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Similarity Search of Acted Voices
for Automatic Voice Casting

Nicolas Obin, Member, IEEE, and Axel Roebel, Member, IEEE

Abstract—This paper presents a large-scale similarity search
of professionally acted voices for computer-aided voice casting.
The proposed voice casting system explores Gaussian mixture
model-based acoustic models and multilabel recognition of per-
ceived paralinguistic content (speaker states and speaker traits,
e.g., age/gender, voice quality, emotion) for the voice casting of
professionally acted voices. First, acoustic models (universal back-
ground model, super-vector, i-vector) are constructed to model the
acoustic space of voices, from which the similarity between voices
can be measured directly in the acoustic space. Second, multiple
binary classification of speaker traits and states is added to the
acoustic models in order to represent the vocal signature of a voice,
which is then used to measure the similarity between voices in the
paralinguistic space. Finally, a similarity search is processed in or-
der to determine the set of target actors that are the most similar
to the voice of a source actor. In a subjective experiment conducted
in the real-context of cross-language voice casting, the multilabel
scoring system significantly outperforms the acoustic scoring sys-
tem. This constitutes a proof of concept for the role of perceived
para-linguistic categories in the perception of voice similarity.

Index Terms—Multi-label classification, para-linguistics,
speaker recognition, speaker traits and states, voice casting,
voice similarity.

1. INTRODUCTION

HE production of multi-media content (films, series,
T video-games) available to various countries requires the
translation of the speech content from a source language (typi-
cally, English) to a set of target languages (typically, French,
German, Spanish, Japanese, Mandarin). Translation of the
speech content can be simply obtained by subtitles, but very
often the original speech content is totally replaced by the cor-
responding speech content in the target language. This process,
referred to as dubbing, is obtained by first translating the text
from the source to the target language, then selecting actors in
the target language, and finally recording the actors synced to
the original speech content. These actors must be selected so as
to preserve as much as possible the voice and the acting of the
original actors. Voice casting denotes the selection of a voice in
a target language that is the most similar to a voice in a source
language, and is usually performed by human experts who
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manually select actors according to a database of available
voices in the target language. Beyond voice casting stands the
open scientific issue on the perception and the measurement of
voice similarity: the closer/farther a source voice is perceived
from a target voice, the smaller/larger the distance should be
measured. What defines the perception of voice similarity re-
mains vague: common expressions (i.e., gender: male/female,
age: young/old) are generally used to describe the main traits of
a voice/speaker [1], and the role of voice quality in the percep-
tion of voice similarity has been recently addressed [2]. Also,
some recent research in speaker clustering (e.g., speech retrieval
[3], [4], and speech synthesis [5], [6]) have addressed to some
extent the measurement of speaker/voice similarities.

To the best of our knowledge, this paper is the first scientific
investigation into the measurement of voice similarity for the
voice casting of professionally acted voices. Two alternative
solutions are investigated and compared:

- Intuitively, the use of speaker recognition techniques
[7]-19] for voice casting appears seducing: the scoring used
in speaker recognition system can be interpreted straight-
forwardly as a similarity measure between voices, and this
similarity can be directly measured in the acoustic space. In
particular, the similarity measure as determined for speaker
recognition has been proven to be extremely accurate in the
local acoustic neighbourhood of a speaker: a speaker can be
authenticated in the presence of close impostor speakers.
However, there is no evidence that this similarity measure
remains valid in the entire acoustic space, and actually re-
flects the perception of the similarity between voices.

- Alternatively, the description of a voice by perceived para-
linguistic categories (speaker states and traits [10], [11]
e.g., age/gender, voice quality, emotions) may efficiently
capture the perception of a voice, and then serve to mea-
sure the similarity between voices. Furthermore, common
expressions are widely used by human experts in voice cast-
ing to stereotype a role. For instance, Albus Dumbledore
from the movie “Harry Potter” can be described as a male,
old, wise, and breathy voice. Accordingly, the stereotype
may be more important for voice casting than the actual
acoustic similarities.

This paper explores and compares the use of GMM-based
acoustic models and multi-label classification of perceived para-
linguistic categories (e.g., age/gender, voice quality, emotion)
for the voice casting of professionally acted voices. This ex-
tends the preliminary work presented in [12] by 1) presenting
the complete details of the two contributions proposed for voice
casting, one is based on acoustic models derived from speaker
recognition and one is based on multi-label recognition of
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perceived para-linguistic categories (speaker traits and speaker
states); and 2) providing a detailed evaluation of para-linguistic
recognition for all considered categories, including a compar-
ison of MFCC, super-vector, and i-vector acoustic representa-
tions for some classic and novel para-linguistic categories. First,
GMM-based acoustic models and multi-label classification of
speaker traits and states are presented in order to score the sim-
ilarity between voices in the acoustic and para-linguistic spaces
(Section II). Second, the set of categories used to describe the
traits and states of a speaker for the multi-label scoring is pre-
sented (Section III). The performance of the acoustic and the
multi-label scoring is first evaluated in an objective experiment,
and then compared in a subjective experiment in the real context
of professional voice casting (Section IV).

II. SIMILARITY SCORING FOR VOICE CASTING

This section presents the details of the acoustic models
and scoring derived from speaker recognition, and the multi-
label classification and scoring from perceived para-linguistic
categories for voice casting. The implementation is based on
ircamClassifier [13], a system developed in the context of Music
Information Retrieval [14], [15]. This system includes the Alizée
3.0 speaker recognition [16] and the LibSvm [17] SVM libraries.

