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Abstract

The fresh water polyp Hydra provides textbook experimental demonstration of positional
information gradients and regeneration processes. Developmental biologists are thus familiar with
Hydra, but may not appreciate that it is a relatively simple member of the Hydrozoa, a group of
mostly marine cnidarians with complex and diverse life cycles, exhibiting extensive phenotypic
plasticity and regenerative capabilities. Hydrozoan species offer extensive opportunities to address
many developmental mechanisms relevant across the animal kingdom. Here we review recent work
from non-Hydra hydrozoans — hydromedusae, hydroids and siphonophores — shedding light on
mechanisms of oogenesis, embryonic patterning, allorecognition, stem cell regulation and
regeneration. We also highlight potential research directions in which hydrozoan diversity can

illuminate the evolution of developmental processes at micro- and macro-evolutionary time scales.



Introduction

Although the relationships between non-bilaterian animals are currently somewhat controversial,
the position of cnidarians as the closest relatives of bilaterians seems relatively undisputed. This has
helped to establish the anthozoan cnidarian Nematostella vectensis as a key model for molecular
studies in evolutionary aspects of developmental biology. Anthozoa is one side of the deepest split in
the cnidarian lineage, the other being Medusozoa, a group united by the presence of a medusa (i.e. a
jellyfish) stage in their life-cycle. Medusae show high morphological complexity, including features
such as striated muscle and elaborate sensory structures, and in some instances even camera eyes.
Medusozoa is composed of four clades: Hydrozoa, Staurozoa, Cubozoa and Scyphozoa (Figure 1a)

[1e]. Hydrozoa is the biggest and most diverse of these, comprising more than 3500 species.

Detailed observation and experimentation on marine hydrozoan species fueled many discoveries and
conceptual advances in the second half of the 19" century, relating notably to germ plasm theory,
evolution of germ layers, and regeneration. Weismann, Haeckel, Morgan, Huxley, Driesch, the
Hertwig brothers and Metchnikov all worked extensively on marine hydroids and hydromedusae.
During the 20" century, studies in the freshwater polyp Hydra dominated hydrozoan research in cell
and developmental biology, resulting in important findings related to organizer activity, morphogen
gradients, pluripotent stem cells, and more recently, evolution of aging (e.g. [2]) and tumorigenesis
(e.g. [3]), and interactions between animals, symbionts and microbiota (see [4]). Hydra is still, at the
time of writing, the only hydrozoan for which a genome sequence has been published [5]. Several
excellent recent reviews have covered Hydra research (see [4,6—12¢]) and so here, we will focus on
current work on other hydrozoan species to highlight their contribution and potential for
understanding fundamental developmental processes and evolutionary questions. Unlike

Hydra, some of these species allow easy experimental access to sexual reproduction and embryonic

development.

In recent years, marine hydrozoan species have been used increasingly for molecular studies, notably
Clytia hemisphaerica [13], Hydractinia echinata and its close American relative Hydractinia
symbiolongicarpus [14], Cladonema radiatum [15] and Podocoryna carnea [16]. Improved molecular
technologies and decreasing sequencing costs are aiding emergence of additional models such as
Turritopsis dohrnii [17,18], Eleutheria dichotoma [19,20] and the siphonophore Nanomia bijuga
[21,22¢,23] (summarized in Table 1).

Phenotypic plasticity and life cycle complexity



The typical hydrozoan life cycle comprises three basic forms: the motile ‘planula’ larva, sessile polyps
(which typically propagate to form extensive colonies by asexual reproduction), and the pelagic
medusa, a sexual form usually generated by budding from a polyp (in contrast to the scyphozoan
medusa, which forms by a process known as strobilation [24e¢]). The evolutionary plasticity of this
presumably ancestral program is remarkable, as illustrated by the loss of the medusa in the lineages
leading to Hydra and Hydractinia. Molecular based phylogenies imply more than 50 independent
losses of the medusa and at least 2 losses of the polyp within Hydrozoa, and show that major
changes in life cycles and in colonial organization have occurred over short evolutionary time-scales
[25-35¢] (Figure 1b-c). Hydrozoan life cycles can include sexual and asexual reproduction at almost
any stage, and the transitions can occur in atypical sequences, such as the famous medusa to polyp
transformation (‘reverse development’) of Turritopsis dohrnii [17]. Determining the molecular
mechanisms (including epigenetic modifications and response to environmental factors), and
evolutionary processes triggering morphological and life cycle plasticity are important challenges for
future research [36]. The history of genes expressed preferentially in the medusa (relating for
instance to striated muscle or sense organs) has started to be addressed [37,38], and the first
comparisons of transcriptomes from Podocoryna and Hydractinia, related species with and without
medusae respectively, have been made [39¢]. A successful approach that allowed identification of
cnidarian-specific genes regulating tentacle patterning in Hydra involved subtractive hybridization
between cDNAs from morphologically distinct Hydra strains, followed by functional validation via

