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Abstract

In this work, we present an optimization methodology used in order to opti-
mize laminated composite shell structures with variable stiffness. Consider-
ing the maximization of the structural global rigidity measured by the com-
pliance, a topology optimization problem of the anisotropy fields for thin lam-
inated plates as well as the associated optimization algorithm are extended
to thin laminated shells. Numerical examples with quasi-homogeneous angle-
ply stacking sequences showing the optimization methodology feasibility are
presented.
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1. Introduction

Laminated composite shell optimization is a research domain that can be
split by considering diverse design objectives and parametrizations related to
constant or variable stiffness designs [1, 2]. Considering the parametrization,
two opposite approaches use optimization parameters related to the homoge-
nized shell behaviour (lamination parameters [3, 4], polar parameters [5, 6])
or related directly to the stacking sequence (e.g. by considering the angles
of the plies in the stacking sequence).

The weight can be considered as an optimization criterion for shape opti-
mization (shape of the midsurface) or topology optimization (distribution of
the thickness) of the shell. A design objective for shell structures may be the
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fundamental eigenfrequency [7, 8]. A third important shell design problem
is the maximization of the buckling load [9, 10, 11]. Usually, this problem is
related to thin shells, as when the thickness increases, the design objective
may become the ply failure or delamination, or more generally damage in
the laminated composite [7]. A fifth design objective is the shell structural
rigidity optimization [12, 13, 14]. This objective is related to the wish of the
smallest variation of the shell shape with respect to one or multiple loadings,
e.g. for the use of the shell in an air or liquid flow. This five types of opti-
mization objectives can be considered at the same time if needed by choosing
an optimization objective and multiple constraints or by doing multi-criteria
optimization [15].

The present paper interest is in variable stiffness design (anisotropy dis-
tribution) of laminated composite shell for structural rigidity optimization,
assuming that this objective is of greater interest than the others in terms
of structure functionality, and that the obtained optimal layup will be veri-
fied in order to satisfy buckling and/or damage and/or frequency constraints
in a second stage. The proposed optimization methodology is then related
to a preliminary design phase (it has to be a very efficient numerical tool)
and must be able to treat any 3D surface geometry (and then unstructured
meshes).

Considering the compliance as a measure of the global rigidity of the
shell structure, a new result demonstrated in this paper is the extension of
the compliance optimization problem formulated as a minimum-minimum
problem with respect to optimization parameters and statically admissible
fields [16, 17] to the case of laminated shells, and the definition of the associ-
ated minimal set of assumptions. In this framework, the numerical tool used
for the examples considers quasi-homogeneous angle-ply stacking sequences:
it leads to a very high numerical efficiency while the use of a more general
set of stacking sequences is still under study.

In a first section, we introduce the elasticity problem and the variational
formulation of a shell structure under the small perturbation assumption,
considering symmetric generalized forces and moments and assuming uncou-
pled behaviour law of the layup. In a second section, we write the opti-
mization problem and algorithm for this shell structure as an extension of
a minimum-minimum formulation of compliance optimization. In a third
section, we show which assumptions are necessary to use this formulation:
the membrane and bending behaviours are uncoupled and the homogenized
behaviour does not depend on the shell curvature. In order to derive a semi-
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analytical solution for the sensitivity analysis, we consider specific stacking
sequences that are quasi-homogeneous and have isotropic transverse shear
behaviour. Finally, two numerical examples are presented: a shell assem-
bly (cylinder with an inner floor) and a 3D elliptic shell geometry with an
unstructured mesh.

2. Thin laminated shell model

In this section, we introduce necessary notations of the description of the
shell geometry. Then we present the elasticity problem in terms of symmetric
generalized forces and moments to finally derive the variational formulations
used in the optimization problem and algorithm [18, 19].

2.1. Description of the shell geometry

A point P inside the shell C, close to the midsurface S, is defined using
the point M of the midsurface and the curvilinear coordinates (ξ1, ξ2, ξ3) :

OP = ΦΦΦ(ξ1, ξ2, ξ3) = OM(ξ1, ξ2) + ξ3a3(ξ
1, ξ2) (1)

At each pointM of the midsurface S, the covariant base of the tangent plane
to S is defined:

aα =
∂OM(ξ1, ξ2)

∂ξα
(α = 1, 2) a3 =

a1 ∧ a2

‖a1 ∧ a2‖
(2)

This base (a1, a2, a3) is in general not orthogonal nor normed.
The contravariant base (a1, a2, a3) of the midsurface is such that

aα.a
β = δβα, α, β = 1, 2 (3)

The second fundamental form (symmetric) of the midsurface S, called cur-
vature tensor of S, is defined by

b = bαβa
α ⊗ aβ with bαβ = aα,β .a3 (4)

= bαβaα ⊗ aβ with bαβ = aα
,β.a3 (5)

At each point P of the shell, the 3D covariant base (g1, g2, g3) is defined as

gα =
∂OP

∂ξα
= (δλα − ξ3bλα)aλ g3 =

∂OP

∂ξ3
= a3 (6)
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Let’s note µ the determinant of the surface mixed tensor µλ
α = (δλα−ξ3bλα).

