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We study conforming and nonconforming methods that preserve the Helmholtz structure of mixed problems at the discrete level. On the conforming side we essentially gather classical tools to design numerical approximations that are compatible with an underlying Helmholtz decomposition. We then show that a recent approach developped for the time-dependent Maxwell equations allows to design new nonconforming methods based on fully discontinuous finite element spaces, that share the same stability and compatibility properties, with no need of penalty terms.

1. Introduction. For mixed problems of the form [START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF] a(u, v)

+ b(v, p) = f, v V ×V v ∈ V b(u, q) = g, q Q ×Q q ∈ Q,
conforming finite elements are a reference theory [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF][START_REF] Girault | Finite Element Methods for Navier-Stokes Equations -Theory and Algorithms[END_REF][START_REF] Boffi | Mixed finite element methods and applications[END_REF]. In several cases of physical interest, such as the Maxwell system or the incompressible Stokes equation

(2) -ν∆u + ∇p = F div u = 0, the space V admits a Helmholtz decomposition relative to the differential operators involved. Discretizations that preserve the geometric (de Rham) structure of the underlying functional spaces then provide a vast field of efficient methods with well understood stability and convergence properties, see e.g. [START_REF] Hiptmair | Finite elements in computational electromagnetism[END_REF][START_REF] Arnold | Compatible spatial discretizations[END_REF][START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF][START_REF] Arnold | Finite element exterior calculus: from Hodge theory to numerical stability[END_REF][START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF]]. An important asset of structure-preserving discretizations is their ability to approximate the different terms of the equations in a way that is compatible with the Helmholtz decomposition of the continuous problem. In the case of the incompressible Stokes equation [START_REF] Arnold | Finite element exterior calculus: from Hodge theory to numerical stability[END_REF] for instance, standard schemes which do not enforce a strong divergence constraint typically compute an approximate velocity field u h that depends on the pressure p, which is unfortunate when p is large or unsmooth, or when the viscosity ν > 0 is small. As explained in [START_REF] Gerbeau | Spurious velocities in the steady flow of an incompressible fluid subjected to external forces[END_REF][START_REF] Linke | On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime[END_REF][START_REF] Bonelle | Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes[END_REF], this is caused by an improper discretization of the source: at the continuous level indeed, one can use a Helmholtz decomposition associated with the operators involved in [START_REF] Arnold | Finite element exterior calculus: from Hodge theory to numerical stability[END_REF] to write F as the sum of an irrotational component and a divergence-free one, which respectively determine p and u. To compute a pressureindependent velocity, the numerical scheme should maintain a one-way separation between these components and their discrete counterparts: as u is fully determined by the divergence-free part of F , that should also be the case for the approximate velocity u h .

In this article we propose a natural criterion to formalize this one-way compatibility, and we use the resulting framework to extend a recent nonconforming discretization method primarily developped for the time-dependent Maxwell equations [START_REF] Pinto | Gauss-compatible Galerkin schemes for timedependent Maxwell equations[END_REF][START_REF] Pinto | Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampere law[END_REF][START_REF] Pinto | Compatible Maxwell solvers with particles II: conforming and non-conforming 2D schemes with a strong Faraday law[END_REF]. A key feature of this approach is the use of non-standard exact sequences involving fully discontinuous finite element spaces, based on reference exact sequences of conforming spaces [START_REF] Pinto | Constructing exact sequences on non-conforming discrete spaces[END_REF]. For the time-dependent Maxwell equations the resulting Conforming/Nonconforming Galerkin (Conga) method has been shown to have long time stability and conservation properties, despite the lack of stabilization (e.g., penalty) terms. By applying the same discretization techniques to abstract problems with a Helmholtz structure, we now prove uniform stability and error estimates for several classes of compatible nonconforming mixed schemes, in a way that naturally extends the ones of conforming methods.

The outline is as follows. In Section 2 we specify two mixed problems with an abstract Helmholtz structure and describe a few motivating applications. In Section 3 we then review the main ingredients of structure-preserving discretizations with conforming spaces and propose a criterion to characterize one-way compatibility properties of the source discretization. Sufficient conditions are given for compatible approximation operators, which rely either on orthogonality or commuting diagram properties. The extension to fully discontinuous spaces is addressed in Sections 4 and 5. The construction of structure-preserving nonconforming discretizations is first recalled in Section 4, and sufficient conditions are given for compatible approximation operators in this nonconforming framework. Finally, structure-preserving nonconforming schemes are derived in Section 5, together with uniform stability and error estimates.

2. Mixed problems with a Helmholtz structure. To describe our problems in a generic form we borrow some notation from finite element exterior calculus [START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF][START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF] and essentially follow the Hilbert complex framework of [START_REF] Arnold | Finite element exterior calculus: from Hodge theory to numerical stability[END_REF]Sec. 3]. Here it will be sufficient to consider three L 2 spaces (with scalar or vector-valued functions) denoted W 0 , W 1 , W 2 , and two closed operators d l : W l → W l+1 , l = 0, 1, with dense domains V l ⊂ W l . The first important poperty is that the sequence

(3) V 0 d 0 --→ V 1 d 1 --→ W 2
is assumed exact, in the sense that we have (4)

d 0 V 0 = ker d 1 .
Second, we assume that the V l 's are Hilbert spaces when endowed with the norms (5)

q 2 V 0 = q 2 + d 0 q 2 and v 2 V 1 = v 2 + d 1 v 2
where • denotes the L 2 norm in the corresponding W l space. This implies that ker d l is closed in W l . In particular the range of d 0 is closed in W 1 , and we further assume that

d 1 V 1 is closed in W 2 .
Using the ⊥ exponent to denote an L 2 orthogonal complement in the proper W l space, we then denote

(6) K 0 = V 0 ∩ (ker d 0 ) ⊥ , K 1 = V 1 ∩ (ker d 1 ) ⊥ , Z 1 = d 0 V 0 , Z 2 = d 1 V 1
and we observe that for l = 0, 1, d l defines a bounded bijection from K l to Z l+1 which are two Hilbert spaces with the respective V l and W l+1 norms. Banach's bounded inverse theorem then guarantees the existence of two constants c 0 , c 1 , such that the following Poincaré estimates hold,

(7) q ≤ c 0 d 0 q , q ∈ K 0 , v ≤ c 1 d 1 v , v ∈ K 1 .
2.1. Helmholtz decompositions. Let δ l+1 : W l+1 → (V l ) , l = 0, 1, be respectively defined by ( 8)

δ 1 v, q (V 0 ) ×V 0 = v, d 0 q , v ∈ W 1 , q ∈ V 0 δ 2 ξ, v (V 1 ) ×V 1 = ξ, d 1 v , ξ ∈ W 2 , v ∈ V 1
where •, • denotes the L 2 product in the proper W l space. Then the exact sequence property (4) gives

K 1 = V 1 ∩ (d 0 V 0 ) ⊥ = ker δ 1 | V 1
and we have a first Helmholtz decomposition

(9) V 1 = K 1 ⊥ ⊕ Z 1 = ker δ 1 | V 1 ⊥ ⊕ ker d 1
where the direct sum is orthogonal for both the L 2 and V 1 inner products. Note that since Z 1 is also closed in the larger space W 1 , we have another Helmholtz decomposition in this L 2 space, namely (10)

W 1 = K1 ⊥ ⊕ Z 1 = ker δ 1 ⊥ ⊕ ker d 1
where K1 = (ker d 0 ) ⊥ coincides with the closure of

K 1 in W 1 .
By duality, we can decompose (V 1 ) as the direct sum of the polar spaces of K 1 and Z 1 . Specifically, we can write an arbitrary source f ∈ (V 1 ) as ( 11)

f = f K + f Z
with respective terms defined by the relations

(12) f K , v (V 1 ) ×V 1 = f, v K (V 1 ) ×V 1 , f Z , v (V 1 ) ×V 1 = f, v Z (V 1 ) ×V 1 , for v ∈ V 1 decomposed as v = v K +v Z ∈ K 1 ⊕Z 1 .
We consider two types of problems. [START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF], and

A first mixed problem. Our first problem is obtained by setting

V := V 1 , Q := K 0 = V 0 ∩ (ker d 0 ) ⊥ , see
(13) a(v, w) = d 1 v, d 1 w , v, w ∈ V 1 , b(v, q) = v, d 0 q , v ∈ V 1 , q ∈ K 0 .
Assuming that g ∈ (V 0 ) , System (1) then leads to the following problem.

Problem 2.1. Find u ∈ V 1 , p ∈ K 0 such that (14) d 1 u, d 1 v + v, d 0 p = f, v (V 1 ) ×V 1 v ∈ V 1 u, d 0 q = g, q (V 0 ) ×V 0 q ∈ K 0 .
Using the classical theory of e.g. [START_REF] Brezzi | On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers[END_REF][START_REF] Boffi | Mixed finite element methods and applications[END_REF], it is easy to verify that Problem 2.1 is wellposed: clearly a and b are continuous,

|a(v, w)| = | d 1 v, d 1 w | ≤ v V 1 w V 1 , |b(v, q)| = | v, d 0 q | ≤ v V 1 q V 0 .
As for the operator [START_REF] Boffi | Mixed finite element methods and applications[END_REF] then shows that a is coercive on ker B, indeed

B : V 1 → (V 0 ) , Bv, q (V 0 ) ×V 0 = b(v, q) from [7, Sec. 4.2.1], it coincides with δ 1 | V 1 . Estimate
v ∈ ker B = ker δ 1 | V 1 = K 1 =⇒ a(v, v) = d 1 v 2 ≥ (1 + c 2 1 ) -1 v 2 V 1 .
The inf-sup condition on b is obtained by taking v = d 0 q ∈ V 1 for q ∈ K 0 , and writing