transgenesis [40].

Additional life cycle complexity in hydrozoans arises via the formation in many species of complex
benthic or pelagic colonies comprising connected polyps specialized for different functions (e.g.
budding, feeding, defense). The siphonophores are pelagic colonies which have attained extreme
complexity including many different polyp types, but also specialized attached medusa forms serving
distinct functions (e.g. reproduction, swimming) [21,22e,41]. Very little is known about how the
polyp and medusa components of complex colonies acquire different forms and functions during
development and evolution, although the advent of molecular analysis in siphonophores is promising
[22e,23]. New transcriptomic data for several polyp types in Hydractinia [42—44] provide many
candidates for future investigations of the developmental mechanisms leading to a division of labor

between polyps within a colony (see Table 1).

In some hydrozoans groups, polyp colonies of the same species in close contact can fuse or reject

depending on how closely genetically related they are. This phenomenon has been successfully



dissected at the molecular level in Hydractinia, starting with the seminal work of von Hauenschild in
the 1950s (see [45]). A long and outstanding genetic investigation, involving crosses of many related
and unrelated strains [46], led to the discovery of an allorecognition complex composed of two
genetic loci, alrl [47] and alr2 [48]. The Alrl and Alr2 proteins show huge diversity in natural
populations [49ee,50]. They have recently been shown to be homophilic ligands binding only to
themselves [51e¢]. In natural populations additional genetic factors may also be involved in the

allorecognition process [52].

Allorecognition regulation has important consequences for individual and colonial biology and
genotype survival. Fusion between sexually generated polyps has recently being proposed as the
mode of colony formation in the genus Ectopleura [35¢]. Rejection between colonies can induce
necrosis in Hydractinia [53]. Contact between genetically distinct colonies results in mixing of stem
cells, which can lead to invasion, takeover and eventually changes in morphology. A fascinating
corollary is that evolutionary selection in this context might act at the level of the stem cells, as also

proposed in the colonial ascidian Botryllus [54].

Medusa evolution and development

Cnidarians are often represented as having a simple morphology and relatively few cell types,
reflecting the situation in the common bilaterian-cnidarian ancestor. The medusa form, however, has
a sophisticated organization, including specialized sensory and reproductive organs and the fast-
contracting striated muscle of the bell for swimming [15,13,55] (Figure 2a), providing an opportunity
to compare the developmental and evolutionary origins of these structures in cnidarians and
bilaterians. Molecular studies of hydrozoan medusae sensory structures have so far focused mainly
on light detection. Eyes of Cladonema medusae express Opsin photoproteins and Six/Pax/Eya
transcription factors [15,56,57], suggesting a common origin of the molecular mechanisms of eye

development and convergence of the eyes as complex structures between Hydrozoa and Bilateria.

The medusa stage itself has been the subject of historical dispute, with opposing camps regarding it
as a primitive cnidarian trait lost in Anthozoa, or a derived feature of Medusozoa. From a
phylogenetic perspective, recent debate has revolved around potential paraphyly of Anthozoa and
the position of Staurozoa (so-called ‘stalked jellyfish’). It is now widely accepted that the medusa is a
derived character of Medusozoa, although the most recent phylogeny recovers monophyletic
Anthozoa, as sister to Medusozoa, with Hydrozoa (rather than Staurozoa) as sister group to the other

medusozoans [1e].