The elementary volume dV around the point P of the shell is defined by

dV = µdξ3dS (7)

in which dS =
√
adξ1dξ2 is the elementary surface around the point M of

the midsurface.

2.2. Shell local constitutive equations

The Reissner-Mindlin kinematic assumption reads

U(ξ1, ξ2, ξ3) = u(ξ1, ξ2)+ ξ3θα(ξ
1, ξ2)aα with u(ξ1, ξ2) = ui(ξ

1, ξ2)ai (8)

The shell model is obtained by a linearisation with respect to ξ3 of the
strain tensor obtained using the kinematic assumption (8). The linearised
strain tensors reads then

e = eαβg
α ⊗ gβ with





eαβ = γαβ(u) + ξ3ραβ(u, θ) (α, β = 1, 2)

2eα3 = ζα(u, θ)

e33 = 0

(9)

in which the components of the membrane strain tensor γαβ, the bending
strain tensor ραβ and the shear strain tensor ζα are defined by

γαβ(u) =
1

2

[
Φ̂αβ + Φ̂βα

]
with Φ̂αβ = uα|β − bαβu3 (10)

ραβ(u, θ) =
1

2

[
θ̂αβ + θ̂βα

]
with θ̂αβ = θα|β − bναΦ̂να (11)

ζα(u, θ) = θα + u3,α + bλαuλ (12)

in which uα|β = uα,βΓ
γ
αβ (Γγ

αβ = aα,β.a
γ are the surface Christoffel symbols).

Let’s note σαβ the components of the stress tensor in the 3D covariant
base (at the point P ). The application of the virtual work principle leads to
the definition of the symmetric internal generalized stress tensors in mem-
brane N , in bending M and in transverse shear Q. Their components in the
covariant base of the midsurface S are

Nαβ =

∫

H

σαβµdξ3 Mαβ =

∫

H

ξ3σαβµdξ3 Qα =

∫

H

σα3µdξ3 (13)
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in which H denotes the thickness of the shell.
The application of the virtual work principle also leads to the definition

of the local equilibrium equations

Nαβ

|β −
[
bαλM

λβ
]
|β
− bαβQ

β + pα = 0

Mαβ

|β −Qα +M
α = 0

Qα
|α + bαβN

αβ − cαβM
αβ + p3 = 0

(14)

and of the boundary conditions in terms of forces on the part ∂S1 of the
external shape of S:

[
Nαβ − bαλM

λβ
]
νβ = T α Qανα = T 3 Mαβνβ = Cα (15)

in which pα~aα + p3~a3 and Mα~a
α
are the surface forces and moments applied

on the midsurface, −→ν = να~a
α is the normal vector to the external shape

of the midsurface, T α~aα + T 3~a3 and Cα~aα are the line forces and moments
applied on the part ∂S1 of the external shape of the midsurface.

Clamped boundary conditions in terms of displacements on the part ∂S0

of the external shape of S are also considered:

ui = 0 θα = 0 (16)

2.3. Laminated shell behaviour law

Each ply of the laminated shell is made of a linear elastic material with
a monoclinic symmetry. The associated behaviour law is

σ = H : e (17)

The components H ijkl of H in the 3D covariant basis (at the point P) satisfy
the symmetry conditions

H ijkl = Hklij = Hjikl = H ijlk (18)

and the monoclinic symmetry imply the supplementary conditions

H3βγδ = H333δ = 0 (19)

Assuming that the transverse stress σ33 is equal to zero, the behaviour
law (17) reads

{
σαβ = Cαβγδeγδ

σα3 = Ĉαβ2eβ3
with

Cαβγδ = Hαβγδ − H33γδHαβ33

H3333

Ĉαβ = Hα3β3

(20)
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Integrating over the thickness the Eq. (13), the shell behaviour law reads

N = A : γ +B : ρ M = B : γ +D : ρ (21)

in which the membrane stiffness A, the coupling stiffness B and the bending
stiffness D reads 




Aαβγδ =

∫

H

Cαβγδµdξ3

Bαβγδ =

∫

H

Cαβγδξ3µdξ3

Dαβγδ =

∫

H

Cαβγδ(ξ3)2µdξ3

(22)

The transverse shear behaviour law is considered in the following form

Q = kF .ζζζ (23)

with

F αβ =

∫

H

Ĉαβµdξ3 (24)

k is the shear coefficient factor, that is assumed to be independent of the
shell curvature and of the stacking sequence (this coefficient is equal to 5/6
if we consider a transverse shear behaviour that is homogeneous along the
thickness of the shell).

