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Abstract

The simultaneous expression of the hunchback gene in the numerous nuclei of the develop-

ing fly embryo gives us a unique opportunity to study how transcription is regulated in living

organisms. A recently developed MS2-MCP technique for imaging nascent messenger

RNA in living Drosophila embryos allows us to quantify the dynamics of the developmental

transcription process. The initial measurement of the morphogens by the hunchback pro-

moter takes place during very short cell cycles, not only giving each nucleus little time for a

precise readout, but also resulting in short time traces of transcription. Additionally, the rela-

tionship between the measured signal and the promoter state depends on the molecular

design of the reporting probe. We develop an analysis approach based on tailor made auto-

correlation functions that overcomes the short trace problems and quantifies the dynamics

of transcription initiation. Based on live imaging data, we identify signatures of bursty tran-

scription initiation from the hunchback promoter. We show that the precision of the expres-

sion of the hunchback gene to measure its position along the anterior-posterior axis is low

both at the boundary and in the anterior even at cycle 13, suggesting additional post-tran-

scriptional averaging mechanisms to provide the precision observed in fixed embryos.

Author Summary

The fly embryo provides a natural laboratory to study the dynamics of transcription and

its implications for the developing organism. Using live imaging experiments we investi-

gate the nature of transcription regulation of the hunchback gene—the first to read out the

maternal Bicoid gradient. While traditional time trace analysis methods based on OFF

time distributions or autocorrelation functions fail for short signals, our tailored autocor-

relation function overcomes these limitations revealing bursty dynamics that is reproduc-

ible between cell cycles and embryos. The inferred rates result in a lot of variability in the
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readout of nuclei sensing similar Bicoid concentrations, suggesting additional readout

mechanisms than a one-to-one mapping of the input onto the output.

Introduction

During development the different identities of cells are determined by sequentially expressing

particular subsets of genes in different parts of the embryo. Proper development relies on the

correct spatial-temporal assignment of cell types. In the fly embryo, the initial information

about the position along the anterior-posterior (AP) axis is encoded in the exponentially

decaying Bicoid gradient. The simultaneous expression of the Bicoid target gene hunchback in

the multiple nuclei of the developing fly embryo gives us a unique opportunity to study how

transcription is regulated and controlled in a living organism [1, 2]. Despite many downstream

points where possible mistakes can be corrected [1, 3, 4], the initial mRNA readout of the

maternal Bicoid gradient by the hunchback gene is remarkably accurate and reproducible

between embryos [5, 6]: it is highly expressed in the anterior part of the embryo, quickly

decreasing in the middle and not expressed in the posterior part. This precision is even more

surprising given the very short duration of the cell cycles (6–15 minutes) during which the

initial Bicoid readout takes place and the intrinsic molecular noise in transcription regulation

[7–9].

Even though most of our understanding of transcription regulation in the fly embryo

comes from studies of fixed samples, gene expression is a dynamic process. The process

involves the assembly of the transcription machinery and depends on the concentrations of

the maternal gradients [10]. Recent studies based on single-cell temporal measurements of a

short lived luciferase reporter gene under the control of a number of promoters in mouse

fibroblast cell cultures [11, 12] and experiments in E. Coli and yeast populations [13–16] have

quantitatively confirmed that mRNAs are generally produced in bursts, which result from

periods of activation and inactivation. In early fly development, what are the dynamical prop-

erties of transcription initiation that allow for the concentration of the Bicoid gradient and

other maternal factors to be measured in these short intervals between mitoses?

In order to quantitatively describe the events involved in transcription initiation, we need

to have a signature of this process in the form of time dependent traces of RNA production.

Recently, live imaging techniques have been developed to simultaneously track the RNA pro-

duction in all nuclei throughout the developmental period from nuclear cycle 11 to cycle 14

[17, 18]. In these experiments, an MS2-binding cassette is placed directly under the control of

an additional copy of a proximal hunchback promoter. As this reporter gene is transcribed,

mRNA loops are expressed that bind fluorescent MCP proteins. Their accumulation at the

transcribed locus gives an intense localized signal above the background level of unbound

MCP proteins (Fig 1C) [19]. By monitoring the developing embryo, we obtain for each nucleus

a time dependent fluorescence trace that is indicative of the dynamics of transcription regula-

tion at the hunchback promoter (Fig 1B, 1D and 1F).

However the fluorescent time traces inevitably provide an indirect observation of the tran-

scription dynamics. The signal is noisy, convoluting both experimental and intrinsic noise

with the properties of the probe: the jitter in the signal is not necessary indicative of actual

gene switching but could simply result from a momentarily decrease in the recording of the

intensity. To obtain a sufficiently strong intensity of the signal to overcome background fluo-

rescence, a long probe with a large number of loops is needed, which introduces a buffering

time. In the current experiments the minimal buffering time is the time needed to transcribe a
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fluorescent probe made of 24 loops. It is tbuff
min ¼ 72s and it prevents direct observation of the

activation events [19].

To understand the details of the regulatory process that controls mRNA expression we

need to quantify the statistics of the activation and inactivation times, as has been performed

in cell cultures [11, 12, 14, 15]. However the very short duration of the cell cycles (6–15 min-

utes for cell cycles 11-13) in early fly development prevents accumulation of statistics about the

inactivation events and interpretation of these distributions. Direct observation of the traces

suggests that transcription regulation is not static but displays bursts of activity and inactivity.

However the eye can often be misleading when interpreting stochastic traces. In this paper

we develop a statistical analysis of time dependent gene expression traces based on specially

Fig 1. Transcription dynamics in the fly embryo. (A) The three models of transcription dynamics considered in this paper. From left to right: the

two state model, the cycle model and the Gamma model (see SI Sections B, D and E). (B) Example of the promoter state dynamics (either ON or

OFF) as a function of time. We assume that the polymerase is abundant and every time the promoter is ON and is not flanked by the previous

polymerase a new polymerase will start transcribing. The function X(t) in black is non-zero when a polymerase is occupying the transcription

initiation site and zero otherwise. (C) In the ON state, the promoter (Pr) is accessible to RNA polymerases (Pol II) that initiate the transcription of the

target gene and the 24×MS2 loops. As the 24× target mRNA is elongated MCP-GFP fluorescent molecules bind a detectable fluorescence signal.

(D) MCP-GFP molecules labeling several mRNAs co-localize at the transcription loci, which appear as green spots under the confocal microscope.

The spot intensities are then extracted over time and classified by each nuclei’s position in the Drosophila embryo as Anterior, Boundary and

Posterior. The spatial resolution of the spots is limited by the Abel limit, which is * 200nm. The ability to identify spots is also limited by the

background level of free MCP-GFP. Typical spot sizes are * 260nm, giving an upper bound on the size of the transcription site. (E) The gene is

divided into r sites of size 150 base pairs, indexed by i. The presence or absence of a polymerase at site i on the gene as a function of time is given

by the promoter occupancy in B and a delay time that depends on the speed of the polymerase. (F) A cartoon representing the type of experimental

signal we analyze (see S1 Fig for real traces): one spot’s intensity as a function of time, corresponding to the arrival of RNA polymerases in (E) and

the promoter state in (B).

doi:10.1371/journal.pcbi.1005256.g001
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designed autocorrelation functions to investigate the dynamics of transcription regulation.

This method overcomes the analysis difficulties resulting from naturally short traces caused by

the limited duration of the cell cycles that make it impossible to infer the properties of regula-

tion directly from sampling the activation and inactivation time statistics. Combining our

analysis technique with models of transcription initiation, estimates of the precision of the

transcriptional readout and high resolution microscopy imaging of the MS2 cassette under the

control of the hunchback promoter in heterozygous flies, we find evidence suggesting bursty

transcription initiation in cell cycles 12-13. For the switching timescales we observe experi-

mentally, the autocorrelation function analysis alone is not able to reliably distinguish between

different models for promoter activation and we use information about the precision of the

transcriptional readout to conclude that transcription is most likely bursty. Based on the analy-

sis of the time traces, we show that the precision of the transcriptional readout in each cell

cycle is relatively imprecise compared to the expected precision of the mRNA measurement

obtained from fixed samples, both in terms of cell-to-cell variability [5] and embryo-to-

embryo variability [6]. We discuss the limitations of the inference for models of different com-

plexity in different parameter regimes.

Results

Characterizing the time traces

Before we present our results, we first analyze the traces and present a new analysis technique.

We study the transcriptional dynamics of the hunchback promoter (depicted in Fig 1A and

1B) by generating embryos that express an MS2 reporter cassette under the control of the

proximal hunchback promoter (Fig 1C), using previously developed tools [17, 18], with an

improved MS2 cassette [20] (see Materials and Methods for details). The MS2 cassette was

placed towards the 3’ end of the transcribed sequence and contained 24 MS2 loop motifs.

While the gene is being transcribed, each newly synthesized MS2 loop binds MCP-GFP

(expressed at low levels and freely diffusing in the embryo). In each nucleus, where transcrip-

tion at this reporter is ongoing, we observe a unique bright fluorescent spot, which corre-

sponds to the accumulation of several MCP-GFP molecules at the locus (Fig 1C). We assume

that the fluorescent signal from a labeled mRNA disappears from the recording spot when the

RNAP reaches the end of the transgene. With this setup we image the total signal in four fly

embryos using confocal microscopy, simultaneously in all nuclei (Fig 1D) from the beginning

of cell cycle (cc) 11 to the end of cell cycle 13. In each nucleus we obtain a signal that corre-

sponds to the temporal dependence of the fluorescence intensity of the transcriptional process,

which we refer to as the time trace of each spot. A cartoon representation of such a trace result-

ing from the polymerase activity (Fig 1E) dictated by the promoter dynamics (Fig 1B) is shown

in Fig 1F. We present examples of the traces analyzed in this paper in S1 Fig and the signal pre-

processing steps in the Materials and Methods and SI Section A.

To characterize the dynamics of the hunchback promoter we need to describe its switching

rates between ON states, when the gene is transcribed by the polymerase at an enhanced rate

and the OFF states when the gene is effectively silent with only a small basal transcriptional

activity (Fig 1A and 1B). Estimating the ON and OFF rates directly from the traces is problem-

atic due to the buffering time and to the high background fluorescence levels coming from the

unbound MCP-GFP proteins that make it difficult to distinguish real OFF events from noise.

