax]

min
τ∈Σad

∫

Ω

[

(τ − σini) : A : (τ − σini) + cost(β)
]

dV (14)

2.3. Optimization algorithm

In order to obtain a numerically very efficient optimization algorithm, we

are looking forward to a local sensitivity analysis.
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We then assume that at each point of position X in the domain Ω, the

initial stress field σini is only function of the value of the distributed optimiza-

tion parameters β at this point, i.e. σini[β(X)]. In other words, the initial

stress field depends locally on the distributed optimisation parameters.

With this assumption, it is possible to extend the optimization algorithm

introduced by Allaire et al. (1993, 1997) in the case of classical compliance

optimization problem.

The optimization algorithm reads:

(a) Initialisation - Iteration 0.

• Choice of β(X) = β(0)

• Calculation of the initial stress field σini[β
(0)] = σ

(0)
ini

• Calculation of the total stress σ(0)

(b) Local minimisations with respect to optimisation parameters with a fixed

total stress.

At each point of the structure, the following problem is solved:

β(n+1) = argmin
β∈[βmin,βmax]

[(

σ(n) − σini(β)
)

: A(β) :
(

σ(n) − σini(β)
)

+ cost(β)
]

(15)

(c) Global minimisation with respect to total stress field with fixed optimisa-

tion parameters.

For given optimisation parameters β(n+1), the total stress field σ(n+1)

is calculated by solving the elasticity problem (1)-(4). During this step,

the complementary energy theorem (9), in which the statically admissible
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stress τ is chosen equal to the total stress of the previous iteration σ(n),

reads:

J(σ(n+1)) ≤ J(σ(n)) (16)

(d) Back to step (b).

Optimisation algorithm convergence. Integrating on the whole domain, step

(b) of the optimisation algorithm gives:

∫

Ω

[

(σ(n) − σ
(n+1)
ini ) : A(n+1) : (σ(n) − σ

(n+1)
ini ) + cost(n+1)

]

dV

≤
∫

Ω

[

(σ(n) − σ
(n)
ini) : A

(n) : (σ(n) − σ
(n)
ini) + cost(n)

]

dV (17)

Adding the term
∫

Ω
σ
(n+1)
ini : A(n+1) : σ

(n+1)
ini dV to (16) gives :

∫

Ω

[

(σ(n+1) − σ
(n+1)
ini ) : A(n+1) : (σ(n+1) − σ

(n+1)
ini ) + cost(n+1)

]

dV

≤
∫

Ω

[

(σ(n) − σ
(n+1)
ini ) : A(n+1) : (σ(n) − σ

(n+1)
ini ) + cost(n+1)

]

dV (18)

Considering (17) and (18), we get:

∫

Ω

[

(σ(n+1) − σ
(n+1)
ini ) : A(n+1) : (σ(n+1) − σ

(n+1)
ini ) + cost(n+1)

]

dV

≤
∫

Ω

[

(σ(n) − σ
(n)
ini) : A

(n) : (σ(n) − σ
(n)
ini) + cost(n)

]

dV (19)

The criterion being a positive quantity and decreasing at each iteration

(step (b) - step (c)), the algorithm necessarily converges to a limit. This

limit is a stationnary point of the criterion and, in numerical practice, a

local minimizer.
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3. Topology optimization with isotropic linear elastic materials

with an initial stress field

3.1. Dependence of the initial stress with the optimization parameters

Let consider the mixture of two isotropic materials such that the com-

posite stiffness and dilatation tensors are isotropic. Densities, bulk moduli

and shear moduli are respectively noted ρ, κ and µ with subscripts 1, 2 and

C for material 1, material 2 and composite. In the framework of structural

rigidity optimization, we assume that

ρ1 < ρ2 κ1 < κ2 µ1 < µ2 (20)

which implies that a composite density increase leads to a composite stiffness

increase.