In the behaviour law (21), we will assume through the rest of the paper
that the membrane and bending behaviour are uncoupled:

B = 0 (25)

(necessary assumptions related to this choice will be presented in section 4.1).
The inverse behaviour law reads then

γ = a : N ρ = d :M ζζζ =
1

k
fQ (26)

with

a = A−1 d = D−1 f = F−1 (27)

2.4. Variational formulations

The elasticity problem (P) is defined by Eq. (14)(15)(16)(21)(23).
Let’s define the kinematically admissible displacements field Uad, i.e. sat-

isfying the boundary conditions in terms of displacements (16), and the stati-
cally admissible stress field Σad, i.e. satisfying the equilibrium equations (14)
and the boundary conditions in terms of forces (15).

6



Variational formulation in terms of displacements.
If (u, θ) is a displacement field solution to the elasticity problem (P) then





(u, θ) ∈ Uad

a

(
(u, θ), (u′, θ′)

)
= L(u′, θ′) ∀(u′, θ′) ∈ Uad

(28)

with

a

(
(u, θ), (u′, θ′)

)
=

∫∫

S

(
Aαβγδγαβ(u)γγδ(u

′) + ...

Dαβγδραβ(u, θ)ργδ(u
′, θ′) + kF αβζα(u, θ)ζβ(u

′, θ′)
)
dS

L(u′, θ′) =

∫∫

S

(piu′i +M
αθ′α)dS +

∫

∂S1

(T iu′i + Cαθ′α)ds

Complementary energy theorem.
If (N,M,Q) is a stress field solution to the elasticity problem (P) then

{
(N,M,Q) ∈ Σad,

J(N,M,Q) ≤ J(N ′,M ′,Q′) ∀(N ′,M ′,Q′) ∈ Σad

(29)

with

J(N,M,Q) =
1

2

∫∫

S

(
aαβγδN

αβNγδ + dαβγδM
αβMγδ +

1

k
fαβQ

αQβ

)
dS

Relation between compliance L(u, θ) and complementary energy J(N,M,Q).

If (u, θ) and (N,M,Q) are solutions to the elasticity problem (P) , then

L(u, θ) = 2J(N,M,Q) (30)

3. Optimization problem and algorithm

Using the variational formulations of the shell elasticity problem intro-
duced in the previous section in terms of symmetric generalized forces and
moments, we introduce the optimization problem and algorithm for the max-
imization of the shell structural rigidity. This development follows the clas-
sical 3D elasticity topology optimization problem [16] and is possible thanks
to the assumption of uncoupled behaviour law (25).
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3.1. Optimization problem

Structural rigidity optimization of a thin laminated shell subjected to
membrane and bending loadings is formulated by the minimization of the
compliance with respect to distributed (i.e. continuously variable over the
midsurface S of the shell) optimization parameters βi ∈ [βmin

i , βmax
i ]:

min
βi∈[βmin

i
,βmax

i
]

[∫∫

S

(piui +M
αθα)dS +

∫

∂S1

(T iui + Cαθα)ds

]
(31)

Because the compliance is equal to twice the complementary energy (Eq. (30)),
the use of the complementary energy theorem (29) leads to an optimization
problem formulated as a double minimization with respect to the optimiza-
tion parameters and to statically admissible generalized membrane, bending
and transverse shear stresses:

min
βi∈[βmin

i
,βmax

i
]

min
(N ′,M ′,Q′)∈Σad[∫∫

S

(
aαβγδN

′αβN ′γδ + dαβγδM
′αβM ′γδ +

1

k
fαβQ

′αQ′β

)
dS

]
(32)

3.2. Optimization algorithm

The optimization problem (32) is numerically solved by using the follow-
ing optimization algorithm [16]:

• Initialization:
The mesh, the boundary conditions in terms of displacements and
forces applied to the shell, and the optimization parameters initial field
β
(0)
i are defined in order to calculate using a finite element method the

generalized stresses (N (0),M (0),Q(0))

• Iteration:
Each iteration is composed of two parts:

1. Local minimization with fixed stresses.
The local criterion is minimized considering fixed stress fields
(N (n),M (n),Q(n)) by considering the following optimization prob-
lem:

min
βi∈[βmin

i
,βmax

i
]

[
N (n) : a(βi) : N

(n) + ...

M (n) : d(βi) :M
(n) +

1

k
Q(n).f(βi).Q

(n)
]

(33)
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2. Global minimization with fixed optimization parameters.
The elasticity problem (P) associated to the parameters β

(n+1)
i

that were determined at the local minimizations step is solved in
order to define the new generalized stress fields N (n+1), M (n+1)

and Q(n+1).

It is proved that this algorithm is convergent [17]. Its numerical perfor-
mance is linked to the local sensitivity analyses (no global sensitivity analysis
has to be performed).

4. Laminated thin shell optimization

In the structural rigidity optimization framework introduced in the previ-
ous section, the necessary assumptions in terms of behaviour law and stacking
sequences in order to perform shell structural rigidity optimization are de-
fined. Then, the solution of the local minimization problem that leads to the
implementation of a numerically efficient optimization tool is derived.