To overcome this problem, we consider the autocorrelation function of the signal. To avoid

biases from different signal strengths from each nucleus, we first subtract the mean of the fluo-

rescence in each nucleus, F(ti) − hF(ti)i and then calculate the steady state connected autocor-

relation function of the fluorescence signal (equivalent to a normalized auto-covariance), C(τ),
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at two time points separated by a delay time τ, F(ti) and F(ti + τ), normalized by the variance of

the signal over the traces, according to Eqs 12 and 13 in Materials and Methods. We limit our

analysis to the constant expression part of the interphase (which we call “steady state”—we dis-

cuss this assumption at the end of the Simulated data Results section) by taking a window in

the middle of the trace to avoid the initial activation and final deactivation of the gene between

the cell cycles (see Materials and Methods and S2 Fig). We will always work with the connected
autocorrelation function, which indicates that the mean of the signal is subtracted from the

trace. The autocorrelation function is a powerful approach since it averages out all temporally

uncorrelated noise, such as camera shot noise or the instantaneous fluctuations of the fluores-

cent probe concentrations.

Fig 2A compares the normalized connected autocorrelation functions calculated for the

steady state expression in the anterior of the embryo (excluding the initial activation and final

deactivation times after and before mitosis) in cell cycles 12 and 13 of varying durations: * 3

and * 6 minutes. Fig 2B shows the same functions for traces that have been curtailed to all

have equal length. The steady state signal from cell cycle 11 did not have enough time points to

gather sufficient statistics to calculate the autocorrelation function. As expected, the functions

decay showing a characteristic correlation time, then reach a valley at negative values before

increasing again. Since the number of data points separated by large intervals is small the

uncertainty increases with τ. Autocorrelation functions calculated for very long time traces

have neither the negative valley nor the increase at large τ. For example, the long-time con-

nected autocorrelation functions calculated from the simulated traces (Fig 2C) of the process

described in Fig 1 that are shown in Fig 2D, differ from the short time connected autocorrela-

tion function in Fig 2E calculated from the same trace (see SI Section G for a description of the

simulations). As the traces get longer the connected autocorrelation function approaches the

longtime results (S4 Fig). The connected autocorrelation function of a finite duration trace

of a simple correlated brownian motion (an Ornstein-Uhlenbeck process) displays the same

properties (see S5 Fig). The dip is thus an artifact of the finite size of the trace. We also see that

the autocorrelation functions shift to the left for short cell cycles (Fig 2A), resulting, for earlier

cell cycles, in shorter directly read-off correlation times, defined as the value of τ at which the

autocorrelation function decays by e. However, calculating the autocorrelation functions for

time traces of equal lengths for all cell cycles (Fig 2B) shows that the shift was also a bias of the

finite trace lengths, and after taking it into account, the transcription process in all the cell

cycles has the same dynamics (although we note that the dynamics directly read out from this

truncated trace is not the true long time dynamics).

This preliminary analysis shows that to extract information about the dynamics of tran-

scription initiation we will need to account for the finite time traces. Additionally, a direct

readout of even effective rates from the correlation time is difficult, because the autocorrelation

coming from the underlying gene regulatory signal (Fig 1B) is obscured by the autocorrelation

due to the timescale needed for the transcription of the sequence containing the MS2 cassette

(Fig 1E)—the gene buffering time, τbuff. The observed time traces are a convolution of these

inputs (Fig 1F). The analysis is thus limited by the buffering time of the signal (τbuff = 72s in

our system), given as the length of the transcribed genomic sequence that carries the fluoresc-

ing MS2 loops divided by the polymerase velocity. A direct readout of the switching rates is

only possible if the autocorrelation time of the promoter is larger than the buffering time.

The form of the autocorrelation function and our ability to distinguish signal from noise

also depends on the precise positioning and length of the fluorescent gene [19]. A construct

with the MS2 transgene placed at the 3’ end of the gene (Fig 3A) gives a differentiable readout

of the promoter activity even for two sets of fast switching rates between the active and inac-

tive states. However, in this case the weak signal is hard to distinguish from background

Precision of Readout at the hunchback Gene
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fluorescence levels. Conversely, a 5’ positioning of the transgene (Fig 3B) is insensitive to

background fluorescence. However it only differentiates autocorrelation functions calculated

from very slow switching processes [19]. In summary, a construct with the MS2 placed at the

3’ end of the gene allows for a direct readout of the transcriptional kinetics in a much wider

range of switching rates than a 5’ construct, although the autocorrelation function of a 3’

construct is more sensitive to background fluorescence.

Method development—Promoter switching models

The promoter activity we are interested in inferring can in principle be described by models

of varying complexity (see Fig 1A). We consider and compare three types of models in this

Fig 2. Autocorrelation analysis of fluorescent traces from cell cycles 12-13. (A) Autocorrelation functions for traces of different length caused by the

variable duration of the cell cycle. Each autocorrelation function is calculated from one embryo and one cell cycle from traces in the anterior region of the

embryos. Reading off the autocorrelation time as the time at which the autocorrelation function decays by a value of e would give different values for each

trace. The analysis is restricted to the steady state part of the traces (as defined in the text and S2 Fig). The durations of the steady state windows are

given in SITable I. (B) Autocorrelation functions calculated for the same traces reduced to having equal trace lengths, all equal to the trace length of the

shortest trace (101s), show that the differences observed in panel A are due to finite size effects. In the curtailed traces all sequential time points until the

101s time point were used. (C) An example of a signal simulated using the process described in Fig 1 for 300 seconds (blue curve) for a two state model.

Taking the whole 300 second interval (red dashed lines) gives a good approximation of the average signal (red line) and the effect of finite size on the

autocorrelation function is small (D). Reducing the time window to 60 seconds (green dashed lines) correlates the average with the signal much more and

the effect of the finite size on the autocorrelation is strong (E). The sampling rates of the four embryos are: 13.1s, 10.2s, 5.1s and 4.3s, respectively.

Parameters for the simulation in (C-E) are: kon = koff = 0.06s−1, sampling time dt = 4s, for the red curve T = 300s and M = 2000 nuclei, for the green curve

T = 60s and M = 10000 nuclei (same total amount of data). These parameters were chosen for illustrative purposes.

doi:10.1371/journal.pcbi.1005256.g002
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Fig 3. The autocorrelation prediction and autocorrelation based inference analysis performed on short trace simulated data for models of

various complexity and positioning of the MS2 probe. A cartoon of the construct with the MS2 cassette placed (A) after the gene (3’) and (B) before

the gene (5’). Examples of the autocorrelation function’s analytical predictions compared to ones calculated from simulated traces (according to the

Gillespie simulations described in SI Section G) show perfect agreement for 3’ MS2 insertions assuming a two state (telegraph) model, three state model

and gamma function bursty model (C), as well as for the 3’ and 5’ constructs in the two state model (D). (E) Comparison between prediction and

simulation for the cross-correlation between the signal coming from two different colored fluorescent probes positioned at the 3’ and 5’ ends. (F) The

inference procedure for the two state model correctly finds the parameters of transcription initiation in a wide parameter range. The inference range grows

with trace length and the number of nuclei. Error bars shown only for T = 240s, N = 50 nuclei (blue line) and T = 600s, N = 200 nuclei (red line) for clarity of

presentation. Parameters for the simulations and predictions are, (C) for the two state model kon = 0.005 s−1, koff = 0.01 s−1, sampling time dt = 6 s,

T = 360 s and number of cells M = 20000, the same parameters for the three state cycle model with koff = 0.01 s−1, k1 = 0.01 s−1 and k2 = 0.02 s−1, the

same parameters for the Γmodel with koff = 0.005 s−1 and α = 2 and β = 0.01 s−1; (D) kon = 0.02 s−1, koff = 0.01 s−1, sampling time dt = 6 s, T = 600 s and

number of cells M = 20000; (E) kon = 0.01 s−1, koff = 0.01 s−1, dt = 6 s, T = 480 s and M = 20000. The 5’ construct is modeled as by adding a 3000bp non-

MS2 binding sequence to the 30 end of the MS2-binding cassette. (F) Pon = 0.1.

doi:10.1371/journal.pcbi.1005256.g003
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paper. We note this is a small subset of possible models. In particular, we do not consider mod-

els with multiple levels of transcription as was considered in [21] or reversible promoter cycles.

In the simplest case, the gene is consecutively yet noisily expressed. The RNAP starts transcrib-

ing following a Poisson distribution of discrete ON-activation (or firing) events—this has pre-

viously been called a static promoter (not represented in Fig 1A). After the polymerase binds,

the next polymerase cannot bind before the promoter is cleared (a timescale estimated to be

τblock * 6s in our experiments). The effective firing rate of this model is the Poisson rate, r,
shifted by a deterministic τblock * 6s, reff = (τblock + r−1)−1, and we call this discrete time model

a Poisson-like promoter. Although the promoter dynamics would be uncorrelated in this case,

the gene buffering would still produce a finite correlation time (see SI Section F). Alternatively,

the promoter could have two well defined expression states: an ON state during which the

polymerase is transcribing at an enhanced level and an OFF state when it transcribes at a basal

level. This situation can be modeled by stochastic switching between the two states with rates

kon and koff (left panel in Fig 1A and Materials and Methods). However, as was previously

observed in both eukaryotic and prokaryotic cell cultures [11, 12, 14, 15], once the gene is

switched off the system may have to progress through a series of OFF states before the gene

can be reactivated. Recently these kinds of cycle models have been discussed for the hunchback
promoter [22]. The intermediate states can correspond to, for example, the assembly of the

transcription initiation complex, opening of the chromatin or transcription factor cooperativ-

ity. These kinds of situations can either be modeled by a promoter cycle (middle panel in

Fig 1A and Materials and Methods), with a number of consecutive OFF states, or by an effec-

tive two state model that accounts for the resulting non-exponential, but gamma function dis-

tribution of waiting times in the OFF state (right panel in Fig 1A and Materials and Methods).

The time the polymerase spends transcribing the DNA does not dependent on the promoter

model.