A. Acoustic Space Modeling: Universal Background Model
(UBM) and GMM supervector

The UBM is used to model the distribution of the entire acous-
tic space [7]. This modelling is usually achieved with a standard
Gaussian mixture model (GMM-UBM). The likelihood of the
(D x 1) feature vector o describing the acoustic characteristics
of speech is defined as

M
p(o|d) = aipi(o) (1)
=1

where M is the number of mixture components, A =
{a, piy X }ie[LM] represents the weights, means, and vari-
ances of the i-th Gaussian, and p; (o) = N (o|y;, ;) denotes
the likelihood of the ith mixture component, where A/ denotes
a Gaussian distribution.

Then, the mean parameters g = {;, ..., p3; } of the UBM
are adapted to each speech recording by using relevance max-
imum a posteriori (MAP) adaptation [7]. This is achieved by
updating the means of the mixture components to a sequence
of acoustic observations o = |01, ..., or], of length 7. Finally,
each speech recording is represented by the mean vectors of the
adapted mixture components:
adapt

zli‘daptT adaptT]T (2)

=[p v Mgy

where T denotes the transposition operator, and ;ﬁdapt , referred
to as a GMM-supervector, is the concatenation of all the mean
vectors of the adapted mean parameters of the UBM.

u

B. Factor Analysis: Total Variability Space and i-vector

An i-vector is the compact representation of a high-
dimensional speech recording into a low-dimensional space

called Total Variability space [9], assuming an affine linear
model (i.e., factor analysis):

' =p+Tx 3)

where ' is the GMM-supervector of a speech recording, u
is the GMM-supervector corresponding to the UBM mean pa-
rameters, T is the (DM x q) total variability matrix, and x is
a g-dimensional vector assuming a prior normal distribution,
referred to as an i-vector. The total variability matrix T is esti-
mated by expectation-maximization [9]. The i-vector of a speech
recording is determined as a MAP point estimate of the latent
variable x [9].

C. Inter-Session Compensation: i-vector Transformation

The i-vector transformation is used to project the to-
tal variability of the high-dimensional acoustic space (i.e.,
speaker/class information and session/channel information) in
a low-dimensional space in which the i-vectors distribution
is assumed to be normal for each speaker/class. In order to
compensate for the session/channel information, and to con-
strain the i-vector distribution to be normally distributed for
each speaker/class, a large number of methods have been pro-
posed from linear discriminant analysis [9] (LDA) for inter-
session compensation, to within-class covariance normalization
(WCCN, [18]), length normalization (LN, [19]), eigen factor
radial normalization (EFR, [20]), and sphere nuisance normal-
ization (SN, [16], [20]) for speaker/class normalization.

The LN is a simple normalization:

Xx= (4)
x|
where ||.|| denotes the L-2 norm.
The WCCN whitens the covariance matrix of each class:

= W rx (5
K

W= p(k)ni) (©6)
k=1

where W is the covariance matrix defined as the weighted sum
of the within-class covariance matrices 25}’), where K is the
number of classes, and p(k) is the prior probability of class k.

The EFR processes recursively standardization and
normalization:
1
@O~ 2/ _,,0
x(it1) — Ex. J(X HX, ) %)
1287 (0 — )]
where ugf ) and ng) denote the mean vector and covariance

matrix of all i-vectors at iteration i.
The SN is similar to the EFR, except that the covariance
matrix is replaced by the within-class covariance matrix W.

D. Acoustic Scoring

The first contribution of this paper is to investigate the acous-
tic scoring derived from speaker recognition to measure the
similarity between voices for voice casting (Fig. 1). While the
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Fig. 1. Architecture of the acoustic voice casting system. On bottom,
unsupervised acoustic extraction and modelling; on top, super-
vised/unsupervised acoustic scoring.

support vector machine (SVM) is historically a milestone in
speaker recognition [8], some recent advances have been pro-
posed to score the similarity between speakers.

1) Direct Scoring: Cosine Similarity: First, direct cosine
similarity [21] has been proven to be extremely efficient for
speaker recognition. The cosine similarity measures the similar-
ity between two speech recordings X, and X, in the i-vector
acoustic space:

_ <Xsr07 tht>
|xsre | {14

S(Xsrm tht) (8)
where < .,. > is the scalar product operator.

Importantly, the cosine similarity assumes that only the angle
between two i-vectors provides information about the similarity
between speech recordings. Furthermore, the cosine similarity
can be computed directly in the acoustic space, without any
prior training.

2) Generative Model: PLDA: One of the last advances is
the introduction of generative models for speaker recognition
[22]. Among them, the probabilistic linear discriminant anal-
ysis (PLDA) [23] is the most popular generative model cur-
rently used for speaker recognition. In the original form, PLDA
linearly decomposes an i-vector in eigen-speaker and eigen-
channel subspaces (respectively of rank Ny caker and Nepannel)-
In the case where the eigen-channel is assumed to be full-rank
(Nchannel = q) (Gaussian PLDA [24] or simplified PLDA [19]),
each i-vector x, of a speaker s can be expressed as

Xs = px + Sh; +¢ &)

where g1, is the total i-vectors mean vector, S is the (Ngpeaker X
q) eigen-speaker matrix, hy is the position of the i-vector within
the eigen-speaker space S (the latent speaker vector, assumed
to be normally distributed), and e is the g residual vector with a
full covariance matrix. Maximum-Likelihood (ML) estimation
of the PLDA parameters is described in [23].

