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Details of thermodynamic calculations 

In this part, we derive a size-concentration relation for supported bimetallic A-B nanoparticles 

having a truncated spherical shape. We assume that the detachment rate for atoms of type A is 

much smaller than the one of atoms of type B and that the thermodynamic equilibrium is reached 

for B atoms. 

The chemical potential of the B element is given by 
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 . In a particle, neglecting 

the effects of the edges, the Gibbs free enthalpy is given by the sum of a bulk contribution and a 

surface term:  
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The bulk term of the Gibbs free enthalpy is given by: 

mix
B
0B

A
0Abulk NggNgNG   (S1) 

where BNNN  A  is the number of atoms in the particle, and the mixing atomic free enthalpy 

is mixmixmix Tshg  . The mixing enthalpy mixh  can be well approximated by:
1
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where NNx /B , whereas the mixing entropy mixs  is given by: 

  emix )1ln()1()ln( sxxxxks   (S3) 

es  is the excess entropy that can also be approximated by:
1
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Thus, the Gibbs free enthalpy depends not only on the number of atoms in the particle but also 

on the composition, which varies when the number of atoms of one specie changes. 

The surface term surfG  is given by: 

ASG )( subintsurf    (S5) 

where  , int , and sub  are the surface free energy of the particle, the interfacial free energy and 

the surface free energy of the substrate. In the following, we suppose that they are all isotropic, 

which corresponds to the case of a liquid droplet on a surface. S  is the area of the particle in 
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contact with vacuum, and A , the interfacial area. For a truncated sphere of radius r , the surface, 

volume and interfacial area are given by : 
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where   is the contact angle between the particle and the substrate. At equilibrium, the contact 

angle is related to the surface free energies through the Young relation: 
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Thus, ))(cos)cos(32(2)cos( 32
surf   rASG , or: 

3/2
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where   is the mean atomic volume. 

In the following, we define )(),,(),,( 0
BB TxNTxNT B   as the difference of chemical 

potential of element B between a bimetallic A-B nanoparticle and the pure bulk material. 

),,(B xNT  can be decomposed into a mixing and a surface contribution: 

),,(),(),,( surfB,mixB,B xNTxTxNT    (S9) 
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 . For a nanoparticle, 

contrary to what could be observed for bulk material, one has to take into account the fact that 

when the number of B atoms varies, the composition also varies.  
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Deriving equations (S2-S4) gives: 
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and deriving equation (S8) gives rise to: 
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Eq. (S12) can also be written as 
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 )1(32),,(surfB, . The first term is the 

classical Laplace pressure, whereas the second term is related to the dependence of  ,  , and   

with x , for a given value of N .  

The chemical potential is thus:  
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At the thermodynamic equilibrium, B  is constant. The particle radius and concentration are 

thus related through:  
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Details of the kinetic Monte-Carlo (kMC) simulations 

Here, we briefly recall the main features of the kMC algorithm. The algorithm simulates the 

thermal evolution of 3D particles on an atomically flat homogeneous surface where periodic 

boundary conditions are applied, through exchange of atoms. Particles are considered to be 

isotropic, unstrained and locally at equilibrium, and have a truncated spherical shape, of radius 

r , with a contact angle  . In the surface plane, the footprint of the particles is thus a disk of size 

)sin(rrD  . The effect of islands reshaping has been discussed by Shorlin et al., for the case 

where the detachment and attachment rates are high enough to induce a shape variation of the 

particle with growth rate. Only particles having their radius close to the equilibrium radius adopt 

an equilibrium shape.
2
 Here, in order to speed up the algorithm, we consider only the variation of 

size of the particles, and we assume that their shape remain unchanged. 

Each Monte-Carlo step consists of a three stage atomic motion: detachment of an atom from a 

particle, diffusion on the surface, attachment to a particle. The rate of detachment is given by 

)/exp()/exp( kTEEkTE add   where d  is an attempt frequency, dE  an energy barrier, 

E  is the energy difference of the nanoparticle before and after detachment of an atom and  aE  

is the adsorption energy of the corresponding atom on the substrate. In the simulation, we have 
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used the theoretical values of the adsorption energies of Au and Pd on graphene: Ea(Pd)= -

1.081eV, )Au(aE -0.096eV and the corresponding height barriers for diffusion 

)Pd(dE 0.037eV and )Au(dE 0.007eV.
3
 In order to roughly reproduce the timescale of the 

experiments, the value of d  has been fixed to 10
16

 Hz for both metals. This is a high frequency 

as compared to what is generally observed (10
13

 Hz). This could reflects that adsorption energies 

on amorphous carbon are lower than the theoretical values computed for graphene. E  is given 

by the cohesive and surface energy of the particle (see thermodynamics). After detachment, 

diffusion trajectories are not explicitly computed. Taking into account the local environment of a 

particle, simplified trajectories are performed instead of single atomic diffusion events, that 

considerably speed-up the algorithm, while preserving the distribution of attachment probability 

on the surrounding particles. A diffusing atom attach to an island as soon as it reaches its 

periphery. No kinetic barrier for attachment has been considered. 

Atoms diffuse, thus, one by one and, except for the island which loses an atom, no other 

evolution of the island assembly is taken into account during atomic diffusion. We use the BKL 

algorithm for definition of the timescale: at each step, the time-step is the inverse of the sum of 

the probabilities of all detachment events. A random number is then generated and used for 

choosing a possible atomic detachment accordingly to its probability. Using this approach, we 

assume that the duration of the atomic diffusion is much smaller than the time-step, i.e. the 

interval between two detachment events from the islands. In particular, we neglect the fact that 

two adatoms could meet and form a new island. For metallic clusters on carbon, this assumption 

is valid since the energy barrier for atomic detachment from particles is much higher than the 

energy barrier for atomic diffusion on the substrate.  
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Figure S1 shows the evolution of the chemical potential for Au and Pd in the particles after 

10h annealing at 873K, for Au 9.4 eV.nm
-2

 and Pd 28  eV.nm
-2

. Whereas the Au chemical 

potential strongly varies with size, the Pd chemical potential is nearly constant. 

 

 
 

Figure S1: Variation of the chemical potential in the NPs as a function of their radius r , obtained 

from a kMC simulation of 10h annealing at 873 K, for Pd 9.4 eV.nm
-2

 and Pd 28 eV.nm
-2

. 

Red crosses: Au chemical potential. Blue dots: Pd chemical potential. 
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