In both the two-state and promoter cycle model the gene switches from the ON to the OFF

state with exponentially distributed waiting times described by a rate koff (Fig 1A). In the two-

state model the jumps from the OFF to the ON state are also exponentially distributed with a

switching rate kon (Fig 1A). In the three state cycle model considered in this paper, an inactive

gene can be in two different OFF states. The gene leaves these states with different switching

rates, k1 and k2, respectively. The ordering of k1 and k2 is impossible to detect in the current

experiment. In the three state cycle model we can define an effective on-switching rate

keff
on ¼ ð1=k1 þ 1=k2Þ

� 1
. keff

on corresponds to the inverse of the average waiting time in the

overall OFF state, and the waiting times for exiting this effective OFF state are not exponen-

tially distributed. The gamma function distributed switching time is an approximation of this

effective rate. We present our method for all of these models and consider all but the gamma

function distributed switching time model to learn about the dynamics of hunchback promoter

dynamics.

Method development—Autocorrelation approach

To infer the transcription dynamics from the data we built a mathematical model that calcu-

lates the autocorrelation functions accounting for the experimental details of the probes, incor-

porating the MS2 loops at various positions along the gene and correcting for the finite length

of the time traces. The basic idea behind our approach is that while the initiation of transcrip-

tion is stochastic and involves switching between the ON and possibly a number of OFF states

(X(t) in Fig 1B denotes the binary gene expression state), if we assume a constant elongation

velocity the obscuring of the signal by the probe design is completely deterministic [18, 23],

which results in the random variable a(i, t) 2 {0, 1} that describes the presence or absence of
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the polymerase at position i at time t (Fig 1E). We count the progression of the polymerase in

discrete time steps, where one time step corresponds to the time it takes the polymerase to

cover a distance of 150 base pairs equal to its own length (Fig 4A). The promoter dynamics

can thus be learned from the noisy autocorrelation function of the fluorescence intensity nor-

malized by the intensity coming from one MS2 loop, FðtÞ ¼
Pr

i¼1
Liaði; tÞ (Fig 1F), even for

switching timescales smaller than the fluorescent probe buffering time τbuff, provided the

parameters of the probe design encoded in the loop function Li (positioning of the probe etc.)

are known (Fig 1C) and the intensity signal is calibrated knowing the fluorescence intensity

coming from one MS2 loop [18].

Broadly, our model assumes that once the promoter is in an ON state the polymerase binds

and deterministically travels along the gene producing MS2 loops containing mRNA that

immediately bind MCP and result in a strong localized fluorescence (Fig 4). The presence or

absence of a polymerase at position i at time t, a(i, t) is simply a delayed readout of the pro-

moter state at time t − i, a(i, t) = X(t − i) where t is measured in polymerase time steps (Fig 1B).

We assume that polymerase is abundant and that at every time step a new polymerase starts

transcribing, provided the gene is in the ON state (Fig 1B and 1E). The amount of fluorescence

produced by the gene at one time point is determined by the number of polymerases on the

gene (Fig 4A). The amount of fluorescence from one polymerase that is at position i on the

gene depends on the cumulated number of loops that the polymerase has produced Li, where

1� i� r. r corresponds to themaximum number of polymerases that can transcribe the gene

at a given time and Li = 1 corresponds to one loop fluorescing, as depicted in the cartoon in

Fig 4B. The known loop function Li depends on the build and the position of the MS2 cassette

on the gene, it is input to the model and does not necessarily take an integer value since the

polymerase length and the loop length do not coincide (Fig 4B). Given the average fraction of

time the transcription initiation site is occupied by the polymerase, Pon, the average fluores-

cence in the steady state is:

hFi ¼ Pon

Xr

i¼1

Li: ð1Þ

Since we assume the polymerase moves deterministically along the gene, seeing a fluorescence

signal both at time t and position i, and at time s and position jmeans the gene was ON at time

t − i and s − j, which is determined by how many loops (i and j) the polymerase has produced.

Taking the earlier of these times, we need to calculate the probability that the gene is also ON

at the later time. The autocorrelation function of the fluorescence can thus be written as:

hFðtÞFðsÞi ¼
Xr

i¼1

Xr

j¼1
LiLjPðgene was ON at time

minðt � i; s � jÞÞ � Aðjt � i � sþ jjÞ; ð2Þ

where A(n) is the probability that the gene is ON at time n given that it was ON at time 0, and

time is expressed in polymerase steps. The precise form of Pon, P(gene was ON at time min(t −
i, s − j)) and A(|t − i − s + j|) depends on the type of the promoter switching model. We assume

that the polymerase moves at constant speed along the gene and that there is no splicing

throughout the transcription process. We give explicit expressions for all the models used in the

Materials and Methods section and the Supplementary Information. Knowing the design of the

construct (length of the probe and number of loops that have been transcribed at each position)

and calibrating the signal, we use Eq 1 to directly learn Pon from the data. In the two and multi-

state models Pon provides us with the ratio of switching rates and we then use Eq 2 to obtain

their particular values (see Materials and Methods).

Precision of Readout at the hunchback Gene
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To avoid biases coming from nucleus to nucleus variability, we calculated the normalized

connected correlation function defined in Eqs 12 and 13 in Materials and Methods. The theo-

retically calculated connected autocorrelation function, Cr (Eq 14, which corresponds to the

longtime correlation function in Fig 2C and 2D), differs from the empirically calculated con-

nected autocorrelation function from the traces, c(r) (Eqs 12 and 13 in Materials and Methods,

which correspond to the short time correlation function in Fig 2C and 2E), due to finite size

effects coming from spurious correlations between the empirical mean and the data points.

Since by definition the mean of a connected autocorrelation function is zero (see Eqs 12 and

13 in Materials and Methods), the area under the autocorrelation function must be zero. For

short traces this produces the artificial dip discussed in Fig 2, which for long traces is not visi-

ble, as it is equally distributed over long times. To compare our theoretical and empirical cor-

relation functions we explicitly calculate the finite size correction and include this correction

in our analysis (Materials and Methods and SI Section H and I).

Fig 4. The gene expression model used in the autocorrelation function calculation. The autocorrelation inference approach is based on the idea

that the stochastic transcriptional dynamics can be deconvoluted from the signal coming from the deterministic fluorescent construct, if we know the gene

construct design. (A) A concatenation of snapshots of the gene from r consecutive time steps. A polymerase covers a length on the gene corresponding to

its own length in one time step, producing about two MS2 loops. The gene has total length r and at any position i along the gene Li < 24 loops have been

produced. (Top right) The promoter state as a function of time and (center right) an instantaneous snapshot of the gene corresponding to transcription

from this promoter. (B) The construct design is encoded in the loop function Li. As the polymerase moves along the gene it produces MS2 loops. Li is an

average representation in terms of polymerase time steps of how many loops have been produced by a single polymerase. It is based on the experimental

design shown on the left of the panel.

doi:10.1371/journal.pcbi.1005256.g004
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In this paper, we have analyzed data from fly embryos with 3’ promoter constructs only,

limiting ourselves to the steady state part of the trace (see S2 Fig). However the method can

also be applied to non-steady state systems (see SI Section C) and to other constructs, includ-

ing cross-correlation functions calculated from signals of different colors inserted at different

positions along the gene (see SI Section J). We use simulated data to show that prediction and

inference are possible for cross-correlation functions of a two-colored signal (see S6 Fig), but

that the accuracy of inference is limited by the use of the 5’ probe.

Simulated data

To check that the inference method correctly infers the parameters of the model, we first tested

the autocorrelation based inference on simulated short-trace data with underlying molecular

models with different levels of complexity (Fig 3C) for a construct with the MS2 probe placed

at the 3’ end of the gene (Fig 3A). In Fig 3D we compare autocorrelation functions for the

three state model for constructs with the MS2 loops positioned at the beginning of the tran-

scribed region (5’, Fig 3B) and at the end of the transcribed region (3’, Fig 3A), and the cross-

correlation function calculated from a two-colored probe construct (Fig 3E). The analytical

model correctly calculates the short trace autocorrelation function and is able to infer the

dynamics of promoter switching for all models. It can also be adapted to infer the promoter

switching parameters for any intermediate MS2 construct position, given the limitations of

each of the constructs discussed above [19].

The autocorrelation function based inference reproduces the underlying parameters of the

dynamics with great accuracy not just for switching timescales longer than the gene buffering

time, τbuff, that obscures the signal (Fig 3F), but also for smaller timescales that are within an

order of magnitude of the gene buffering time. In Fig 3F we show the results of the inference

for the 3’ two state model for different values of the ON and OFF rates, kon and koff. For switch-

ing timescales much shorter than the gene buffering time, the autocorrelation function coming

from the length of the construct dominates the signal and the precision of the inference goes

down. For very fast switching rates (kon + koff > 0.12s−1), increasing the length of the traces or

the number of nuclei (red vs blue curve for values of kon + koff larger than 0.1s−1 in Fig 3F)

does not help estimate the properties of transcription. In this regime, the inferred value of

kon + koff disagrees with the true parameters even when the inference uses long time traces and

a large number of nuclei. For intermediate switching rates (0.07 − 0.12s−1), increasing the trace

length or increasing the number of nuclei extends the inference range (black and green dashed

lines vs blue solid line in Fig 3F), and in all cases increasing the number of nuclei decreases the

uncertainty as can be seen from the smaller error bars (shown only for the red and blue lines

for figure clarity).

Using two colored probes attached at different positions along the gene gives two measure-

ments of transcription and allows for an independent measurement of the speed of the

polymerase—one of the parameters of the model that currently must be taken from other

experiments. While the estimates of polymerase speed in the fly embryo are reliable [18], this

parameter has been pointed out as a confounding factor in other correlation analyses [24].

The autocorrelation approach also correctly infers the parameters of transcriptional pro-

cesses when applied to traces that are out of steady state (see SI Section C). However, since the

process is no longer translationally invariant more traces are needed to accumulate sufficient

statistics. For this reason, in the current analysis of fly embryos we do not analyze the transient

dynamics at the beginning and end of each cycle and we restrict ourselves to the middle of the

interphase assuming steady state is reached (see S2 Fig for details). We do not know whether

the underlying dynamics is completely in steady state. We limit our analysis to a time frame
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window where the intensity of the fluorescence signal plateaus (see S2 Fig for an example).