Using the SIMP method (introduced for topology optimization with ma-

terial and void (Bendsøe, 1989; Zhou and Rozvany, 1991)) in the case of

topology optimization with two distinct bulk materials, the optimization pa-

rameter is the fictitious material density ρ = ρC
ρ2
,which varies in the range

[ρmin, 1], with ρmin = ρ1
ρ2
. The isotropic composite stiffness tensor a is con-

sidered proportional to the stiffness tensor a
0
chosen equal to the stiffness

tensor of material 2:

a = ρna
0

with (a0)ijkl = κ2δijδkl + µ2

(

δikδjl + δjkδil −
2

3
δijδkl

)

(21)

Assumption (20) implies that n is strictly positive. The phenomenological

power law approximation (21) of the composite bulk and shear moduli with

the same exponent n may be considered for the mixture of two materials with

close shear and bulk moduli ratios (µ1

µ2
≈ κ1

κ2
), i.e. with close poisson’s ratio,
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or for the mixture of material and void (other more accurate approximations

such as the RAMP or the modified SIMP approaches are not considered in the

present work). If material 1 degenerates to void, the density ρ1, bulk modulus

κ1 and shear modulus µ1 tends to zero, and a very small positive value of

ρmin is chosen for numerical purposes. In this case, the coefficient n may be

experimentally determined (e.g. n ≈ 2 for open cell metal foams (Ashby,

2006)) or may be introduced to limit the amount of intermediate densities

when no design dependent initial stress is considered (and is then classically

chosen equal to 3).

The optimization methodology applies to problems with a local depen-

dency of the initial stress with the optimization parameters (see section 2.3).

The initial stress depends on the optimization parameters through the

elasticity tensor:

σini = a : ǫini(X) (22)

The dependency of the initial strain field ǫini with the density ρ is arbitrarily

considered in the form:

ǫini = ρpǫ0 (23)

in which ǫ0 is independent of the the density ρ.

For the topology optimization with an initial stress, we will then consider

an initial stress in the form

σini = ρn+pσ0 (with n > 0) (24)

in which σ0 = a
0
: ǫ0 is independent of ρ.

As it will be exemplified in section (3.3) in the thermo-elasticity frame-

work, the parameter p can take values which are positive or negative, de-
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pending on which materials are mixed.

3.2. Local minimizations

In the case of an initial stress depending on the optimization parameter

through equation (24), the local criterion defined in (14) reads:

crit(ρ) = σ : A : σ + σini : A : σini − 2σ : A : σini + cost(ρ)

=
1

ρn
σ : A

0
: σ + ρn+2pσ0 : A0

: σ0 − 2ρpσ : A
0
: σ0 + cost(ρ)

(25)

The local minimization (with a fixed total stress field) problem reads

then:

min
ρ∈[ρmin,1]

[

B

ρn
+ ρn+2pB0 − 2ρpC + cost(ρ)

]

with























B = σ : A
0
: σ

B0 = σ0 : A0
: σ0

C = σ : A
0
: σ0

(26)

The cost functional is chosen proportional to the distributed fictitious

density: cost(ρ) = kρ, where the parameter k is a positive constant chosen

by the user.

The second derivative of the local criterion with respect to the density ρ

reads:

∂2 crit(ρ)

∂ρ2
=

1

ρn+2

[

(n+2p)(n+2p−1)B0ρ
2(n+p)−2p(p−1)Cρn+p+n(n+1)B

]

Considering that C2 − BB0 ≤ 0, B ≥ 0, B0 ≥ 0 and n > 0, the second

derivative of the local criterion is always positive (i.e. independently of the

stress state) if and only if

pmin ≤ p ≤ pmax with











pmin = n+ 1−
√

2n(n + 1)

pmax = n + 1 +
√

2n(n + 1)

(27)
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Remark: n < pmax for all n, pmin < n for n > (
√
3 − 1)/2 and pmin < 0 for

n > 1.

The first derivative of the local criterion reads:

∂ crit(ρ)

∂ρ
=

1

ρn+1

[

(n+ 2p)B0ρ
2(n+p) − 2pCρn+p − nB + kρn+1

]

With p satisfying eq (27), the first derivative is monotonic increasing on

]0,+∞[ starting from negative values, and is equal to zero for ρ0 solution of

(n+ 2p)B0ρ
2(n+p) − 2pCρn+p + kρn+1 − nB = 0 (28)

Let ρopt be the point for which crit(ρ) is minimum for ρ ∈]0, 1]. Then:

ρopt = min(1, ρ0) (29)

In order to find numerically the optimal density value, equation (28) is solved

using a bisection procedure for any value of p satisfying to equation (27). If

p = 1 (which consists in a linear increasing variation of the initial strain ǫini

with respect to the density ρ), the equation (28) can be analytically solved:

ρ0 =

(

2C − k +
√

(2C − k)2 + 4n(n + 2)BB0

2(n+ 2)B0

) 1

n+1

(30)

3.3. Mechanical interpretation of the power-law approximation of the initial

strain and stress in the thermo-elasticity framework

Let consider the mixture of two materials 1 and 2 such that the composite

stiffness increases with a density increase (ρ1 < ρ2, κ1 < κ2, µ1 < µ2 and

n > 0).
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In the presence of thermo-elastic stress load, the initial stress is

σini = a : ǫini with ǫini = −α∆T (31)

in which a is the composite isotropic stiffness tensor, α is the composite

isotropic dilatation tensor and ∆T = T − T0 the variation of temperature

with respect to a reference temperature T0.