(15) inf q∈K 0 sup v∈V 1 b(v, q) v V 1 q V 0 ≥ inf q∈K 0 d 0 q 2 d 0 q V 1 q V 0 = inf q∈K 0 d 0 q q V 0 ≥ (1 + c 2 0 ) -1 2
where the equality d 0 q V 1 = d 0 q follows from the fact that d 1 d 0 = 0. Hence Theorem 4.2.3 from [START_REF] Boffi | Mixed finite element methods and applications[END_REF] applies: For all f ∈ (V 1 ) and g ∈ (V 0 ) , Problem 2.1 has a unique solution (u, p); moreover there is a constant depending on c 0 , c 1 , such that

u V 1 + p V 0 f (V 1 ) + g (V 0 ) .
To exhibit the Helmholtz structure of Problem 2.1 we decompose ( 16)

u = u K + u Z ∈ K 1 ⊕ Z 1
according to [START_REF] Bonelle | Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes[END_REF], and rewrite [START_REF] Buffa | Discontinuous Galerkin Approximation of the Maxwell Eigenproblem[END_REF] in the form ( 17)

     d 1 u K , d 1 v = f, v (V 1 ) ×V 1 v ∈ K 1 w, d 0 p = f, w (V 1 ) ×V 1 w ∈ Z 1 u Z , d 0 q = g, q (V 0 ) ×V 0 q ∈ K 0 .
This formulation clarifies how the different parts of the source contribute to the solution: decomposing f according to ( 11)-( 12), we can rewrite [START_REF] Pinto | Compatible Maxwell solvers with particles II: conforming and non-conforming 2D schemes with a strong Faraday law[END_REF] in the form ( 18)

     δ 2 d 1 u K = f K d 0 p = f Z δ 1 u Z = g.

2.3.

A second mixed problem. Our second model problem corresponds to the case where

V := V 1 , Q := Z 2 = d 1 V 1 ⊂ W 2 , and (19) a(v, w) = v, w , v, w ∈ V 1 , b(v, ξ) = d 1 v, ξ , v ∈ V 1 , ξ ∈ Z 2 .
Using new notations to distinguish the functions in the space W 2 (which, as an L 2 space, is identified with its dual (W 2 ) ), Problem (1) then becomes:

Problem 2.2. Given f ∈ (V 1 ) and ∈ W 2 , find u ∈ V 1 , ζ ∈ Z 2 such that (20) u, v + d 1 v, ζ = f, v (V 1 ) ×V 1 v ∈ V 1 d 1 u, ξ = , ξ ξ ∈ Z 2 .
Again the well-posedness of this problem is easily proven using classical results: the continuity of a and b is clear, and the operator

B : V 1 → (Z 2 ) defined by Bv, ξ (Z 2 ) ×Z 2 = b(v, ξ) now coincides with d 1 .
Hence a is obviously coercive on ker B. Letting next w ∈ K 1 be such that d 1 w = ξ for ξ ∈ Z 2 and using (7), we have

(21) inf ξ∈Z 2 sup v∈V 1 b(v, ξ) v V 1 ξ ≥ inf ξ∈Z 2 ξ 2 w V 1 ξ = inf ξ∈Z 2 d 1 w w V 1 ≥ (1 + c 2 1 ) -1 2 .
In particular, [START_REF] Boffi | Mixed finite element methods and applications[END_REF]Th. 4.2.3] applies: Problem 2.2 has a unique solution (u, ζ) and

u V 1 + ζ f (V 1 ) +
holds with a constant that depends only on c 1 from (7). To see the Helmholtz structure we decompose u = u K + u Z ∈ K 1 ⊕ Z 1 as in [START_REF] Pinto | Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampere law[END_REF] and recast Problem 2.2 as

(22)      u K , v + d 1 v, ζ = f, v (V 1 ) ×V 1 v ∈ K 1 u Z , w = f, w (V 1 ) ×V 1 w ∈ Z 1 d 1 u K , ξ = , ξ ξ ∈ Z 2 .
Here the third, second and first equations define u K , u Z and ζ respectively. Specifically, decomposing f as in ( 11)-( 12) we find ( 23)

     u K + δ 2 ζ = f K u Z = f Z d 1 u K = .
2.4. Examples. Problems like 2.1 and 2.2 are ubiquitous in the finite element litterature. We may give a few examples to motivate our study. For instance, it is well-known that on a bounded and simply-connected Lipschitz domain Ω, the sequence

(24) V 0 = H 0 (curl; Ω) d 0 = curl --------→ V 1 = H 0 (div; Ω) d 1 = div -------→ W 2 = L 2 0 (Ω) is exact, moreover Z 2 = d 1 Z 1 = W 2
. See e.g. [START_REF] Bossavit | Computational electromagnetism: variational formulations, complementarity, edge elements[END_REF][START_REF] Girault | Finite Element Methods for Navier-Stokes Equations -Theory and Algorithms[END_REF] or [START_REF] Zaglmayr | High order finite element methods for electromagnetic field computation[END_REF]Sec. 3.2]. Here the Hilbert spaces are denoted with classical notation, in particular

H 0 (curl; Ω) = {q ∈ H(curl; Ω) : n × q = 0 on ∂Ω}, H 0 (div; Ω) = {v ∈ H(div; Ω) : n • q = 0 on ∂Ω}, L 2 0 (Ω) = {ξ ∈ L 2 (Ω) : Ω ξ = 0}
, see e.g. [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations -Theory and Algorithms[END_REF]. Problem 2.2 with f = 0 and = -F reads then used in [START_REF] Bramble | On Variational Formulations for the Stokes Equations with Nonstandard Boundary-Conditions, M2AN[END_REF][START_REF] Bonelle | Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes[END_REF] following [START_REF] Begue | Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression[END_REF][START_REF] Girault | Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in R 3[END_REF]. If u ∈ H 2 (Ω) 3 and p ∈ H 1 satisfy (2) and (25), then using Green formulas and the relation -∆ = curl curl -grad div, we find that

u, v + div v, ζ = 0 v ∈ V 1 = H 0 (div, Ω) div u, ξ = -F, ξ ξ ∈ Z 2 = L 2 0 (Ω),
ν curl u, curl v + ∇p, v = F, v -n × v, ω ∂Ω , v ∈ H(curl, Ω) u, ∇q = φ, q ∂Ω , q ∈ H 1 (Ω).
Up to the viscosity parameter ν, this corresponds to Problem 2.1 with the sequence (26)

V 0 = H 1 (Ω) d 0 = ∇ ------→ V 1 = H(curl; Ω) d 1 = curl --------→ W 2 = L 2 (Ω) 3
which is also exact ([31, Sec. 3.2]), and the source terms

f, v (V 1 ) ×V 1 = F, v -n × v, ω ∂Ω and g, q (V 0 ) ×V 0 = φ, q ∂Ω .
Note that in Problem 2.1 the orthogonality condition p ∈ (ker ∇) ⊥ is meant to ensure the uniquess of the solution. Another application involves eigenproblems of the form

(27) d 1 u, d 1 v = λ u, v v ∈ V 1 = H 0 (d 1 ; Ω)
with d 1 = grad, curl or div. Indeed, following [START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF]Part 4] we can see Problem 2.1 (with g = 0) as the source problem associated with a first mixed formulation of ( 27),

d 1 u, d 1 v + v, d 0 p = λ u, v v ∈ V 1 = H 0 (d 1 ; Ω) u, d 0 q = 0 q ∈ V 0 = H 0 (d 0 ; Ω)
and Problem 2.2 (with f = 0) as the source problem associated with a second mixed formulation of ( 27), namely

u, v + d 1 v, ζ = 0 v ∈ V 1 = H 0 (d 1 ; Ω) d 1 u, ξ = -λ ζ, ξ ξ ∈ Z 2 = d 1 V 1 .
Finally, another motivation is the study of time dependent wave or Maxwell equations, and more generally evolution problems of the form

(28) ∂ t u(t), v -d 1 v, χ(t) = 0 v ∈ V 1 ∂ t χ(t), ξ + d 1 u(t), ξ = F (t), ξ ξ ∈ Z 2 .
In [START_REF] Boffi | Convergence analysis for hyperbolic evolution problems in mixed form[END_REF] indeed, it is shown that uniform error estimates for the approximation operator

Π h : (V 1 × Z 2 ) → V 1 h × Z 2 h (u, ζ) → (u Π , ζ Π ) defined by u Π , v h -d 1 v h , ζ Π = u, v h -d 1 v h , ζ v h ∈ V 1 h d 1 u Π , ξ h = d 1 u, ξ h ξ h ∈ Z 2 h
lead to uniform estimates for the Galerkin approximation of (28).

3. Conforming discretizations. Many results are known on the conforming approximation of the above problems, see e.g. Th. 5.2.5 in [START_REF] Boffi | Mixed finite element methods and applications[END_REF] or [START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF]Sec. 18]. Here we focus on structure-preserving discretizations, following [START_REF] Arnold | Finite element exterior calculus, homological techniques, and applications[END_REF][START_REF] Arnold | Finite element exterior calculus: from Hodge theory to numerical stability[END_REF]. We consider a conforming sequence of discrete spaces V l h ⊂ V l , l = 0, 1, and W 2 h ⊂ W 2 , that preserve the two main properties of the continuous Hilbert complex (3), namely: (i) the sequence

(29) V 0 h d 0 h := d 0 | V 0 h ----------→ V 1 h d 1 h := d 1 | V 1 h ----------→ W 2 h is exact, in the sense that (30) d 0 V 0 h = ker d 1 h ,
(ii) uniform Poincaré estimates hold with constants denoted as in [START_REF] Boffi | Mixed finite element methods and applications[END_REF] for simplicity, (31)

q h ≤ c 0 d 0 q h , q h ∈ K 0 h v h ≤ c 1 d 1 v h , v h ∈ K 1 h .
Here the spaces are defined consistent with [START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF], by (32)

K 0 h = V 0 h ∩ (ker d 0 h ) ⊥ , K 1 h = V 1 h ∩ (ker d 1 h ) ⊥ , Z 1 h = d 0 V 0 h , Z 2 h = d 1 V 1 h .
Such compatible conforming discretizations are well known: for the approximation of usual de Rham sequences like [START_REF] Hiptmair | Finite elements in computational electromagnetism[END_REF] or [START_REF] Houston | Mixed Discontinuous Galerkin Approximation of the Maxwell Operator: Non-Stabilized Formulation[END_REF] one can use standard finite element spaces of Lagrange, Raviart-Thomas [START_REF] Raviart | A mixed finite element method for 2nd order elliptic problems[END_REF], Nedelec [START_REF] Nédélec | Mixed finite elements in R 3[END_REF][START_REF] Nédélec | A new family of mixed finite elements in R 3[END_REF] or Brezzi-Douglas-Marini [START_REF] Brezzi | Two families of mixed finite elements for second order elliptic problems[END_REF] type, see also [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations -Theory and Algorithms[END_REF][START_REF] Boffi | Mixed finite element methods and applications[END_REF] and [START_REF] Hiptmair | Finite elements in computational electromagnetism[END_REF][START_REF] Arnold | Finite element exterior calculus: from Hodge theory to numerical stability[END_REF], where unified analyses of their construction and stability properties have been carried out using the framework of differential forms and Finite Element Exterior Calculus.

