J. Lee, J. Kim, and T. Hyeon, Recent Progress in the Synthesis of Porous Carbon Materials, Advanced Materials, vol.15, issue.16, pp.2073-2094, 2006.
DOI : 10.1002/adma.200501576

C. Liang, Z. Li, and S. Dai, Mesoporous Carbon Materials: Synthesis and Modification, Angewandte Chemie International Edition, vol.19, issue.20, pp.3696-3717, 2008.
DOI : 10.1002/anie.200702046

G. Wildgoose, . Banks, and . Compton, Metal Nanoparticles and Related Materials Supported on Carbon Nanotubes: Methods and Applications, Small, vol.7, issue.479, pp.182-193, 2006.
DOI : 10.1002/smll.200500324

A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit et al., Crystalline Ropes of Metallic Carbon Nanotubes, Science, vol.273, issue.5274, pp.483-487, 1996.
DOI : 10.1126/science.273.5274.483

M. Jose-yacaman, M. Miki-yoshida, L. Rendon, and J. G. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure, Applied Physics Letters, vol.62, issue.6, pp.657-659, 1993.
DOI : 10.1063/1.108857

M. Titirici and M. Antonietti, Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization, Chem. Soc. Rev., vol.114, issue.183, pp.103-116, 2010.
DOI : 10.1016/j.cattod.2009.05.003

M. Titirici, M. Thomas, and . Antonietti, Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?, New Journal of Chemistry, vol.188, issue.6, pp.787-789, 2007.
DOI : 10.1039/b616045j

F. Bergius, Beitr???ge zur Theorie der Kohleentstehung, Die Naturwissenschaften, vol.16, issue.1, pp.1-10, 1928.
DOI : 10.1007/BF01504496

K. Hu, L. Wang, S. Wu, M. Yu, M. Antonietti et al., Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass, Advanced Materials, vol.18, issue.153, pp.813-828, 2010.
DOI : 10.1016/j.cattod.2009.05.003

M. Titirici, M. Antonietti, and N. Baccile, Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses, Green Chemistry, vol.18, issue.11, p.1204, 2008.
DOI : 10.1021/cm702816x

URL : https://hal.archives-ouvertes.fr/hal-00480514

W. Meiler and R. Meusinger, NMR of Coals and Coal Products, Annual Reports on NMR Spectroscopy, vol.23, pp.375-410, 1991.
DOI : 10.1016/S0066-4103(08)60280-X

A. Kruse and E. Dinjus, Hot compressed water as reaction medium and reactant, The Journal of Supercritical Fluids, vol.39, issue.3, pp.362-380, 2007.
DOI : 10.1016/j.supflu.2006.03.016

A. Kruse and E. Dinjus, Hot compressed water as reaction medium and reactant, The Journal of Supercritical Fluids, vol.41, issue.3, pp.361-379, 2007.
DOI : 10.1016/j.supflu.2006.12.006

X. Sun and Y. Li, Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles, Angewandte Chemie, vol.116, issue.5, pp.607-611, 2004.
DOI : 10.1002/ange.200352386

A. Kruse and . Gawlik, Biomass Conversion in Water at 330???410 ??C and 30???50 MPa. Identification of Key Compounds for Indicating Different Chemical Reaction Pathways, Industrial & Engineering Chemistry Research, vol.42, issue.2, pp.267-279, 2003.
DOI : 10.1021/ie0202773

K. S. Berge, J. Ro, J. R. Mao, M. A. Flora, S. Chappell et al., Hydrothermal Carbonization of Municipal Waste Streams, soon to be published 23, Prog. Polym. Sci, vol.22, pp.1203-1379, 1997.