Then, the similarity between two speech recordings X, and
Xig¢ can be computed as the likelihood ratio [24]:

p(xsrcv xtgt ‘Hl)
p(xsrc ‘HO) p(xtgt |H0)

where the hypothesis ; indicates that both vectors come from
the same latent speaker (respectively, class), and 7, indicates
they come from different latent speakers (respectively, classes).
A closed form solution can be computed as detailed in [24],
[25].

The acoustic scores derived from speaker recognition can be
straightforwardly turned into a similarity measure between two
speech recordings for voice casting, by ignoring the identifica-
tion, recognition, verification hard decision of a speaker identity.
The main advantages of the acoustic scoring for voice casting is
that the scoring can be performed directly in the acoustic space,
and the similarity measure has been proven to be extremely ef-
ficient for speaker recognition. Also, the similarity metric may
be strictly unsupervised (e.g., cosine distance), or supervised by
available information (e.g., PLDA). Since the speaker’s iden-
tity is generally the only available information in the context of
voice casting and assuming the accuracy of speaker recognition
systems, this first contribution will address the use of a similarity
metric supervised by speaker’s identity for voice casting.

(10)

S(Xsrca tht) =

E. Multi-Label Scoring

The second contribution of this paper is the use of a multi-
label scoring based on the “semantic” description of a voice with
perceived para-linguistic categories (speaker states and speaker
traits). This multi-label scoring is presented as an alternative
to the acoustic scoring as used for speaker recognition. First, a
multi-label classifier is added on top of GMM-based acoustic
models to assign the labels corresponding to a speech recording.
Then, the posterior probabilities of each label are concatenated
to form a vector that represents the signature of a voice, which
is used to measure the similarity between voices (Fig. 2).

Multi-label classification [26] is commonly used for the in-
dexing, retrieval, and similarity search of multi-media content
(e.g., [27], [28] for text, [29], [30] for music, [31] for image, and
[32] for video). Multi-label classification assumes that a media
content (text, image, video, sound) can be described with a set of
labels that are independent to each other. Multi-label classifica-
tion is opposed to the multi-class classification commonly used
in para-linguistic classification: the classification does not result
to a single label, but to a vector of multiple co-occurring and
non-exclusive labels (Fig. 3). In consequence, multiple labels
can be assigned to a media content. Typically, the emotion con-
tent of a speech recording can be a mix of “sadness” and “fear”
and even of “sadness” and “joy,” whereas the speech recording
would be classified only as “sadness” with multi-class classifica-
tion. This provides an extended description of a speech content
that can be further used for similarity search.

For voice casting, a multi-label scoring is constructed by
converting the classification of multiple labels into multiple
binary classifications [14], [26]. First, each label of the speech
description (e.g., the speech recording is creaky) is turned into a
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Fig. 2.  Architecture of the multi-label voice casting system. On bottom,
unsupervised acoustic extraction and modelling; on top, supervised multi-label
recognition and scoring.
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Fig. 3. Multi-class vs. multi-label classification.

binary representation (i.e., yes/no). Then, a classifier is trained
for each label separately, which results into C independent one-
versus-all classifiers [33]. A complete description of the labels
used in this paper is provided in Section III.

Here, the SVM ([17]) is used for multi-label classification. For
each label c, the classification of a vector x (e.g., supervector,
i-vector) corresponding to a speech recording is obtained with
regard to the decision function:

N
=Y WIK(x,x.) +be a1

where O, = {w!,x.i,b.}}X., are the parameters of the
maximum-margin hyperplane determined during training

(respectively weights, support vectors, and offset), and K., .)
the SVM kernel [34].

In a standard SVM, the binary label corresponding to the
observation vector x is assigned with regard to the sign of the
decision function:

e = sign(fe(x))

where sign(z) = +1 for z > 0 and —1 otherwise, so that y, is
1 when the label is positive, and 0 when the label is negative.

Here, the decision function is converted into a posterior prob-
ability estimate for each label c, as detailed in [35]:

7/)0 = p(:(y = 1|X) = p(y = 1|Xa @c),

Then, the posterior probabilities of each label are concate-
nated to form a vector that represents the vocal signature signa-
ture of a speech recording:

v = [¢17"'7’(/}C]T

where 1. is the posterior probability of the c-th label condi-
tionally to the observation vector x. Similarly to the GMM-
supervector and the i-vector, the vector W representing the vocal
signature of a speech recording is a single vector summarizing
each speech recording.

Finally, the similarity of a source to a target speech recording
is defined as the distance d of their vocal signatures:

S(Xsrm tht) = d(\Ilsrca \IItgt)

12)

cell,...,Cl. (13)

(14)

5)

where ¥, and Wy, denotes the vocal signature of the source
and target speech recordings, respectively. Here, d( ., .) is defined
as the Kullback—Leibler divergence K L(.||.) which is a natural
distance measure between posterior probabilities [36], [37].

The main advantage of the multi-label scoring for voice cast-
ing lies on the assumption that the para-linguistic content of a
voice (speaker traits and states) may reflect more explicitly the
perceived similarity between voices. Furthermore, the multi-
label classification system can be used to automatically tag and
search voices based on their perceived para-linguistic content
within large speech databases.

III. DESCRIPTION OF SPEAKER TRAITS AND STATES

This section presents the details of the para-linguistic cat-
egories used for the multi-label scoring system presented in
Section II-E. A short review on standard description and recog-
nition of a voice content is first provided, followed by a specifi-
cation of the selected description for voice casting.

