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STRUCTURE-PRESERVING CONFORMING AND
NONCONFORMING DISCRETIZATIONS OF MIXED PROBLEMS

MARTIN CAMPOS PINTO∗

Abstract. We study conforming and nonconforming methods that preserve the Helmholtz
structure of mixed problems at the discrete level. On the conforming side we essentially gather
classical tools to design numerical approximations that are compatible with an underlying Helmholtz
decomposition. We then show that a recent approach developped for the time-dependent Maxwell
equations allows to design new nonconforming methods based on fully discontinuous finite element
spaces, that share the same stability and compatibility properties, with no need of penalty terms.

Key words. Structure-preserving methods, compatible approximations, Helmholtz decomposi-
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1. Introduction. For mixed problems of the form

(1)

{
a(u, v) + b(v, p) = 〈f, v〉V ′×V v ∈ V

b(u, q) = 〈g, q〉Q′×Q q ∈ Q,

conforming finite elements are a reference theory [19, 23, 7]. In several cases of physical
interest, such as the Maxwell system or the incompressible Stokes equation

(2)

{
−ν∆u+∇p = F

div u = 0,

the space V admits a Helmholtz decomposition relative to the differential operators
involved. Discretizations that preserve the geometric (de Rham) structure of the
underlying functional spaces then provide a vast field of efficient methods with well
understood stability and convergence properties, see e.g. [24, 3, 1, 2, 6]. An important
asset of structure-preserving discretizations is their ability to approximate the different
terms of the equations in a way that is compatible with the Helmholtz decomposition
of the continuous problem. In the case of the incompressible Stokes equation (2)
for instance, standard schemes which do not enforce a strong divergence constraint
typically compute an approximate velocity field uh that depends on the pressure p,
which is unfortunate when p is large or unsmooth, or when the viscosity ν > 0 is small.
As explained in [21, 27, 9], this is caused by an improper discretization of the source:
at the continuous level indeed, one can use a Helmholtz decomposition associated with
the operators involved in (2) to write F as the sum of an irrotational component and
a divergence-free one, which respectively determine p and u. To compute a pressure-
independent velocity, the numerical scheme should maintain a one-way separation
between these components and their discrete counterparts: as u is fully determined
by the divergence-free part of F , that should also be the case for the approximate
velocity uh.

In this article we propose a natural criterion to formalize this one-way compat-
ibility, and we use the resulting framework to extend a recent nonconforming dis-
cretization method primarily developped for the time-dependent Maxwell equations
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[18, 16, 17]. A key feature of this approach is the use of non-standard exact se-
quences involving fully discontinuous finite element spaces, based on reference exact
sequences of conforming spaces [15]. For the time-dependent Maxwell equations the
resulting Conforming/Nonconforming Galerkin (Conga) method has been shown to
have long time stability and conservation properties, despite the lack of stabilization
(e.g., penalty) terms. By applying the same discretization techniques to abstract
problems with a Helmholtz structure, we now prove uniform stability and error esti-
mates for several classes of compatible nonconforming mixed schemes, in a way that
naturally extends the ones of conforming methods.

The outline is as follows. In Section 2 we specify two mixed problems with an ab-
stract Helmholtz structure and describe a few motivating applications. In Section 3 we
then review the main ingredients of structure-preserving discretizations with conform-
ing spaces and propose a criterion to characterize one-way compatibility properties of
the source discretization. Sufficient conditions are given for compatible approxima-
tion operators, which rely either on orthogonality or commuting diagram properties.
The extension to fully discontinuous spaces is addressed in Sections 4 and 5. The
construction of structure-preserving nonconforming discretizations is first recalled in
Section 4, and sufficient conditions are given for compatible approximation opera-
tors in this nonconforming framework. Finally, structure-preserving nonconforming
schemes are derived in Section 5, together with uniform stability and error estimates.

2. Mixed problems with a Helmholtz structure. To describe our problems
in a generic form we borrow some notation from finite element exterior calculus [1, 6]
and essentially follow the Hilbert complex framework of [2, Sec. 3]. Here it will be
sufficient to consider three L2 spaces (with scalar or vector-valued functions) denoted
W 0, W 1, W 2, and two closed operators dl : W l →W l+1, l = 0, 1, with dense domains
V l ⊂W l. The first important poperty is that the sequence

(3) V 0 d0

−−→ V 1 d1

−−→ W 2

is assumed exact, in the sense that we have

(4) d0V 0 = ker d1.

Second, we assume that the V l’s are Hilbert spaces when endowed with the norms

(5) ‖q‖2V 0 = ‖q‖2 + ‖d0q‖2 and ‖v‖2V 1 = ‖v‖2 + ‖d1v‖2

where ‖·‖ denotes the L2 norm in the corresponding W l space. This implies that
ker dl is closed in W l. In particular the range of d0 is closed in W 1, and we further
assume that d1V 1 is closed in W 2. Using the ⊥ exponent to denote an L2 orthogonal
complement in the proper W l space, we then denote

(6) K0 = V 0 ∩ (ker d0)⊥, K1 = V 1 ∩ (ker d1)⊥, Z1 = d0V 0, Z2 = d1V 1

and we observe that for l = 0, 1, dl defines a bounded bijection from Kl to Zl+1 which
are two Hilbert spaces with the respective V l and W l+1 norms. Banach’s bounded
inverse theorem then guarantees the existence of two constants c0, c1, such that the
following Poincaré estimates hold,

(7)
‖q‖ ≤ c0‖d0q‖, q ∈ K0,

‖v‖ ≤ c1‖d1v‖, v ∈ K1.
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2.1. Helmholtz decompositions. Let δl+1 : W l+1 → (V l)′, l = 0, 1, be re-
spectively defined by

(8)
〈δ1v, q〉(V 0)′×V 0 = 〈v, d0q〉, v ∈W 1, q ∈ V 0

〈δ2ξ, v〉(V 1)′×V 1 = 〈ξ, d1v〉, ξ ∈W 2, v ∈ V 1

where 〈·, ·〉 denotes the L2 product in the proper W l space. Then the exact sequence
property (4) gives K1 = V 1 ∩ (d0V 0)⊥ = ker δ1|V 1 and we have a first Helmholtz
decomposition