T. Rogalinski, G. Ingram, and . Brunner, Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures, The Journal of Supercritical Fluids, vol.47, issue.1, pp.54-63, 2008.
DOI : 10.1016/j.supflu.2008.05.003

M. Mok and . Antal, Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water, Industrial & Engineering Chemistry Research, vol.31, issue.4, pp.1157-1161, 1992.
DOI : 10.1021/ie00004a026

D. M. Kumar, M. J. Barrett, P. Delwiche, and . Stroeve, Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production, Industrial & Engineering Chemistry Research, vol.48, issue.8, pp.3713-3729, 2009.
DOI : 10.1021/ie801542g

F. Alesiani, S. Proietti, M. Capuani, M. Paci, B. Fioravanti et al., 13C CPMAS NMR spectroscopic analysis applied to wood characterization, Applied Magnetic Resonance, vol.103, issue.2, pp.177-184, 2005.
DOI : 10.1007/BF03167005

S. Bardet, G. Hediger, S. Gerbaud, . Gambarelli, . Jacquot et al., Investigation with 13C NMR, EPR and magnetic susceptibility measurements of char residues obtained by pyrolysis of biomass, Fuel, vol.86, issue.12-13, pp.1966-1976, 2007.
DOI : 10.1016/j.fuel.2006.12.025

D. Cody and G. Saghi-szabo, Calculation of the 13C NMR chemical shift of ether linkages in lignin derived geopolymers:, Geochimica et Cosmochimica Acta, vol.63, issue.2, pp.193-205, 1999.
DOI : 10.1016/S0016-7037(99)00029-0

M. Sevilla and A. B. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose, Carbon, vol.47, issue.9, pp.2281-2289, 2009.
DOI : 10.1016/j.carbon.2009.04.026

O. Bobleter, Hydrothermal degradation of polymers derived from plants, Progress in Polymer Science, vol.19, issue.5, pp.797-841, 1994.
DOI : 10.1016/0079-6700(94)90033-7

B. Sasaki, R. Kabyemela, S. Malaluan, N. Hirose, T. Takeda et al., Cellulose hydrolysis in subcritical and supercritical water, The Journal of Supercritical Fluids, vol.13, issue.1-3, pp.261-268, 1998.
DOI : 10.1016/S0896-8446(98)00060-6

Z. Sasaki, Y. Fang, T. Fukushima, K. Adschiri, and . Arai, Dissolution and Hydrolysis of Cellulose in Subcritical and Supercritical Water, Industrial & Engineering Chemistry Research, vol.39, issue.8, pp.2883-2890, 2000.
DOI : 10.1021/ie990690j

Y. David, M. Pu, J. Foston, A. Muzzy, and . Ragauskas, C Nuclear Magnetic Resonance (NMR) Analysis of Chars from Alkaline-Treated Pyrolyzed Softwood, Energy & Fuels, vol.23, issue.1, pp.498-501, 2009.
DOI : 10.1021/ef8004527

B. Wooten, J. I. Seeman, and M. R. Hajaligol, C CPMAS NMR. A New Mechanistic Model, Energy & Fuels, vol.18, issue.1, pp.1-15, 2004.
DOI : 10.1021/ef0300601

R. E. Pastorova, P. W. Boto, J. J. Arisz, and . Boon, Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study, Carbohydrate Research, vol.262, issue.1, pp.27-47, 1994.
DOI : 10.1016/0008-6215(94)84003-2

W. Knezevic, S. Van-swaaij, and . Kersten, Hydrothermal Conversion Of Biomass. II. Conversion Of Wood, Pyrolysis Oil, And Glucose In Hot Compressed Water, Industrial & Engineering Chemistry Research, vol.49, issue.1, pp.104-112, 2010.
DOI : 10.1021/ie900964u

B. Sanders, A. I. Goldsmith, and J. I. Seeman, A model that distinguishes the pyrolysis of d-glucose, d-fructose, and sucrose from that of cellulose. Application to the understanding of cigarette smoke formation, Journal of Analytical and Applied Pyrolysis, vol.66, issue.1-2, pp.29-50, 2003.
DOI : 10.1016/S0165-2370(02)00104-3

F. Haw and T. P. Schultz, Carbon-13 CP/MAS NMR and FT-IR Study of Low-Temperature Lignin Pyrolysis, Holzforschung, vol.39, issue.5, pp.289-296, 1985.
DOI : 10.1515/hfsg.1985.39.5.289