Remark 3.1. Here by conforming we mean that the exact operators d l are well defined (in a strong sense) on the discrete spaces, so that finite element approximations can be obtained with a standard Galerkin projection. However we point out that the resulting discretizations are not necessarily conforming in the more restrictive sense where all the spaces involved should be approximated by discrete subspaces. In particular, the spaces K l h are typically not subspaces of K l . Since d l h is merely a restriction of d l , we will use the latter notation when possible, and reserve the former one to specify the finite-dimensional domain (e.g., write ker d l h rather than ker d l ∩ V l h , for conciseness). It will also be convenient to let

δ 1 h : V 1 h → V 0 h and δ 2 h : W 2 h → V 1 h be the discrete adjoints of d 0 h and d 1 h , i.e., (33) 
δ 1 h v, q = v, d 0 q , v ∈ V 1 h , q ∈ V 0 h δ 2 h ξ, v = ξ, d 1 v , ξ ∈ W 2 h , v ∈ V 1 h .
Using the discrete exact sequence property [START_REF] Raviart | A mixed finite element method for 2nd order elliptic problems[END_REF] we then verify that K 1 h coincides with the kernel of δ 1 h , and that the decomposition

(34) V 1 h = K 1 h ⊥ ⊕ Z 1 h = ker δ 1 h ⊥ ⊕ ker d 1 h
is orthogonal both in the L 2 and V 1 inner products, just as (9).

Conforming discretizations with arbitrary sources.

We first study the stability of conforming discretizations of Problems 2.1 and 2.2 with arbitrary discrete sources.

Conforming discretization of the first problem. Given arbitrary sources g

h , f h in (V 0 h ) and (V 1 h ) we discretize Problem 2.1 as follows: find u h ∈ V 1 h , p h ∈ K 0 h such that (35) d 1 u h , d 1 v h + v h , d 0 p h = f h , v h (V 1 ) ×V 1 v h ∈ V 1 h u h , d 0 q h = g h , q h (V 0 ) ×V 0 q h ∈ K 0 h .
A priori estimates are available for such discretizations, see e.g. [START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF]Prop. 18.1]. Here we focus on the discrete Helmholtz structure: Decomposing u h according to (34), (36)

u h = u K h + u Z h ∈ K 1 h ⊕ Z 1 h we restate Problem (35) as: find (u K h , u Z h , p h ) ∈ K 1 h × Z 1 h × K 0 h such that (37)      d 1 u K h , d 1 v h = f h , v h (V 1 ) ×V 1 v h ∈ K 1 h w h , d 0 p h = f h , w h (V 1 ) ×V 1 w h ∈ Z 1 h u Z h , d 0 q h = g h , q h (V 0 ) ×V 0 q h ∈ K 0 h . Lemma 3.2.
The discrete problem (35) is well-posed, and its solution satisfies

(38) u h V 1 f h | K 1 h (V 1 h ) + g h (V 0 h ) p h V 0 f h | Z 1 h (V 1 h )
where

f h | K 1 h and f h | Z 1
h denote the restrictions of f h to the respective spaces. Here the constants depend only on c 0 , c 1 from (31). Specifically, writing u h as in (36), we have

(39) u K h V 1 ≤ (1 + c 2 1 ) f h | K 1 h (V 1 h ) u Z h V 1 ≤ (1 + c 2 0 ) 1 2 g h (V 0 h ) p h V 0 ≤ (1 + c 2 0 ) 1 2 f h | Z 1 h (V 1 h ) .
Although the proof is standard we detail it, as it will readily extend to the nonconforming case.

Proof. This linear problem has as many equations than unkowns, hence its wellposedness follows from the stability estimates (38). We will prove (39) and use the V 1 -orthogonal decomposition (34): For the first bound in (39) we use the second Poincaré estimate [START_REF] Zaglmayr | High order finite element methods for electromagnetic field computation[END_REF] and the first equation in (37

) with v h = u K h . This yields u K h 2 V 1 ≤ (1 + c 2 1 ) d 1 u K h 2 ≤ (1 + c 2 1 ) f h | K 1 h (V 1 h ) u K h V 1 .
For the second estimate we use again (37) with

q h ∈ K 0 h such that d 0 q h = u Z h . Then (40) u Z h 2 ≤ g h (V 0 h ) q h V 0 ≤ (1+c 2 0 ) 1 2 g h (V 0 h ) d 0 q h = (1+c 2 0 ) 1 2 g h (V 0 h ) u Z h
where the second inequality uses [START_REF] Zaglmayr | High order finite element methods for electromagnetic field computation[END_REF], and we conclude by observing that u

Z h = u Z h V 1 in Z 1 h .
For the last estimate we use now (37) with w h = d 0 p h . It gives

d 0 p h 2 ≤ f h | Z 1 h (V 1 h ) d 0 p h V 1 = f h | Z 1 h (V 1 
h ) d 0 p h where we have used the discrete exact sequence property [START_REF] Raviart | A mixed finite element method for 2nd order elliptic problems[END_REF], and the third estimate follows by using again the first Poincaré inequality [START_REF] Zaglmayr | High order finite element methods for electromagnetic field computation[END_REF], like in (40).

Remark 3.3. Using the discrete stability [START_REF] Zaglmayr | High order finite element methods for electromagnetic field computation[END_REF] and reasonning as in Section 2.2 one also verifies that the bilinear forms (13) satisfy the standard properties of the classical analysis, see [START_REF] Boffi | Mixed finite element methods and applications[END_REF]Sec. 5.1.1], namely the coercivity of a on the relevant discrete kernel (here, K h ) and a uniform discrete inf-sup condition for b. 

Conforming discretization of the second problem. For Problem 2.2 we consider the following discretization: find

u h ∈ V 1 h , ζ h ∈ Z 2 h such that (41) u h , v h + d 1 v h , ζ h = f h , v h (V 1 ) ×V 1 v h ∈ V 1 h d 1 u h , ξ h = h , ξ h ξ h ∈ Z 2 h where f h , h are given discrete sources in (V 1 h ) and (W 2 h ) = W 2 h .
(u K h , u Z h , ζ h ) ∈ K 1 h × Z 1 h × Z 2 h such that (42)      u K h , v h + d 1 v h , ζ h = f h , v h (V 1 ) ×V 1 v h ∈ K 1 h u Z h , w h = f h , w h (V 1 ) ×V 1 w h ∈ Z 1 h d 1 u K h , ξ h = h , ξ h ξ h ∈ Z 2 h .
Here the third, second and first equations define u K h , u Z h and ζ h respectively.

Lemma 3.4. The discrete problem (41) is well-posed, and its solution satisfies

(43) u h V 1 f h | Z 1 h (V 1 h ) + h ζ h f h | K 1 h (V 1 h ) + h where f h | K 1 h and f h | Z 1
h denote the restrictions of f h to the respective spaces. Here the constants depend only on c 0 , c 1 from (31). Specifically, decomposing u h as in (36), we have

(44) u K h V 1 ≤ (1 + c 2 1 ) 1 2 h u Z h V 1 ≤ f h | Z 1 h (V 1 h ) ζ h ≤ (1 + c 2 1 ) 1 2 f h | K 1 h (V 1 h ) + c 2 1 h .
Again the proof is standard but we recall it because it readily extends to the nonconforming case.

Proof. As above it suffices to prove (44). Using (42) with

ξ h = d 1 u K h ∈ Z 2 h gives (45) d 1 u K h ≤ h
and with the second estimate from [START_REF] Zaglmayr | High order finite element methods for electromagnetic field computation[END_REF] this shows the first bound in (44). The second one is obtained from the second equation in (42) and Z 1 h ⊂ Z 1 . For the last one we use the first equation from (42) with

v h ∈ K 1 h such that d 1 v h = ζ h . It yields ζ h 2 = d 1 v h 2 ≤ f h | K 1 h (V 1 h ) v h V 1 + u K h v h ≤ (1 + c 2 1 ) 1 2 f h | K 1 h (V 1 h ) + c 2 1 h d 1 v h
where we have used (45) and the second Poincaré estimate [START_REF] Zaglmayr | High order finite element methods for electromagnetic field computation[END_REF].

Remark 3.5. Using the discrete stability [START_REF] Zaglmayr | High order finite element methods for electromagnetic field computation[END_REF] and reasonning as in Section 2.3 one also verifies that the bilinear forms [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF] satisfy the standard properties of the classical analysis, see [7, Sec. 5.1.1], namely the coercivity of a on the relevant discrete kernel (here, Z h ) and a uniform discrete inf-sup condition for b.

Error estimates for the standard (Z-compatible) approximation.