Common linguistic expressions can be associated with a voice
to describe the perceived “quality” of the voice [1]. Among
them, the age (young/old), sex (male/female), and emotions
are the most widely used expressions to describe a voice.
These expressions can be directly associated with speaker traits
and states: speaker traits denote persistent/external traits of a
speaker (e.g., personality), and speaker states denote the tem-
porary/internal states of a speaker (e.g., emotions). The defini-
tion and the description of speaker traits and states has been
widely studied in the literature, from biological speaker traits
primitives (e.g., age and gender), individual, social and cultural



OBIN AND ROEBEL: SIMILARITY SEARCH OF ACTED VOICES FOR AUTOMATIC VOICE CASTING 5

AGE/GENDER
(male/female, ...)

N\

3
J} VOICE QUALITY

N \A } ETC...

etc... binary voice signature vector

VOICE QUALITY
(creaky, breathy, ...)

} AGE/GENDER

Fig. 4. Multi-label tagging of a speech recording.

speaker traits (e.g., voice quality, [38]), to speaker states (e.g.,
emotions [39]). Also, research on the automatic recognition of
perceived para-linguistics categories in speech has consider-
ably increased over the past few years, pushed by the emer-
gence and needs for human-robot interaction and multi-media
retrieval applications (computational paralinguistics challenges:
speaker age and gender [40], speaker state [10], [41], speaker
traits [11]). The recognition scores obtained for perceived para-
linguistics recognition significantly varies depending on the
task: the classification of the gender of a speaker is accurate
(around 90% for adult speakers [42]), the age can be reason-
ably determined (within 10 years on telephone speech, [43]),
while emotion remains an open issue (from around 80% [44]
for acted speech [45], to only 60% for spontaneous speech
[46], [47]). More recently, the recognition and modeling of
voice quality has raised as a novel topic in para-linguistics
recognition [48]-[51].

For voice casting, one must first define a comprehensive set
of para-linguistics categories that can be used by expert voice
casting operators and exploited for voice similarity search. This
set must cover the main traits and states of a speaker, and fulfill
specific ad-hoc needs of expert voice casting operators (mostly
related to acting and stereotypes). The first set of speaker traits
and states comprises standard para-linguistic categories:

- biological speaker traits: sex (male, female), and age (child,

teenager, young adult, adult, old, very old);

- speaker state: emotion (tender, excited, happy, neutral, sad,
angry, fear, stressed, surprise, other);

A second set comprises categories associated with perceived

acoustic characteristics of the voice:

- phonation: voice quality (breathy, creaky, hoarse), ten-
sion (relaxed, normal, tensed, pressed), vocal effort (whis-
pered/soft, normal, loud/shouted);

- articulation: articulation (hypo, normal, hyper);

- timbre: timbre (clear, dark);

- prosody: FO register (extreme-low, low, medium, high,
extreme-high), FO range (flat, normal, extended), and
speech rate (slow, normal, fast);

A last set comprises categories associated with the role and

the situation of acting:

- attitude/modality: affirmation, confirmation, exclamation,
interrogation, order, other;

- situation: action, conversation, information, monologue,
other;

- archetype: announcer, artificial intelligence, basic soldier,
brute, commander, hero, neutral, old wise, rookie soldier,
sensual, suffer, veteran soldier, other.

The selected description of a speaker includes 14 classes
(e.g., gender, age, emotion voice quality), and 68 labels (e.g.,
for voice quality: breathy, creaky, hoarse). For clarity, the terms
“class” and “label” are here used by analogy to multi-class and
multi-label classification (see Table II): a class denotes a group
containing multiple instances (e.g., the emotion class contains
multiple instances: angry, happy, neutral, sad), and a label denote
each particular instance (e.g., angry, happy, neutral, sad are
labels). The multiple labeling of a speech recording results in a
binary vector which represents the voice signature of the speech
recording (Fig. 4).

A preliminary phase of manual labeling was conducted in or-
der to train multi-label classifiers for the recognition of speaker
traits and speaker states, and to process multi-label scoring for
voice casting. Beforehand, a guideline was created to define
each class and each label, accompanied by a set of represen-
tative speech samples, and a PHP web interface was designed
to allow easy and fast on-line annotation of a speech database.
The manual labeling was produced by a non-expert individ-
ual, preliminary trained by two speech experts (the author, and
an expert voice casting operator). First, pilot campaigns were
conducted on small sets of speech recordings (around 50-100)
by the non-expert annotator and the two expert annotators, un-
til the non-expert annotator presents a sufficiently satisfactory
agreement with the expert annotators. The final inter-annotator
agreement for coding speaker traits and states has an average
Krippendorff’s alpha of = 0.52 [52], which represents a fairly
reliable agreement regarding the ambiguity and the diversity of
the classes considered for labeling. Then, a large-scale annota-
tion was conducted on a selection of 4000 speech recordings
extracted from the 20 000 speech recordings of the French ver-
sion of the Mass Effect 3 video game, covering 54 speakers
interpreting 500 roles, with a maximum of 10 speech record-
ings for each role (see Section IV for a detailed description of
the speech database).

IV. EXPERIMENTS

Two experiments were conducted to compare acoustic and
multi-label similarity scoring in the context of professional voice
casting. First, an objective experiment was conducted to deter-
mine the parameters of the optimal configurations of the acoustic
and multi-label scoring systems. Then, a subjective experiment
was conducted to compare the optimal acoustic and multi-label
similarity scoring systems in the real context of professional
voice casting. For all comparisons, the acoustic and multi-label
similarity scoring systems share the same unsupervised acoustic
space representation (MFCC, super-vector, i-vector). The sys-
tems differ only by the way the similarity measure is constructed:
for the acoustic scoring, the similarity metric is defined in the
acoustic space, and supervised with respect to the speaker’s
identity; for the multi-label scoring, the similarity metric is
defined in the para-linguistic space, and supervised with respect
to each para-linguistic label.
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TABLE I
PERFORMANCE OF SPEAKER RECOGNITION SYSTEMS (EER (%))

METHOD EER (%)
i-vector + cosine 4.04
i-vector + LDA/WCCN + cosine 3.02
i-vector + PLDA 2.80

i-vector + EFR + PLDA 2.73
i-vector + sphNorm + PLDA 2.50

A. Objective Experiment

The purpose of the objective experiment is to determine the
optimal configurations of the acoustic and multi-label scoring
systems, in order to select the configurations that will be used
for the subjective comparison. Accordingly, the objective ex-
periment is only concerned with separate optimization of the
acoustic scoring and multi-label scoring systems. The acoustic
scoring system is optimized with respect to a speaker recognition
experiment, and the multi-label system is optimized with respect
to a perceived para-linguistic classification experiment. Besides
optimization, the objective experiment explores the use of ad-
vanced acoustic modeling (super-vector, i-vector) for the recog-
nition of a large set of para-linguistic speech categories, which
extends preliminary research (for age recognition, [43]), and in-
cludes novel para-linguistic categories (e.g., attitude/modality,
situation, archetypes).

The objective experiment was conducted on the French ver-
sion of the Mass Effect 3 video game containing 20 000 speech
recordings, around 500 roles, around 50 speakers, and around
20 hours of speech of professional actors. A subset of 4000
speech recordings was used for the manual annotation of per-
ceived para-linguistic categories. All speech recordings were
recorded in professional conditions (professional studio record-
ings, same recording material, same supervision), and encoded
into a 48 kHz-16 bits high-quality format. The duration of
speech recording varies from 0.1 s to 15 s. Speech recordings
shorter than 1 s were removed from the speech database. The
front-end processing consisted in the extraction of short-term
(20 ms. Hanning window with 50% overlapping) Mel-frequency
cepstral coefficients (MFCC, 13 cepstral coefficient determined
with 40 Mel-frequency bands), without delta and delta-delta.
The system setups were defined as follows: Ngyy = 8 to 2048
(number of GMM-UBM mixture components), ¢ = 10 to 800
(dimension of i-vector), and shared among the acoustic scoring
and multi-label scoring systems. For the acoustic scoring sys-
tem, Ni,pa = 10 to 200 (dimension of LDA reduction), N;;
= 1 for EFR (LN), N;;=3 for sphNorm (number of iterations),
Nypeaker = 1010400 and Nepannel = q (dimension of the speaker
and channel spaces for PLDA). For the cosine and PLDA scor-
ing, the scoring was performed by using the mean i-vector of
the speaker [16]. For the multi-label scoring, a SVM classifier
with a Gaussian kernel [53] was used for binary classification
of each label (Fig. 2), each trained on the subset of manually
annotated speech recordings.

The experiment was conducted in the form of a 2-fold cross-
validation for speaker recognition and 5-fold cross-validation

for para-linguistic classification. In k-fold cross-validation, the
dataset is first partitioned into k subsets of equal size, then
k-1 subsets are used for training the model parameters, and
the remaining subset is used for testing the model. This pro-
cess is repeated for the k folds. The main advantage of cross-
validation is the explicit consideration of the performance vari-
ability, which can be then be used to assess the statistical dif-
ference between different model configurations (acoustic space
modeling, inter-session compensation, and scoring). Here, the
subsets are constructed by randomly partitioning the available
speech recordings regardless of the speakers. For speaker recog-
nition, the standard equal error rate (EER) was used to measure
the performance, as determined from the detection error trade-
off curve [54] by following the NIST SRE 2012 guidelines
[55]. For para-linguistic classification, the balanced accuracy
(BA%) is used to measure the recognition performance [56].
The balanced accuracy is the equivalent for binary classification
of the unweighted average recall (WA %, [57]) for multi-class
classification, a well-established measure for emotion and other
para-linguistics recognition ([10], [58], [59]). Indeed, the bal-
anced accuracy is simply defined as the unweighted average of
true and false recalls of a binary classification. For one label, it
is computed as

Rp + Ry 1 Tp TN
e iy 2 16
2 2<TP+EV+FP+TN) (10

where Rp and Ry are the positive and negative recalls, and
Tp, Tn, Fp, and Fy are the true positive, true negative, false
positive, and true negative counts.

The main idea of these measures is to compensate for im-
balanced datasets when computing the accuracy score. This is
particularly true for para-linguistic binary classification, where
the class of interest (the positive one) is highly under-represented
as compared to the other (e.g., creaky = yes vs. creaky = no,
emotion = sad vs. emotion = not sad, etc...). For each model
configuration, the average balanced accuracy is obtained by av-
eraging the balanced accuracy over all folds to compute the per
label score, and over all labels to compute the overall score.
A grid search is processed to determine the optimal model con-
figuration. First, cross-validation is processed for each model
configuration: model parameters are estimated on the training
set and the corresponding performance is evaluated on the test
set. Then, the hyper-parameters are tuned for each configuration
as the one maximizing the overall score.

The performance obtained for speaker recognition is pre-
sented in Table I. The optimal performance was obtained with
the i-vector + sphNorm + PLDA scoring method with the fol-
lowing configuration, 512 GMM (UBM), ¢ = 400 (i-vector),
Nspeaker = 50 and Nepannet = 400 (full-rank) (PLDA). The
speaker recognition performance (EER = 2.50%) indicates the
robustness of GMM-based acoustic models to the expressive
variability of the speaker, and to the variability in duration of
the speech recordings.

The performance obtained for para-linguistic classification
is presented in details in Table II (with the exception of 4
“other” labels and 4 other minor labels, only for the sake
of space purpose), and in summary with 95% confidence

BA =




TABLE II
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AVERAGE PERFORMANCE (BA%) OF THE MULTI-LABEL CLASSIFICATION

CLASS LABEL MFCC SUPER-VECTOR I-VECTOR
w/o WCCN LN EFR SN w/o WCCN LN EFR SN
GENDER MALE 92.77 92.93 93.74 93.63 93.69 93.35 94.04 94.99 94.92 95.62 94.69
FEMALE 92.60 93.52 93.95 93.50 93.47 93.61 94.30 94.96 94.82 95.24 94.46
AGE CHILD 96.40 93.81 95.09 94.94 94.88 94.79 95.78 96.40 96.14 96.30 95.50
TEENAGER 87.03 85.46 87.12 82.24 86.93 86.57 90.08 93.48 91.93 87.56 94.62
YOUNG ADULT 68.95 72.25 73.44 73.16 72.87 73.20 75.10 76.62 75.95 77.50 75.48
ADULT 60.63 64.54 65.61 64.13 63.97 64.84 68.16 69.05 68.49 69.82 68.03
OLD 67.63 70.55 71.93 70.70 70.97 71.22 73.75 74.53 74.74 75.46 73.69
VERY OLD 68.76 67.25 69.41 66.42 67.36 69.14 72.29 73.25 72.59 75.60 72.21
VOICE QUALITY BREATHY 70.03 70.67 72.12 72.44 72.55 71.14 73.61 73.94 74.60 74.86 74.33
CREAKY 73.63 74.22 75.50 75.66 75.40 75.67 76.14 76.55 78.42 77.71 75.81
HOARSE 71.53 73.21 74.44 73.87 74.50 73.65 77.11 76.91 77.53 77.88 77.26
TENSION RELAXED 72.50 71.89 73.13 73.01 72.26 73.34 73.62 74.36 75.57 76.05 74.82
NORMAL 64.92 67.65 68.33 67.78 67.58 67.54 68.56 68.91 69.23 69.48 68.60
TENSED 62.05 62.53 63.78 62.55 63.36 62.52 63.32 64.05 64.37 64.58 63.81
PRESSED 80.57 82.16 83.91 83.43 83.33 83.59 83.60 83.95 84.19 84.44 84.03
VOCAL EFFORT WHISPERED/SOFT 80.24 82.01 83.00 82.64 83.33 82.54 83.27 83.31 83.61 83.28 83.73
NORMAL 68.34 72.50 74.23 72.12 72.08 72.07 73.04 74.47 75.21 76.24 73.87
LOUD/SHOUTED 78.44 77.82 78.35 77.85 77.89 78.63 79.39 80.02 80.95 81.37 79.29
ARTICULATION HYPO 58.76 58.02 60.26 56.51 56.50 58.41 59.92 61.09 58.78 59.71 59.82
NORMAL 57.29 59.75 58.62 58.66 58.04 58.16 58.87 59.48 59.48 59.78 59.22
HYPER 65.11 68.90 69.99 67.99 68.71 68.07 68.34 68.53 69.17 69.20 68.95
TIMBRE CLEAR 69.07 70.58 7191 70.31 70.41 71.00 72.87 73.16 73.45 73.36 73.62
DARK 69.07 70.46 72.13 70.56 70.45 71.14 72.73 73.18 73.85 73.22 73.35
FO REGISTER EXTREME-LOW 91.53 90.41 91.17 91.20 91.20 91.04 91.64 92.72 93.04 92.50 92.07
LOW 83.72 85.59 86.25 85.59 86.00 86.14 86.39 86.15 87.10 86.50 86.22
MEDIUM 67.67 70.92 71.87 71.19 71.03 71.28 70.49 71.24 71.50 72.93 71.14
HIGH 72.39 73.86 74.72 74.49 73.95 74.84 73.85 74.13 74.56 75.23 74.12
EXTREME-HIGH 85.83 86.72 88.14 87.57 87.96 88.21 87.57 87.69 88.43 87.64 88.08
FO RANGE FLAT 65.22 66.72 69.53 67.03 66.62 67.84 68.88 69.45 70.09 69.40 68.80
NORMAL 57.97 57.83 60.44 61.56 59.96 59.83 61.46 60.36 62.44 62.69 61.09
EXTENDED 56.48 61.42 64.44 64.84 63.80 64.65 68.29 65.42 66.62 66.82 64.85
SPEECH RATE SLOW 65.72 68.95 69.04 68.32 69.00 68.35 70.32 71.02 72.68 70.27 71.49
NORMAL 58.31 59.00 59.29 59.38 58.93 58.79 59.09 61.11 60.29 60.20 60.05
FAST 63.67 64.99 64.37 64.69 64.22 65.09 69.49 67.96 69.94 68.38 69.57
ATTITUDE/MODALITY AFFIRMATION 66.89 69.57 69.40 68.93 69.46 69.66 69.64 69.97 70.05 70.22 69.78
CONFIRMATION 60.51 59.27 61.42 61.42 61.60 62.99 61.81 64.45 63.58 65.49 61.05
EXCLAMATION 67.28 68.04 68.99 67.95 68.27 67.95 68.63 68.69 68.83 69.35 68.90
INTERROGATION 58.08 62.31 62.90 62.14 61.92 62.86 59.80 58.47 61.67 59.07 59.47
ORDER 64.95 66.77 68.26 66.66 67.20 65.98 68.71 68.45 69.60 68.70 68.87
EMOTION ANGRY 61.98 62.38 63.36 62.85 62.69 62.58 63.40 64.99 64.56 65.11 64.44
EXCITED 66.18 66.74 67.25 66.79 68.10 67.67 67.04 68.18 68.20 68.22 67.41
HAPPY 53.89 55.81 56.45 55.82 56.71 55.42 58.40 59.24 58.96 60.72 59.61
NEUTRAL 61.42 62.99 64.65 64.05 63.45 64.24 65.75 65.23 65.84 65.69 66.01
SAD 60.65 61.99 63.92 63.05 64.05 63.28 62.68 63.78 64.06 64.42 63.15
FEAR 63.59 63.68 64.98 64.04 64.31 63.78 64.45 63.97 64.93 66.85 65.96
STRESSED 80.22 78.71 80.06 79.52 79.89 79.65 79.59 79.56 80.42 81.12 80.09
SURPRISE 57.74 58.00 59.09 57.74 60.58 59.40 58.01 60.46 60.58 60.27 60.97
TENDER 62.33 62.42 64.51 63.25 63.19 63.87 64.31 64.22 64.64 64.87 64.87
SITUATION ACTION 83.24 81.76 83.26 83.23 82.97 82.63 82.91 82.83 84.28 82.60 82.79
DIALOGUE 73.69 75.79 76.00 7577 75.60 75.81 77.25 77.03 78.45 77.30 77.80
INFORMATION 69.53 76.22 78.94 77.80 76.90 77.02 78.48 80.22 78.89 81.73 80.07
MONOLOGUE 64.25 65.45 66.06 65.22 66.34 67.99 69.13 66.57 72.54 73.76 68.20
ARCHETYPE ANNOUNCER 82.63 74.67 81.29 83.72 82.74 79.00 87.99 90.20 89.65 89.60 87.99
ART. INTELLIGENCE 87.78 89.34 87.62 85.19 88.52 87.29 90.86 91.56 89.96 93.24 91.10
BASIC SOLDIER 68.71 70.37 71.02 69.22 69.23 70.56 71.73 72.31 73.29 72.80 71.53
BRUTE 73.39 75.10 76.75 76.98 76.36 76.70 78.00 78.94 79.62 79.74 78.59
COMMANDER 64.96 63.99 66.47 66.00 65.31 66.30 68.49 69.58 70.26 70.58 70.00
HERO 68.58 70.67 75.54 70.90 70.90 73.36 77.52 76.40 76.52 78.11 76.53
ROOKIE SOLDIER 69.23 72.54 73.97 74.26 73.78 73.78 76.87 77.36 79.31 78.98 76.15
VETERAN SOLDIER 70.76 70.89 73.15 71.32 71.56 72.08 72.59 73.81 74.14 74.51 73.40
TOTAL 70.09 71.71 72.32 71.59 71.69 71.08 73.45 73.75 74.36 74.62 73.79
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Fig.5. Overall average recognition score (BA%) and 95% confidence interval
obtained for the multi-label classification.

intervals in Fig. 5. The 95% confidence interval is computed by
assuming a normal distribution of the cross-validation scores,
and is equal to 1.96 times the standard deviation of the cross-
validation scores, divided by the square root of the number
of folds. The optimal performance was obtained with the i-
vector + EFR + SVM method with the following configura-
tion: 512 GMM (UBM), and ¢ = 50 (i-vector). In all cases,
the i-vector recognition (from 73.45% to 74.62%) has a greater
recognition rate than the super-vector recognition (from 71.08%
to 72.32%), and the MFCC recognition (70.09%). Also, the
inter-session compensation improves the recognition perfor-
mance, from 71.08% to 72.32% for super-vectors, and from
73.45% to 74.62% for i-vectors. A statistical comparison
(one-way ANOVA [60]) shows that the super-vector recog-
nition rate is significantly higher than the MFCC recog-
nition rate (F(1,18) = 20.52, p — value < 10~*), and that
the i-vector recognition rate is significantly higher than the
super-vector recognition rate (F'(1,18) = 35.20, p — value <
107?). Also, the i-vector EFR recognition rate is significantly
higher than the average i-vector recognition rate (F'(1,58) =
6.78, p — value < 1072), and is higher but not significantly
with the LN and WCCN recognition rates (respectively,
F(1,18) = 2.52, p — value = 0.12and F'(1,18) = 4.18, p —
value = 0.05). For details, the optimal configuration corre-
sponds to 95.4% for gender, 80.4% for age, 76.8% for voice
quality, 73.6% for tension, 80.3% for vocal effort, 73.3% for
timbre, 62.9% for articulation, 76.7% for FO (range and register),
65.6% for speech rate, 66.7% for attitude/modality, 66.4% for
emotion, 78.5% for situation, and 78.2% for archetypes. These
scores correspond to one single and globally optimal configu-
ration for super-vectors, i-vectors, inter-session compensation,
and SVM hyper-parameters in order to figure out a computation-
ally realistic scenario, though all individual performances might
be improved through dedicated optimizations. From these ob-
servations, some para-linguistic categories can be consistently
recognized (age, gender, voice quality, tension, vocal effort,
timbre, situation, archetype) while some others remain an open

issue (articulation, FO, speech rate, attitude/modality, and emo-
tion). In particular, some novel para-linguistic categories spe-
cific to multi-media applications (situation and archetype) are
more recognized than some standard para-linguistic categories
(attitude/modality, emotions). Also, extreme para-linguistic la-
bels are generally more recognized than standard ones (e.g.,
normal, medium, neutral) which are more ambiguous. As a con-
clusion, this generalizes the role of advanced acoustic model-
ing (i-vector and inter-session compensation) for para-linguistic
recognition, as preliminarily reported for age estimation in [43].
Moreover, these constitute encouraging performances for fur-
ther similarity search for voice casting.

The optimal configurations were further retained for the sub-
jective comparison of acoustic scoring and multi-label scoring
systems in the real context of professional voice casting.

B. Subjective Experiment

The real context of voice casting consists in selecting the
actors of a target language (e.g., French, German, Spanish,
Japanese, Mandarin) whose voice is the most similar to actors
of a source language (typically, English). Accordingly, a sub-
jective experiment was conducted in order to address the ability
of acoustic and multi-label similarity scores to estimate the
perceived similarity between voices for cross-language voice
casting. The objective is to compare the role of acoustic and
para-linguistic information in the human perception of voice
similarity.

The subjective experiment consisted in the comparison of
the two optimal configurations previously determined for a
voice casting from American-English to French. The American-
English (source language) and the French (target language)
versions of the Mass Effect 3 video game were used for the
experiment. First, 50 speech samples were selected from the
American-English version, one speech recording for each of 50
speakers (50% male, 50% female, around 5 sec. in duration).
For each source speech sample, the 3 most similar samples were
determined in the target speech database for each scoring sys-
tem. Then, the source speech sample and the 3 target speech
samples determined by the 2 scoring systems were presented
to the listener. For each source speech sample, the listener was
asked to rate the overall similarity of the target speech samples
to the source speech sample on a 5 degree scale: very dissimilar
(—2), fairly dissimilar (—1), slightly similar (0), fairly similar
(+1), very similar (+2). 30 French native individuals partici-
pated in the experiment (20 males/ 10 females, 20-35 years
old, same headphones, same professional listening room, paid
experiment).

The comparison of the 2 scoring systems is presented in Fig. 6.
The multi-label scoring system significantly outperforms the
acoustic scoring system in the similarity judgement for voice
casting. For comparison, the target speech samples determined
by the acoustic scoring (i-vector + sphNorm + PLDA) and the
multi-label scoring (i-vector + EFR (noNorm) + SVM) systems
are considered as slightly similar and fairly similar to the source
sample in average, respectively. This constitutes almost a one
degree difference on the 5 degree scale. A statistical compari-
son (one-way ANOVA [60]) shows that the multi-label scoring
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Fig. 6. Mean similarity score and 95% confidence interval for the 2 systems.
The similarity scale is very dissimilar (—2), fairly dissimilar (—1), slightly
similar (0), fairly similar (+1), very similar (+2).

system is judged as significantly more similar than the acoustic
scoring system (F'(1,298) = 10.86, p — value < 107%).

This experiment provides instructive information about the
role of acoustic and para-linguistic information in the percep-
tion of voice similarity. First, acoustic information appears nec-
essary but not sufficient to fully capture the perceived simi-
larity between voices. Second, para-linguistic information, as
abstractions extracted from the speech content, provides some
valuable information about the perception of voice similarity.
These observations suggest that the abstraction of a voice into
categories (speaker traits and states) play an important role in
the human perception of voice similarity, which may prevail
over pure acoustic similarity. Beyond, this highlights the role of
stereotypes in the human perception of voice similarity, which
might be particularly true for professionally acted voices that
are generally more stereotyped than everyday speech.

V. CONCLUSION

In this paper, a large-scale similarity search of voices was
presented to measure the perceived similarity between voices
for computer-aided voice casting. The proposed voice casting
system explored and compared GMM-based acoustic models
and multi-label recognition of perceived para-linguistic content
(e.g., age/gender, voice quality, emotion) to measure the per-
ceived similarity between voices. In a subjective experiment, the
multi-label scoring significantly outperformed acoustic scoring
in the real-context of voice casting, which constitutes evidence
for the role of perceived para-linguistic content in the percep-
tion of voice similarity. This constitutes a preliminary research
on voice similarity search for the voice casting of profession-
ally acted voices. Further research will investigate the use of
short- and long-term speech characteristics (glottal source [48],
[49], prosody [61]) during acoustic modeling, the elaboration
of acoustic scoring more specific to voice casting and less con-
strained by speaker’s identity, and the construction of a simi-
larity scoring that covers the entire expressive range of actors
instead on being based on the particular expression of a single
speech recording. Finally, human experts in voice casting will

be added into the subjective evaluation procedure in order to
compare the judgements of naive and expert listeners, and to
define guidelines for the validation of a voice casting system.
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