We can motivate the steady state assumption a posteriori: the inferred switching timescales

(smaller than 50s) are small enough for the system to relax to steady state within one cell-cycle.

However we cannot fully rule out other mechanisms that could keep the system out of steady

state (such as changes in the Bicoid concentration).

Fly trace data analysis

We divided the embryo into the anterior region, defined as the region between 0% and 35%

of the egg length(the position at 50% of the egg length marks the embryo midpoint), where

hunchback expression is high, and the boundary region, defined as the region between 45%

and 55% egg length, where hunchback expression decreases. The mean probability for the gene

to be ON during a given cell cycle Pon (restricted to the times excluding the initial activation

and deactivation of the gene, which we will call the steady state regime), given by Eq 1, is con-

sistent between the four embryos in cell cycle 12 and 13, both in the anterior region and at the

boundary (Fig 5A). The probability for the gene to be ON is over three fold higher in the ante-

rior region than in the boundary and does not change with the cell cycle. Pon * 0.5 in the ante-

rior indicates that in each nucleus the polymerase spends about half the steady state expression

time transcribing the observed gene. At the boundary the gene is transcribed on average dur-

ing about 10% of the steady state part of the cell cycle. The estimates for Pon in the earlier cell

cycles were not reproducible between the four embryos, likely because the time traces were too

short to gather sufficient statistics to accurately calculate the maximum and average of the sig-

nal.We concentrated on cell cycle 12 and 13 for the remainder of the analysis.

Initial comparison of the promoter models. Based on the different behavior at the

boundary and in the anterior, we separately inferred the transcriptional dynamics parameters

in the two regimes, using the autocorrelation approach that corrects for finite time traces for

different models. The Poisson-like promoter model, the two and three state cycle models all

provide reasonably good fits to all the traces in both regions (see Fig 5B for an example and S3

Fig for the fits in both regions in all embryos). Although the fit of the Poisson-like promoter

model (red line) only captures the short time behavior of the measured autocorrelation func-

tion, there is not enough statistical evidence from the autocorrelation analysis to exclude this

model. The two and three state model fits are indistinguishable (Fig 5B) and the two state fit is

reproducible between cell cycles and embryos (Fig 5C and 5D). The form of the autocorrela-

tion function in the Poisson-like promoter model is completely determined by the autocorrela-

tion signal of the fluorescent construct (the loop function Li), since the random firing is itself

uncorrelated. In the two and three state models, the autocorrelation signal from the fluorescent

construct is convoluted with the autocorrelation signal of the promoter. The fact that the Pois-

son-like promoter model fits the data so well, indicates that the autocorrelation time of the

promoter is comparable to the autocorrelation time of the fluorescent construct. In S7 Fig we

plot the autocorrelation functions for simulated two state models with different correlation

times (kon + koff) and a Poisson-like promoter with the same Pon. For short correlation times,

the Poisson-like promoter model and two state model have indistinguishable autocorrelation

functions, just like in the analyzed data. For long autocorrelation times, the difference between

the two models is clear.

The three state fit is reproducible at the level of the sum of the effective ON and OFF rates

(same fit as shown for the two state model in Fig 5C), but gives fluctuating values for k1/k2,

the parameter ratio determining how well it is approximated by a two state model (see S8 Fig,

k1/k2 < 1 describes one fast reaction between the OFF states, effectively giving a two state

model, while k1/k2 = 1 gives equal weights to the two reactions, clearly distinguishing two OFF
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states). Since the two state model is reproducible, and has lesser complexity we will further

consider only the two state and Poisson-like promoter models.

Discussion of the two state model. For the two state model, the inference procedure

independently fits the characteristic timescale of the process from the autocorrelation function,

defined as the inverse of the sum of two rates, kon + koff (Fig 5C), and then uses an independent

Fig 5. Inference results for fly data. (A) Inferred values of Pon for different nucleus positions (A-Anterior, B-Boundary) and cell

cycles. (B) Example of the mean connected autocorrelation function of the traces in cell cycle 13 from the boundary region of embryo 1

(blue dots, with shaded error region) and of the fitted Poisson-like (red), two-state (green) and cycle (black) promoter models. The

fitted curves generated from the two-state and three state cycle model are almost superimposed. See S3 Fig for fits of all

autocorrelation functions in both cell cycles and regions. (C) Inferred values of kon + koff using the two-state model. In (A) and (C), the

standard error bars are calculated by performing the inference on 20 random subsets that take 60% of the original data. (D) Inferred

values of kon and koff in the Anterior (red) and Boundary (blue) for the two-state model, in cell cycle 12 (circle) and cell cycle 13

(square). For each condition, 4 inferred values for 4 movies are shown. The dotted black line depicts the limit to inference coming from

the time of τblock * 6s it takes the polymerase to leave the transcription initiation site (kon + koff = 1/(6s)). The shaded areas represent

the standard deviational ellipse of kon, koff for each cycle and each embryo. The axes of the ellipses are the eigenvalues of the

covariance matrix, represented in the directions of the eigenvectors. (E-F) Two simulated trajectories of the promoter state with the

inferred parameters in the Anterior (red) and Boundary (blue).

doi:10.1371/journal.pcbi.1005256.g005
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fit of the probability of the gene to be ON, Pon = kon/(kon + koff), to disentangle the two rates

(Fig 5D). Examples of the simulated promoter state over time with the rates’ inferred values

are shown in Fig 5E (for the anterior region) and Fig 5F (for the boundary region). Assuming

the two state model we find that the characteristic timescale, (kon + koff)
−1, in most embryos is

slightly shorter at the boundary (* 25s) than in the anterior region (* 33s) and the variability

between the two cell cycles is comparable to the embryo-to-embryo variability (Fig 5C). Both

timescales are much larger than the polymerase blocking time, τblock * 6s, during which a sec-

ond polymerase cannot bind because the first one has not cleared the binding site (shown as

the gray dashed line in Fig 5D), which sets a natural scale for the timescales we can infer. We

find that in the anterior region of the embryo the two switching rates, kon and koff, show vari-

ability from embryo to embryo (between 0.009s−1 to 0.078s−1—see Table I and II in the SI), but

always scale together, which gives the observed one-half probability of the gene to be ON in a

given nuclei during the steady state part of the interphase. Since the polymerase in the anterior

on average spends half the steady state interphase window transcribing the gene, the inferred

rates suggest a clear bursting behavior of the transcription process, with switching between an

identifiable active and inactive state of the promoter if the two state promoter is correct, and

rare firing if the Poisson-like promoter model is correct.

At the boundary kon is much smaller than in the anterior with very little embryo to embryo

variability, while koff has a similar range in the anterior and at the boundary. This behavior is

expected since high Bicoid concentrations in the anterior upregulate the transgene whereas

lower concentrations at the boundary result in smaller activation rates. The ratio of the average

kon rates at the boundary and anterior is * 5, which can be compared to the 4 fold decrease

expected from pure Bicoid activation, assuming the Bicoid gradient decays with a length scale

of 100μm [25] and comparing the activation probabilities in the middle of the anterior and

boundary regions. Given the crudeness of the argument stemming from the variability of the

Bicoid gradient in the boundary region and the uncertainty of the inferred rates, these ratios

are in good agreement and suggest that a big part of the difference in the transcriptional pro-

cess between the anterior and boundary is due to the change in Bicoid concentration. Of

course other factors, such as maternal Hunchback, could also affect the promoter, leading to

discrepancies between the two estimates.

Discriminating between two and three state models. The current data coming from

four embryos and * 50 nuclei in each region with trace lengths of * 300s does not make it

possible to distinguish between the two and three state models. We asked whether having

longer traces or more nuclei could help us better characterize the bursty properties. We per-

formed simulations with characteristic times similar to those inferred from the data

(keff
on þ koff ¼ 0:01) assuming a two state (keff

on ¼ kon, Fig 6A) and three state cycle model (Fig

6B). We then inferred the sum of the ON and OFF rates (keff
on þ koff ) and the ratio of the two

ON rates (k1/k2). If the two ON rates are similar (k1/k2 * 1), we infer a three state model. If

one of the rates is much faster (k1/k2 * 0, which implies keff
on ¼ kon), we infer a two state

model. We find that having more nuclei, which corresponds to collecting more embryos,

would not significantly help our inference. However looking at longer traces would allow us

to disambiguate the two scenarios, if the traces were 4 times longer, or * 20 minutes long.

Since cell cycle 14 lasts * 45 minutes, analyzing these traces could inform us about the

effective structure of the OFF states. However in cell cycle 14, several other direct Bicoid tar-

gets (mostly transcription factors) are likely to be expressed, so additional regulatory ele-

ments could be responsible for the observed transcriptional dynamics compared to cell

cycle 12 and 13. Our results suggest that with our current trace length we should be able to

identify a two state model with large certainty, but we could not clearly identify a three state
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model. Our data may point towards a more complex model than two state, but different

kinds of multistate models or a two state model obscured by other biases cannot be ruled

out.

The error bars for the autocorrelation functions (see Fig 5B and S3 Fig) describe the vari-

ability between nuclei coming from both natural variability and measurement imprecision.

While the autocorrelation function is insensitive to white noise, it does depend on correlated

noise. The noise increases for large time differences τ, as the number of pairs of time points

that can be used to calculate the autocorrelation function decreases and in our inference we

reweigh the points according to their sampling, so that the noise does not impair the precision

of our inference. The error bars on the inferred parameters (e.g. Fig 5A, 5C and 5D) are due to

variability between nuclei and are obtained from sampling different subsets of the data in each

region and cell cycle. Additionally to the inter-nuclei and experimental noise, there is natural

variability between embryos. Since each nucleus transcribes independently and we assume

similar Bicoid concentrations in each of the regions, the inter-embryo variability is of a similar

scale as the inter-nuclei variability (Fig 5C), as one expects given that the Bicoid gradient is

reproducible between embryos [25]. Additonally, variability between Bicoid gradients in dif-

ferent embryos, for example due to their different lengths [26], could also contribute to the

observed variability.