The temperature field is a function of the material density ρ through

a thermal problem, and thus depends globally on the material density (the

temperature at each point is a function of the distribution of the material

density over the entire domain). The initial stress may then depend locally

on the material density if and only if the temperature is constant over the

entire domain.

Using the SIMP approach (24) in this thermo-elastic framework, the ini-

tial stress reads then

σini = ρn+pσ0 with σ0 = −a
0
: α0∆T (32)

in which the isotropic stiffness tensors a
0
, the isotropic dilatation tensor α0

and the temperature ∆T are independent of the density ρ.

We will show in the following part of this section that the values of the

thermal expansion coefficients α1 and α2 of the two mixed materials may

lead to positive or negative values of the parameter p.

In the following, the numerical values of the parameter n are obtained by

fitting simultaneously (assuming that Poisson’s ratio of the two bulk mate-

rials are close) the effective bulk and shear moduli of the composite defined
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with the Hashin-Shtrikman upper bound (Hashin and Shtrikman, 1963):

κC = κ2 +
V1

1
κ1−κ2

+ 3V2

3κ2+4µ2

µC = µ2 +
V1

1
µ1−µ2

+ 6(κ2+2µ2)V2

5µ2(3κ2+4µ2)

(33)

in which the volume fractions V1 and V2 of materials 1 and 2 (with V1+V2 = 1)

are related to the fictitious density ρ by

ρ = V1ρmin + V2 (with ρmin =
ρ1
ρ2
) (34)

The numerical values of p are obtained by fitting the effective coefficient of

thermal expansion of the composite explicitly given in terms of the effective

bulk modulus (Levin, 1967):

αC = V1α1 + V2α2 +
α1 − α2

1
κ1

− 1
κ2

[

1

κC

−
(

V1

κ1

+
V2

κ2

)]

(35)

The values of p may be classified in five different cases (the material

parameters used for the numerical examples are presented in table 1):

Case 1: p > 0. A density increase of the composite leads to an increase

of the thermal dilatation and an increase of the initial stress. Example:

titanium/copper (n = 0.2 and p = 0.9).

Case 2: p = 0. A density increase of the composite leads to a constant

thermal dilatation and a increase of the initial stress. This case may be

obtained with the mixture of two materials with the same thermal expansion

coefficient, or in the case of material and void (for which the very small value
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of void stiffness implies that the composite thermal expansion coefficient is

equal to the material 2 thermal expansion coefficient).

Case 3: −n < p < 0. A density increase of the composite leads to a de-

crease of the thermal dilatation and a increase of the initial stress. Example:

aluminium/copper (n = 0.6 and p = −0.3).

Case 4: p = −n. A density increase of the composite leads to a decrease of

the thermal dilatation and a constant initial stress.

Case 5: p < −n. A density increase of the composite leads to a decrease

of the thermal dilatation and a decrease of the initial stress. Example: alu-

minium/titanium (n = 1.0 and p = −1.9).

In this thermo-elasticity framework, the optimization methodology appli-

cability condition (27) includes the case 2 and partially the cases 1 and 3.

3.4. Numerical example in the case of a thermo-elastic stress load

We consider topology optimization of material and void. The parameter

p is then equal to zero (as explained in the previous section (3.3)). The value

of n is chosen equal to 3, i.e.

σini = ρ3σ0 with σ0 = −a
0
: α0∆T (36)
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in which a
0
and α0 are the isotropic stiffness and dilatation tensors of the

bulk material. With the chosen values of n and p, the condition (27) is

satisfied and the local minimization is solved using a bisection method.

The numerical example consists in a 3D beam with dimensions 1x1x4. A

vertical force is applied at the center of a long face while the two ends are

clamped (see figure 1). We will consider two thermo-elastic stress load cases:

no thermo-elastic stress load and a thermo-elastic stress load induced by a

constant temperature of −50◦C.