4.1. About uncoupled behaviour and optimization

The components Cαβγδ and Ĉαβ in Eq. (22) and (24) are the components

of the tensors C and Ĉ expressed in the 3D covariant base (i.e. at the point
P ). They are function of the coordinate ξ3 and of curvature radii. Noting
with an index M the tensor components expressed at the point M in the
covariant base of the midsurface, those components at the point P are linked
to the components Cαβγδ

M and Ĉαβ
M of the tensor C and Ĉ (at the point M in

the covariant base of the midsurface S) by the following relations

Cαβγδ = mα
α′m

β
β′m

γ
γ′m

δ
δ′C

α′β′γ′δ′

M (with µα
γm

γ
β = δαβ )

Ĉαβ = mα
α′m

β
β′Ĉ

α′β′

M

(34)

Thus, considering a shell made of an homogeneous isotropic linear elastic
material, the behaviour law (21) is coupled (B 6= 0). Considering a laminated
shell, it is then vain to search in the general case for some particular stacking
sequences leading to an uncoupled shell behaviour law.

In order to obtain a uncoupled laminate behaviour law, it is then neces-
sary to neglect the influences of the curvature on A, B and D. This leads to
assume that

Cαβγδ ≃ Cαβγδ|ξ3=0 = Cαβγδ
M and µ = det(µβ

α) ≃ 1 (35)
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The components of A, B and D in the covariant base of the midsurface S
reads then 




Aαβγδ =

∫

H

Cαβγδ
M dξ3

Bαβγδ =

∫

H

Cαβγδ
M ξ3dξ3

Dαβγδ =

∫

H

Cαβγδ
M (ξ3)2dξ3

(36)

Let’s note (i1, i2, a3) the orthonormal base in which is defined the be-
haviour law (17) in terms of physical components. If one notes ψβ

α and ϕβ
α

(ψγ
αϕ

β
γ = δβα) the matrices relating this base to the covariant base of the

midsurface S:

aα = ϕβ
αiβ iα = ψβ

αaβ (37)

The components in the orthonormal base (i1, i2, a3) will be noted with a tilde
(∼). It is proved that (see below):





Ãαβγδ =

∫

H

C̃αβγδ
M dξ3

B̃αβγδ =

∫

H

C̃αβγδ
M ξ3dξ3

D̃αβγδ =

∫

H

C̃αβγδ
M (ξ3)2dξ3

(38)

and the obtained (approximate) shell behaviour laws are identical to those
of plates. The uncoupling of membrane/bending behaviour is then obtained
with the same stacking sequences than those of laminated plates.

For consistency, we will also neglect the influence of curvature in the
transverse shear behaviour (23), that is

Ĉαβ ≃ Ĉαβ|ξ3=0 = Ĉαβ
M (39)

and then

F αβ =

∫

H

Ĉαβ
M dξ3 F̃ αβ =

∫

H

˜̂
C

αβ

M dξ3 (40)
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Proof of Eq. (38).

Aαβγδ =

∫

H

Cαβγδ
M dξ3 =

∫

H

ψα
α′ψ

β
β′ψ

γ
γ′ψ

δ
δ′C̃

α′β′γ′δ′

M dξ3

= ψα
α′ψ

β
β′ψ

γ
γ′ψ

δ
δ′

∫

H

C̃α′β′γ′δ′

M dξ3

by definition Aαβγδ = ψα
α′ψ

β
β′ψ

γ
γ′ψ

δ
δ′Ã

α′β′γ′δ′ ,

then Ãαβγδ =

∫

H

C̃αβγδ
M dξ3

Remark. If the previous assumptions (35) and (39) are not considered in
the behaviour law, it is not possible to get an equivalent equation for the
relation (38).

4.2. Choice of specific orthotropic stacking sequences

Let’s consider stacking sequences made of identical plies (identical mate-
rial in each ply, identical ply thicknesses). The elementary layer is supposed
to have an orthotropic linear elastic behaviour. Let’s assume that the stack-
ing sequence implies an uncoupled behaviour (B = 0) and orthotropy in
membrane and in bending.

The local minimization problem (33) is analytically solved considering
plates in the case of a membrane local energy or of a bending local energy [20].
It is demonstrated that

• 3 cases of optimal orthotropic behaviour are defined with increasing
values of σI−σII

|σI+σII |
(in which σI and σII are the two principal stresses,

with σI > σII),

• in case 1 : there exist an infinite number of optimal stacking sequences,

• in cases 1 and 2 : the angle-ply is optimal,

• in cases 1, 2 and 3 : the cross-ply is optimal (and is the only optimal
staking sequence in case 3).

Considering laminates with identical ply thicknesses, the cross ply is not fea-
sible because a change in relative ply thicknesses will imply a 90 degrees fibre
orientation change inside the plies. Considering smooth variations of stress
field inside the plate domain, the angle-ply is feasible in the first two cases
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presented above, but is sub-optimal in case 3 and provide discontinuous ori-
entation variations inside plies in the third stress case (the stacking sequence
jumps from unidirectional to equilibrated cross-ply at a given value of σI−σII

|σI+σII |

that is a function of the elementary layer material parameters).
For shells (or uncoupled plates with simultaneous membrane and bend-

ing loadings), the membrane and bending energies coexist and no analytical
solution to the local minimization of the sum of membrane and bending ener-
gies has been found yet. We will then consider in this work specific stacking
sequences in order to solve the local minimization problems.