Gene expression data relating to medusa development is accumulating gradually (e.g. [58—61¢]), but
remains scarce compared to planula and polyp data, while gene function studies in the medusa are
still largely lacking [20]. Detailed comparative anatomical, molecular and functional studies between
medusae of the different medusozoan groups will be insightful for deciphering the origin(s) of the
medusa form. The evolutionary origin of hydrozoan striated muscle, traditionally considered
homologous between cnidarians and bilaterians [62], was addressed by Steinmetz and coworkers
[63e¢] (Figure 2a). Genomic analyses and in situ hybridization approaches showed that key bilaterian
striated muscle proteins, notably components of the Z-disk, are not present in Clytia, while most of
the bilaterian striated muscle genes are either expressed broadly or in other cell types. This study
thus provides compelling evidence for convergent evolution of striated muscle in hydrozoans and

bilaterians.

Gametogenesis and spawning

The transparency and accessibility of many hydrozoan sexual forms makes them particularly good
models for studying the widely conserved regulatory mechanisms of animal gametogenesis, and
dissecting the mechanisms of oocyte maturation, spawning and fertilization (discussed in detail in
[64], Figure 2b). Studies in several medusae including Cladonema, Cytaeis and Clytia are allowing
analysis of successive regulatory steps. For technical reasons (notably access to microinjection of
Morpholinos/mRNAs/indicators), the main research focus so far has been on the fully grown oocyte
and spawned egg. Spawning in both males and females is triggered by light, which induces somatic
cells of the gonad to secrete a small diffusible hormone that awakens the dormant gametes. Recent
studies suggest that neuropeptide-related molecules participate in this process [65]. The essential
downstream response of oocytes to the hormone is an immediate rise in cytoplasmic cAMP levels
and PKA activation [66]. This stimulates both release of meiotic arrest and entry into the meiotic
divisions and parallel activation of the Mos-MAP kinase pathway responsible for regulation of
oocyte-specific processes such as polar body formation and post-meiotic cell cycle arrest [67]. MAP
kinase pathway inactivation following fertilization, along with cytoplasmic Ca* release, is also
involved in regulating polyspermy [68¢]. Concerning the regulation of early steps of gametogenesis
such as entry into meiosis and oocyte growth, which represent major bottlenecks in research in
reproductive biology, the advent of gene editing techniques is opening the powerful possibility of

combining gene function analysis and imaging using transparent hydrozoan gonads.



Body axis evolution and development

Studying axis formation in a range of cnidarians, including hydrozoans, offers an informative
perspective for the understanding of body plan evolution in metazoans. It is still debated whether
the oral-aboral axis of cnidarians is homologous to any of the body axes of bilaterians, but it seems
very likely that localized Wnt signaling was a feature of the gastrulation pole of the last common

ancestor of these major animal groups.

Each hydrozoan form, planula, polyp and medusa, is organized with respect to a principal axis of
polarity termed oral-aboral (Figure 3a). For instance the planula larva has an aboral specialization of
the nervous system [69], and the medusa has integrating nerve rings around the bell margin [55]. Key
to establishment and maintenance of this axis is the oral pole organizer. The key molecular pathway
of oral organizer activity in Hydra is Wnt/B-catenin signaling [11], activated by the diffusible ligand
Wnt3 and maintained at the oral tip by a complex auto-feedback loop [70]. Oral organizers have now
been described at the oral pole of the planula larvae and polyp in several marine hydrozoan species
[71,72], with the Wnt/B-catenin pathway established as a key player in the regulation of the planula

and polyp organizer.

In Clytia larvae, functional studies involving morpholino and mRNA injection into the egg have shown
that axis formation is initiated by maternal mRNAs coding for the ligand Wnt3 (Figure 3a, b), and for
two Frizzled family receptors [73,74] which become localized in the egg during oocyte growth and
maturation [75]. During early development, Wnt3 and Fz1 together activate the Wnt/B-catenin
pathway at the oral pole, while Fz3 acts as a negative regulator at the aboral pole. In parallel, the
transmembrane protein Strabismus interacts with Fz1 across neighboring cell boundaries to direct
morphogenesis along the oral-aboral axis via a typical PCP mechanism [76e¢]. PCP coordinates the
alignment of the ectodermal cilia to ensure unidirectional swimming, and orients cell movements
participating in elongation of the developing larva (Figure 3b). Common involvement of Frizzled
proteins in establishing a Wnt/B-catenin activity gradient and PCP is likely to be an ancestral
mechanisms to couple morphological and molecular polarity during development [76e¢]. A
transcriptomic study identified potential Wnt/p-catenin downstream targets and genes regulated by

the PCP pathways [77e¢], providing several promising candidates for roles in organizer activity.