Accuracy of the transcriptional process

At the boundary, neighboring nuclei have dramatically different expression levels of the

Hunchback protein. From measurements of the Bicoid gradient, Gregor and collaborators

estimated that for two neighboring nuclei to make different readouts, they must be able to dis-

tinguish Bicoid concentrations that differ by 10% [27]. Following the Berg and Purcell [28]

Fig 6. Longer time traces help distinguish between two state and three state cycle models. A. Inference from data generated by a two state model,

which corresponds to k1/k2 = 0, from traces of different lengths T and using different numbers of nuclei N shows that longer traces help increase the

probability to correctly learn the model type. Increasing the number of nuclei for short traces shows little improvement. The inference is repeated 50 times

per condition. The experimental conditions studied in this paper are closest to the T = 240s and N = 50 nuclei panel. B. The same numerical experiment but

assuming a three state cycle model, which corresponds to k1/k2 = 1. Parameters of the simulations: Pon = 0.1, koff + 1/(1/k1 + 1/k2) = 0.02s−1 and k1/k2 = 0

in A, and k1/k2 = 1 in B.

doi:10.1371/journal.pcbi.1005256.g006
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argument for receptor accuracy, and using measurements of diffusion constants for Bicoid

proteins from cell cycle 14, the authors showed that, based on protein concentrations, the

hunchback gene is not able to read-out the differences in the concentrations of Bicoid proteins

to the required 10% accuracy in the time that cell cycle 14 lasts. Even considering the revised

higher values of Bicoid’s diffusion coefficient measured in a subsequent study [5], the precision

of the Bicoid gradient read-out remains difficult to explain. The authors invoked spatial aver-

aging of Hunchback proteins as a possible mechanism that achieves this precision. Spatial

averaging can increase precision, but it can also smear the boundary. Erdmann et al calculated

the optimal diffusion constant Hunchback proteins must have for the averaging argument to

work [29] and showed it is consistent with experimental observations [5, 25]. However preci-

sion can already be established at the mRNA level and, using measurements on fixed embryos,

Little and co-workers found that the relative intrinsic nuclei-to-nuclei variability of the mRNA

transcribed from a hunchback locus is * 50% [6]. Measurements of cytoplasmic mRNA

reduced this variability to * 10% [6].

Here we go one step further and use our direct measurements of transcription from the

hunchback gene to directly estimate the precision with which the hunchback promoter makes a

readout of its regulatory environment in a given cell cycle in a given region of the embryo,

δPon/Pon. δPon/Pon is the relative error of the probability of the gene to be ON averaged over

the steady state part of a cell cycle. Since the total number of mRNA molecules produced in a

given cycle is proportional to Pon (shown in S9A Fig as a function of embryo length), the preci-

sion at the level of produced mRNA in a given cycle is equal to the precision in the expression

of the gene, δmRNA/<mRNA> = δPon/Pon. The accuracy of transcription activation is

encoded in the stochasticity of gene activation.

In the two state model, the gene randomly switches between two states: active and inactive,

making a measurement about the regulatory factors in its environment and indirectly inferring

the position of its nucleus. Since no additional information is provided by a measurement that

is strongly correlated to the previous one, the cell can only base its positional readout on a

series of independent measurements. Two measurements are statistically independent, if they

are separated by at least the expectation value of the time τi it takes the system to reset itself:

ti �
1

keff
on þ koff

; ð3Þ

where in a two state model keff
on ¼ kon. A more detailed estimate obtained by computing the var-

iance of the time spent ON by the gene during the interphase (see SI Section K) shows that Eq

3 underestimates the time needed to perform independent measurements. We find that for a

two state model the accuracy of the readout of the total mRNA produced is limited by the vari-

ability of a two state variable divided by the estimated number of independent measurements

within one cell cycle:

dmRNA
<mRNA>

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
tið1 � PonÞ

TPon

s

; ð4Þ

where T is the duration of the cell cycle and the factor
ffiffiffi
2
p

is a prefactor correction to the naive

estimate. Eq 4 is valid in the limit of T>> τi (the exact result if given in SI Section K). Using

the rates inferred from the autocorrelation analysis (Fig 5D) we see that the precision of the

gene readout is much lower at the boundary than in the anterior, does not change with the cell

cycle and is reproducible between embryos (blue points on the ordinate in Fig 7A). In the ante-

rior part of the embryo it reaches * 50%, while at the boundary, it is very large, *150%, even

at cell cycle 13.
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Fig 7. Precision of the hunchback gene transcription readout. A. Comparison of the relative error in the mRNA produced during the steady state of

the interphase estimated empirically from data (abscissa) and from theoretical arguments in Eq 4 for a two state switching promoter (blue symbols) using

the inferred parameters in Fig 5C (ordinate), and theoretical arguments in Eq 5 for a Poisson-like static promoter (red symbols) using the inferred

parameters in Fig 5A (ordinate), in the anterior (circles and squares) and the boundary (diamonds and triangles) regions. The theoretical prediction for the

two state promoter shows very good agreement with the data, whereas the Poisson-like promoter shows poor agreement, especially in the boundary

region. B. The relative error in the total mRNA produced in cell cycle 13 directly estimated from the data as the variance over the mean of the steady state

mRNA production (red line, same data as in A), sum of the intensity over the whole duration of the interphase (blue line) and the total mRNA produced

during cell cycles 11 to 13 (green line) for equal width bins equal to 10% embryo length at different positions along the AP axis. Each line describes an

average over four embryos (see S9C Fig for the same data plotted separately for each embryo) and the error bars describe the variance. To calculate the

total mRNA produced over the cell cycles, we take all the nuclei within a strip at cell cycle 13 and trace back their lineage through cycle 12 to cycle 11. We

then sum the total intensity of each nuclei in cell cycle 13 and half the total intensity of its mother and 1/4 of its grandmother. C. Comparison of the relative

error in the mRNA produced during the steady state for a two state, k1/k2 = 0, (solid lines) and three state cycle model, k1/k2 = 1, (dashed lines) with the

same keff
on þ koff, for different values of keff

on and koff, shows that the three state cycles system allows for greater readout precision. D. A comparison of the

theoretical prediction of the steady state relative error rate for the Poisson-like and two state promoter as a function of Pon shows that the Poisson-like

promoter is always more accurate. Different values of kon are considered for the two state model.

doi:10.1371/journal.pcbi.1005256.g007
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In the Poisson-like promoter model, to calculate the relative error in the total mRNA

produced, the polymerase arrival times are described by an effective firing rate of reff =

(τblock + 1/r)−1. Within this model, the fraction of the total time the polymerase cannot bind,

because the binding site is occupied is PP
on ¼ tblock � reff (see SI Section F). The total produced

mRNA is then proportional to the time the gene is transcribed, and the relative error in the

total produced mRNA depends on the relative error of the firing times of this modified Pois-

son process and the number of independent measurements, nP = T/(τblock + 1/r) (see SI Sec-

tion K):

dmRNA
<mRNA>

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tblockð1 � PP

onÞ

T

r

: ð5Þ

Using the rates for PP
on inferred from the data (Fig 5A), the relative error in the total mRNA

produced (blue points on the ordinate in Fig 7A) is slightly higher in the boundary region

(* 15%) than in the anterior of the embryo (* 10%) and does not change with the cell

cycle.

We can compare both of these theoretical estimates with direct estimates of the relative

error of the total mRNA produced during a cell cycle, δmRNA/mRNA, from the data. We

divide the embryo into anterior and boundary strips, as we did for the inference procedure

and calculate the mean and variance of Pon. These empirical estimates of the gene measure-

ment precision agree with the theoretical estimates (Fig 7A) for the two state model, but dis-

agree with the predictions of the Poisson-like promoter model. For completeness, we also

calculated the relative error for the three state model (see S9B Fig), which shows better agree-

ment than the Poisson-like promoter model but slightly worse than a two state model. We

verified that our conclusions about the scale of our empirical estimates are the same for all

embryos (S9C Fig) and do not depend on the definition of the boundary and anterior regions

(S9D Fig). Since the predicted relative error for the Poisson-like promoter model is lower than

the relative error calculated directly from the data, we could imagine that the data estimate is

more susceptible to additional sources of experimental noise. However the very large disagree-

ment between the Poisson-like promoter prediction and the data at the boundary suggests the

Poisson-like promoter model is not an accurate description. This higher experimental variabil-

ity also cannot be explained by variable expression levels within the regions we are consider-

ing: S9D Fig shows that the experimental relative error does not significantly decrease if we

take smaller windows and taking the Pon in the boundary region to range from 0.35 to 0.5 (Fig

3A) would translate into a, at best, two fold increase in the relative error predicted from the

Poisson-like promoter model, which is not enough to reach the experimentally observed rela-

tive error. While we are unable to rule out the Poisson-like promoter model based on the fit to

the autocorrelation function, a different statistic—the relative error in the produced mRNA—

suggests that the promoter is most likely well described by a two state model, and possibly a

three state cycle.

To see whether temporal integration of the mRNA produced can increase precision, we

compared the empirical estimate of the steady state mRNA production (red line in Fig 7B) to

the relative error of the total mRNA produced in cell cycle 13 (blue line in Fig 7B) and the

total mRNA produced from cell cycle 10 to 13 (green line in Fig 7B) averaged over embryos.

Assuming that the mRNA molecules are equally divided between daughter cells during divi-

sion, and they are all kept in the cell throughout cell-cycles 10–13 (which is incorrect but pro-

vides a best case estimate), then each nuclei has the total mRNA produced in cell cycle 13, 1/2

of the total mRNA produced by its mother in cell cycle 12, 1/4 of the mRNA produced by

its grandmother in cell cycle etc. While we see about a 1/3 increase in the precision at the
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boundary from integrating the mRNA produced in different cell cycles, the estimate in the

anterior region is not helped by integration over the cell cycles.