(9) V 1 = K1
⊥
⊕ Z1 = ker δ1|V 1

⊥
⊕ ker d1

where the direct sum is orthogonal for both the L2 and V 1 inner products. Note that
since Z1 is also closed in the larger space W 1, we have another Helmholtz decompo-
sition in this L2 space, namely

(10) W 1 = K̄1
⊥
⊕ Z1 = ker δ1

⊥
⊕ ker d1

where K̄1 = (ker d0)⊥ coincides with the closure of K1 in W 1.
By duality, we can decompose (V 1)′ as the direct sum of the polar spaces of K1

and Z1. Specifically, we can write an arbitrary source f ∈ (V 1)′ as

(11) f = fK + fZ

with respective terms defined by the relations

(12) 〈fK , v〉(V 1)′×V 1 = 〈f, vK〉(V 1)′×V 1 , 〈fZ , v〉(V 1)′×V 1 = 〈f, vZ〉(V 1)′×V 1 ,

for v ∈ V 1 decomposed as v = vK+vZ ∈ K1⊕Z1. We consider two types of problems.

2.2. A first mixed problem. Our first problem is obtained by setting V := V 1,
Q := K0 = V 0 ∩ (ker d0)⊥, see (6), and

(13)
a(v, w) = 〈d1v, d1w〉, v, w ∈ V 1,

b(v, q) = 〈v, d0q〉, v ∈ V 1, q ∈ K0.

Assuming that g ∈ (V 0)′, System (1) then leads to the following problem.

Problem 2.1. Find u ∈ V 1, p ∈ K0 such that

(14)

{
〈d1u, d1v〉+ 〈v, d0p〉 = 〈f, v〉(V 1)′×V 1 v ∈ V 1

〈u, d0q〉 = 〈g, q〉(V 0)′×V 0 q ∈ K0.

Using the classical theory of e.g. [12, 7], it is easy to verify that Problem 2.1 is well-
posed: clearly a and b are continuous,

|a(v, w)| = |〈d1v, d1w〉| ≤ ‖v‖V 1‖w‖V 1 , |b(v, q)| = |〈v, d0q〉| ≤ ‖v‖V 1‖q‖V 0 .

As for the operator B : V 1 → (V 0)′, 〈Bv, q〉(V 0)′×V 0 = b(v, q) from [7, Sec. 4.2.1], it
coincides with δ1|V 1 . Estimate (7) then shows that a is coercive on kerB, indeed

v ∈ kerB = ker δ1|V 1 = K1 =⇒ a(v, v) = ‖d1v‖2 ≥ (1 + c21)−1‖v‖2V 1 .
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The inf-sup condition on b is obtained by taking v = d0q ∈ V 1 for q ∈ K0, and writing

(15) inf
q∈K0

sup
v∈V 1

b(v, q)

‖v‖V 1‖q‖V 0

≥ inf
q∈K0

‖d0q‖2

‖d0q‖V 1‖q‖V 0

= inf
q∈K0

‖d0q‖
‖q‖V 0

≥ (1 + c20)−
1
2

where the equality ‖d0q‖V 1 = ‖d0q‖ follows from the fact that d1d0 = 0. Hence
Theorem 4.2.3 from [7] applies: For all f ∈ (V 1)′ and g ∈ (V 0)′, Problem 2.1 has a
unique solution (u, p); moreover there is a constant depending on c0, c1, such that

‖u‖V 1 + ‖p‖V 0 . ‖f‖(V 1)′ + ‖g‖(V 0)′ .

To exhibit the Helmholtz structure of Problem 2.1 we decompose

(16) u = uK + uZ ∈ K1 ⊕ Z1

according to (9), and rewrite (14) in the form

(17)


〈d1uK , d1v〉 = 〈f, v〉(V 1)′×V 1 v ∈ K1

〈w, d0p〉 = 〈f, w〉(V 1)′×V 1 w ∈ Z1

〈uZ , d0q〉 = 〈g, q〉(V 0)′×V 0 q ∈ K0.

This formulation clarifies how the different parts of the source contribute to the solu-
tion: decomposing f according to (11)-(12), we can rewrite (17) in the form

(18)


δ2d1uK = fK

d0p = fZ

δ1uZ = g.

2.3. A second mixed problem. Our second model problem corresponds to
the case where V := V 1, Q := Z2 = d1V 1 ⊂W 2, and

(19)
a(v, w) = 〈v, w〉, v, w ∈ V 1,

b(v, ξ) = 〈d1v, ξ〉, v ∈ V 1, ξ ∈ Z2.

Using new notations to distinguish the functions in the space W 2 (which, as an L2

space, is identified with its dual (W 2)′), Problem (1) then becomes:

Problem 2.2. Given f ∈ (V 1)′ and ` ∈W 2, find u ∈ V 1, ζ ∈ Z2 such that

(20)

{
〈u, v〉+ 〈d1v, ζ〉 = 〈f, v〉(V 1)′×V 1 v ∈ V 1

〈d1u, ξ〉 = 〈`, ξ〉 ξ ∈ Z2.

Again the well-posedness of this problem is easily proven using classical results:
the continuity of a and b is clear, and the operator B : V 1 → (Z2)′ defined by
〈Bv, ξ〉(Z2)′×Z2 = b(v, ξ) now coincides with d1. Hence a is obviously coercive on
kerB. Letting next w ∈ K1 be such that d1w = ξ for ξ ∈ Z2 and using (7), we have

(21) inf
ξ∈Z2

sup
v∈V 1

b(v, ξ)

‖v‖V 1‖ξ‖
≥ inf
ξ∈Z2

‖ξ‖2

‖w‖V 1‖ξ‖
= inf
ξ∈Z2

‖d1w‖
‖w‖V 1

≥ (1 + c21)−
1
2 .