Introducing the homogenized membrane and bending tensors A∗ = 1
H
A

and D∗ = 12
H3D, we choose to work with angle-ply stacking sequences that

satisfy the quasi-homogeneous property:

A∗ = D∗ (41)

This quasi-homogeneity property adds an optimization constraint but this
difficulty can be easily circumvented if we limit the stacking sequences to
those which assure this property [21]. As an example, the following 8 plies
stacking sequence is uncoupled, quasi-homogeneous and orthotropic:

[+α/− α/− α/+ α/− α/+ α/+ α/− α] (42)

For this type of stacking sequences, the optimization parameters are the
lamination angle α ∈ [0◦, 45◦] and the stiffness principal direction of or-
thotropy of the homogenized laminate Φ1 ∈ [0◦, 90◦].

The transverse shear energy being very small in comparison to those of
membrane and bending, we assume that the transverse shear behaviour of
the elementary layers is isotropic and has no effect on the local minimization
solution. In terms of engineering moduli, this leads to equal shear moduli
GTT and GLT , and the transverse shear behaviour law (23) reads

Q =
5

6
HĈ.ζζζ (F = HĈ) (43)

4.3. Solution to the local minimization problem

Considering the assumptions of isotropic transverse shear behaviour (43)
and of uncoupled behaviour (25), the local minimization reduces to the min-
imization of the sum of the membrane and bending energies because the
transverse shear energy remains constant during this local minimization with
fixed generalized stresses.
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Considering the assumptions (35) and (39) that the homogenized be-
haviour does not depend on the shell curvature, the part of the optimiza-
tion criterion that depends on the optimization parameters is written in the
orthonormal base (i1, i2, a3) defined in Eq.(37) and the local minimization
problem reads

min
(Φ1,α)

[
1

H
ã∗αβγδÑαβÑγδ +

12

H3
ã∗αβγδM̃αβM̃γδ

]
(44)

in which the homogenized membrane compliance tensor ã∗ is defined in terms
of material parameters only (i.e. does not depend on the shell curvature).

Because of the uncoupled behaviour assumption (25), ã∗ =
(
Ã

∗
)−1

, and

the membrane and bending homogenized compliance tensors are identical
because of the quasi-homogeneity assumption (41).

Missing an analytical solution, we solve numerically this optimization
problem using a fixed point algorithm. The choice of multiple initializations
allows to find the global optimum in the case of multiple local minima. The
numerical cost of the resolution is very low in comparison to a finite element
calculation thanks to the existence of semi-analytical solutions to the local
minimization problems presented in the next subsections 4.3.1 and 4.3.2.

4.3.1. Local minimization with respect the principal orthotropy direction with
a fixed lamination angle

The local criterion is written in the following form (expressions of the
coefficients ki and li function of the lamination angle α are given in annex):

Ŵ (Φ1) = k0 + k1 sin 2Φ1 + k2 cos 2Φ1 + k3 sin 4Φ1 + k4 cos 4Φ1 (45)

The first derivative reads

∂Ŵ (Φ1)

∂Φ1
= 2k1 cos 2Φ1 − 2k2 sin 2Φ1 + 4k3 cos 4Φ1 − 4k4 sin 4Φ1 (46)

Considering the first derivative equal to zero and taking the square of the
previous equation, we get

l0 + l1Y + l2Y
2 + l3Y

3 + l4Y
4 = 0 with Y = cos 2Φ1 (47)

Considering that Ŵ (Φ1) is continuous and periodic, the global minimum is
found numerically in three steps:
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1. The Y solutions of (47) with Y ∈ [0, 1] are found.

2. Corresponding angles Φ1 solutions not satisfying
∂Ŵ (Φ1)

∂Φ1

= 0 are elim-

inated.

3. The criterion values for the remaining angles Φ1 are compared in order
to find the global minimum.

4.3.2. Local minimization with respect to the lamination angle with a fixed
principal orthotropy direction

The local criterion is put in the form (the expressions of the coefficients
κij and λi function of the stiffness principal orthotropy direction Φ1 are given
in annex):

Ŵ (α) =
1

H3

∑4
i=0 κ1i(Y )

i

λ0 + λ2Y 2 + λ4Y 4
with Y = cos(2α) (48)

The first derivative reads

∂Ŵ (α)

∂α
= −2 sin(2α)

∂Ŵ (Y )

∂Y
with

∂Ŵ (Y )

∂Y
=

1

H3

∑6
i=0 κ2i(Y )

i

(λ0 + λ2Y 2 + λ4Y 4)2

(49)

Considering that Ŵ (α) is continuous and periodic, the global minimum
is found numerically in three steps:

1. α = 0 is one solution of
∂Ŵ (α)

∂α
= 0.

2. The Y solutions of
∂Ŵ (Y )

∂Y
= 0 with Y ∈ [0, 1] are found.