For completeness of the discussion of the relative errors in the different models, we calcu-

lated the relative error assuming the same koff þ keff
on for a three state cycle ðkeffon ¼ k

� 1
1
þ k� 1

2
Þ
� 1

as for a two state model (keff
on ¼ kon) for different values of koff and keff

on (Fig 7C). We found that

the relative error is always lower for the three state cycle model and the error decreases regard-

less of the duration of the cell cycle. As expected from Eq 4, the relative error is decreased by

increasing kon and decreasing koff. However the increase in precision from a three state cycle

model in the parameter regime we inferred for the two state model in the the fly embryo is rel-

atively modest (from * 74% for the two state model to * 67% for the three state model). Sim-

ilarly, in Fig 7D we compared the prediction for the relative errors for the Poisson-like

promoter model to two state models with the same probability of the gene to be transcribed,

Pon, but different switching rates between the two states (kon and koff). Faster switching

increases the precision of the two state promoter, since the number of independent measure-

ments increases. The Poisson-like promoter is always more accurate than the two state

promoter.

Many previous analysis of precision from static images calculated the relative error of the

distribution of a binary variable, which in each nucleus was 1 if the nucleus expressed mRNA

in the snapshot, and 0 if it did not express [30, 31]. We analyzed our data using this definition

of activity (see S9E Fig for mean activity as a function of position) and found that for most

embryos the relative error in the anterior drops to zero (S9F Fig), indicating that all nuclei in a

given region show the same expression state, but at the boundary the precision is still * 50%,

in agreement with previous reports about the total mRNA in the nucleus [6]. This provides

additional evidence for the bursty nature of transcription in the anterior of the embryo, in

agreement with previous results that showed a relationship between Bicoid concentration and

transcriptional burst of downstream genes [32].

Discussion

In contrast to previous studies [17, 18], including ours, which failed to show evidence for

bursty switching of the hunchback promoter, by developing more advanced analysis tech-

niques we show that the promoter has distinct periods of enhanced polymerase transcription

followed by identifiable periods of basal polymerase activity. Our conclusions are based on

combining a new autocorrelation based analysis approach, applied to live imaging MS2 data

to infer switching parameters, with an analysis of the precision of readout of promoter. The

data we used in this paper was generated with a modified MS2 cassette [20] (see the Experi-

mental procedures section in Materials and Methods) compared to the previously published

data [17]. However the difference in our conclusions mainly comes from a detailed analysis

of the traces.

Quantification of transcription from time dependent fluorescent traces in prokaryotes and

mammalian cell cultures has shown that the promoter states cycle through at least three states

[11, 12]. In one of these states the polymerase transcribes at enhanced levels, while in most of

the remaining states the transcription machinery gets reassembled or the chromatin remodels.

We find that in the living developing fly embryo, the hunchback promoter also cycles through

at least two states, although based on the parameter inference alone we cannot conclusively

rule out the possibility of a static promoter with a Poisson-like firing rate or of a more complex

promoter with more effective states when the gene is inactive. Only a combination of the

inferred parameters using the autocorrelation function with another statistic (the relative error
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in the produced mRNA) allows us to favor the two state model (or more complex models)

over the other considered mode of transcription activation.

The main impediment to distinguishing different types of transcriptional models comes

from the very short durations of the interphase in the early cell cycles when the hunchback
gene is expressed. We showed using simulations that increasing the number of embryonic

samples would not help us distinguish between two and three state models, however looking at

longer time traces would be informative (Fig 6). Since cell cycle 14 lasts about 45 minutes, our

analysis shows that the steady state part of the interphase provides enough time to gather statis-

tics that can inform us about the detailed nature of the bursts. Unfortunately, other transcrip-

tion factors, such as the other gap genes regulating hunchback expression in cell cycle 14, could

possibly change the nature of the transcriptional dynamics in a time dependent manner. We

showed that the transcriptional dynamics is constant and reproducible in the earlier cell cycles

(12-13) (Fig 2), so independently of the question of the nature of the bursts, it would be very

interesting to see whether and how it changes when the nature of regulation changes.

In the parameter regime of relatively fast switching that we inferred from our data, the auto-

correlation function for the two state model and the Poisson-like promoter model are very

similar. In this parameter regime, the form of the autocorrelation function is governed by the

autocorrelation of the fluorescent probe. So while the autocorrelation function approach is

able to disentangle the real promoter switching from the buffering of the construct to deter-

mine the parameters assuming an underlying model, we cannot conclusively discriminate

between these two models, without looking at other statistics. Using simulations (S7 Fig), we

showed that for promoters with slower switching characteristics, this discrimination task is

possible and the autocorrelation function approach alone can reliably discriminate between

different models. In the parameter regime inferred for the hunchback promoter, having longer

traces would not be helpful for this discrimination task and we have to look for other statistics

(S10 Fig). However using new constructs with MS2 binding sites that have higher binding

affinity to MCP and decrease the noise from the binding/unbinding of MCP to the RNA

would make it possible to use shorter MS2 cassettes without increasing background fluores-

cence. These cassettes would decrease the buffering time and extend the parameter regime in

which we can distinguish between the Poisson-like and two state promoter models.

Alternatively to focussing on longer traces, a construct with two sets of MS2 loops placed at

the two ends of the gene that bind different colored probes could be used to learn more about

transcription dynamics [33]. We do not have access to data coming from such a promoter, but

our analysis approach can be extended to calculate the cross-correlation function between the

intensities of the two colored probes. Such cross-correlation analysis has previously been used

to study transcription in cell cultures [34], transcriptional noise [35] and regulation in bacteria

[36, 37]. Our theoretical prediction for such a cross-correlation function agrees with simula-

tion results (Fig 3C). Unfortunately, the cross-correlation function with one set of probes

inserted at the 5’ end and the other at the 3’ shares the same problems of a 5’ construct. For

fast switching rates, such a cross-correlation function suffers from the large buffering time

(τbuff * 300s in [18]) drawback of the 5’ design and can only be used for inferring large switch-

ing rates [38] (see S6 Fig). Similarly, the cross-correlation function cannot discriminate

between a two state and Poisson-like promoter for relatively fast switching. However, it does

gives us access into dynamical parameters of transcription such as the speed of polymerase

and it is able to characterize whether mRNA transcription is in fact deterministic and identify

potential introns. Possibly, cross-correlations from two colored probes both inserted closer to

the 3’ end could be optimal designs.

Our method requires knowing the design of the experimental system (number and position

of the loops), the speed of polymerase as input and calibrating the maximal fluorescence from
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one gene. While the polymerase speed is an important parameter and erroneous assumption

could influence the inference, we have shown that our inference is relatively insensitive to

polymerase speeds (see S11 Fig). In the current experiments we do not have an independent

calibration of the maximal fluorescence coming from one gene, which could introduce poten-

tial errors in our analysis. However the reproducibility of our results suggests that these poten-

tial errors are small.

We assumed an effective model that describes the transcription state of the whole gene and

does not explicitly take into account the individual binding sites. As a result all the parameters

we learn are effective and describe the overall change in the expression state of the gene and

not the binding and unbinding of Bicoid to the individual binding sites. For concreteness we

presented our model assuming a change in the promoter state and constitutive polymerase

binding, but our current model does not discriminate between situations where the transcrip-

tional kinetics are driven by polymerase binding and unbinding and promoter kinetics. The

presented formalism can be extended to more complex scenarios that describe the kinetics of

the individual binding sites and random polymerase arrival times. Since we already have little

resolution power to discriminate between these effective models, we chose to interpret the

results of only these effective models. The exact contribution of the individual transcription

binding sites could be inferred from the activity of promoters with mutated binding sites. Sim-

ilarly, other more complex models, such as a reversible three state model, or a model with

many ON states, have not been ruled out by our current analysis but are possible within the

current framework.

The time traces we had to analyze are very short and finite size effects are pronounced.

Unlike in cell culture studies, where long time traces are available, we could not collect enough

ON and OFF time statistics to characterize the promoter dynamics from the waiting time dis-

tributions. In this paper we show that simple statistics, the auto- and cross-correlation func-

tions are powerful general tools that can be used in these kinds of challenging circumstances.

To reach our final conclusion we had to combine different kinds of statistics, which is also a

useful strategy when limited by data.

The approach we propose is a general method that can be used for any type of time trace

analysis. However it becomes very useful when studying in vivo biological processes, where the

biology naturally limits the available statistics. In our case the number of ON and OFF events

is naturally limited by the short duration of the cell cycles. Our method explicitly calculates

correlation functions for short traces, correcting for the finite size effects, and can be also used

without making steady state assumptions about the dynamics (although this requires collecting

sufficient statistics about two time points, which may be hard for short traces). With these cor-

rections we see that while an effective two state model of the underlying dynamics of transcrip-

tion regulation holds in the anterior and boundary regions of the embryo in all of the early

cell cycles, the rates are different in the boundary and anterior regions, showing a strong

dependence on position dependent factors such as Bicoid or maternal and zygotic Hunchback

concentrations. More statistics will make it possible to build more explicit models of Bicoid

dependent activation.

While our method is able to deconvolute the effects of the fluorescent probe and infer rates

below the buffering limit of the probe (in our case τbuff * 72s, see Fig 3F), in all cases, the rates

that we can infer from time dependent traces are naturally limited by the timescales at which

the polymerase leaves the promoter, which in our case is estimated to be τblock * 6s. If the

switching rates are faster than this scale, even a perfect, noiseless and infinitely accurate sam-

pling of the dynamics will not be able to overcome this natural limit.

The inferred rates are reproducible between nuclei and embryos and the inter-embryo vari-

ability is similar to the inner-embryo variability (Fig 5A, 5C and 5D). The embryo-to-embryo
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variability can come from Bicoid variability, which is * 10% [27], so we do not expect the

observed expression variability to be less, variability in growth rate and RNAP availability and

external environmental factors. Additional sources of noise are experimental noise and most

importantly problems with data calibration of what is the maximal level of fluorescence

intensity.

We used the obtained results to estimate the precision of the transcriptional process from

the hunchback promoter. We found that even in the anterior region, the variability in the

mRNA produced in steady state by the different nuclei is large, with a relative error of about

50% (Fig 7A). This variability further increases to 150% of the mean mRNA produced at the

boundary. These empirical estimates are completely explained for a two state promoter model

by theoretical arguments, which treat the gene as an independent measuring device that sam-

ples the environment, correcting for the number of independent measurements during a cell

cycle. In both cases, the precision at the level of the gene readout is not sufficient to form the

precise Hunchback boundary up to half a nuclear width [39]. Even extending our argument

to the total mRNA produced in the early cell cycles (Fig 7B) does not help. Having an irrevers-

ible promoter cycle could increase the theoretical precision, but only slightly in the parameter

regime we have inferred and it would not change the quantitative conclusions about low preci-

sion backed by the empirical results. A Poisson-like promoter, while not compatible with the

observed error rates, does have a significantly smaller error.