In particular, [7, Th. 4.2.3] applies: Problem 2.2 has a unique solution (u, ζ) and

‖u‖V 1 + ‖ζ‖ . ‖f‖(V 1)′ + ‖`‖
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holds with a constant that depends only on c1 from (7). To see the Helmholtz structure
we decompose u = uK + uZ ∈ K1 ⊕ Z1 as in (16) and recast Problem 2.2 as

(22)


〈uK , v〉+ 〈d1v, ζ〉 = 〈f, v〉(V 1)′×V 1 v ∈ K1

〈uZ , w〉 = 〈f, w〉(V 1)′×V 1 w ∈ Z1

〈d1uK , ξ〉 = 〈`, ξ〉 ξ ∈ Z2.

Here the third, second and first equations define uK , uZ and ζ respectively. Specifi-
cally, decomposing f as in (11)-(12) we find

(23)


uK + δ2ζ = fK

uZ = fZ

d1uK = `.

2.4. Examples. Problems like 2.1 and 2.2 are ubiquitous in the finite element
litterature. We may give a few examples to motivate our study. For instance, it is
well-known that on a bounded and simply-connected Lipschitz domain Ω, the sequence

(24) V 0 = H0(curl; Ω)
d0 = curl−−−−−−−−→ V 1 = H0(div; Ω)

d1 = div−−−−−−−→ W 2 = L2
0(Ω)

is exact, moreover Z2 = d1Z1 = W 2. See e.g. [10, 23] or [31, Sec. 3.2]. Here the
Hilbert spaces are denoted with classical notation, in particular

H0(curl; Ω) = {q ∈ H(curl; Ω) : n× q = 0 on ∂Ω},
H0(div; Ω) = {v ∈ H(div; Ω) : n · q = 0 on ∂Ω},
L2

0(Ω) = {ξ ∈ L2(Ω) :
∫

Ω
ξ = 0},

see e.g. [23]. Problem 2.2 with f = 0 and ` = −F reads then{
〈u, v〉+ 〈div v, ζ〉 = 0 v ∈ V 1 = H0(div,Ω)

〈div u, ξ〉 = −〈F, ξ〉 ξ ∈ Z2 = L2
0(Ω),

which is a mixed formulation for the Poisson equation ∆ζ = −F with Neumann
boundary conditions, see e.g. [5, Eqs. (10), (12)]. Another example is the incompress-
ible Stokes equation (2), with the non-standard boundary conditions on the velocity

(25) u · n = φ and curlu× n = ω × n on ∂Ω

used in [11, 9] following [4, 22]. If u ∈ H2(Ω)3 and p ∈ H1 satisfy (2) and (25), then
using Green formulas and the relation −∆ = curl curl− grad div, we find that{

ν〈curlu, curl v〉+ 〈∇p, v〉 = 〈F, v〉 − 〈n× v, ω〉∂Ω, v ∈ H(curl,Ω)

〈u,∇q〉 = 〈φ, q〉∂Ω, q ∈ H1(Ω).

Up to the viscosity parameter ν, this corresponds to Problem 2.1 with the sequence

(26) V 0 = H1(Ω)
d0 = ∇−−−−−−→ V 1 = H(curl; Ω)

d1 = curl−−−−−−−−→ W 2 = L2(Ω)3

which is also exact ([31, Sec. 3.2]), and the source terms

〈f, v〉(V 1)′×V 1 = 〈F, v〉 − 〈n× v, ω〉∂Ω and 〈g, q〉(V 0)′×V 0 = 〈φ, q〉∂Ω.
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Note that in Problem 2.1 the orthogonality condition p ∈ (ker∇)⊥ is meant to ensure
the uniquess of the solution. Another application involves eigenproblems of the form

(27) 〈d1u, d1v〉 = λ〈u, v〉 v ∈ V 1 = H0(d1; Ω)

with d1 = grad, curl or div. Indeed, following [6, Part 4] we can see Problem 2.1 (with
g = 0) as the source problem associated with a first mixed formulation of (27),{

〈d1u, d1v〉+ 〈v, d0p〉 = λ〈u, v〉 v ∈ V 1 = H0(d1; Ω)

〈u, d0q〉 = 0 q ∈ V 0 = H0(d0; Ω)

and Problem 2.2 (with f = 0) as the source problem associated with a second mixed
formulation of (27), namely{

〈u, v〉+ 〈d1v, ζ〉 = 0 v ∈ V 1 = H0(d1; Ω)

〈d1u, ξ〉 = −λ〈ζ, ξ〉 ξ ∈ Z2 = d1V 1.

Finally, another motivation is the study of time dependent wave or Maxwell equations,
and more generally evolution problems of the form

(28)

{
〈∂tu(t), v〉 − 〈d1v, χ(t)〉 = 0 v ∈ V 1

〈∂tχ(t), ξ〉+ 〈d1u(t), ξ〉 = 〈F (t), ξ〉 ξ ∈ Z2.

In [8] indeed, it is shown that uniform error estimates for the approximation operator
Πh : (V 1 × Z2)→ V 1

h × Z2
h (u, ζ)→ (uΠ, ζΠ) defined by{

〈uΠ, vh〉 − 〈d1vh, ζΠ〉 = 〈u, vh〉 − 〈d1vh, ζ〉 vh ∈ V 1
h

〈d1uΠ, ξh〉 = 〈d1u, ξh〉 ξh ∈ Z2
h

lead to uniform estimates for the Galerkin approximation of (28).

3. Conforming discretizations. Many results are known on the conforming
approximation of the above problems, see e.g. Th. 5.2.5 in [7] or [6, Sec. 18]. Here we
focus on structure-preserving discretizations, following [1, 2]. We consider a conform-
ing sequence of discrete spaces V lh ⊂ V l, l = 0, 1, and W 2

h ⊂ W 2, that preserve the
two main properties of the continuous Hilbert complex (3), namely: (i) the sequence

(29) V 0
h

d0
h := d0|V 0

h−−−−−−−−−−→ V 1
h

d1
h := d1|V 1

h−−−−−−−−−−→ W 2
h

is exact, in the sense that

(30) d0V 0
h = ker d1

h,

(ii) uniform Poincaré estimates hold with constants denoted as in (7) for simplicity,

(31)
‖qh‖ ≤ c0‖d0qh‖, qh ∈ K0

h

‖vh‖ ≤ c1‖d1vh‖, vh ∈ K1
h.