3. The criterion values for the remaining angles α are compared in order
to find the global minimum.

5. Numerical examples

5.1. Finite elements calculation

In order to simulate numerically thin shell behaviour, we use a mitc4
shell element [18]. The calculation of the through the thickness homogenized
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behaviour law is performed by taking into account the assumptions (35)
and (39): the homogenized behaviour does not depend on the shell curvature
and the membrane/bending uncoupling is formulated as for plates. This finite
element allows to calculate the generalized stress tensors in membrane N , in
bending M and in transverse shear Q in an orthonormal base per element
fixed by the user and used to define the material behaviour.

5.2. Example of a cylinder with an inner floor

The structure is made of a cylinder with an inside floor diametrally placed
in the plane x = 0. The structure is clamped for z = 0. An inner pressure
is applied on the lower half of the cylinder (x < 0, Fig. 1). The floor and
the cylinder are quasi-homogeneous uncoupled angle-ply laminates with an
elementary layer made of Carbon/Epoxy. The optimization procedure is ini-
tialized with an unidirectional oriented circumferentially for the cylinder and
oriented along the diameter of the cylinder for the floor (Fig. 2). Con-
vergence is obtained after 11 iterations with a relative error of 0.01%. For
each iteration, the local minimization step (with 4 initial starting points)
and the finite element resolution step (16000 DOFs) take repectively 18 and
5 seconds.

Fig. 3 shows the optimal orientation of the plies oriented at Φ1 + α and
Φ1 −α. The unidirectional laminate (α = 0) is optimal close to the clamped
and free edges of the cylinder and of the floor. It gradually changes to
an angle-ply with an increasing lamination angle α that increases from 0 to
π/4. This increase occurs in certain regions in a discontinuous manner, which
leads to a straight change from a unidirectional to an equilibrated cross-ply
with α = π/4 (as it was already mentioned in section 4.2, this result is not
satisfactory from a feasibility point of view).

Table 1 presents the optimization results of the cylinder with a floor. The
decrease in terms of compliance and maximal displacements are respectively
85% and 75%.

5.3. Example of an elliptic geometry shell

The structure is made of a 3D surface with two straight edges and two
edges made with a quarter of an ellipse. The structure is clamped on the
two straight edges. Considering an unstructured mesh, a constant vertical
surface load is applied on the entire surface (Fig. 4). The shell is made of
quasi-homogeneous uncoupled angle-ply laminates with an elementary layer
made of Carbon/Epoxy. The optimization procedure is initialized with an
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unidirectional oriented from one clamped edge to the second clamped edge
(Fig. 5). Convergence is obtained after 34 iterations with a relative error of
0.01%. For each iteration, the local minimization step (with 4 initial starting
points) and the finite element resolution step (9000 DOFs) take repectively
14 and 3 seconds.

Fig. 6 shows the optimal orientation of the plies oriented at Φ1 + α and
Φ1 − α. The unidirectional laminate (α = 0) is optimal in some parts of
the shell. It gradually changes to an angle-ply with an increasing lamination
angle α that increases from 0 to π/4. As already noticed in the previous cylin-
der with an inner floor example, this increase occurs in certain regions in a
discontinuous manner, which leads to a straight change from a unidirectional
to an equilibrated cross-ply with α = π/4.

Table 2 presents the optimization results of the elliptic geometry shell.
The decrease in terms of compliance and maximal displacements are respec-
tively 42% and 50%.

6. Concluding remarks

We present in this paper an optimization methodology for laminated shell
structures with any arbitrary geometry (the finite element analysis being
performed using an unstructured mesh). The optimization algorithm has a
great numerical efficiency thanks to the semi-analytical resolution of local
sensitivity analysis that has been obtained considering quasi-homogeneous
uncoupled angle ply laminates (known to be quasi-optimal for laminated
uncoupled plates with membrane only or bending only loadings). Two main
assumptions were needed: independence of the homogenized behaviour with
the shell curvature and uncoupled membrane and bending behaviours.

The quasi-homogeneous uncoupled angle ply stacking sequences consid-
ered are not quite completely adequate for feasibility reasons because there
exist some unidirectional to equilibrated cross-ply transitions that cannot be
manufactured with laminates made of identical layers. For this reason, a nat-
ural perspective to this work would be to consider in a first step an arbitrary
uncoupled quasi-homogeneous (or not) homogenized behaviour using for ex-
ample the polar representation to define the optimization parameters, and to
retrieve in a second step feasible stacking sequences made of identical layers
which match the optimal distribution of the parameters obtained previously.
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Annex

In the local orthonormal base (i1, i2, a3) (defined in Eq. (37)), the com-
ponents of the homogenized stiffness tensor A∗, the homogenized compliance
tensor a∗, the membrane forces N and bending moments M are respectively

Ã∗
αβγδ,ã

∗
αβγδ, Ñαβ and M̃αβ . Let Φ1 be the rotation angle of the orthotropy

orthonormal base with respect to the local orthonormal base (i1, i2, a3). In
this orthotropy base, the components of the homogenized stiffness tensor,
homogenized compliance tensor, membrane forces and bending moments are
respectively A∗⊥