The construct we used here was limited to the 500 bp of the proximal hunchback promoter,

which is known to recapitulate the hunchback endogenous expression observed in Fluorescent

In Situ Hybridization (FISH) [20]. It is possible that the boundary phenotype is recovered by

averaging of mRNAs and proteins produced by the real gene or the transgenes in other nuclei.

In the latter case, this would point towards a robust “safety” averaging mechanism that relies

on the population. Alternatively, we have to be aware that the sharp boundaries were only

detected on fixed samples and that having access to the dynamics of the transcription process

likely provides a more accurate view on the process. We calculated and estimated from the

data the precision of the gene readout based on the variability of the transcription process

between nuclei. We find that the transcriptional process at a given position is quite noisy. Pre-

vious estimates of precision were based on data from fixed samples and did not consider the

probability of the gene to be ON, but assumed a binary representation where each nuclei is

either active or inactive. By analyzing the full dynamic process we show that the gene is bursty

and the transcriptional process itself is much more variable. Reducing the information con-

tained in our traces to binary states, we find precise expression in the anterior, but still large

variability at the boundary, similarly to previous results from Fluorescent In Situ Hybridiza-

tion (FISH) aiming to detect all mRNAs [6].

Assuming that the precision in determining the position of the nuclei is encoded in the pre-

cision of the gene readout, a gene with the dynamics characterized in this paper needs to mea-

sure the signal * 200 times longer at the boundary to achieve the observed * 10% precision.

A gene in the anterior would need to integrate only * 25 times longer. These results again

suggest that the precision in determining the position of the nuclei is not only encoded in the

time averaged gene readout, but probably relies either on spatial averaging mechanisms [27,

29, 40] or more detailed features of the temporal information encoded in the full trace [32].

In summary, the early developing fly embryo provides a natural system where we can inves-

tigate a functional setting the dynamics of transcription in a living organism. In our data analy-

sis we are confronted with the same limitations that natural genes face: an estimate of the

environmental conditions must be made in a very short time. Analysis of dynamical traces

suggests that transcription is a bursty process with relatively large inter-nuclei variability, sug-

gesting that simply the templated one to one time-averaged readout of the Bicoid gradient is
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unlikely. Comparing mutant experiments can shed light on exactly how the decision to form

the sharp hunchback mRNA and protein boundary is made.

Materials and Methods

Experimental procedures

Constructs. For live monitoring of hb transcription activity in Drosophila embryos, we

used the MS2-MCP system, which allows fluorescent labeling of RNAs as they are being tran-

scribed [17, 38, 41]. To implement the reporter system in embryos, we generated flies trans-

genic for single insertions of a P-element carrying the hb proximal promoter upstream of an

iRFP-MS2 cassette carrying 24 MS2 repeats [17, 42], from which Zelda binding motifs have

been removed [20]. The flies also carry the P{mRFP-Nup107.K} [43] transgenic insertion on

the 2nd chromosome and the Pw[+mC] = Hsp83-MCP-GFP transgenic insertion on the 3rd

chromosome. These allow the expression of the Nucleoporin-mRFP (mRFP-Nup) for the

labeling of the nuclear envelopes and the MCP-GFP required for labeling of nascent RNAs

[41]. All stocks were maintained at 25˚C.

Live imaging. Embryo collection, dechorionation and imaging have been done as described

in [17]. Image stacks (* 19Z × 0.5μm, 2μm pinhole) were collected continuously at 0.197μm

XY resolution, 8bits per pixels, 1200x1200 pixels per frame. A total of 4 movies capturing 4

embryos from nuclear cycle 10 to nuclear cycle 13 were taken. Each movie had different scanned

fields along the embryo’s width, which results in different time resolutions: 13.1 s, 10.2 s, 5.1 s
and 4.3 s.

Image analysis. Nuclei segmentation, tracking and MS2-MCP loci analysis were per-

formed as in [17] and recapitulated here. All steps were inspected visually and manually cor-

rected when necessary. Nuclei segmentation and tracking were done by analyzing, frame by

frame, the maximal Z–projection of the movies’ mRFP-Nup channel. Each image was fit with

a set of nuclei templates, disks of adjustable radius and brightness comparable with those of

raw nuclei, from which the nuclei’s positions were extracted. During the cycle’s interphase,

each nucleus was tracked over time with a simple minimal distance criterion. For MS2-MCP

loci detection and fluorescent intensity quantification, the 3D GFP channel (MS2-MCP) were

masked with the segmented nuclear images obtained in the previous step. This procedure also

helps associating spots to nuclei. We then applied a threshold equal to * 2 times the back-

ground signal to the masked images and selected only the connected regions with an area

larger than 10 pixels. The spot positions were set as the position of the centroids of the con-

nected regions. The intensity of each spot was calculated by summing up the total pixel inten-

sity in the vicinity of the centroids (a region of 1.5μm x 1.5μm x 1μm) subtracted from the

background intensity, which was extracted from the nearby region but excluding the spots.

The flies were heterozygous for the MS2 reporter, so one spot was visible at a time. In the

(rare) case of multiple spots detected per nucleus, the biggest spot was selected.

For each nucleus, we collected the nucleus’ position and the spot intensity over time (here

referred to as “traces”). The traces were then classified according to their respective embryos

(out of 4 embryos), cell cycle (10 to 13) and position along the AP axis (either anterior or

boundary). See SI Section A and S1 Fig for examples of traces.

Trace preprocessing. Before the autocorrelation function can be calculated the traces

need to be preprocessed. To ensure that the data captures the dynamics of gene expression in

its steady state, for each embryos and each cell cycle, we observed the spot intensity only in a

specific time window. The beginning and the end of this window is determined as the moment

the mean spot intensity over time of all traces (both at the anterior and the boundary) reaches

and leaves an expression plateau (see example in S2 Fig).
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The two state model. The detailed form of the autocorrelation function in Eq 2 depends

on the underlying gene promoter switching model. For the two state—telegraph switching

model (left panel in Fig 1A) the jumping times between the two states are both exponential

and the dynamics is Markovian. The mean steady state probability for the promoter to be ON

is Pon = kon/(kon + koff), which combined with Eq 1 gives the form of the mean fluorescence

hFi. The probability that the gene is ON at time n given that it was on at time 0 is An = Pon +

e(δ−1)n(1 − Pon), where δ = 1 − kon − koff. The steady state connected correlation function

depends only on the time difference (see SI Section B):

~Ct ¼ hFðtÞFðt þ tÞi � hFðtÞi2 ¼
X

i;j

LiLjPonð1 � PonÞe
ðd� 1Þjt� jþij: ð6Þ

The cycle model. In the cycle model (also called the three state model in the text) (center

panel in Fig 1A) the OFF period is divided into different sub-steps that correspond to K inter-

mediate states with exponentially distributed jumping times from one to the next. The transi-

tion matrix T encodes the rates of this irreversible chain. The probability of the promoter to be

in the ON state is:

Pon ¼
k� 1

off

k� 1
off þ

PK
m¼1

k� 1
m

; ð7Þ

and that the steady state connected autocorrelation function is (see SI Section D):

~Ct ¼ hFðtÞFðt þ tÞi � hFðtÞi2

¼
Xr

i¼1

Xr

j¼1

LiLjPon ð 1 0 . . . 0 ÞeðT� IdÞ�ji� j� tj

1

0

. . .

0

0
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B
B
B
B
B
B
B
B
@
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C
C
C
C
C
C
C
C
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A
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6
6
6
6
6
6
6
6
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7
7
7
7
7
7
7
7
5

;
ð8Þ

where τ is counted in polymerase steps, Id is the identity matrix of dimension K + 1, and the

two unit vectors are of dimension K + 1. In the simple case of a two state model Eq 8 reduces

to Eq 6.

The Γ waiting time model. An alternative description of a promoter cycle relies on a

reduced description to an effective two state model where we use the fact that the transitions

between the states are irreversible. The distribution of times spent in the effective OFF state τ,
is no longer exponential, as it was in the two state model, but it has a peak at nonzero waiting

times, which can be approximated by a Gamma distribution

GðtÞ ¼
b

a

GðaÞ
xa� 1e� bx; ð9Þ

with mean α/β, where β is the scale parameter, α is the shape parameter and Γ(α) is the gamma

function. The true distribution of waiting times in a cycle model approaches the Γ distribution

if the rates ki are all the same and ki<<1. In this limit β� ki, and α describes the number of

intermediate OFF states. In the more general case it correctly captures the effective properties

of the process. The mean probability of the promoter to be in the ON state in the Γ waiting
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time model is given by

Pon ¼ ð1þ
akoff

b
Þ
� 1
: ð10Þ

The autocorrelation function cannot be computed directly analytically. The steady state Fou-

rier transform of the steady state autocorrelation is (see SI Section E):

FðhFðtÞFðt þ tÞi � hFðtÞi2ÞðxÞ ¼
Z þ1

� 1

dte� 2iptðhFðtÞFðt þ tÞi � hFðtÞ2iÞ

¼
X

k;j

LkLjPon2R e� 2ipði� jÞ ½ koff þ 2ipx � koff 1þ
2ipxb

akoff

� �� a� �� 1

�
Pon

2ipx
�

" #

:

ð11Þ

Finite cell cycle length correction to the connected autocorrelation function. Due to

the short duration of the cell cycle, the theoretical connected correlation functions need to be

corrected for finite size effects when comparing them to the empirically calculated correlation

functions. When analyzing the data we calculate the autocorrelation function fromM traces

{vα}1�α�M of the same length K, vα = {vαj}1�j�K. We calculate the connected autocorrelation

function for each trace and normalize it to 1 at the second time point to avoid spurious nucleus

to nucleus variability:

caðrÞ ¼

P

ði;jÞ;ji� jj¼r
vai �

1

K

PK

l¼1

val

� �

vaj �
1

K

PK

l¼1

val

� �� �

K � r
K

PK

j¼1

vaj �
1

K

PK

l¼1

val

� �2
; ð12Þ

and then average over allM traces to obtain the final connected autocorrelation function:

cðrÞ ¼
1

M

XM

a¼1

caðrÞ: ð13Þ

We define �v ¼ hvii—the steady state true theoretical average of the random fluorescence

intensity over random realizations of the process, and �v2 ¼ hv2
i i—the true theoretical second

moment of the fluorescence signal. When K!1 the average over time points is equal to the

theoretical average, 1=K
PK

i¼1

vai ¼ �v. Using time invariance in steady state the autocorrelation

function becomes:

Cr ¼
hviviþri � �v2

�v2 � �v2
; ð14Þ

where h�i is an average over random realizations of the process. Eq 14 corresponds to the limit

we calculated in the theoretical models. To account for the finite size effects that arise due to

short time traces, we need to correct for the fact that for short traces 1

K

PK

i¼1

vai 6¼ �v and

1

K

PK

i¼1

v2
ai 6¼

�v2 , instead both the mean and the variance are functions of K. We note that for short
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traces the definitions of autocorrelation and autocovariance differ:

X

ði;jÞ;ji� jj¼r

vai �
1

K

XK

l¼1

val

 !

vaj �
1

K

XK

l¼1

val

 !( )

6¼
X

ði;jÞ;ji� jj¼r

vaivaj �
1

K2

XK

l¼1

val

XK

m¼1

vam

 !

: ð15Þ

In practice for the analyzed dataset we found that the finite size effects for the variance can

be neglected, however the mean over time points is a bad approximation to the ensemble

mean. We present the finite size correction to the mean below. For completeness we include

the finite size correction for the variance in SI Section I, although we do not use it in the analy-

sis due to its numerical complexity and small effect.

If the variance of the normalized fluorescence intensity over random realizations of the pro-

cess is well approximated by the average over the K time points, we can replace the denomina-

tor in Eq 12 by �v2 � �v2 and in steady state evaluate the mean connected autocorrelation

function (see SI Section H for details):

cðrÞ ¼
1

�v2 � �v2 ½~Cr þ
1

K
1

K
�

2

ðK � rÞ

� �

K ~C0 þ
XK� 1

k¼1

2ðK � kÞ~Ck

 !

þ
2

KðK � rÞ
ðr~C0 þ

Xr� 1

k¼1

2ðr � kÞ~Ck þ
XK� 1

m¼1

~Cm½minðmþ r;KÞ � maxðr;mÞ�Þ�ð16Þ

where ~Ck ¼ hviviþki is the infinite-size steady state non-connected correlation function of the

process (given in Eq 6 for the two state model, Eq 8 for the cycle model and as the Fourier

transform of Eq 12 for the Γ model) and the average is over random realizations of the process.

The mean and variance of the signal, �v and �v2 , provide a normalization factor that is constant

for all time differences r. We normalize the autocorrelation function setting the second term to

1 and these terms are not needed for the inference. If vi = X(i) then Ck is proportional to A(k).

Inference. The inference proceeds in three steps:

Step 1. Signal calibration. The intensity of the measured signal depends on a constant trace-

dependent offset value I0, IðtÞ ¼
Pr

i¼1 I0aði; tÞLi. To calibrate this offset we take the

maximum expression to be the mean of the maximun expression over all traces in a

given region Imax ¼ hmax tIðtÞi ¼ I0
Pr

i¼1 Li. We take the mean of the maxima of the

intensities rather than the absolute maximum of all signals to avoid errors from over-

estimating the maximum. The calibrated fluorescence signal used in the analysis is

then FðtÞ ¼ IðtÞ=I0 ¼
Pr

i¼1 aði; tÞLi. Pon is directly calculated using Eq 1. Li is a

known function.

Step 2. Estimating parameter ratios. For the two state, three state cycle and Γ models, the

ratios of the rates can be estimated directly from the steady state mean fluorescence

values using Eqs 7 and 10. The Poisson model is uniquely defined by Pon and does not

require further parameter inference beyond Step 1.

Step 3. Estimating parameters. Using the estimate for the ratio of the rates, the ON and OFF

rates are found by minimizing the mean squared error between the autocorrelation

function calculated from the data (Eq 13), and the model (Eq 16 with the theoretical

prediction for the appropriate model: Eq 6 for the two state, Eq 8 for the cycle model

and the Fourier transform of Eq 12 for the Γ model).
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Supporting Information

S1 Text. Supplementary materials and methods.

(PDF)

S1 Fig. Examples of individual spot intensity over time. Consecutively shown are the traces

in (A) Cycle 12, Anterior, (B) Cycle 12, Boundary (C) Cycle 13, Anterior, (D) Cycle 13, Bound-

ary. The x axis is time in minute and y axis is the spot intensity in AU.

(TIF)

S2 Fig. Data calibration. Shown are examples of 5 (out of 154) individual traces (blue) taken

from embryo 1, cycle 13. Also shown is the mean spot intensity over time of all traces (red).

The steady state window is chosen to be from the 6th minute to the 11th minute (dashed lines).

(TIF)

S3 Fig. Fits of the autocorrelation function. The empirical autocorrelation function (blue

dots) for both the anterior and boundary regions in all four embryos is fit using the autocorre-

lation function with the finite size corrections for the Poisson-like model (red lines), two-state

model (green lines) and three-state cycle model (black lines).

(TIF)

S4 Fig. Example of the connected autocorrelation function for the two state model calcu-

lated for different trace lengths T. The shaded areas denote the standard variation over 500

simulated traces. The switching rates kon = koff = 0.01s−1.

(TIF)

S5 Fig. The finite trace effect for the Ornstein-Uhlenbeck process. The connected auto-

correlation function Cr = exp(−t/τ) (red line) compared to the connected autocorrelation

function calculated from short time traces as described in SI Section I H (blue line) and the

corrected connected autocorrelation function (Eq. 54). λ = 2s−1, γ = 4s−1/2 and the short

trace length is 5s where the Ornstein-Ulhenbeck process is @t x = −λx + γξ and ξ is Gaussian

white noise.

(TIF)

S6 Fig. Inference of the two-state model from the cross-correlation function between 30 sig-

nals and 50 signals. The gene cassette contains two identical arrays of MS2 binding sites on the

30 and 50 ends, separated by a gene of 3 kbp in length. The input parameters kon, koff are varied

so as to maintain the same Pon = 0.1.

(TIF)

S7 Fig. Comparison between the autocorrelation functions of the Poisson-like model and

the two-state model. Shown are the autocorrelation functions (calculated from 1000 traces

of 250 s in length) of the Poisson-like model (dashed black) and the two-state model (solid)

with varying kon and koff. The model parameters are set to achieve the same effective tran-

scription rate, Pon = 0.1, that we infer in the boundary region. For large kon + koff values the

shape of the autocorrelation function is dominated by the autocorrelation of the fluorescent

probe and the Poisson-like and two state model autocorrelation functions look very similar.

The inferred two state parameters are close to the green line. Since it is difficult to estimate

the number of independent measurements, we cannot use standard statistical measures to

compare these models with different numbers of parameters, whereas to determine the value

of parameters within a given model we use a statistical measure (the mean square distance

between the model prediction and data). For this reason we can differentiate between param-

eter values for the two state model that result in similar looking autocorrelation functions,
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but we cannot differentiate between two classes of models that result in similar differences in

the autocorrelation functions.

(TIF)

S8 Fig. The fit of the three state cycle model to the data. The fit of the ratio of the two rates

for leaving the two OFF states, k1/k2, to the steady state traces from four embryos in the ante-

rior and boundary region of cell cycle 12 and 13. Each point is data from one embryo. The

error bars represent the standard deviation of the inferred value. The fit is for a randomized

60% of the data. The sum of the switching rates kon + k1 + k2 is shown in Fig 5B of the main

text.

(TIF)

S9 Fig. The relative error of gene expression. A. The mean probability of the gene to be

ON at any time during the cell cycle as a function of the embryo length (binary approxima-

tion). B. Comparison of the relative error in the mRNA produced during the steady state of

the interphase estimated empirically from data (abscissa) and from theoretical arguments in

Eq. 62 using the inferred parameters from the autocorrelation function (ordinate), in the

anterior (blue) and the boundary (red) regions, show very good agreement. C. The conclu-

sions about precision do not depend on the embryo. The relative error of the total mRNA

produced in cell cycle 13 as a function of position for windows equal to 10% of the embryo

length. Each colored line represents one embryo. The same data plotted as an average over

embryos with the variance as error bars is shown in Fig 7 of the main text. D. The conclu-

sions about precision do not depend on the window size. The total mRNA produced in cell

cycle 13 as a function of position for different window sizes. Except for very large scales

(20%) and very small scales comparable to one nuclear width (2%, the relative error as a

function of position is reproducible. E.The mean probability for the gene to be ON averaged

over the cell cycle. F. The relative error of the discrete variable that describes the probability

of the gene to be ON at any time during the cell cycle as function of position. The relative

error is much lower in the anterior compared to the error in the total produced mRNA,

but remains high at the boundary. In A, C, E and F each colored lines describe different

embryos.

(TIF)

S10 Fig. The autocorrelation function for Poisson-like model and the two-state model for

infinitely-long time traces. Autocorrelation functions of the Poisson-like model (dashed

black) and the two-state models (solid) with Pon = 0.1 (similar to the inferred value in the

boundary region) and varying kon + koff. In the inferred parameter regime (approximately

green line), longer time traces do not help distinguish the two models based on the autocorre-

lation function. For large kon + koff values the shape of the autocorrelation function is domi-

nated by the autocorrelation of the fluorescent probe and the Poisson-like and two state model

autocorrelation functions look very similar, even for long traces.

(TIF)

S11 Fig. The dependence of the data fit on polymerase blocking time. Assuming different

buffering times for the polymerase does not strongly affect the fit of the switching rates: a fit

with τblock = 4s (A) and τblock = 8s. τblock = 6s is used in the main text in Fig 5D.

(TIF)
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