The isotropic material considered is steel with elasticity and thermal pa-

rameters defined in table 2.

The initial optimization parameters (density ρ) values are fixed to 1.

The optimization algorithm used is described in section 2.3. Convergence is

obtained for a relative error equal to 0.01%. The optimal distributions in the

two loading cases fulfil the property of 20% of total volume used (either by

iterating over the entire optimization algorithm with updated values of the

cost parameter k or by iterating over the local minimizations adjusting the

value of the cost parameter k as described by Allaire (2002)).

To avoid mesh sensitivity, the numerical approach of non-local energy

density in the local minimization step is used (Desmorat, 2007).

Initial and optimal values of compliance and maximal displacement are

presented in table 3. Without thermo-elastic stress load, the initial compli-

ance is smaller than the optimal compliance because of the initial density

equal to 1 in the entire domain. This is no longer true with thermo-elastic

stress load, the load depending on the density.

The optimal density distribution without thermo-elastic stress loads is
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presented in figure 2. This distribution reaches a clear black and white design

(with ”grey” regions only present in the transition from ”black” to ”white”

regions, which is due to the numerical approach of non-local energy density

in the local minimization step and can be removed by iterating a few more

iterations with a local energy density approach).

The optimal density distribution with thermo-elastic stress loads is pre-

sented in figure 3. This optimal distribution of density is no longer close to

0 and 1 as in the case without thermo-elastic stress load, as already noticed

by Rodrigues and Fernandes (1995).

We remark in those figures that the topology is completely different when

the thermo-elastic stress load is added. If the loading with thermal loads is

applied to the optimal design obtained without thermal loads, the compli-

ance and the maximal displacements are greater than those obtained on the

optimal designs obtained with thermal loads, even though the latter is not a

black and white design.

In order to penalize the optimal density distribution, it is possible to use a

penalized density ρpen which is closer to 0 for ρopt < 1/2 or 1 for ρopt > 1/2 in

the local minimization of the energy density. The penalized optimal density

used is:

if ρopt ≤
1

2
: ρpen =

1− eλρopt

2(1− eλ/2)
(37)

if ρopt ≥
1

2
: ρpen =

1

2
+

1− e−λ(ρopt−
1

2
)

2(1− e−λ/2)
(38)

A greater value of the parameter λ leads to a penalized density closer to 0

or 1 (with limλ→0 ρpen = ρopt). Only a few iterations need to be performed

after convergence with a fixed parameter k equal to the value obtained at
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convergence to obtain a relative error of 0.01% on the compliance and the

total material volume. With λ = 5.5, the total material volume obtained after

the penalization process is equal to 20.0 %, and the penalized optimal density

distribution is presented in figure 4. This penalization procedure leads to a

black and white design associated to a 5% increase of the compliance (and a

24% decrease of the maximal displacement).

4. Orientational optimization with an orthotropic linear elastic ma-

terial with an initial stress field

4.1. Dependence of the initial stress with the optimization parameters

In this section, we consider 2D elasticity under the assumption of plane

stress. The optimization parameter is the orthotropic material orientation φ.

For the optimal orientation of an orthotropic material with an initial stress,

we assume that the initial stress function of the material orientation σini(φ),

has its principal directions aligned with the orthotropy principal directions.

This assumption is linked to the assumed local character of the initial

stress with respect to the material orientation: in this case we suppose that

the initial stress is related to the material symmetries, and consider the

simplest case of aligned directions. An example (detailed in section 4.3) is

the thermo-elastic behaviour of a material with an orthotropic stiffness tensor

and an isotropic dilatation tensor.

The orientation parameter φ has no influence on the mass of the structure:

the cost term introduced in (11) is chosen equal to zero.
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4.2. Local minimizations

Considering the local minimizations step (with a fixed total stress σ) of

the optimization algorithm, the optimal orientation is solution of:

min
φ∈]−π/2,π/2]

[

σ : A(φ) : σ − 2σ : A(φ) : σini(φ) + σini(φ) : A(φ) : σini(φ)
]

(39)

In the case of low shear stiffness material (defined by c2 < 0, see equa-

tion (43)), the optimal orientation is found to be aligned with one of the

principal stress direction. The choice depends on the initial stress field and

on the material parameters.