Analyses of Wnt pathway regulation in Hydractinia have focused mainly on the polyp. Wnt3 signaling
via a TCF transcription factor induces development of oral structures [78]. Other studies in

Hydractinia have addressed the dramatic metamorphosis that transforms the planula into the polyp,



and notably the extensive caspase dependent apoptosis at the oral pole during metamorphosis [79-
82]. This apoptosis is essential for the formation of the primary polyp [83], playing a constructive role
[81,84] as it does during regeneration in Hydra [85]. Interestingly, Wnt5a expressing cells at the oral

pole of Hydractinia larvae appear to be protected from apoptosis during metamorphosis [71].

Cell type plasticity and stem cell systems in Hydrozoa

Hydrozoans characteristically exhibit a very strong ability to regenerate one or all their phenotypic
forms, a capacity underpinned by extreme cell type plasticity. This includes bone fide
transdifferentiation, as demonstrated using Podocoryna carnea by Schmid and collaborators, who
convincingly showed transdifferentiation of striated muscle cells isolated from the medusa into
several cell types including smooth muscle, sensory cells, gland cells and nematocytes (stinging cells

characteristic of Cnidaria) [16].

Hydrozoan regeneration involves active stem cell systems, first characterized in Hydra, where three
types of stem cell coexist: ectodermal epithelial stem cells, endodermal epithelial stem cells and
‘insterstitial’ cells (i-cells) (see [7]) (Figure 3c). The first two basic epithelial cell types support the
constant renewal of the ectodermal and endodermal epithelia. I-cells are a hydrozoan-specific type
of undifferentiated multipotent stem cell that can differentiate into nerve cells, nematocytes, gland
cells and also germ cells. I-cell developmental potential varies between species. Thus, in Hydractinia
echinata, i-cells can differentiate not only into nerve cells and nematocytes, but also into epithelial
cells, as demonstrated using mutants, BrdU labeling and grafting experiments [86], and confirmed

using transgenic tools [87] (Figure 3c).

Progress in understanding the molecular regulation and cellular dynamics of hydrozoan stem cells
was greatly accelerated by the development of transgenic lines both in Hydractinia [88e] and Hydra
[89], which allowed tracking of stem cells in vivo, notably during regeneration [88ee] (Figure 3d).
Pioneering studies in Hydra have compared molecular signatures of different cell types by
transcriptome analysis of fluorescence-tagged sorted cells from transgenic lines [90] and established
proteomic methods [91ee]. In Hydractinia a POU-domain containing transcription factor of the class
3/5 involved in regulating pluripotency has been identified [92¢], of particular interest given the role
of the (class 5) POU-domain factor Oct 4 in mammals. Similarly, in Clytia, several Sox family
transcription factors (groups B, C, E and F) were found expressed either in stem-cells or
differentiated cells, suggesting a regulatory role in multipotency maintenance operating widely

across the animal kingdom [93]. A recent study has shown a correlation between nuclear localization



of the Hippo pathway component Yorkie and cell division in Clytia medusae [94], suggesting that
regulation of cell proliferation by this transcriptional cofactor is conserved between Cnidaria and

Bilateria.

I-cells in Clytia [95,96¢] and Hydractinia [88¢,92¢,97,98], as in Hydra (e.g. [90,99]), also express
orthologues of genes typically associated with germ line or stem cell function such as Piwi, Nanos1,
and Vasa. I-cell formation during embryogenesis was addressed in Clytia, and appears to involve both
determinant inheritance and inductive mechanisms [96¢]. |-cells originate at the onset of
gastrulation in a region inheriting localized Piwi, Nanos1, Vasa and PI10 mRNAs from the animal pole
of the egg, evoking the ‘preformation’ mode of germ-line specification by maternal ‘germ plasm’ well
known in insects and frog embryos. I-cells can also form in Clytia planulae in the absence of the key

egg animal pole region, implying the involvement of inductive mechanisms [96¢].

Conclusion

Hydrozoans have much to contribute to our understanding of basic developmental and cell biology
processes and their evolution, as well as to relatively neglected areas of biological complexity such as
colony level organization and asexual reproduction. Rapid technological advances mean that it is now
feasible with quite modest budgets to undertake genome sequencing, large scale gene
expression/transcriptomics studies, functional analyses at all life cycle stages via gene editing, as well
as cell/molecule tracking using transgenic lines carrying diverse fluorescent reporters. With these
accumulating resources, we expect in the next few years that a wide range of marine hydrozoan

species will emerge as valuable experimental models.
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Figure legends

Figure 1. Hydrozoan phylogeny and life cycle diversity and evolution. (a) Phylogeny of Cnidaria
following [1e], with Bilateria as the outgroup. Hydrozoa is sister to the other medusozoans
(Staurozoa, Scyphozoa and Cubozoa). Red, orange and blue dots indicate presence of planula, polyp
or medusa stages respectively in the last common ancestor of these groups. Acquisitions of the
medusa and polyp stages are indicated by orange and blue diamonds respectively. Staurozoa adult
stages show a mix of polyp and medusa characters. (b) Phylogeny and evolution of Hydrozoa
following [32]. The groups ‘Filifera’, ‘Trachymedusae’ and ‘Limnomedusae’ are probably not
monophyletic [30, 32]. Losses of the polyp stage in the clade Trachylina are indicated by white
diamonds. The planula stage was likely lost in the common ancestor of Aplanulata [35e]. It is still
equivocal whether the medusa stage was lost concomitantly, or later, within this clade [35¢]. Mature
siphonophores are composed of specialized polyps and medusae that remain attached within the
colony. (c) Examples of the four main life cycle types found in Hydrozoa. In all cases sexual
reproduction generates planula larvae. (i) Clytia hemisphaerica; polyps develop from planulae by
metamorphosis; medusae by budding from polyps. Two polyp types co-exist within the colony,
specialized for medusa budding (gonozoid; left) and feeding (gastrozoid; right). Image from [13]. (ii)
Aglantha digitale; the planula larva metamorphoses directly into a medusa. (iii) Hydractinia echinata;
The colony contains four types of polyp (from left to right): gonozooid, gastrozooid, dactylozooid,
tentaculozooid. The common part of the colony also includes protective spines. (iv) Nanomia bijuga;
the larva develops into a complex polygastric colony comprising different types of medusa- (e.g.
nectophores, propelling the colony —in blue) and polyp- (e.g. gastrozooid — in orange) derived
structures, distributed in ordered arrays. Image in (c-i) reproduced from [13]. Images courtesy of

Alexander Semenov (c-ii), Uri Frank (c-iii), Brad Gemmell (c-iv).

Figure 2. Clytia medusa: muscle and egg formation. (a) Medusa organization and development. (i)
Diagram of a mature Clytia jellyfish; cc: circular canal, ex-u: ex-umbrella, go: Gonad, ma: manubrium
tb: tentacle bulb, te: tentacle, rc: radial canal, sub-u: sub-umbrella surface, ve: velum. (ii) Convergent
evolution of striated muscles in Bilateria and Cnidaria [63e¢]. (iii) Subumbrellar striated muscle of a
young medusa stained with phalloidin (red in iii and iv; grey in v and vi) and nuclei stained with
Hoechst (blue). (iv) Newly budded medusa — at this stage the striated muscle layer (sm) covers most
of the sub-umbrella surface and is sandwiched between an endodermal (end) and ectodermal
smooth muscle (ect) layers. gp: gonad primordium, other labels as in (i). Image courtesy of Johanna

Kraus [61¢]. (v) Confocal section of a medusa bud within the gonozoid. Prominent features are the



developing manubrium (ma), striated muscles (sm) and tentacle bulbs (tb). (vi) Confocal section of a
an early medusa bud composed of ectoderm (ect), endoderm (end), and a third layer, the entocodon
(ent), which generates the striated muscle of the medusa. The entocodon is a unique feature of
hydrozoan medusae; homology to mesoderm has been proposed but is not widely accepted (see
[62]). (b) Clytia oocyte maturation [64, 67, 75]. (i) Female gonad containing fully grown oocyte ready
to mature (FGO). (ii) Fully-grown oocyte with germinal vesicle (GV) close to the cell surface on the
ectoderm side (ect), opposite the contacts with endodermal cells (end). (iii) The same oocyte about
15 min after a light cue, undergoing germinal vesicle breakdown (GVBD). A light cue initiates the
release of maturating inducing factor (MIH) by the gonad ectoderm, which unblocks the oocyte’s
meiotic arrest at prophase | via an cytoplasmic cAMP release / PKA activation, leading to activation
both of MPF and of the Mos-MAPK pathway. (iv) Spawning of the same oocyte, about 100 min after
light; involves rupture of the ectodermal epithelium just after second polar body (pb) emission. (v)
Clytia egg with the heads of attracted sperm (sp) visible in the surrounding jelly. Fertilization induces
MAPK inactivation and increase of intracellular calcium, shown in Cytaeis to prevent polyspermy

[68e]. Scales bars: 100 um, except for (a-iii): 10 um.

Figure 3. Embryonic axis establishment and stem cell plasticity. (a) Schematic representation of
Wnt3 expression at five embryonic stages in Clytia. From left to right: fertilized egg, blastula, early
gastrula, late planula, primary polyp. Wnt3 mRNA is localized at the egg animal pole, and oral (top in
all figure parts) expression is maintained at all stages. Drawings modified from [13]. (b) Wnt3
Morpholino injected embryos show no oral-aboral polarity. Images reproduced from [74]. Strabismus
Morpholino larvae show disrupted PCP and ciliogenesis. Images reproduced from [76e¢].
Arrowheads indicate microvilli marking sites where ciliogenesis has failed. (c) Schematic
representation of cell lineages in Hydra (top) and Hydractinia (bottom). Epithelial cells (EC) can be
generated from interstitial stem cells (i-cells) in Hydractinia, but not in Hydra. Intermediate
differentiation stages are not represented [86]. (d) Summary of Hydractinia polyp head regeneration.
Proliferating i-cells (blue dots) migrate towards the oral pole after bisection and participate in the
formation of the new head structures. Tools routinely used in Hydractinia regeneration studies
include stable transgenic fluorescent reporter lines and proliferation assays (BrDU). Images from

[88e¢]. Scales bars: 100 um, except the four right panels in (b): 5 um.



Table 1 — Hydrozoans used for genetic/molecular studies

Clade/Species Available techniques Main research topics

Aplanulata

Hydra spp. In situ hybridization; RNAI; egg Stem cell; regeneration; pattern
micro-injection; transgenesis; formation; organizer; budding;
mutagenesis; proteomic; RNAseq symbiosis; sex determination; aging
of fluorescent-tagged sorted cells  [2-12,40,70, 85,89-91,99]

Capitata

Cladonema radiatum

Eleutheria dichotoma

In situ hybridization

In situ hybridization; RNAi

Specification of sensory cells; eye
development and regeneration
[15,56,57]

Hox genes; patterning [19,20]

Filifera

Cytaeis uchidae

Manipulation of oocytes and eggs

Reproductive biology [65,66,68]

Hydractinia echinata

In situ hybridization; RNAI,
Morpholino and mRNA injection;

transgenesis

Polyp regeneration; stem cells;
colony development [14,42,71,78—
83,86-88,92,97,98]

H. symbiolongicarpus

In situ hybridization; genetics

Allorecognition; polyp

polymorphism [14,39,43-53]

Podocoryna carnea

In situ hybridization;

manipulation of medusa tissues

Colony development; medusa
development; muscle

transdifferentiation [16,17,38,60]

Turritopsis dohrnii

‘reverse development’

Life cycle plasticity [17,18]

Leptothecata

Clytia hemisphaerica

In situ hybridization; Morpholino
and mRNA injection;
manipulation of oocytes and
eggs; CRISPR and TALEN gene

editing (unpublished)

Larval development; polarity
establishment and maintenance;
stem cells; oocytes; muscle
evolution; medusa formation
[13,58,61,63,64,67,73-77,93-
96,100]

Siphonophorae

Nanomia bijuga

In situ hybridization

Colony development [21-

23,27,101]

Note: development of extensive transcriptome and genome resources are underway for most of these species.

In situ hybridization technique and/or transcriptome resources have been developed for a few others species

(e.qg. [1,37,59]).
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