Here the spaces are defined consistent with (6), by
(32)
K0
h = V 0

h ∩ (ker d0
h)⊥, K1

h = V 1
h ∩ (ker d1

h)⊥, Z1
h = d0V 0

h , Z2
h = d1V 1

h .
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Such compatible conforming discretizations are well known: for the approximation
of usual de Rham sequences like (24) or (26) one can use standard finite element
spaces of Lagrange, Raviart-Thomas [30], Nedelec [28, 29] or Brezzi-Douglas-Marini
[13] type, see also [23, 7] and [24, 2], where unified analyses of their construction and
stability properties have been carried out using the framework of differential forms
and Finite Element Exterior Calculus.

Remark 3.1. Here by conforming we mean that the exact operators dl are well
defined (in a strong sense) on the discrete spaces, so that finite element approximations
can be obtained with a standard Galerkin projection. However we point out that
the resulting discretizations are not necessarily conforming in the more restrictive
sense where all the spaces involved should be approximated by discrete subspaces. In
particular, the spaces Kl

h are typically not subspaces of Kl.

Since dlh is merely a restriction of dl, we will use the latter notation when possible,
and reserve the former one to specify the finite-dimensional domain (e.g., write ker dlh
rather than ker dl∩V lh, for conciseness). It will also be convenient to let δ1

h : V 1
h → V 0

h

and δ2
h : W 2

h → V 1
h be the discrete adjoints of d0

h and d1
h, i.e.,

(33)
〈δ1
hv, q〉 = 〈v, d0q〉, v ∈ V 1

h , q ∈ V 0
h

〈δ2
hξ, v〉 = 〈ξ, d1v〉, ξ ∈W 2

h , v ∈ V 1
h .

Using the discrete exact sequence property (30) we then verify that K1
h coincides with

the kernel of δ1
h, and that the decomposition

(34) V 1
h = K1

h

⊥
⊕ Z1

h = ker δ1
h

⊥
⊕ ker d1

h

is orthogonal both in the L2 and V 1 inner products, just as (9).

3.1. Conforming discretizations with arbitrary sources. We first study
the stability of conforming discretizations of Problems 2.1 and 2.2 with arbitrary
discrete sources.

3.1.1. Conforming discretization of the first problem. Given arbitrary
sources gh, fh in (V 0

h )′ and (V 1
h )′ we discretize Problem 2.1 as follows: find uh ∈ V 1

h ,
ph ∈ K0

h such that

(35)

{
〈d1uh, d

1vh〉+ 〈vh, d0ph〉 = 〈fh, vh〉(V 1)′×V 1 vh ∈ V 1
h

〈uh, d0qh〉 = 〈gh, qh〉(V 0)′×V 0 qh ∈ K0
h.

A priori estimates are available for such discretizations, see e.g. [6, Prop. 18.1]. Here
we focus on the discrete Helmholtz structure: Decomposing uh according to (34),

(36) uh = uKh + uZh ∈ K1
h ⊕ Z1

h

we restate Problem (35) as: find (uKh , u
Z
h , ph) ∈ K1

h × Z1
h ×K0

h such that

(37)


〈d1uKh , d

1vh〉 = 〈fh, vh〉(V 1)′×V 1 vh ∈ K1
h

〈wh, d0ph〉 = 〈fh, wh〉(V 1)′×V 1 wh ∈ Z1
h

〈uZh , d0qh〉 = 〈gh, qh〉(V 0)′×V 0 qh ∈ K0
h.
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Lemma 3.2. The discrete problem (35) is well-posed, and its solution satisfies

(38)
‖uh‖V 1 . ‖fh|K1

h
‖(V 1

h )′ + ‖gh‖(V 0
h )′

‖ph‖V 0 . ‖fh|Z1
h
‖(V 1

h )′

where fh|K1
h

and fh|Z1
h

denote the restrictions of fh to the respective spaces. Here the

constants depend only on c0, c1 from (31). Specifically, writing uh as in (36), we have

(39)

‖uKh ‖V 1 ≤ (1 + c21)‖fh|K1
h
‖(V 1

h )′

‖uZh ‖V 1 ≤ (1 + c20)
1
2 ‖gh‖(V 0

h )′

‖ph‖V 0 ≤ (1 + c20)
1
2 ‖fh|Z1

h
‖(V 1

h )′ .

Although the proof is standard we detail it, as it will readily extend to the non-
conforming case.

Proof. This linear problem has as many equations than unkowns, hence its well-
posedness follows from the stability estimates (38). We will prove (39) and use the
V 1-orthogonal decomposition (34): For the first bound in (39) we use the second
Poincaré estimate (31) and the first equation in (37) with vh = uKh . This yields

‖uKh ‖2V 1 ≤ (1 + c21)‖d1uKh ‖2 ≤ (1 + c21)‖fh|K1
h
‖(V 1

h )′‖uKh ‖V 1 .

For the second estimate we use again (37) with qh ∈ K0
h such that d0qh = uZh . Then

(40) ‖uZh ‖2 ≤ ‖gh‖(V 0
h )′‖qh‖V 0 ≤ (1+c20)

1
2 ‖gh‖(V 0

h )′‖d0qh‖ = (1+c20)
1
2 ‖gh‖(V 0

h )′‖uZh ‖

where the second inequality uses (31), and we conclude by observing that ‖uZh ‖ =
‖uZh ‖V 1 in Z1

h. For the last estimate we use now (37) with wh = d0ph. It gives

‖d0ph‖2 ≤ ‖fh|Z1
h
‖(V 1

h )′‖d0ph‖V 1 = ‖fh|Z1
h
‖(V 1

h )′‖d0ph‖

where we have used the discrete exact sequence property (30), and the third estimate
follows by using again the first Poincaré inequality (31), like in (40).

Remark 3.3. Using the discrete stability (31) and reasonning as in Section 2.2 one
also verifies that the bilinear forms (13) satisfy the standard properties of the classical
analysis, see [7, Sec. 5.1.1], namely the coercivity of a on the relevant discrete kernel
(here, Kh) and a uniform discrete inf-sup condition for b.

3.1.2. Conforming discretization of the second problem. For Problem 2.2
we consider the following discretization: find uh ∈ V 1

h , ζh ∈ Z2
h such that

(41)

{
〈uh, vh〉+ 〈d1vh, ζh〉 = 〈fh, vh〉(V 1)′×V 1 vh ∈ V 1

h

〈d1uh, ξh〉 = 〈`h, ξh〉 ξh ∈ Z2
h

where fh, `h are given discrete sources in (V 1
h )′ and (W 2

h )′ = W 2
h . Again, a priori

estimates are available for such discretizations, see e.g. [6, Prop. 18.2]. Focusing on
the discrete Helmholtz structure we decompose uh = uKh + uZh as in (36) and restate
Problem (41) as: find (uKh , u

Z
h , ζh) ∈ K1

h × Z1
h × Z2

h such that

(42)


〈uKh , vh〉+ 〈d1vh, ζh〉 = 〈fh, vh〉(V 1)′×V 1 vh ∈ K1

h

〈uZh , wh〉 = 〈fh, wh〉(V 1)′×V 1 wh ∈ Z1
h

〈d1uKh , ξh〉 = 〈`h, ξh〉 ξh ∈ Z2
h.

Here the third, second and first equations define uKh , uZh and ζh respectively.
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Lemma 3.4. The discrete problem (41) is well-posed, and its solution satisfies

(43)
‖uh‖V 1 . ‖fh|Z1

h
‖(V 1

h )′ + ‖`h‖
‖ζh‖ . ‖fh|K1

h
‖(V 1

h )′ + ‖`h‖

where fh|K1
h

and fh|Z1
h

denote the restrictions of fh to the respective spaces. Here the

constants depend only on c0, c1 from (31). Specifically, decomposing uh as in (36),
we have

(44)

‖uKh ‖V 1 ≤ (1 + c21)
1
2 ‖`h‖

‖uZh ‖V 1 ≤ ‖fh|Z1
h
‖(V 1

h )′

‖ζh‖ ≤ (1 + c21)
1
2 ‖fh|K1

h
‖(V 1

h )′ + c21‖`h‖.

Again the proof is standard but we recall it because it readily extends to the
nonconforming case.

Proof. As above it suffices to prove (44). Using (42) with ξh = d1uKh ∈ Z2
h gives

(45) ‖d1uKh ‖ ≤ ‖`h‖

and with the second estimate from (31) this shows the first bound in (44). The second
one is obtained from the second equation in (42) and Z1

h ⊂ Z1. For the last one we
use the first equation from (42) with vh ∈ K1

h such that d1vh = ζh. It yields

‖ζh‖2 = ‖d1vh‖2 ≤ ‖fh|K1
h
‖(V 1

h )′‖vh‖V 1 + ‖uKh ‖‖vh‖

≤
(
(1 + c21)

1
2 ‖fh|K1

h
‖(V 1

h )′ + c21‖`h‖
)
‖d1vh‖

where we have used (45) and the second Poincaré estimate (31).

Remark 3.5. Using the discrete stability (31) and reasonning as in Section 2.3 one
also verifies that the bilinear forms (19) satisfy the standard properties of the classical
analysis, see [7, Sec. 5.1.1], namely the coercivity of a on the relevant discrete kernel
(here, Zh) and a uniform discrete inf-sup condition for b.

3.2. Error estimates for the standard (Z-compatible) approximation.
The standard Galerkin approximation of the sources involves L2 projections, such as

(46) fh = PV 1
h
f

(for simplicity we may assume hare that f ∈ L2, but the discussion readily extends
to sources in (V 1)′). An important property of this projection is to preserve the
orthogonality with respect to functions in the kernel of d1. Specifically, decomposing
f = fK + fZ as in (11)-(12) and fh = fKh + fZh according to the discrete Helmholtz
decomposition (34), we infer from the embedding Z1

h ⊂ Z1 that

〈fZh , wh〉 = 〈fh, wh〉 = 〈f, wh〉 = 〈fZ , wh〉, wh ∈ Z1
h.

Thus, the Z-component of the approximated source only depends on the Z-component
of the exact one, which by linearity amounts to say that

(47) fZ = 0 =⇒ fZh = 0.

In this article we call Z-compatible such an approximation, see Def. 3.10 below.
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3.2.1. Z-compatible conforming approximation of the first problem.
Using (46) and a similar projection for g, Problem (35) becomes: find uh ∈ V 1

h ,
ph ∈ K0

h such that

(48)

{
〈d1uh, d

1vh〉+ 〈vh, d0ph〉 = 〈f, vh〉(V 1)′×V 1 vh ∈ V 1
h

〈uh, d0qh〉 = 〈g, qh〉(V 0)′×V 0 qh ∈ K0
h.

As shown in the classical error estimate below, the resulting discretization enjoys good
accuracy properties when the optimal error on u dominates that on p.

Proposition 3.6. The solutions to problems (14) and (48) satisfy

(49)


‖u− uh‖V 1 . inf

ūh∈V 1
h

‖u− ūh‖V 1 + inf
p̄h∈K0

h

‖d0(p− p̄h)‖

‖p− ph‖V 0 . inf
p̄h∈K0

h

‖p− p̄h‖V 0

with constants depending only on c0 and c1 from (31).

Proof. The steps are standard. We detail them as our new estimates below will
follow from slight variations. Given (ūh, p̄h) ∈ V 1

h ×K0
h, and using (14) and (48) we

have
〈d1(uh − ūh), d1vh〉 = 〈f, vh〉(V 1)′×V 1 − 〈d1ūh, d

1vh〉
= 〈d1(u− ūh), d1vh〉+ 〈vh, d0p〉
= 〈d1(u− ūh), d1vh〉+ 〈vh, d0(p− p̄h)〉,

for vh ∈ K1
h, where the presence of p is a consequence of the nonembedding of K1

h

into K1. For wh ∈ Z1
h, due to the embedding Z1

h ⊂ Z1 = ker d1, we have

〈wh, d0(ph − p̄h)〉 = 〈f, wh〉(V 1)′×V 1 − 〈wh, d0p̄h〉 = 〈wh, d0(p− p̄h)〉

and for qh ∈ K0
h, using the embeddings K0

h ⊂ V 0
h ⊂ V 0 we write

〈uh − ūh, d0qh〉 = 〈g, qh〉(V 0)′×V 0 − 〈ūh, d0qh〉 = 〈u− ūh, d0qh〉.

In particular, Lemma 3.2 applies and yields (with constants depending on c0 and c1)
‖uh − ūh‖V 1 . ‖u − ūh‖V 1 + ‖d0(p − p̄h)‖ and ‖ph − p̄h‖V 0 . ‖d0(p − p̄h)‖. This
gives ‖u− uh‖V 1 . ‖u− ūh‖V 1 + ‖d0(p− p̄h)‖ and ‖p− ph‖V 0 . ‖p− p̄h‖V 0 , and the
bounds (49) follow by taking the infimum over ūh ∈ V 1

h and p̄h ∈ K0
h.

Remark 3.7. Using d1(u−ūh) = d1(uK−ūKh ) and 〈u−ūh, d0qh〉 = 〈uZ−ūZh , d0qh〉
in the above proof we can show a refined result, for the decompositions (16) and (36)
of u and uh. namely that ‖uK − uKh ‖V 1 and ‖uZ − uZh ‖V 1 are controlled by terms
that do not involve uZ and uK , respectively.

3.2.2. Z-compatible conforming approximation of the second problem.
Using Galerkin (L2) projections for the sources as in (48), Problem (41) becomes

(50)

{
〈uh, vh〉+ 〈d1vh, ζh〉 = 〈f, vh〉(V 1)′×V 1 vh ∈ V 1

h

〈d1uh, ξh〉 = 〈`, ξh〉 ξh ∈ Z2
h.

The following error estimate shows that the resulting discretization enjoys good ac-
curacy properties when the optimal error on ζ dominates that on u.
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Proposition 3.8. The solution to the discrete problem (50) satisfies

(51)


‖u− uh‖V 1 . inf

ūh∈V 1
h

‖u− ūh‖V 1

‖ζ − ζh‖ . inf
ζ̄h∈Z2

h

‖ζ − ζ̄h‖+ inf
ūh∈V 1

h

‖u− ūh‖V 1 .

Proof. Again we consider (ūh, ζ̄h) ∈ V 1
h × Z2

h, and for wh ∈ Z1
h we compute

〈uh − ūh, wh〉 = 〈f, wh〉(V 1)′×V 1 − 〈ūh, wh〉 = 〈u− ūh, wh〉

where we have used (20) and the embedding Z1
h ⊂ Z1. For ξh ∈ Z2

h we have

〈d1(uh − ūh), ξh〉 = 〈`, ξh〉 − 〈d1ūh, ξh〉 = 〈d1(u− ūh), ξh〉

using again (20) and now the embedding Z2
h ⊂ Z2. Finally for vh ∈ K1

h, we have

〈uh − ūh, vh〉+ 〈d1vh, ζh − ζ̄h〉 = 〈f, vh〉(V 1)′×V 1 − 〈ūh, vh〉 − 〈d1vh, ζ̄h〉
= 〈u− ūh, vh〉+ 〈d1vh, ζ − ζ̄h〉

where we have used the first equation from (20) and the embedding K1
h ⊂ V 1

h ⊂ V 1.
Here the non-conformity K1

h 6⊂ K1 prevents us to use the first equation from (22),
which explains the presence of u instead of just uK . Applying Lemma 3.4 yields then
‖uh − ūh‖V 1 . ‖u − ūh‖V 1 and ‖ζh − ζ̄h‖ . ‖u − ūh‖V 1 + ‖ζ − ζ̄h‖ with constants
depending on c1, and this leads to (51) by reasonning as above.

Remark 3.9. Writing 〈u− ūh, wh〉 = 〈uZ− ūZh , wh〉 and d1(u− ūh) = d1(uK− ūKh )
in the proof above we can show again a refined estimate, namely that ‖uK − uKh ‖V 1

and ‖uZ−uZh ‖V 1 are controlled by terms that do not involve uZ and uK , respectively.

3.3. Compatibility of the source approximation. In the previous section
we have seen that a standard Galerkin discretization of Problem 2.1 yields an a priori
error estimate for u − uh that depends on p, and in the proof of Proposition 3.6 we
have pointed out that this was caused by the non conformity K1

h 6⊂ K1. On the level
of principles the reason for this fact stems from a poor preservation of the Helmholtz
structure as observed e.g. in [21, 27, 9], and becomes transparent when we consider
the form (18) of Problem 2.1. Decomposing fh = fKh + fZh according to (34) and
using the discrete adjoints (33), the discrete problem (37) can then be put in a similar
form. Writing both systems side by side, we find

(52)


δ2d1uK = fK

d0p = fZ

δ1uZ = g

and


δ2
hd

1uKh = fKh

d0ph = fZh

δ1
hu

Z
h = gh.

Here the Z-compatibility (47) of the L2 projection (46) results in fZh to only depend
on fZ . From (52) this implies that ph only depends on p, which explains why the
error estimate on p does not involve u in Proposition 3.6. If one rather wishes an
error estimate on u that does not involve p, then the converse should be required.
Specifically, the operator f 7→ fh should be such that fKh only depends on fK , i.e.,

(53) fK = 0 =⇒ fKh = 0.

To distinguish this property from (47), we introduce the following definition.



12 M. CAMPOS PINTO

Definition 3.10. We say that an operator f 7→ fh ∈ V 1
h is Z-compatible if (47)

holds, and we shall say that it is K-compatible if (53) holds.

Remark 3.11. A related B-compatibilty property is defined in [7, Sec. 5.1.2] to
establish uniform inf-sup conditions for the discrete spaces. This property is somewhat
stronger that ours in that it is restricted to specific approximation properties, and it
corresponds to different relations depending on the problems: with the first problem
it implies a Z-compatibility in the sense defined above, and for the second problem it
leads to K-compatibility.

A similar discussion applies to Problem 2.2 based on its decomposed form (23), which
we may write together with its conforming discretization (42) in a similar form, i.e.,

(54)


uK + δ2ζ = fK

uZ = fZ

d1uK = `

and


uKh + δ2

hζh = fKh

uZh = fZh

d1uKh = `h

again with fh = fKh +fZh according to (34). Here a Z-compatible discretization allows
uZh = fZh to only depend on fZ and hence on uZ . However fKh may also depend on
fZ , which results in ζh depending not only on ζ but also on uZ (and uK). This
effect is visible in the associated error estimate (51) which is satisfactory when the
optimal error on ζ dominates that on u. When that is not the case, one may resort
to K-compatible discretizations: then fKh would not depend on fZ anymore and the
resulting ζh would not depend on uZ . However, it could still depend on uK . To
achieve the stronger property that ζh only depends on ζ, one would need to consider
a different formulation of the problem that does not involve u, such as d1δ2ζ = d1f−`.
In this article we shall restrict ourselves to the original formulation.

It is known that the compatibility of approximation operators is closely linked
with the existence of commuting diagrams see e.g. [7, 18]. The following lemma
expresses two sufficient conditions for K-compatibility, both involving commuting
diagrams.

Lemma 3.12. If the operator π1
h : V 1 → V 1

h satisfies a commuting diagram either
on d0 or on d1, in the sense that (i) there exists an operator π0

h : V 0 → V 0
h , such that

(55) π1
hd

0 = d0π0
h

holds on V 0, or (ii) there exists an operator π2
h : W 2 →W 2

h , such that

(56) d1π1
h = π2

hd
1

holds on V 1, then π1
h is K-compatible on V 1, in the sense that property (53), namely

fK = 0 =⇒ fKh = 0, holds for all f ∈ V 1.

Remark 3.13. Here we have considered operators defined on the domains V 0, V 1

and W 2 for simplicity. If they are defined on larger spaces, e.g. if π1
h is defined on

W 1, then the proof below shows that (53) holds for all f ∈W 1. If on the other hand
they are defined on smaller spaces (of smooth functions for instance), then a refined
study may be required to determine the validity domain of (53).

Proof. According to the Helmholtz decomposition (9), any f ∈ V 1 such that
fK = 0 is in Z1. The result is then clear if π1

h satisfies (55): by definition any f ∈ Z1

is of the form f = d0φ with φ ∈ V 0, hence π1
hf = π1

hd
0φ = d0π0

hφ ∈ d0V 0
h = Z1

h and
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hence fKh = 0. To handle the second case we begin by verifying the standard relation

(57) K1
h = δ2

hW
2
h

in two steps: by writing that 〈δ2
hξh, d

0qh〉 = 〈ξh, d1d0qh〉 = 0 holds for all qh ∈ V 0
h and

ξh ∈W 2
h , we first see that δ2

hW
2
h ⊂ K1

h. Next we observe that any vh ∈ K1
h∩ (δ2

hW
2
h )⊥

satisfies ‖d1vh‖2 = 〈vh, δ2
hd

1vh〉 = 0 and hence is zero due to the discrete Poincaré
estimate (31), which shows (57). Thus, writing any vh ∈ K1

h as vh = δ2
hξh for some

ξh ∈ W 2
h , we have 〈π1

hf, vh〉 = 〈π1
hf, δ

2
hξh〉 = 〈d1π1

hf, ξh〉 = 〈π2
hd

1f, ξh〉 = 0 for all
f ∈ Z1 = ker d1, see (4). Again this shows that fKh = 0 and ends the proof.

3.4. Error estimates for K-compatible discretizations. In this Section we
consider a K-compatible approximation operator π1

h defined on some domain D1, and
for simplicity we assume that Z1 ⊂ D1 ⊂ W 1. In particular, if f ∈ D1 then both
components fK and fZ of its L2 Helmholtz decomposition (10) also belong to D1.

3.4.1. K-compatible conforming approximation of the first problem. If
f belongs to the domain D1 of π1

h, then we can investigate the following modification
of Problem (48): find uh ∈ V 1

h and ph ∈ K0
h such that

(58)

{
〈d1uh, d

1vh〉+ 〈vh, d0ph〉 = 〈π1
hf, vh〉 vh ∈ V 1

h

〈uh, d0qh〉 = 〈g, qh〉(V 0)′×V 0 qh ∈ K0
h.

As expected, it yields an error estimate for u that no longer involves p.

Theorem 3.14. If π1
h is a K-compatible operator in the sense of (53), then the

solution of Problem (58) satisfies the error estimate

(59)


‖u− uh‖V 1 . ‖(π1

h − I)fK‖(V 1
h )′ + inf

ūh∈V 1
h

‖u− ūh‖V 1

‖p− ph‖V 0 . ‖(π1
h − I)f‖(V 1

h )′ + inf
p̄h∈K0

h

‖p− p̄h‖V 0 .

Remark 3.15. Using (18) we can rewrite (59) in terms of the solution only,
‖u− uh‖V 1 . ‖(π1

h − I)δ2d1u‖(V 1
h )′ + inf

ūh∈V 1
h

‖u− ūh‖V 1

‖p− ph‖V 0 . ‖(π1
h − I)(δ2d1u+ d0p)‖(V 1

h )′ + inf
p̄h∈K0

h

‖p− p̄h‖V 0 .

Proof. As above we consider an arbitrary field (ūh, p̄h) ∈ V 1
h ×K0

h. For vh ∈ K1
h,

the K-compatibility of π1
h yields π1

hf
Z ∈ Z1

h, hence 〈π1
hf

Z , vh〉 = 0. It follows that

〈d1(uh − ūh), d1vh〉 = 〈π1
hf, vh〉 − 〈d1ūh, d

1vh〉
= 〈π1

hf
K , vh〉 − 〈d1ūh, d

1vh〉
= 〈(π1

h − I)fK , vh〉+ 〈fK , vh〉 − 〈d1ūh, d
1vh〉

= 〈(π1
h − I)fK , vh〉+ 〈d1(u− ūh), d1vh〉

where we have used 〈fK , vh〉 = 〈δ2d1u, vh〉 = 〈d1u, d1vh〉 in the last equality, see (18)
and (8). For wh ∈ Z1

h, due to the embedding Z1
h ⊂ Z1 = ker d1, we have

〈wh, d0(ph − p̄h)〉 = 〈(π1
h − I)f, wh〉+ 〈wh, d0(p− p̄h)〉

and for qh ∈ K0
h, using the embeddings K0

h ⊂ V 0
h ⊂ V 0 we write

〈uh − ūh, d0qh〉 = 〈g, qh〉(V 0)′×V 0 − 〈ūh, d0qh〉 = 〈u− ūh, d0qh〉.

The proof is then completed by arguing as for Estimate (49).
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3.4.2. K-compatible conforming approximation of the second problem.
Similarly, we may replace (50) with the problem: find uh ∈ V 1

h and ζh ∈ Z2
h such that

(60)

{
〈uh, vh〉+ 〈d1vh, ζh〉 = 〈π1

hf, vh〉 vh ∈ V 1
h

〈d1uh, ξh〉 = 〈`, ξh〉 ξh ∈ Z2
h.

As announced above, it yields an error estimate for ζ that no longer involves uZ .

Theorem 3.16. If π1
h : V 1 → V 1

h is a K-compatible approximation operator in
the sense of (53), then for f ∈ V 1 the solution of Problem (60) satisfies the error
estimate

(61)


‖u− uh‖V 1 . ‖(π1

h − I)f‖(V 1
h )′ + inf

ūh∈V 1
h

‖u− ūh‖V 1 .

‖ζ − ζh‖ . ‖(π1
h − I)fK‖(V 1

h )′ + inf
ūh∈V 1

h

‖uK − ūh‖V 1 + inf
ζ̄h∈Z2

h

‖ζ − ζ̄h‖.

Remark 3.17. Using (23) we can rewrite (61) in terms of the solution only,

‖u− uh‖V 1 . ‖(π1
h − I)(u+ δ2ζ)‖(V 1

h )′ + inf
ūh∈V 1

h

‖u− ūh‖V 1 .

‖ζ − ζh‖ . ‖(π1
h − I)(uK + δ2ζ)‖(V 1

h )′ + inf
ūh∈V 1

h

‖uK − ūh‖V 1 + inf
ζ̄h∈Z2

h

‖ζ − ζ̄h‖.

Proof. We repeat the proof of Proposition 3.8 with minor changes similar to the
proof of Theorem 3.14: given an arbitrary (ūh, ζ̄h) ∈ V 1

h ×Z2
h, we compute for wh ∈ Z1

h

〈uh − ūh, wh〉 = 〈π1
hf, wh〉 − 〈ūh, wh〉 = 〈(π1

h − I)f, wh〉+ 〈u− ūh, wh〉

by using (20) and the embedding Z1
h ⊂ Z1. For ξh ∈ Z2

h we have

〈d1(uh − ūh), ξh〉 = 〈`, ξh〉 − 〈d1ūh, ξh〉 = 〈d1(u− ūh), ξh〉

by using again (20) and the embedding Z2
h ⊂ Z2. We finally consider vh ∈ K1

h and
observe that the K-compatibility of π1

h yields 〈π1
hf

Z , vh〉 = 0. We thus compute

〈uh − ūh, vh〉+ 〈d1vh, ζh − ζ̄h〉 = 〈π1
hf, vh〉 − 〈ūh, vh〉 − 〈d1vh, ζ̄h〉

= 〈π1
hf

K , vh〉 − 〈ūh, vh〉 − 〈d1vh, ζ̄h〉
= 〈(π1

h − I)fK , vh〉+ 〈uK − ūh, vh〉+ 〈d1vh, ζ − ζ̄h〉

where we have used the first equation from (23) in the last equality, with the fact that
〈vh, δ2ζ〉 = 〈d1vh, ζ〉, see (8). The proof is then completed by arguing as for (51).

4. Structure-preserving nonconforming discretizations. We now discuss
an extension of the above methods to spaces Ṽ 1

h which are no longer subspaces of V 1,
such as discontinuous Galerkin spaces. Following the Conforming/Nonconforming
Galerkin (Conga) approach developped in [18, 15, 16], our construction relies on
a non-standard exact sequence involving Ṽ 1

h , derived from a reference sequence of
conforming spaces (29) that is structure-preserving in the sense of (30)-(31). The
resulting nonconforming discretization is then shown to be stable without it being
necessary to introduce penalty parameters as is usual in DG methods, see e.g., [26,
25, 14]. As in [16] it is convenient to consider that Ṽ 1

h is larger than V 1
h , thus

Ṽ 1
h 6⊂ V 1, V 1

h ⊂ Ṽ 1
h ⊂W 1.
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The main ingredient of the nonconforming extension is a conforming projection,

P1
h : W 1 → V 1

h

that we assume L2-stable in the sense that there is a uniform constant cP such that

(62) ‖P1
hv‖ ≤ cP‖v‖, v ∈W 1.

For the convergence of the subsequent methods we further require that these conform-
ing projections preserve spaces of moments M1

h ⊂ Ṽ 1
h (typically piecewise polynomials

of degree lower than the functions in Ṽ 1
h ),

(63) 〈P1
hv, wh〉 = 〈v, wh〉, wh ∈M1

h .

One may think of defining P1
h as the L2 projection on V 1

h , as it satisfies the above
properties with M1

h = V 1
h . However its application involves the inversion of a V 1

h

mass matrix (a global operation on the underlying mesh, due to the V 1-conformity
that prevents the matrix to be block diagonal), which questions the practical interest
of the resulting nonconforming method. We believe that a more interesting choice
consists of constructing P1

h by locally averaging piecewise degrees of freedom of V 1
h

type, first conveniently extended to L2 in a stable way, see [20, 16]. The spaces of
preserved moments M1

h are then typically of lower order than V 1
h but the resulting

P1
h becomes a local operator, which should considerably reduce the computational

complexity of numerical methods.

4.1. A discrete exact sequence with nonconforming spaces. As in [18]
we first define a natural extension of d1

h : V 1
h →W 2

h to the nonconforming space,

(64) d̃1
h : Ṽ 1

h →W 2
h , ṽh 7→ d1P1

hṽh.

A new exact sequence involving this operator can then be constructed following [15],
by introducing: (i) a nonstandard discretization of V 0,

Ṽ 0
h := V 0

h × Ṽ 1
h

and (ii) an extension of d0
h : V 0

h → V 1
h to this product space,

(65) d̃0
h : Ṽ 0

h → Ṽ 1
h , (qh, ