
HAL Id: hal-01465347
https://hal.sorbonne-universite.fr/hal-01465347v1

Preprint submitted on 11 Feb 2017 (v1), last revised 26 Mar 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

1D generalized time dependent non Newtonian blood
flow model

Arthur R. Ghigo, Pierre-Yves Lagrée, Jose-Maria Fullana

To cite this version:
Arthur R. Ghigo, Pierre-Yves Lagrée, Jose-Maria Fullana. 1D generalized time dependent non New-
tonian blood flow model. 2017. �hal-01465347v1�

https://hal.sorbonne-universite.fr/hal-01465347v1
https://hal.archives-ouvertes.fr


1D generalized time dependent non Newtonian
blood flow model

Arthur R. Ghigo
Sorbonne Universités

UPMC Univ Paris 06
CNRS UMR 7190

Institut Jean le Rond ∂’Alembert
F-75005 Paris, France

Pierre-Yves Lagrée
Sorbonne Universités

UPMC Univ Paris 06
CNRS UMR 7190

Institut Jean le Rond ∂’Alembert
F-75005 Paris, France

Jose-Maria Fullana
Sorbonne Universités

UPMC Univ Paris 06
CNRS UMR 7190

Institut Jean le Rond ∂’Alembert
F-75005 Paris, France

ABSTRACT
Alterations in whole blood viscosity due to hemodialysis, pathologies or a low stress hemo-

dynamic blood flow impact the viscosity generating local changes in blood pressure, blood flow
rate, vessel cross sectional area, and giving unexpected global variations over the circulatory
network. Despite this fact all 1D models use Newtonian viscosity rheological laws inside.

We present a 1D generalized time dependent non Newtonian model of viscosity and we
compare the numerical predictions to experimental data of blood rheology available into the
literature. We explore two well documented shear stress protocols and we show that the proposed
1D generalized non Newtonian model computed over an arterial segment compares accurately,
qualitative as well as quantitatively, the time dependence of the shear stress over the rheological
blood data.

We hope that 1D generalized blood non Newtonian flow model inside of large numerical
1D models will be useful to help even more the understanding of the global blood dynamics in
micro and macro-circulatory networks.

1 Introduction
One dimensional flow models is an useful option for computing blood circulation in complex net-

works either for micro or macrocirculation. One of the main reasons is their capability to furnish good
predictions in terms of blood pressure and blood flow rate being costless in terms of time computing
compared to the complexity and time consuming of 3D approaches. We note that both the 1D and the
3D approaches are both derived from the same mass and momentum conservation principles.

Although we know that alterations in blood viscosity impact the whole blood circulation, in the
literature until now all proposed 1D hemodynamic models for studying blood flow circulation are New-
tonian: the viscosity is then considered constant. The Newtonian hypothesis is very often well supported



since in either largest arteries or small capillaries shear stresses are high in most of clinical situations.
High shear stress implies a constant viscosity.

Nevertheless in a lot of current hemodynamic scenarii as stopping-starting blood flows, presence of
geometrical artifacts or singularities like valves in veins, blood pathologies, aneurysms, it is admitted
that the blood flow reaches a low shear stress behavior zone. In a low stress configuration, the viscosity
will increase considerably generating consequently localized changes in blood pressure, blood flow rate,
vessel cross sectional area, and we know that local changes could cause unexpected global variations.

Blood is a non Newtonian fluid exhibiting a pseudo-plastic behavior (a decrease in viscosity with
an increase on the rate of shear) with a memory effect (called thyxotropy). Blood viscosity changes
the with the hydrodynamical state and with the history of the blood flow. In a circulatory network
as a consequence of the pulsed nature of blood flow and the geometrical topology of the circulatory
network, the system is in a permanent non-equilibrium state. The passage from a state of high viscosity
to another of low viscosity is done therefore continuously, and when the blood is on a lower shear
situation a aggregation process develops naturally in red cells. The Red Blood Cell (RBC) aggregation
is the capability of red cells to build stick arrangements called “rouleux” which affects both, the pseudo-
plastic and the thixotropic characteristic of blood. The RBC aggregation is a natural phenomenon caused
by biological factors and influenced by blood hydrodynamical interplay. Some pathologies change the
RBC aggregation in different clinical circumstances having as a straightforward consequence diseases
as hematological disorders, cardiovascular illness or being the edge of atherosclerosis risk factors. It is
of clinical importance to determine in real time the RBC aggregation and to understand its global effect
over a circulatory network.