To prove it, we follow the proof presented by Cheng and Pedersen (1997)

in the case of linear elasticity (with no initial stress).

First, we remark that C1 = σini(φ) : A(φ) : σini(φ) does not depend on the

material orientation φ, because of the assumption of aligned initial stress

principal directions with orthotropy principal direction.

In the orthotropy frame and using the matrix notations,

A =











A11 A12 0

A12 A22 0

0 0 A33











σ =











σ11

σ22

√
2σ12











(40)

Let assume (without loss of generality) that A11 −A22 < 0. Let φ be the

angle between the stiffest direction of the orthotropy frame and the direction

of maximal principal stress (in absolute value). The two principal stresses

are noted σI and σII , with |σI | > |σII |. After some calculations, the local
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criterion reads:

crit =
[

σ : A(φ) : σ−2σ : A(φ) : σini(φ) + C1

]

=
[

D0 + 2D1 cos(2φ) +D2 cos
2(2φ)+C1

]

(41)

with

D0 =
1

4

(

σ2
I − σ2

II

)

2A33 +
1

4

(

σ2
I + σ2

II

)

(A11 + A22 + 2A12)

+ (σI + σII)
[

(A11 + A12)σ
ini
11 + (A12 + A22)σ

ini
22

]

D1 =
1

4

(

σ2
I − σ2

II

)

(A11 − A22) +
1

2
(σI − σII)

[

(A11 − A12)σ
ini
11 + (A12 −A22)σ

ini
22

]

D2 =
1

4

(

σ2
I − σ2

II

)

(A11 + A22 − 2A12 − 2A33)

Then we calculate the first derivative of the local criterion, and equal it to

zero:

∂ crit

∂φ
= 0 ⇔ D1 sin(2φ) +D2 sin(2φ) cos(2φ) = 0 ⇔



























φ = 0

φ = π/2

cos(2φ) = −ζ

(42)

with

ζ =
c0(σI + σII) + c1

c2(σI − σII)
and



























c0 = A11 −A22

c1 = 2 [(A11 − A12)σ
ini
11 + (A12 −A22)σ

ini
22 ]

c2 = A11 + A22 − 2A12 − 2A33

(43)

The difference with the elastic case without the initial stress is the term c1.

Let’s now calculate the difference between the different values of the local
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criterion for φ = 0, φ = π
2
and cos(2φ) = −ζ :

crit[φ = 0]− crit[cos(2φ) = −ζ ] = c2(σI − σII)
2(1 + ζ)2

crit[φ = 0]− crit[φ = π/2] = 4D1

In the case of low shear stiffness material (c2 < 0), the solution of the local

minimization of the criterion is then φ = 0 or φ = π
2
, depending on the

sign of D1, which is a function of the initial stress field and of the material

parameters.

Remark:. With no initial stress, D1 is always negative, and then φ = 0 is

the optimal orientation in the case of low shear stiffness material, i.e. the

direction of maximal stiffness is aligned with the principal stress direction

associated to the principal stress that has maximal absolute value.

4.3. Numerical example in the case of a thermo-elastic stress load

The temperature field is a function of the material orientation φ through a

thermal problem, and thus depends globally on the material orientation (the

temperature at each point is a function of the distribution of the material

orientation over the entire domain). The initial stress may then depend

locally on the material orientation if and only if the material orientation has

no influence on the thermal conductivity, i.e. that the thermal conductivity

is isotropic. With the temperature independent of the material orientation

φ, the initial thermo-elastic stress reads:

σini = −a(φ) : α(φ)∆T (44)

in which a is the orthotropic stiffness tensor and α is the orthotropic dilata-

tion tensor.

23



The numerical example consists in a 2D plate with dimensions 1x1. The

left edge is clamped, temperatures of −100◦C and +100◦C are respectively

imposed on the upper and lower edges and a zero heat flux is imposed on

the left and right edges of the plate (see figure 5). The orthotropic mate-

rial considered is a monolayered composite made of long curvilinear aramid

fibres with elasticity and thermal parameters defined in table 4. The initial

orthotropy (fibres) orientation is aligned with the horizontal axis in the entire

plate.

Because of the isotropic thermal conductivity of such a material, the tem-

perature field is independent of the optimization parameters. The tempera-

ture field can then be obtained before the optimization procedure by solving

the heat equation: in the present case, the temperature field is linear from

the upper edge to the lower edge of the plate (for more complicated bound-

ary conditions, the temperature field should be computed numerically). On

the other hand, the orthotropy principal directions in rigidity are aligned

with those of thermal dilatation. The optimization algorithm described in

section 2.3 can then be used. Convergence is obtained for a relative error

equal to 0.01%.

The optimal orthotropy orientation is presented in figure 6. Initial and

optimal deformed configuration are presented in figures 7 and 8. At conver-

gence, the decrease of the compliance is 58% and the decrease of maximal

displacement is 16%.
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5. Conclusion

In this paper, we propose a double minimization formulation of a struc-

tural rigidity optimization methodology based on compliance with an initial

design dependent stress field. This formulation leads to a convergent and

very efficient optimization algorithm in the case of a local dependency of the

initial stress with the optimization parameters.

Two cases are considered: topology optimization with an isotropic linear

elastic composite material made of two isotropic linear elastic materials (one

possibly being void) and orientational optimization with an orthotropic linear

elastic material. We solve analytically in those two cases the minimization

problem of local elastic energy with an initial stress field, with respect to

material density in the case of topology optimization and with respect to

orthotropy orientation in the case of orientational optimization.

Numerical examples for thermo-elastic stress loads are presented. Al-

though the design domains and the boundary conditions are very simple,the

obtained optimized density and orientation fields are quite complicated and

the structural performance increase is demonstrated.

The main advantage of the methodology is the numerical efficiency thanks

to local sensitivity analysis that are solved analytically or using a simple

bisection procedure.

In the most general case of double minimization formulation of structural

rigidity optimization based on compliance with an initial design dependent

stress field, the minimization with respect to optimization parameters with a

fixed total stress is global because of the global dependency of the initial stress

with the optimization parameters. The optimization methodology is still
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valid but the sensitivity analysis recovers a numerical cost and the proposed

method should be compared in that case to others in terms of numerical

efficiency.
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Material Aluminium Titanium Copper

Density 2700 kg/m3 4510 kg/m3 8940 kg/m3

Bulk modulus 73 GPa 120 GPa 134 GPa

Shear modulus 26 GPa 41 GPa 46 GPa

Poisson’s ration 0.34 0.35 0.34

Thermal expansion coefficient 22.8 ∗ 10−6K−1 9.0 ∗ 10−6K−1 16.8 ∗ 10−6K−1

Table 1: Material parameters

Young’s Modulus Poisson’s Ration Thermal Expansion coefficient

210 GPa 0.3 13 ∗ 10−6K−1

Table 2: Steel material parameters

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

F

u=0u=0

Figure 1: Beam example: geometry and boundary conditions

29



NO thermo-elastic stress WITH thermo-elastic stress

Normalized

Compliance

Normalized

maximal

displacement

Normalized

compliance

Normalized

maximal

displacement

Initial (100% volume) 1 1 32.8 1.2

Optimal (20 % volume) 4.6 4.3 8.4 4.1

Table 3: Beam example: Normalized numerical results with respect to the initial state

with NO thermo-elastic stress loads
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(a) 3D view with a density lower threshold equal to 10−2 (ρmin = 10−3)

(b) 2D view of the central vertical section

Figure 2: Optimal density distribution without thermo-elastic stress load
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(a) 3D view with a density lower threshold equal to 10−2 (ρmin = 10−3)

(b) 2D view of the central vertical section

Figure 3: Optimal density distribution with thermo-elastic stress load (T = −50◦C)
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(a) 3D view with a density lower threshold equal to 10−2 (ρmin = 10−3)

(b) 2D view of the central vertical section

Figure 4: Penalized optimal density distribution with thermo-elastic stress load (T =

−50◦C)
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Longitudinal Young’s Modulus 85000 MPa

Transverse Young’s Modulus 5600 MPa

Shear Modulus 2100 MPa

Poisson’s ration 0.34

Longitudinal thermal expansion coefficient −1 ∗ 10−6K−1

Transverse thermal expansion coefficient 70 ∗ 10−6K−1

Isotropic thermal conductivity 0.2Wm−1K−1

Table 4: Aramid/Epoxy composite material parameters

u=0

T= -100˚C

T= +100˚C

Figure 5: Composite plate example: geometry and boundary conditions
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Figure 6: Optimal material orthotropy orientation
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Figure 7: Initial deformed configuration (amplification factor x30) with temperature field

Figure 8: Optimal deformed configuration (amplification factor x30) with temperature

field
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