αβγδ,a
∗⊥
αβγδ, N

⊥
αβ and M⊥

αβ .
Using the polar representation [6], the components of the homogenized

stiffness tensor A∗ are defined in the local orthonormal base (i1, i2, a3) by

Ã∗
1111 = T0 + 2T1 + (−1)KR0 cos 4Φ1 + 4R1 cos 2Φ1

Ã∗
1122 = − T0 + 2T1 − (−1)KR0 cos 4Φ1

Ã∗
1112 = (−1)KR0 sin 4Φ1 + 2R1 sin 2Φ1

Ã∗
2222 = T0 + 2T1 + (−1)KR0 cos 4Φ1 − 4R1 cos 2Φ1

Ã∗
2212 = − (−1)KR0 sin 4Φ1 + 2R1 sin 2Φ1

Ã∗
1212 = T0 − (−1)KR0 cos 4Φ1

(50)

In the polar representation of 2D elastic behaviour, five polar components are
defined: T0, T1, (−1)KR0, R1 and Φ1. Four polar components are invariants:
T0 and T1 (linked to the isotropic part of the behaviour) and (−1)KR0 and
R1 (linked to the anisotropic part of the behaviour). The angle Φ1 is the
stiffness principal direction of orthotropy.

Using the polar representation, the components of the homogenized com-
pliance tensor a∗ are defined in the local orthonormal base (i1, i2, a3) by

ã∗1111 = t0 + 2t1 + (−1)kr0 cos 4ϕ1 + 4r1 cos 2ϕ1

ã∗1122 = − t0 + 2t1 − (−1)kr0 cos 4ϕ1

ã∗1112 = (−1)kr0 sin 4ϕ1 + 2r1 sin 2ϕ1

ã∗2222 = t0 + 2t1 + (−1)kr0 cos 4ϕ1 − 4r1 cos 2ϕ1

ã∗2212 = − (−1)kr0 sin 4ϕ1 + 2r1 sin 2ϕ1

ã∗1212 = t0 − (−1)kr0 cos 4ϕ1

(51)

The polar components of orthotropic stiffness and compliance tensors are
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linked by the relation





ϕ1 = Φ1 +
π

2

t0 = 4
T0T1 − R2

1

∆

t1 =
T 2
0 − R2

0

∆

(−1)kr0 = 4
R2

1 − T1(−1)KR0

∆

r1 = 2R1
T0 − (−1)KR0

∆

(52)

in which
∆ = 16T1

(
T 2
0 − R2

0

)
− 32R2

1

(
T0 − (−1)KR0

)
(53)

The elementary layer is supposed to be orthotropic. Using the polar rep-
resentation defined above, the invariant polar components of the elementary
layer will be noted TEL

0 , TEL
1 , (−1)K

EL

REL
0 , REL

1 . For classical fibre/matrix
elementary layers (carbon/epoxy, glass/epoxy, aramid/epoxy), it is experi-
mentally observed that KEL = 0. For an angle-ply laminate with identical
elementary layers (with KEL = 0), it is proved that





T0 = TEL
0

T1 = TEL
1

(−1)KR0 = REL
0 cos 4α

R1 = REL
1 cos 2α

(54)

Considering Eq. (51)(52)(53)(54), the components of homogenized com-
pliance tensor of the angle-ply laminate are

ã∗1111 = V1 + V2 cos 2Φ1 + V3 cos 4Φ1

ã∗1122 = V4 − V3 cos 4Φ1

ã∗1112 = V2 sin 2Φ1 + V3 sin 4Φ1

ã∗2222 = V1 − V2 cos 2Φ1 + V3 cos 4Φ1

ã∗2212 = V2 sin 2Φ1 − V3 sin 4Φ1

ã∗1212 = V5 − V3 cos 4Φ1
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with





V1 = t0 + 2t1

V2 = −4r1

V3 = (−1)kr0

V4 = −t0 + 2t1

V5 = 4t0

and





t0 = 4
(
TEL

0 TEL

1 − (REL

1 cos 2α)2
)
/∆

t1 =
(
(TEL

0 )2 − (REL

0 cos 4α)2
)
/∆

(−1)kr0 = 4
(
(REL

1 cos 2α)2 − TEL

1 REL

0 cos 4α
)
/∆

r1 = 2REL

1 cos 2α
(
TEL

0 −REL

0 cos 4α
)
/∆

in which

∆ = 16TEL

1

(
(TEL

0 )2 − (REL

0 cos 4α)2
)
− 32(REL

1 cos 2α)2
[
TEL

0 −REL

0 cos 4α
]

(55)
The coefficients in Eq. (45),(46) and (47) are derived as following:

ki =
1

H
p1i +

12

H3
p2i (i = {0, 1, 2, 3, 4})





p10 = V1(Ñ
2
11 + Ñ2

22) + 2V4Ñ11Ñ22 + V5Ñ
2
12

p11 = 2V2Ñ12(Ñ11 + Ñ22)

p12 = V2(Ñ
2
11 − Ñ2

22)

p13 = 4V3Ñ12(Ñ11 − Ñ22)

p14 = V3(Ñ11 − Ñ22)
2 − 4V3Ñ

2
12




p20 = V1(M̃
2
11 + M̃2

22) + 2V4M̃11N22 + V5M̃
2
12

p21 = 2V2M̃12(M̃11 + M̃22)

p22 = V2(M̃
2
11 − M̃2

22)

p23 = 4V3M̃12(M̃11 − M̃22)

p24 = V3(M̃11 − M̃22)
2 − 4V3M̃

2
12




l0 = 4(k22 + 4k23)

l1 = (−16k1k3 + 32k2k4)

l2 = 4(k21 − k22 − 16k23 + 16k24)

l3 = 32(k1k3 − k2k4)Y
3

l4 = 64(k23 − k24)

and the coefficients in Eq. (48) and (49) are derived using the orthotropy
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base as following:





λ0 = 16
(
− (REL

0 )2 + (TEL
0 )2

)
TEL
1

λ2 = −32(REL
1 )2(REL

0 + TEL
0 ) + 64(REL

1 )2TEL
1

λ4 = 64REL
0

(
(REL

1 )2 − REL
0 TEL

1

)

κ1i = 12π1i + π2iH
2 (i = {0, 1, 2, 3, 4})

κ20 = +λ0κ11

κ21 = −2λ2κ10 + 2λ0κ12

κ22 = −λ2κ11 + 3λ0κ13

κ23 = −4λ4κ10 + 4λ0κ14

κ24 = −3λ4κ11 + λ2κ13

κ25 = −2λ4κ12 + 2λ2κ14

κ26 = −λ4κ13

with




π10 = −2(N⊥
11 +N⊥

22)
2(REL

0 − TEL
0 )(REL

0 + TEL
0 )

+ 4
[
4N⊥2

12 (−REL
0 + TEL

0 ) + (N⊥
11 −N⊥

22)
2(REL

0 + TEL
0 )

)
TEL
1

]

π11 = −8(N⊥
11 −N⊥

22)(N
⊥
11 +N⊥

22)R
EL
1 (REL

0 + TEL
0 )

π12 = 8
[
− 4N⊥2

12 (R
EL
1 )2 +REL

0

(
(N⊥

11 +N⊥2
22 )R

EL
0 − (−4N⊥2

12 + (N⊥
11 −N⊥

22)
2)TEL

1

)]

π13 = 16(N⊥
11 +N⊥

22)(N
⊥
11 −N⊥

22)R
EL
0 REL

1

π14 = −8(N⊥
11 +N⊥

22)
2(REL

0 )2





π20 = −2(M⊥
11 +M⊥

22)
2(REL

0 − TEL
0 )(REL

0 + TEL
0 )

+ 4
[
4M⊥2

12 (−REL
0 + TEL

0 ) + (M⊥
11 −M⊥

22)
2(REL

0 + TEL
0 )

)
TEL
1

]

π21 = −8(M⊥
11 −M⊥

22)(M
⊥
11 +M⊥

22)R
EL
1 (REL

0 + TEL
0 )

π22 = 8
[
− 4M⊥2

12 (R
EL
1 )2 +REL

0

(
(M⊥

11 +M⊥
22)

2REL
0 − (−4M⊥2

12 + (M⊥
11 −N22)

2)TEL
1

)]

π23 = 16(M⊥
11 +M⊥

22)(M
⊥
11 −M⊥

22)R
EL
0 REL

1

π24 = −8(M⊥
11 +M⊥

22)
2(REL

0 )2
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Figure 1: Boundary conditions in terms of forces (cylinder with an inner floor)

Figure 2: Initial fibre orientation (cylinder with an inner floor)

(Normalized values) Initial state Optimal state Decrease
Compliance 100 15.0 85 %

Membrane energy 95.3 10.8 89 %
Bending energy 4.6 4.1 11 %

Transverse shear energy 0.1 0.1 0 %
Max. Displ. 100 25 75 %

Table 1: Maximal values of normalized criterion and displacements (cylinder with an inner
floor)
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(a) Pressure application zone (x < 0)

(b) Pressure free cylindrical zone (x > 0)

(c) Floor

Figure 3: Optimal plies orientation at the angles Φ1 + α and Φ1 − α (cylinder with an
inner floor)
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Figure 4: Boundary conditions in terms of forces (elliptic geometry shell)

(Normalized values) Initial state Optimal state Decrease
Compliance 100 58.2 42 %

Membrane energy 62.5 35.5 43 %
Bending energy 37.2 22.4 40 %

Transverse shear energy 0.3 0.3 0 %
Max. Displ. 100 50.3 50 %

Table 2: Maximal values of normalized criterion and displacements (elliptic geometry
shell)
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Figure 5: Initial fibre orientation (elliptic geometry shell)
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Figure 6: Optimal fibre orientation at the angles Φ1 + α and Φ1 − α (elliptic geometry
shell)
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