The standard Galerkin approximation of the sources involves L 2 projections, such as (46)

f h = P V 1
h f (for simplicity we may assume hare that f ∈ L 2 , but the discussion readily extends to sources in (V 1 ) ). An important property of this projection is to preserve the orthogonality with respect to functions in the kernel of d 1 . Specifically, decomposing f = f K + f Z as in ( 11)-( 12) and f h = f K h + f Z h according to the discrete Helmholtz decomposition (34), we infer from the embedding

Z 1 h ⊂ Z 1 that f Z h , w h = f h , w h = f, w h = f Z , w h , w h ∈ Z 1 h .
Thus, the Z-component of the approximated source only depends on the Z-component of the exact one, which by linearity amounts to say that (47)

f Z = 0 =⇒ f Z h = 0.
In this article we call Z-compatible such an approximation, see Def. 3.10 below.

3.2.1. Z-compatible conforming approximation of the first problem. Using (46) and a similar projection for g, Problem (35) becomes: find

u h ∈ V 1 h , p h ∈ K 0 h such that (48) d 1 u h , d 1 v h + v h , d 0 p h = f, v h (V 1 ) ×V 1 v h ∈ V 1 h u h , d 0 q h = g, q h (V 0 ) ×V 0 q h ∈ K 0 h .
As shown in the classical error estimate below, the resulting discretization enjoys good accuracy properties when the optimal error on u dominates that on p.

Proposition 3.6. The solutions to problems ( 14) and (48) satisfy

(49)      u -u h V 1 inf ūh ∈V 1 h u -ūh V 1 + inf ph ∈K 0 h d 0 (p -ph ) p -p h V 0 inf ph ∈K 0 h p -ph V 0
with constants depending only on c 0 and c 1 from (31).

Proof. The steps are standard. We detail them as our new estimates below will follow from slight variations. Given (ū h , ph ) ∈ V 1 h × K 0 h , and using ( 14) and (48) we have

d 1 (u h -ūh ), d 1 v h = f, v h (V 1 ) ×V 1 -d 1 ūh , d 1 v h = d 1 (u -ūh ), d 1 v h + v h , d 0 p = d 1 (u -ūh ), d 1 v h + v h , d 0 (p -ph ) , for v h ∈ K 1 h
, where the presence of p is a consequence of the nonembedding of

K 1 h into K 1 . For w h ∈ Z 1 h , due to the embedding Z 1 h ⊂ Z 1 = ker d 1 , we have w h , d 0 (p h -ph ) = f, w h (V 1 ) ×V 1 -w h , d 0 ph = w h , d 0 (p -ph )
and for q h ∈ K 0 h , using the embeddings

K 0 h ⊂ V 0 h ⊂ V 0 we write u h -ūh , d 0 q h = g, q h (V 0 ) ×V 0 -ūh , d 0 q h = u -ūh , d 0 q h .
In particular, Lemma 3.2 applies and yields (with constants depending on c 0 and c 1 )

u h -ūh V 1 u -ūh V 1 + d 0 (p -ph ) and p h -ph V 0 d 0 (p -ph ) . This gives u -u h V 1 u -ūh V 1 + d 0 (p -ph ) and p -p h V 0 p -ph V 0 ,

and the bounds (49) follow by taking the infimum over ūh

∈ V 1 h and ph ∈ K 0 h . Remark 3.7. Using d 1 (u-ūh ) = d 1 (u K -ūK h ) and u-ūh , d 0 q h = u Z -ūZ h , d 0 q h in
the above proof we can show a refined result, for the decompositions ( 16) and (36) of u and u h . namely that u

K -u K h V 1 and u Z -u Z h V 1
are controlled by terms that do not involve u Z and u K , respectively.

Z-compatible conforming approximation of the second problem.

Using Galerkin (L 2 ) projections for the sources as in (48), Problem (41) becomes

(50) u h , v h + d 1 v h , ζ h = f, v h (V 1 ) ×V 1 v h ∈ V 1 h d 1 u h , ξ h = , ξ h ξ h ∈ Z 2 h .
The following error estimate shows that the resulting discretization enjoys good accuracy properties when the optimal error on ζ dominates that on u.

Proposition 3.8. The solution to the discrete problem (50) satisfies

(51)      u -u h V 1 inf ūh ∈V 1 h u -ūh V 1 ζ -ζ h inf ζh ∈Z 2 h ζ -ζh + inf ūh ∈V 1 h u -ūh V 1 .
Proof. Again we consider (ū h , ζh )

∈ V 1 h × Z 2 h
, and for w h ∈ Z 1 h we compute

u h -ūh , w h = f, w h (V 1 ) ×V 1 -ūh , w h = u -ūh , w h
where we have used [START_REF] Ern | Finite element quasi-interpolation and best approximation[END_REF] and the embedding

Z 1 h ⊂ Z 1 . For ξ h ∈ Z 2 h we have d 1 (u h -ūh ), ξ h = , ξ h -d 1 ūh , ξ h = d 1 (u -ūh ), ξ h
using again [START_REF] Ern | Finite element quasi-interpolation and best approximation[END_REF] and now the embedding

Z 2 h ⊂ Z 2 . Finally for v h ∈ K 1 h , we have u h -ūh , v h + d 1 v h , ζ h -ζh = f, v h (V 1 ) ×V 1 -ūh , v h -d 1 v h , ζh = u -ūh , v h + d 1 v h , ζ -ζh
where we have used the first equation from [START_REF] Ern | Finite element quasi-interpolation and best approximation[END_REF] and the embedding

K 1 h ⊂ V 1 h ⊂ V 1 .
Here the non-conformity K 1 h ⊂ K 1 prevents us to use the first equation from [START_REF] Girault | Incompressible finite element methods for Navier-Stokes equations with nonstandard boundary conditions in R 3[END_REF], which explains the presence of u instead of just u K . Applying Lemma 3.4 yields then

u h -ūh V 1 u -ūh V 1 and ζ h -ζh u -ūh V 1 + ζ -ζh
with constants depending on c 1 , and this leads to (51) by reasonning as above.

Remark 3.9. Writing u -ūh , w h = u Z -ūZ h , w h and d 1 (u -ūh ) = d 1 (u K -ūK h ) in the proof above we can show again a refined estimate, namely that u K -u K h V 1 and u Z -u Z h V 1
are controlled by terms that do not involve u Z and u K , respectively. 3.3. Compatibility of the source approximation. In the previous section we have seen that a standard Galerkin discretization of Problem 2.1 yields an a priori error estimate for u -u h that depends on p, and in the proof of Proposition 3.6 we have pointed out that this was caused by the non conformity K 1 h ⊂ K 1 . On the level of principles the reason for this fact stems from a poor preservation of the Helmholtz structure as observed e.g. in [START_REF] Gerbeau | Spurious velocities in the steady flow of an incompressible fluid subjected to external forces[END_REF][START_REF] Linke | On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime[END_REF][START_REF] Bonelle | Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes[END_REF], and becomes transparent when we consider the form (18) of Problem 2.1. Decomposing f h = f K h + f Z h according to (34) and using the discrete adjoints (33), the discrete problem (37) can then be put in a similar form. Writing both systems side by side, we find (52)

     δ 2 d 1 u K = f K d 0 p = f Z δ 1 u Z = g and      δ 2 h d 1 u K h = f K h d 0 p h = f Z h δ 1 h u Z h = g h .
Here the Z-compatibility (47) of the L 2 projection (46) results in f Z h to only depend on f Z . From (52) this implies that p h only depends on p, which explains why the error estimate on p does not involve u in Proposition 3.6. If one rather wishes an error estimate on u that does not involve p, then the converse should be required. Specifically, the operator f → f h should be such that f K h only depends on f K , i.e., (53)

f K = 0 =⇒ f K h = 0.
To distinguish this property from (47), we introduce the following definition.

Definition 3.10. We say that an operator

f → f h ∈ V 1 h is Z-compatible if (47
) holds, and we shall say that it is K-compatible if (53) holds. Remark 3.11. A related B-compatibilty property is defined in [START_REF] Boffi | Mixed finite element methods and applications[END_REF]Sec. 5.1.2] to establish uniform inf-sup conditions for the discrete spaces. This property is somewhat stronger that ours in that it is restricted to specific approximation properties, and it corresponds to different relations depending on the problems: with the first problem it implies a Z-compatibility in the sense defined above, and for the second problem it leads to K-compatibility.

A similar discussion applies to Problem 2.2 based on its decomposed form [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations -Theory and Algorithms[END_REF], which we may write together with its conforming discretization (42) in a similar form, i.e., (54)

     u K + δ 2 ζ = f K u Z = f Z d 1 u K = and      u K h + δ 2 h ζ h = f K h u Z h = f Z h d 1 u K h = h again with f h = f K h +f Z h according to (34).
Here a Z-compatible discretization allows u Z h = f Z h to only depend on f Z and hence on u Z . However f K h may also depend on f Z , which results in ζ h depending not only on ζ but also on u Z (and u K ). This effect is visible in the associated error estimate (51) which is satisfactory when the optimal error on ζ dominates that on u. When that is not the case, one may resort to K-compatible discretizations: then f K h would not depend on f Z anymore and the resulting ζ h would not depend on u Z . However, it could still depend on u K . To achieve the stronger property that ζ h only depends on ζ, one would need to consider a different formulation of the problem that does not involve u, such as

d 1 δ 2 ζ = d 1 f -.
In this article we shall restrict ourselves to the original formulation.

It is known that the compatibility of approximation operators is closely linked with the existence of commuting diagrams see e.g. [START_REF] Boffi | Mixed finite element methods and applications[END_REF][START_REF] Pinto | Gauss-compatible Galerkin schemes for timedependent Maxwell equations[END_REF]. The following lemma expresses two sufficient conditions for K-compatibility, both involving commuting diagrams.