We present an implementation in a 1D flow model of a generalized time dependent non Newtonian
blood rheology from Rosemblatt [1]. The rheological model is based on a statistical mechanics theory
relating macroscopic stresses with the micro-mechanics of the blood. The kinetic equation for the
aggregation state is a particular case of the structural model of more general non Newtonian fluids. (See
for instance [2, 3]). This kinetic equation is moreover closely related to the rheological model proposed
by Cross [2] in 1965 for pseudo-plastic material.

In Section 2 we present the 1D blood flow model, the non Newtonian approach of the stress tensors as
well as their integration into the 1D blood flow model. Section 3 shows several numerical comparisons
against published experimental data of blood rheology.

2 Flow model
The 1D blood model derives from the integration over a cross-sectional area A of the Navier-Stokes

equations (mass and momentum conservation) in cylindrical coordinates. Doing this integration or aver-
aging process we lost indeed information about velocities profiles but the system of equations becomes
numerically accessible. For the averaged variables of the problem (the cross-sectional area A and the
flow rate Q, and pressure P) we have the following 1D space-time evolution equations

∂A
∂t

+
∂Q
∂x

= 0, (1a)

∂Q
∂t

+
∂

∂x

(
α

Q2

A

)
+

A
ρ

∂P
∂x

= fµ, (1b)

where ρ is the fluid density and α the momentum shape coefficient depending of the blood velocity
profile (sets to one from here). The term fµ correspond to a model of viscous losses discuss later. All
variables depend therefore on time and on the spatial coordinate x. The closure relation connecting the



cross-sectional area A and the averaged pressure P is:

P = Pext +β(
√

A−
√

A0)+νs
∂A
∂t

, (2)

where Pext is the external pressure, and the coefficients stiffness β and viscosity νs define the arterial
wall model. This is a Kelvin viscoelastic wall model and more details of the complete 1D blood model
and the numerical integration are in reference [Wang 2011]. In terms of modelling is a crucial point
since it links the wall mechanics to the blood flow.

2.1 Stress model: newtonian
When we derive the 1D model from the Navier-Stokes equation, the viscosity coefficient µ appears

into the friction term fµ in the r.h.s. of equation (1b) as a consequence of the integration of the surface
forces over a control volume V , mathematically speaking

∫
V ∇σdS where σ is the total stress tensor.

Separating the isotropic part (the pressure) from the total stress tensor we have to evaluate the viscous
tensor τ over the control surface S bordering V , which results in the surface integral

∫
S τndS by applica-

tion of the divergence theorem. We note that when the viscosity µ is constant we can write the viscous
tensor using the shear rate γ̇ to get directly τ = µγ̇.

We discuss briefly the setup of the friction term fµ =
∫

S τndS in our model. Starting from the
cylindrical coordinates under the 1D hypothesis the only non null coefficient of the viscous tensor is this
concerning the x force into the r direction, τrx then the above integral gives

fµ = 2πRτrx. (3)

The term τrx = 2µ1
2

(
∂ux
∂r + ∂ur

∂z

)
becomes explicitly ∼ 2µ1

2
∂ux
∂r in the framework of long wavelength

approach since the radial component of the velocity ur scales as uxε. The small parameter ε used into
the asymptotic study is the ratio between the radial and the longitudinal lengths of the problem and
comes directly form the mass conservation equation. Using the averaged quantities of the problem we
define the averaged shear rate as follow: ∂ux

∂r ∼
U
R ∼

Q
A3/2 = dφ

dr

∣∣∣
r=R

γ̇A where dφ

dr

∣∣∣
r=R

is the shape factor
that takes into account the velocity profile. As an example, for a Couette flow is −1 and for a Poiseuille
flow equal to −4. In large arteries, it is common to use −11. We have now the viscous friction term

fµ = 2πA1/2 dφ

dr

∣∣∣∣
r=R

τA, (4)

as function of τA = µ(γ̇A)γ̇A, the averaged viscous stress. We write explicitly that the viscosity can
depend on the averaged shear rate, γ̇A. This shape factor doesn’t matter in the rest of our work and it
will be set to -1 in numerical computations. However it should be modified for specific configurations.
Note that if the viscosity is constant we retrieve the expected result fµ =−2πµQ

A .

2.2 Stress model: Non newtonian
The generalized time dependent non-Newtonian model proposed by Rosemblatt [1] begins by an

equation for the structure dependent stress τst

λst
D

∇

τst

Dt
+ τst = 2µstD (5)



where D
∇
τst

Dt = Dτst
Dt − (∇u)T τst− τst(∇u) stands by the upper convective derivative, D f

Dt by the convective
derivative, D is the strain rate tensor and λst a time constant for the structure dependent state (see [4] for
details). We note that the shear τst depends on the structural state of the viscosity µst therefore the blood
hydrodynamics and it’s time history. It is important to remark that equation (5) spans in different known
models : if λst and µst are constants (λ0,µ0) we retrieve the upper convected Maxwell model, moreover
if the Wiessenberg number (dimensionless number comparing the viscous forces to the elastic forces) is
small we have a linear Maxwell model

λ0
∂τ

∂t
+ τ = µ0γ̇.

If now the characteristic time λ0 is small and µ = µ(γ̇) depends on the shear rate we have a generalized
non Newtonian model (e.g. Power flow, Casson, Cross [5]), and finally with µ constant we retrieve a
Newtonian model (τ = µγ̇ ).

In a time depend approach the characteristic time λst is a function of a structure function f . In the
framework of blood hemodynamic the structure function f is a continous parameter giving the measure
of the degree of aggregation of the RBC. For instance f = 0 stands for all RBC disaggregated and to the
contrary f = 1 defines a fully aggregation state. The kinetic equation for f is

D f
Dt

= k(1− f )−α|γ̇| f (6)

where the l.h.s. is the convective transport, and k, α are the model parameter we will discuss later.
The characteristic time of the structure equation relates to f as follow, λst =

f
k . The shear rate is

γ̇ = (2D : D)1/2 and the total viscous stress depending of the structure τst is

τ = τst +2µ∞D

where µ∞ is the viscosity at the upper shear rate limit. The structural viscosity µst for equation (5) is
then (µ0−µ∞) f .

2.3 Estimating the Stress model parameters
The model parameters α, k, µ0 and µ∞ should be evaluated using experimental data from classical

viscosimeter. Using a simple plan shear viscometer with two plates separated apart of a distance h in
the plane x,y we impose to the blood flow a constant velocity u in the x direction. The constant shear
rate is then γ̇ = u

h and the only non zero component of τ is τxy. In a stationary configuration the equation
(5) reduces to:

τxyst = µst γ̇

and the total stress tensor

τ = τxyst +µ∞γ̇.

We are looking for a time depending viscosity µ then:

µ = (µ0−µ∞) f +µ∞.



The equilibrium value of f comes from equation (6), 1
f = 1+ k

α
|γ̇| therefore we find an expression for

the viscosity

µ =
(µ0−µ∞)

1+ k
α
|γ̇|

+µ∞ (7)

the values of µ0, µ∞ and k
α

are evaluated from an experimental blood rheological curve. We note that
result was already found by Cross [2] for pseudo-plastic flows

µ =
(µ0−µ∞)

1+aγ̇2/3 +µ∞ (8)

One of Cross’s arguments about the power coefficient for γ̇ was that the tensor D should be an even
function and that 2/3 is the simplest admissible fraction fulfilling this condition, in our formulation |γ̇|
does it.

In practice to discriminate k from α we have to study the aggregation process without blood flow,
thus the parameter k is the solution of ∂ f

∂t = k(1− f ). Using blood experimental data from McMillan [6],
references [1] and [7] found µ0 = 0.12 Pa s, µ∞ = 0.004 Pa s, α = 1.2 and k = 0.25 s−1. Viscosity values
(µ0 and µ∞) are consistent with healthy normal values of blood viscosity. We use these values as known
parameters in the numerical model.

2.4 Complete 1D model solved
For completeness we write the complete system of the 1D model equations, the governing fluid

equations for mass and momentum conservation

∂A
∂t

+
∂Q
∂x

= 0 (9)

∂Q
∂t

+
∂

∂x

(
Q2

A

)
+

A
ρ

∂P
∂x

=−2πA1/2
τ (10)

together with the pressure-cross sectional area relation P = Pext +β(
√

A−
√

A0)+νs
∂A
∂t .

Using the averaged shear rate γ̇A the time depending structural equation is

λst
∂τst

∂t
+ τst = µst γ̇A (11)

where the convective part is now into the following kinetic equation

∂ f
∂t

+
Q
A

∂ f
∂x

= k(1− f )−α|γ̇A| f . (12)

The parameter f is convected with averaged velocity Q
A so does the structural parameter τst . The last

relations to close the system are

µst = (µ0−µ∞) f

λst =
f
k

τ = τst +µ∞γ̇A



where the total stress τ is the source term of equation (10).
Equations (9) and (10) are of hyperbolic nature and we use a finite volume approach to solve them

[Wang 2011, Wang 2013]. For the rest of the numerical problem we apply a semi implicit method to
update λst in Equation (11) and a 2nd order upright scheme for the convective term of equation (12).

3 Results
We propose to compare numerical results of the non Newtonian 1D model to blood experimental

data available in the literature.
We note here that in a classical viscometer experimental device the shear rate is controlled because

the device’s walls are rigid, but in the flexible tube configuration we are presenting we can only to control
the flow rate input, and therefore the shear rate inside of the tube will be never exactly the wished. Over
these simulations we set the neutral cross sectional area A to 1 cm2, and a constant flow rate Q at the
input side of the elastic model in order to impose as close as possible the experimental shear rates. The
length L of the elastic segment in all numerical simulations is fixed and equal to 20cm. To focus on the
non Newtonian rheology in numerical simulations we set the viscoelastic coefficient νs to 0 in order to
eliminate the viscoelastic effects coming from the wall dynamics. We have already shown that is quite
complicated to separate both viscoelastic contributions from fluid and wall [8, 9].

3.1 One shear step
Over a series of experiences Bureau and co-workers [10, 11] and later Quemada et al. [3] have

performed rheological experimental studies on shearing blood. In the light of published results two
different and characteristic behaviors appear at low and high shear rates. For a experimental protocol at
low constant shear rate (step of 0.05 s−1 for 20 sec. before stopping) the experimental data have shown
that the blood behaves as a viscoelastic material : for each experience the measured shear stress has been
continuously rising and that is a signature of an absence of thixotropy. The main conclusion was that the
shear stress imposed was too low to dissociate the blood structure. The stress-shear diagramme shows
a Maxwell like behavior with a growing in (1− e(t/λ0)) and a relaxation dynamics in e(−t/λ0) (λ0 is a
characteristic time). The same experimental configuration is simulated by the non Newtonian 1D blood
model where we impose a flow rate of Q = 0.05 giving a average shear rate of 0.05. The corresponding
time depend numerical solution of the shear stress is presented in Figure 1.

Experimental results for the stationary shear stres are 0.0578 (without bar error) for an hematocrit
of 0.45 in [3] and 0.043±0.015 for an hematocrit of 0.435 in [10]. Numerical predictions compare very
well, quantitative and qualitatively, the experimental results considering that in our model the parameters
were fitted using different rheological blood data (µ0,µ∞,α,k from reference [1]). [to reviewer : Annexe
A presents the figures of all experimental results, we’re waiting for the copyrights]

For a high shear rate of 1 s−1 experimental data shows a clear effect of the thixotropy : the maximum
shear stress τmax is reached very rapidly at tmax and its value is greater that its stationary value τstat . The
Figure 2 shows the corresponding numerical results captured for the non Newtonian 1D model, the
numerical findings for the maximum and stationary shear stresses as well as the time delay to reach
the maximum shear stresses are in total accord with the experimental published data (ref. [12] τmax =
0.326±0.015, τstat = 0.215±0.011 and tmax = 1.2s. and ref. [3] τstat = 0.257).

We recover also the experimental observation that the relaxation process is faster in the high shear
configuration. Besides the numerical predictions show the relaxation time for the case of shear rate of
0.05 1/s is twice than for a shear rate of 1 s−1 as expected from experimental published data [3, 12].

The state of structuration or aggregation of the blood is difficult to obtain in experimental setups,
conversely it appears naturally into the non Newtonian 1D model. Figure 3 presents the structure func-
tion f as function of time for the two simulated experiences (Figures 1 and 2). For low shear rate



Fig. 1. Low Shear simulation : one step shear-rate of 0.05 s−1 is imposed and then stopped at time 20 s.

(Fig 3 upper curve) the function f is everywhere above 0.8 allowing to solve the equation (11) with a
quasi constant value of the characteristic time. Conversely the fast decreasing of f for high shear stress
illustrates the thyxotropic behavior observed in the early times in Figure 2.

The relaxation dynamic of the shear stress after stopping the input flow at time 20 sec. (equivalent
to the stopping shear rate process in the experimental setup) is better understood when we analyze the
behavior of the function f in Figure 3. It is clear that the shear stress dynamic and consequently the
instantaneous blood viscosity depends on the state of aggregation of the fluid.

We can solve analytically the equations for a constant shear rate starting from a fluid at rest for
which the structure function f = 1. To simplify the analysis, we assume that the advection term Q

A
∂ f
∂x

can be neglected.
The kinematic equation for the structure function writes:

∂ f
∂t

=−(k+α|γ̇|) f + k. (13)

We introduce the notation τ f =
1

k+α|γ̇| , and the solution of the previous equation is

f = kτ f +
(
1− kτ f

)
exp
[
− t

τ f

]
(14)



Fig. 2. High Shear simulation : one step shear-rate of 1 s−1 is imposed and stopped at time 20 s.

Injecting this expression for f in the equation (11) we have:

τst (t) =
(µ0−µ∞) γ̇

[
k
(
1− kτ f

)
t +
(
kτ f
)2
(

exp
[

t
τ f

]
−1
)]

1+ kτ f

(
exp
[

t
τ f

]
−1
) (15)

When t→ 0, we find the following asymptotic values for f and τst : f = 1−
1− kτ f

τ f
t = 1−α|γ̇|t

τst = k (µ0−µ∞) γ̇t.
(16)

When t→ ∞, we find the following asymptotic values for f and τst :
f∞ = kτ f =

1

1+ α|γ̇|
k

τst,∞ = kτ f (µ0−µ∞) γ̇ = (µ0−µ∞)
γ̇

1+ α|γ̇|
k

.

(17)

At small times thee are a competition between the destruction of f governed by α and the production
of τst governed by k (µ0−µ∞). The overshoot in τst seems to be governed by the parameters α and γ̇

and it seems to be independent of k. Furthermore, the overshoot happens when f reaches relatively its
constant value f∞.



Fig. 3. Structure function f for two shear rates (upper curve) 1 1/s (bottom curve) 0.05 1/s

3.2 Multiple shear steps
Experimental data from McMillan [6] correspond to a study of the shear stress response to differ-

ent start up shear flows setups. The shear stress experiences were done by considering two periods of
constant shear stress separate appart by a controlled time without shearing. Experimental stress mea-
surements covered the time stress evolution, the stress relaxation and the influence of the shear history.

For an experimental setup the protocol was done by imposing two constant shear stress of γ̇ = 8 1/s
for a fixed time of 2.5 sec separated by a time delay of 1.5 sec without shear stress. Experimental data
from [6] have shown a thixotropic transient overshot in the measured shear stress together with a second
peak always smaller than the first one. Figures 4 show the numerical results of the non Newtonian 1D
model with the same experimental parameters (linear-linear and linear-log scales). We observe exactly
the same behavior as experimental data. We note integrating directly model equations (5) for imposed
shear stress but without blood flow dynamics, close numerical results were found [3, 7].

In ref. [6] the authors decreased the non shearing time delay from 1.5 to 0.5 sec. They observed
that the second shear stress overshoot peak decreases in a positive correlation with the time delay. The
Figure 5 presents the numerical results which are in total agreement with experimental data.

4 Conclusion
We have presented 1D generalized blood non Newtonian flow model. The blood model is based

on a classical 1D approach for the conservation movement equations for the blood flow rate Q and the
cross sectional area A but including now a time dependent blood viscosity. For that we have proposed
a 1D version of a generalized time dependent non Newtonian blood rheology from Rosemblatt [1]. To
take into account the time dependence in the blood dynamics we used a kinetic equation is a particular
case of the structural model for pseudo-plastic fluids [2] and blood [3]. We note that a large game of



Fig. 4. Shear stress response to two shear rate steps separated of 2.5 sec by a non shearing period of 1.5 sec. Numerical predictions

in linear-linear (top) and linear-loo (bottom) sacles of the experimental data of McMillan [6].



Fig. 5. Shear stress : two shearing shear rate steps separated of 2.5 sec with time delay in a non shearing period from 1.5s to 0.5.

rheological models are included in this approach.
We have confronted the numerical predictions of our blood model to experimental data available in

the literature, and we have found that our 1D blood model computed over a arterial segment compares
accurately the rheological blood data.

We hope that 1D generalized blood non Newtonian flow model will be useful to help the under-
standing of the global blood dynamics in micro and macro-circulatory networks.
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A Experimental data
For Editor and reviewers : these figures are for comparaison, we have not still answer for copyrights.

Fig. 6. Experimental data from Bureau’s paper. (See Figures 1 and 2)



Fig. 7. Experimental data from McMillan’s paper. (see Figure 5)