Lemma 3.12. If the operator π 1

h : V 1 → V 1
h satisfies a commuting diagram either on d 0 or on d 1 , in the sense that (i) there exists an operator π 0 h :

V 0 → V 0 h , such that (55) π 1 h d 0 = d 0 π 0 h holds on V 0 , or (ii) there exists an operator π 2 h : W 2 → W 2 h , such that (56) d 1 π 1 h = π 2 h d 1 holds on V 1 , then π 1 h is K-compatible on V 1 , in the sense that property (53), namely f K = 0 =⇒ f K h = 0, holds for all f ∈ V 1 . Remark 3.
13. Here we have considered operators defined on the domains V 0 , V 1 and W 2 for simplicity. If they are defined on larger spaces, e.g. if π 1 h is defined on W 1 , then the proof below shows that (53) holds for all f ∈ W 1 . If on the other hand they are defined on smaller spaces (of smooth functions for instance), then a refined study may be required to determine the validity domain of (53).

Proof. According to the Helmholtz decomposition [START_REF] Bonelle | Analysis of compatible discrete operator schemes for the Stokes equations on polyhedral meshes[END_REF], any

f ∈ V 1 such that f K = 0 is in Z 1 . The result is then clear if π 1 h satisfies (55): by definition any f ∈ Z 1 is of the form f = d 0 φ with φ ∈ V 0 , hence π 1 h f = π 1 h d 0 φ = d 0 π 0 h φ ∈ d 0 V 0 h = Z 1 h and hence f K h = 0.
To handle the second case we begin by verifying the standard relation (57)

K 1 h = δ 2 h W 2 h
in two steps: by writing that δ 2 h ξ h , d 0 q h = ξ h , d 1 d 0 q h = 0 holds for all q h ∈ V 0 h and

ξ h ∈ W 2 h , we first see that δ 2 h W 2 h ⊂ K 1 h . Next we observe that any v h ∈ K 1 h ∩ (δ 2 h W 2 h ) ⊥ satisfies d 1 v h 2 = v h , δ 2 h d 1 v h =
0 and hence is zero due to the discrete Poincaré estimate [START_REF] Zaglmayr | High order finite element methods for electromagnetic field computation[END_REF], which shows (57). Thus, writing any [START_REF] Begue | Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression[END_REF]. Again this shows that f K h = 0 and ends the proof. 3.4. Error estimates for K-compatible discretizations. In this Section we consider a K-compatible approximation operator π 1 h defined on some domain D 1 , and for simplicity we assume that Z 1 ⊂ D 1 ⊂ W 1 . In particular, if f ∈ D 1 then both components f K and f Z of its L 2 Helmholtz decomposition (10) also belong to D 1 .

v h ∈ K 1 h as v h = δ 2 h ξ h for some ξ h ∈ W 2 h , we have π 1 h f, v h = π 1 h f, δ 2 h ξ h = d 1 π 1 h f, ξ h = π 2 h d 1 f, ξ h = 0 for all f ∈ Z 1 = ker d 1 , see

K-compatible conforming approximation of the first problem. If f belongs to the domain D 1 of π 1

h , then we can investigate the following modification of Problem (48): find

u h ∈ V 1 h and p h ∈ K 0 h such that (58) d 1 u h , d 1 v h + v h , d 0 p h = π 1 h f, v h v h ∈ V 1 h u h , d 0 q h = g, q h (V 0 ) ×V 0 q h ∈ K 0 h .
As expected, it yields an error estimate for u that no longer involves p. Theorem 3.14. If π 1 h is a K-compatible operator in the sense of (53), then the solution of Problem (58) satisfies the error estimate

(59)      u -u h V 1 (π 1 h -I)f K (V 1 h ) + inf ūh ∈V 1 h u -ūh V 1 p -p h V 0 (π 1 h -I)f (V 1 h ) + inf ph ∈K 0 h p -ph V 0 .
Remark 3.15. Using [START_REF] Pinto | Gauss-compatible Galerkin schemes for timedependent Maxwell equations[END_REF] we can rewrite (59) in terms of the solution only,

     u -u h V 1 (π 1 h -I)δ 2 d 1 u (V 1 h ) + inf ūh ∈V 1 h u -ūh V 1 p -p h V 0 (π 1 h -I)(δ 2 d 1 u + d 0 p) (V 1 h ) + inf ph ∈K 0 h p -ph V 0 .
Proof. As above we consider an arbitrary field (ū h , ph )

∈ V 1 h × K 0 h . For v h ∈ K 1 h , the K-compatibility of π 1 h yields π 1 h f Z ∈ Z 1 h , hence π 1 h f Z , v h = 0. It follows that d 1 (u h -ūh ), d 1 v h = π 1 h f, v h -d 1 ūh , d 1 v h = π 1 h f K , v h -d 1 ūh , d 1 v h = (π 1 h -I)f K , v h + f K , v h -d 1 ūh , d 1 v h = (π 1 h -I)f K , v h + d 1 (u -ūh ), d 1 v h where we have used f K , v h = δ 2 d 1 u, v h = d 1 u, d 1 v h in
the last equality, see [START_REF] Pinto | Gauss-compatible Galerkin schemes for timedependent Maxwell equations[END_REF] and [START_REF] Boffi | Convergence analysis for hyperbolic evolution problems in mixed form[END_REF]. For w h ∈ Z 1 h , due to the embedding

Z 1 h ⊂ Z 1 = ker d 1 , we have w h , d 0 (p h -ph ) = (π 1 h -I)f, w h + w h , d 0 (p -ph ) and for q h ∈ K 0 h , using the embeddings K 0 h ⊂ V 0 h ⊂ V 0 we write u h -ūh , d 0 q h = g, q h (V 0 ) ×V 0 -ūh , d 0 q h = u -ūh , d 0 q h .
The proof is then completed by arguing as for Estimate (49).

K-compatible conforming approximation of the second problem.

Similarly, we may replace (50) with the problem: find

u h ∈ V 1 h and ζ h ∈ Z 2 h such that (60) u h , v h + d 1 v h , ζ h = π 1 h f, v h v h ∈ V 1 h d 1 u h , ξ h = , ξ h ξ h ∈ Z 2 h .
As announced above, it yields an error estimate for ζ that no longer involves u Z .

Theorem 3.16. If π 1 h : V 1 → V 1
h is a K-compatible approximation operator in the sense of (53), then for f ∈ V 1 the solution of Problem (60) satisfies the error estimate

(61)      u -u h V 1 (π 1 h -I)f (V 1 h ) + inf ūh ∈V 1 h u -ūh V 1 . ζ -ζ h (π 1 h -I)f K (V 1 h ) + inf ūh ∈V 1 h u K -ūh V 1 + inf ζh ∈Z 2 h ζ -ζh .
Remark 3.17. Using [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations -Theory and Algorithms[END_REF] we can rewrite (61) in terms of the solution only,

u -u h V 1 (π 1 h -I)(u + δ 2 ζ) (V 1 h ) + inf ūh ∈V 1 h u -ūh V 1 . ζ -ζ h (π 1 h -I)(u K + δ 2 ζ) (V 1 h ) + inf ūh ∈V 1 h u K -ūh V 1 + inf ζh ∈Z 2 h ζ -ζh .
Proof. We repeat the proof of Proposition 3.8 with minor changes similar to the proof of Theorem 3.14: given an arbitrary (ū h , ζh )

∈ V 1 h ×Z 2 h , we compute for w h ∈ Z 1 h u h -ūh , w h = π 1 h f, w h -ūh , w h = (π 1 h -I)f, w h + u -ūh , w h
by using [START_REF] Ern | Finite element quasi-interpolation and best approximation[END_REF] and the embedding Z 1 h ⊂ Z 1 . For ξ h ∈ Z 2 h we have

d 1 (u h -ūh ), ξ h = , ξ h -d 1 ūh , ξ h = d 1 (u -ūh ), ξ h
by using again [START_REF] Ern | Finite element quasi-interpolation and best approximation[END_REF] and the embedding Z 2 h ⊂ Z 2 . We finally consider v h ∈ K 1 h and observe that the K-compatibility of π 1 h yields π 1 h f Z , v h = 0. We thus compute

u h -ūh , v h + d 1 v h , ζ h -ζh = π 1 h f, v h -ūh , v h -d 1 v h , ζh = π 1 h f K , v h -ūh , v h -d 1 v h , ζh = (π 1 h -I)f K , v h + u K -ūh , v h + d 1 v h , ζ -ζh
where we have used the first equation from [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations -Theory and Algorithms[END_REF] in the last equality, with the fact that [START_REF] Boffi | Convergence analysis for hyperbolic evolution problems in mixed form[END_REF]. The proof is then completed by arguing as for (51).

v h , δ 2 ζ = d 1 v h , ζ , see
4. Structure-preserving nonconforming discretizations. We now discuss an extension of the above methods to spaces Ṽ 1 h which are no longer subspaces of V 1 , such as discontinuous Galerkin spaces. Following the Conforming/Nonconforming Galerkin (Conga) approach developped in [START_REF] Pinto | Gauss-compatible Galerkin schemes for timedependent Maxwell equations[END_REF][START_REF] Pinto | Constructing exact sequences on non-conforming discrete spaces[END_REF][START_REF] Pinto | Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampere law[END_REF], our construction relies on a non-standard exact sequence involving Ṽ 1 h , derived from a reference sequence of conforming spaces (29) that is structure-preserving in the sense of ( 30)- [START_REF] Zaglmayr | High order finite element methods for electromagnetic field computation[END_REF]. The resulting nonconforming discretization is then shown to be stable without it being necessary to introduce penalty parameters as is usual in DG methods, see e.g., [START_REF] Houston | Mixed Discontinuous Galerkin Approximation of the Maxwell Operator: Non-Stabilized Formulation[END_REF][START_REF] Houston | Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case[END_REF][START_REF] Buffa | Discontinuous Galerkin Approximation of the Maxwell Eigenproblem[END_REF]. As in [START_REF] Pinto | Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampere law[END_REF] it is convenient to consider that Ṽ 1 h is larger than

V 1 h , thus Ṽ 1 h ⊂ V 1 , V 1 h ⊂ Ṽ 1 h ⊂ W 1 .
The main ingredient of the nonconforming extension is a conforming projection,

P 1 h : W 1 → V 1 h
that we assume L 2 -stable in the sense that there is a uniform constant c P such that (62)

P 1 h v ≤ c P v , v ∈ W 1 .
For the convergence of the subsequent methods we further require that these conforming projections preserve spaces of moments M 1 h ⊂ Ṽ 1 h (typically piecewise polynomials of degree lower than the functions in Ṽ 1 h ), ( 63)

P 1 h v, w h = v, w h , w h ∈ M 1 h .
One may think of defining P 1 h as the L 2 projection on V 1 h , as it satisfies the above properties with M 1 h = V 1 h . However its application involves the inversion of a V 1 h mass matrix (a global operation on the underlying mesh, due to the V 1 -conformity that prevents the matrix to be block diagonal), which questions the practical interest of the resulting nonconforming method. We believe that a more interesting choice consists of constructing P 1 h by locally averaging piecewise degrees of freedom of V 1 h type, first conveniently extended to L 2 in a stable way, see [START_REF] Ern | Finite element quasi-interpolation and best approximation[END_REF][START_REF] Pinto | Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampere law[END_REF]. The spaces of preserved moments M 1 h are then typically of lower order than V 1 h but the resulting P 1 h becomes a local operator, which should considerably reduce the computational complexity of numerical methods.

4.1.

A discrete exact sequence with nonconforming spaces. As in [START_REF] Pinto | Gauss-compatible Galerkin schemes for timedependent Maxwell equations[END_REF] we first define a natural extension of

d 1 h : V 1 h → W 2 h to the nonconforming space, ( 64 
) d1 h : Ṽ 1 h → W 2 h , ṽh → d 1 P 1 h ṽh .
A new exact sequence involving this operator can then be constructed following [START_REF] Pinto | Constructing exact sequences on non-conforming discrete spaces[END_REF], by introducing: (i) a nonstandard discretization of V 0 ,

Ṽ 0 h := V 0 h × Ṽ 1 h and (ii) an extension of d 0 h : V 0 h → V 1 h to this product space, (65) d0 
h : Ṽ 0 h → Ṽ 1 h , (q h , ṽh ) → d 0 q h + (I -P 1 h )ṽ h .
Consistent with the notation ( 6) and (32) we then let

(66) K0 h = Ṽ 0 h ∩ (ker d0 h ) ⊥ , K1 h = Ṽ 1 h ∩ (ker d1 h ) ⊥ , Z1 h = d0 Ṽ 0 h and we observe that d1 Ṽ 1 h = d 1 V 1 h = Z 2 h , indeed V 1 h ⊂ Ṽ 1 h yields P 1 h Ṽ 1 h = V 1 h .
As shown below, this construction yields a new structure-preserving discretization.

Theorem 4.1. If the conforming discrete sequence (29) is structure-preserving in the sense of (30) and (31), then the nonconforming discrete sequence

(67) Ṽ 0 h d0 h --→ Ṽ 1 h d1 h --→ W 2 h
is also structure-preserving, in the sense where: (i) it is exact, and specifically

(68) d0 h Ṽ 0 h = d 0 V 0 h ⊕ (I -P 1 h ) Ṽ 1 h = ker d1 h , (ii) 
the following Poincaré estimates hold

(69) qh ≤ c0 d0 h qh qh ∈ K0 h = Ṽ 0 h ∩ (ker d0 h ) ⊥ , ṽh ≤ c1 d1 h ṽh ṽh ∈ K1 h = Ṽ 1 h ∩ (ker d1 h ) ⊥ , with c0 = (2c 2 0 c 2 P + 1) 1 
2 and c1 = c 1 . Proof. For the exactness of (67) we recall the proof of [START_REF] Pinto | Constructing exact sequences on non-conforming discrete spaces[END_REF]: using [START_REF] Raviart | A mixed finite element method for 2nd order elliptic problems[END_REF] we have ṽh ∈ ker d1

h =⇒ P 1 h ṽh ∈ ker d 1 h = d 0 V 0 h =⇒ ṽh ∈ d 0 V 0 h ⊕ (I -P 1 h ) Ṽ 1 h
with a direct sum checked by noting that any wh

∈ d 0 V 0 h ∩ (I -P 1 h ) Ṽ 1 h ⊂ V 1 h satisfies wh = P 1 h wh ∈ P 1 h (I -P 1 h ) Ṽ 1 h = {0}.
The reverse inclusion is readily verified, hence the second equality in (68). The first one holds by construction of d0 h and Ṽ 0 h . For the first stability estimate in (69) we infer from

d 0 V 0 h ∩ (I -P 1 h ) Ṽ 1 h = {0} that ker d0 h = ker d 0 h × ( Ṽ 1 h ∩ ker(I -P 1 h )) = ker d 0 h × V 1 h , hence (70) 
K0 h = Ṽ 0 h ∩ (ker d0 h ) ⊥ = (V 0 h ∩ (ker d 0 ) ⊥ ) × ( Ṽ 1 h ∩ (V 1 h ) ⊥ ).
Taking qh = (q h , ṽh ) in the latter space we then compute

qh 2 = q h 2 + ṽh 2 ≤ c 2 0 d 0 q h 2 + ṽh 2 ≤ c 2 0 ( d 0 q h -P 1 h ṽh + P 1 h ṽh ) 2 + ṽh 2 ≤ 2c 2 0 d 0 q h -P 1 h ṽh 2 + (2c 2 0 c 2 P + 1) ṽh 2 ≤ c2 0 ( d 0 q h -P 1 h ṽh 2 + ṽh 2 ) = c2 0 d 0 q h + (I -P 1 h )ṽ h 2 = c2 0 d0 h qh 2 .
Here the first inequality uses the conforming stability [START_REF] Zaglmayr | High order finite element methods for electromagnetic field computation[END_REF], the third one uses the uniform L 2 bound (62) for P 1 h (with c P ≥ 1), and the next to last equality follows from the observation that d 0 q h -P 1 h ṽh ∈ V 1 h is orthogonal to ṽh , see (70). This shows the first stability estimate. For the second one we consider ṽh ∈ K1 h . By construction

d1 h ṽh is in d 1 V 1 h , hence there is a (unique) conforming v h ∈ K 1 h such that d 1 v h = d1 h ṽh .
Using the conforming stability [START_REF] Zaglmayr | High order finite element methods for electromagnetic field computation[END_REF] this gives (71)

v h ≤ c 1 d 1 v h = c 1 d1
h ṽh so we are left to control ṽh by its conforming counterpart. For this we observe that the difference

v h -P 1 h ṽh is in V 1 h ∩ ker d 1
, hence it is orthogonal to ṽh . We thus have 0 = ṽh , v h -P 1 h ṽh = ṽh , v h -ṽh where the second equality follows from the fact that ṽh is also orthonal to the functions in (I -P

1 h ) Ṽ 1 h . As a consequence, ṽh 2 ≤ ṽh 2 + v h -ṽh 2 = v h 2
and the desired estimate follows by combining this bound with (71).

For the nonconforming error analysis we introduce natural energy norms, (72) qh

2 Ṽ 0 h := qh 2 + d0 h qh 2 , ṽh 2 Ṽ 1 h := ṽh 2 + d1 h ṽh 2 .
Notice that the Ṽ 1 h norm is defined over W 1 (an L 2 space) and on V 1 h it coincides with the V 1 norm. Introducing a canonical conforming projection on V 0 h , (73)

P 0 h : Ṽ 0 h → V 0 h , (q h , wh ) → q h ,
and using the definition of d1 h , d0 h and the stability (62) of P 1 h , we further observe that

qh Ṽ 0 h ∼ (I -P 0 h )q h + P 0 h qh V 0 = wh + q h V 0 , qh = (q h , wh ) ∈ Ṽ 0 h , ṽh Ṽ 1 h ∼ (I -P 1 h )ṽ h + P 1 h ṽh V 1 , ṽh ∈ Ṽ 1 h ,
hold with constants independent of h. In particular, the conforming projections are stable in the proper energy norms, (74)

P 0 h qh V 0 qh Ṽ 0 h and P 1 h ṽh V 1 ṽh Ṽ 1 h .
We also let δ1

h : Ṽ 1 h → Ṽ 0 h and δ2 h : W 2 h → Ṽ 1 h be the discrete adjoints of d0 h and d1 h , (75) 
δ1 h v, q = v, d0 h q , v ∈ Ṽ 1 h , q ∈ Ṽ 0 h δ2 h ξ, v = ξ, d1 h v , ξ ∈ W 2 h , v ∈ Ṽ 1 h .
Using the discrete exact sequence property (68) we then observe that Z1 h coincides with the kernel of d1 h and K1 h coincides with the kernel of δ1 h . Hence the decomposition

(76) Ṽ 1 h = K1 h ⊥ ⊕ Z1 h = ker δ1 h ⊥ ⊕ ker d1
h is orthogonal both in the L 2 and Ṽ 1 h inner products. Before discretizing the mixed problems we discuss the compatibility of nonconforming approximation operators.

4.2. Z-and K-compatible nonconforming operators. In the nonconforming case we extend Def. 3.10 as follows.

Definition 4.2. We say that an operator f → fh ∈ Ṽ 1 h is Z-compatible (for the nonconforming discretization) if

(77) f Z = 0 =⇒ f Z h = 0
holds for the Helmholtz decompositions f = f K + f Z and fh = f K h + f Z h corresponding to (11)-( 12) and (76), respectively. If

(78) f K = 0 =⇒ f K h = 0
then we shall say that it is K-compatible (for the nonconforming discretization).

In other terms, f → fh is Z (resp. K)-compatible if f Z h (resp. f K h ) only depends on f Z (resp. f K ). In the conforming case we have seen that the L 2 projection on V 1 h is a Z-compatible operator. With nonconforming spaces this is no longer true: indeed the L 2 projection on Ṽ 1 h does not satisfy (77) and we must use another approximation operator (although not a projection).

Lemma 4.3. The operator

(P 1 h ) * : W 1 → Ṽ 1 h , f → fh , defined by (79) fh , ṽh = f, P 1 h ṽh , ṽh ∈ Ṽ 1 h , is Z-compatible in the sense of Def. 4.2.
Proof. From the relation (68) we infer that (80)

P 1 h ( Z1 h ) ⊂ Z 1 h ⊂ Z 1 .

For ṽ1

h ∈ Z1 h this yields f Z h , ṽh = fh , ṽh = f, P 1 h ṽh = f Z , P 1 h ṽh , hence (77).

In Section 3.3 we have identified two K-compatibility criteria involving commuting diagrams. For the nonconforming case, we first make an easy observation.

Lemma 4.4. If π 1

h is an operator mapping on V 1 h that is K-compatible for the conforming discretization, then it is also K-compatible for the nonconforming one.

Proof. Using the embedding V 1 h ⊂ Ṽ 1 h we see that π 1 h maps on Ṽ 1 h , and from the embedding Z 1 h ⊂ Z1 h we infer that if f K h = 0, then f h ∈ Z1 h and hence f K h = 0. Due to the geometric structure we also check that the commuting diagram criteria of Lemma 3.12 naturally extend to the nonconforming case.

Lemma 4.5. If the operator π1

h : V 1 → Ṽ 1 h satisfies a commuting diagram either on d 0 or on d 1 , in the sense that (i) there exists an operator π0 h :

V 0 → Ṽ 0 h , such that (81) π1 h d 0 = d0 h π0 h
holds on V 0 , or (ii) there exists an operator π 2 h :

W 2 → W 2 h , such that (82) d1 h π1 h = π 2 h d 1 holds on V 1 , then π1 h is K-compatible on V 1
, in the sense that property (78), namely

f K = 0 =⇒ f K h = 0, holds for all f ∈ V 1 . Proof.
The proof is formally the same than for Lemma 3.12.

5. Nonconforming discretizations of the source problems. 

   d1 h ũh , d1 h ṽh + ṽh , d0 h ph = fh , ṽh ( Ṽ 1 h ) × Ṽ 1 h ṽh ∈ Ṽ 1 h ũh , d0 h qh = gh , qh ( Ṽ 0 h ) × Ṽ 0 h qh ∈ K0 h .
From the definition of the operators d0 h and d1 h , system (83) amounts to

d 1 P 1 h ũh , d 1 P 1 h ṽh + ṽh , d 0 p h + (I -P 1 h )x h = fh , ṽh ( Ṽ 1 h ) × Ṽ 1 h ũh , d 0 q h + (I -P 1 h )ỹ h = gh , qh ( Ṽ 0 h ) × Ṽ 0 h
where we have written ph = (p h , xh ) ∈ Ṽ 0 h = V 0 h × Ṽ 1 h and similarly qh = (q h , ỹh ). We decompose this problem as the previous ones. According to (76) we write 

(84) ũh = ũK h + ũZ h ∈ K1 h ⊕ Z1
(ũ K h , ũZ h , ph ) ∈ K1 h × Z1 h × K0 h such that (85)        d1 h ũK h , d1 h ṽh = fh , ṽh ( Ṽ 1 h ) × Ṽ 1 h ṽh ∈ K1 h wh , d0 h ph = fh , wh ( Ṽ 1 h ) × Ṽ 1 h wh ∈ Z1 h ũZ h , d0 h qh = gh , qh ( Ṽ 0 h ) × Ṽ 0 h qh ∈ K0 h .
Lemma 5.1. The discrete problem (83) is well-posed, and its solution satisfies

(86) ũh Ṽ 1 h fh | K1 h ( Ṽ 1 h ) + gh ( Ṽ 0 h ) ph Ṽ 0 h fh | Z1 h ( Ṽ 1 h )
where fh | K1 h and fh | Z1 h denote the restrictions of fh to the respective spaces. Here the constants depending on c0 , c1 from (69). Specifically, writing ũh as in (84) we have

(87) ũK h Ṽ 1 h ≤ (1 + c2 1 ) fh | K1 h ( Ṽ 1 h ) ũZ h Ṽ 1 h ≤ (1 + c2 0 ) 1 2 gh ( Ṽ 0 h ) ph Ṽ 0 h ≤ (1 + c2 0 ) 1 2 fh | Z1 h ( Ṽ 1 h ) .
Proof. The proof is formally the same than for Lemma 3.2, using the nonconforming Poincaré estimates (69) and the formulation (85) of Problem (83).

Remark 5.2. Using the discrete stability (69) and reasonning as in Section 2.2 one verifies that the bilinear forms involved in (83), i.e. ãh (ṽ h , wh ) = d1 h ṽh , d1 h wh and bh (ṽ h , qh ) = ṽh , d0 h qh , satisfy standard stability properties, namely the coercivity of ãh on the discrete kernel (here, Kh ) and a uniform discrete inf-sup condition for bh . 

dis- crete sources fh , h in ( Ṽ 1 h ) and W 2 h , find ũh ∈ Ṽ 1 h , ζ h ∈ Z 2 h such that (88) ũh , ṽh + d1 h ṽh , ζ h = fh , ṽh ( Ṽ 1 h ) × Ṽ 1 h ṽh ∈ Ṽ 1 h d1 h ũh , ξ h = h , ξ h ξ h ∈ Z 2 h .

From the definition of d1

h this problem amounts to (89) ũh , ṽh +

d 1 P 1 h ṽh , ζ h = fh , ṽh ( Ṽ 1 h ) × Ṽ 1 h ṽh ∈ Ṽ 1 h d 1 P 1 h ũh , ξ h = h , ξ h ξ h ∈ Z 2 h
and writing ũh as in (84) we recast it as: find

(ũ K h , ũZ h , ζ h ) ∈ K1 h × Z1 h × Z 2 h such that (90)        ũK h , ṽh + d1 h ṽh , ζ h = fh , ṽh ( Ṽ 1 h ) × Ṽ 1 h ṽh ∈ K1 h ũZ h , wh = fh , wh ( Ṽ 1 h ) × Ṽ 1 h wh ∈ Z1 h d1 h ũK h , ξ h = h , ξ h ξ h ∈ Z 2 h .
Here the third, second and first equations define ũK h , ũZ h and ζ h , respectively. Lemma 5.3. The discrete problem (88) is well-posed, and its solution satisfies

(91) ũh Ṽ 1 h fh | Z1 h ( Ṽ 1 h ) + h ζ h fh | K1 h ( Ṽ 1 h ) + h where fh | K1 h and fh | Z1 h
denote the restrictions of fh to the respective spaces. Here the constants depend only on c1 from (69). Specifically, writing ũh as in (84) we have

(92) ũK h Ṽ 1 h ≤ (1 + c2 1 ) 1 2 h ũZ h Ṽ 1 h ≤ fh | Z1 h ( Ṽ 1 h ) ζ h ≤ (1 + c2 1 ) 1 2 fh | K1 h ( Ṽ 1 h ) + c2 1 h .
Proof. The proof is formally the same than for Lemma 3.4, using the nonconforming Poincaré estimates (69) and the formulation (90) of Problem (88).

Remark 5.4. Using the discrete stability (69) and reasonning as in Section 2.3 one verifies that the bilinear forms involved in (88), namely ãh (ṽ h , wh ) = ṽh , wh and bh (ṽ h , ξ h ) = d1 h ṽh , ξ h , satisfy standard stability properties: the coercivity of ãh on the relevant discrete kernel (here, Zh ) and a uniform discrete inf-sup condition for bh . 

ph = f, P 1 h ṽh (V 1 ) ×V 1 ṽh ∈ Ṽ 1 h ũh , d0 h qh = g, P 0 h qh (V 0 ) ×V 0 qh ∈ K0 h .
The accuracy of the resulting method involves that of P 1 h and its adjoint (P 1 h ) * . Theorem 5.5. The solution to the discrete problem (93) satisfies

           u -ũh Ṽ 1 h d 1 (I -P 1 h )u + inf ūh ∈V 1 h ∩M 1 h u -ūh V 1 + inf ph ∈K 0 h d 0 ph ∈M 1 h d 0 (p -ph ) (p, 0) -ph Ṽ 0 h inf ph ∈K 0 h d 0 ph ∈M 1 h p -ph V 0
with constants depending on c0 , c1 , c P , and M 1 h the preserved moments (63 93), ( 14) and the fact that d1

) of P 1 h . Proof. Consider ūh ∈ V 1 h ∩ M 1 h and ph ∈ K 0 h with d 0 ph ∈ M 1 h . Using (
h = d 1 P 1 h coincides with d 1 on V 1 h , we write for ṽh ∈ K1 h , d1 h (ũ h -ūh ), d1 h ṽh = f, P 1 h ṽh (V 1 ) ×V 1 -d 1 ūh , d 1 P 1 h ṽh = d 1 (u -ūh ), d 1 P 1 h ṽh + P 1 h ṽh , d 0 p = d 1 (u -ūh ), d 1 P 1 h ṽh + P 1 h ṽh , d 0 (p -ph ) ,
where we used that P 1 h ṽh , d 0 ph = ṽh , d 0 ph = 0 according to (63) and the embedding Z 1 h ⊂ Z1 h . For wh ∈ Z1 h , observing that P 1 h wh ∈ Z 1 , see (80), and using the form (17) of the exact problem, we write (using again

d 0 ph ∈ M 1 h ) wh , d0 h (p h -(p h , 0)) = f, P 1 h wh (V 1 ) ×V 1 -wh , d 0 ph = P 1 h wh , d 0 (p -ph ) .
Next for qh = (q h , ỹh ) ∈ K0 h , we infer from ūh ∈ M 1 h that ūh , (P 1 h -I)ỹ h = 0, hence ūh , d0 h qh = ūh , d 0 q h . Using [START_REF] Pinto | Compatible Maxwell solvers with particles II: conforming and non-conforming 2D schemes with a strong Faraday law[END_REF] with

q h = P 0 h qh ∈ V 0 h gives then ũh -ūh , d0 h qh = g, q h (V 0 ) ×V 0 -ūh , d 0 q h = u -ūh , d 0 P 0 h qh .
Since (p h , 0) ∈ K0 h , Lemma 5.1 applies: Using the stability (74 

) of P 0 h , P 1 h this gives ũh -ūh Ṽ 1 h u -ūh V 1 + d 0 (p -ph ) and ph -(p h , 0) Ṽ 0 h d 0 (p -ph ) with constants involving c0 , c1 , c P . As u-ūh Ṽ 1 h ≤ u-ūh V 1 + d 1 (I -P 1 h )u this yields u-ũ h Ṽ 1 h u-ū h V 1 + d
= f, P 1 h ṽh (V 1 ) ×V 1 ṽh ∈ Ṽ 1 h d1 h ũh , ξ h = , ξ h ξ h ∈ Z 2 h .
The accuracy of the resulting method essentially involves that of the adjoint (P 1 h ) * . Theorem 5.6. The solution to the nonconforming approximation (94) satisfies

     u -ũh Ṽ 1 h inf ūh ∈V 1 h ∩M 1 h u -ūh V 1 ζ -ζ h inf ζh ∈Z 2 h ζ -ζh + inf ūh ∈V 1 h ∩M 1 h u -ūh V 1 .
Proof. We consider ūh ∈ V 1 h ∩ M 1 h and ζh ∈ Z 2 h . For wh ∈ Z1 h , using [START_REF] Ern | Finite element quasi-interpolation and best approximation[END_REF] we write ũh -ūh , wh = f, P 1 h wh (V 1 ) ×V 1 -ūh , wh = u, P 1 h wh -ūh , wh = u-ūh , P 1 h wh by using P 1 h wh ∈ Z 1 , and the moment preserving property (63). For h defined on some domain D 1 , see Def. 4.2. Again we assume that Z 1 ⊂ D 1 ⊂ W 1 , so that if f ∈ D 1 then both components f K and f Z of its L 2 Helmholtz decomposition [START_REF] Bossavit | Computational electromagnetism: variational formulations, complementarity, edge elements[END_REF] ũh , d0 h qh = g, P 0 h qh (V 0 ) ×V 0 qh ∈ K0 h .

ξ h ∈ Z 2 h ⊂ Z 2 , d1 h (ũ h -ūh ), ξ h = , ξ h -d 1 ūh , ξ h = d 1 (u -ūh ),
Theorem 5.7. If π1 h : D 1 → Ṽ 1 h is a K-compatible operator in the sense of (78), then for f ∈ D 1 the solution to (95) satisfies the error estimate

       u -ũh Ṽ 1 h d 1 (I -P 1 h )u + (π 1 h -(P 1 h ) * )f K ( Ṽ 1 h ) + inf ūh ∈V 1 h ∩M 1 h u -ūh V 1 (p, 0) -ph Ṽ 0 h (π 1 h -(P 1 h ) * )f ( Ṽ 1 h ) + inf ph ∈K 0 h d 0 ph ∈M 1 h p -ph V 0
with constants independent of h.

Remark 5.8. As in Remark 3.15 we can eliminate f from these estimates.

Proof. We combine the proofs of Theorems 3.14 and 5.5. In particular, we write 

d1 h (ũ h -ūh ), d1 h ṽh = π1 h f, ṽh -d 1 ūh , d1 h v h = π1 h f K , ṽh -d 1 ūh , d1 h v h = (π 1 h -(P 1 h ) * )f K , ṽh + f K , P
d1 h ũh , ξ h = , ξ h ξ h ∈ Z 2 h .
As in the conforming case, it has the effect that u Z is no longer involved in the error estimate for ζ, see Theorem 3.16.

Theorem 5.9. If π1 h : D 1 → Ṽ 1 h is a K-compatible operator in the sense of (78), then for f ∈ D 1 the solution to (96) satisfies the error estimate

     u -ũh Ṽ 1 h (π 1 h -(P 1 h ) * )f ( Ṽ 1 h ) + inf ūh ∈V 1 h ∩M 1 h u -ūh V 1 . ζ -ζ h (π 1 h -(P 1 h ) * )f K ( Ṽ 1 h ) + inf ūh ∈V 1 h ∩M 1 h u K -ūh V 1 + inf ζh ∈Z 2 h ζ -ζh .
Remark 5.10. As in Remark 3.17 we can eliminate f from these estimates.

Proof. Here we combine the proofs of Theorems 3.16 and 5.6. Thus, we write ũh -ūh , wh = π1 h f, wh -ūh , wh = (π The proof ends like the one of Theorem 5.6.

  which is a mixed formulation for the Poisson equation ∆ζ = -F with Neumann boundary conditions, see e.g. [5, Eqs. (10), (12)]. Another example is the incompressible Stokes equation (2), with the non-standard boundary conditions on the velocity (25) u • n = φ and curl u × n = ω × n on ∂Ω

5. 1 .

 1 Discretizations with arbitrary sources. As in the conforming case we first study the stability of nonconforming discretizations with arbitrary sources. 5.1.1. Nonconforming discretization of the first problem. Based on the nonconforming sequence (68) the discretization of Problem 2.1 reads: Given gh , fh in the nonconforming spaces ( Ṽ 0 h ) and ( Ṽ 1 h ) , find ũh ∈ Ṽ 1 h , ph ∈ K0 h such that (83)

h

  and restate Problem (83) as: find

5. 1 . 2 .

 12 Nonconforming discretization of the second problem. Based on the nonconforming sequence (68) the discretization of Problem 2.2 reads: Given

  ξ h follows by using[START_REF] Ern | Finite element quasi-interpolation and best approximation[END_REF] again and d1h = d 1 on V 1 h . Finally for ṽh ∈ K1 h , we have ũh -ūh , ṽh + d1 h ṽh , ζ h -ζh = f, P 1 h v h (V 1 ) ×V 1 -ūh , ṽh -d1 h ṽh , ζh = u -ūh , P 1 h ṽh + d1 h ṽh , ζ -ζhby using again[START_REF] Ern | Finite element quasi-interpolation and best approximation[END_REF] and (63). Applying Lemma 5.3 and the stability (74) of P 1 h yields then ũh -ūh Ṽ 1 h u -ūh V 1 and ζ h -ζh u -ūh V 1 + ζ -ζhwith constants depending on c1 , c P . Taking the infimum over ūh and ph ends the proof.5.3. K-compatible nonconforming approximation.As in Section 3.4 we consider a K-compatible approximation operator π1

  Again, a priori estimates are available for such discretizations, see e.g.[START_REF] Boffi | Finite element approximation of eigenvalue problems[END_REF] Prop. 18.2]. Focusing on the discrete Helmholtz structure we decompose u h = u K

	h + u Z h as in (36) and restate
	Problem (41) as: find

  5.2. Z-compatible nonconforming approximation. Following Lemma 4.3, we may use (P 1 h ) * as a natural extension of the L 2 source projection (46) in the nonconforming case. 5.2.1. Z-compatible nonconforming approximation of the first problem. Using (P 1 h ) * for f and the canonical extension (P 0 h ) * for g, we obtain the following nonconforming method for Problem 2.1: find ũh ∈ Ṽ 1 h , ph = (p h , xh ) ∈ K0

		h such that
	(93)	d1 h ũh , d1 h ṽh + ṽh , d0 h

  ph V 0 and the result follows by taking the infimum over ūh and ph .5.2.2. Z-compatiblenonconforming approximation of the second problem. Following (93), a Z-compatible nonconforming approximation analogous to Problem 2.2 is: find ũh ∈ Ṽ 1 h , ζ h ∈ Z 2

		h such that
	(94)	ũh , ṽh + d1

1 (I-P 1 h )u + d 0 (p-ph ) and (p, 0)-ph Ṽ 0 h p-h ṽh , ζ h

  belong to D 1 . 5.3.1. K-compatible nonconforming approximation of the first problem. If f belongs to the domain D 1 of π1 h , we can investigate a K-compatible version of Problem (93): find ũh ∈ Ṽ 1 h , ph ∈ K0

		h such that	
	(95)	d1 h ũh , d1 h ṽh + ṽh , d0 h ph = π1 h f, ṽh	ṽh ∈ Ṽ 1 h

  1 h ṽh -d 1 ūh , d1 h ṽh = (π 1 h -(P 1 h ) * )f K , ṽh + d 1 (u -ūh ), d1 h ṽhfor ṽh ∈ K1 h , and for wh ∈ Z1 h we compute wh , d0h (p h -(p h , 0)) = π1 h f, wh -wh , d 0 ph = (π 1 h -(P 1 h ) * )f, wh + f, P 1 h wh -wh , d 0 ph = (π 1 h -(P 1 h ) * )f, wh + P 1 h wh , d 0 (p -ph ) .The end of the proof is the same than for Theorem 5.5.5.3.2.K-compatible nonconforming approximation of the second problem. For the second problem we consider: find ũh ∈ Ṽ 1 h and ζ h ∈ Z 2

		h such that
	(96)	ũh , ṽh + d1

h ṽh , ζ h = π1 h f, ṽh ṽh ∈ Ṽ 1 h

  1 h -(P 1 h ) * )f, wh + u -ūh , P 1 h wh for wh ∈ Z1 h . For ξ h ∈ Z 2 h the relation is unchanged and for ṽh ∈ K1 h we compute ũh -ūh , ṽh + d1 h ṽh , ζ h -ζh = π1 h f, ṽh -ūh , ṽh -d1 h ṽh , ζh = π1 h f K , ṽh -ūh , P 1 h ṽh -d1 h ṽh , ζh = (π 1 h -(P 1 h ) * )f K , ṽh + u K -ūh , P 1

	h ṽh
	+ d1

h ṽh , ζ -ζh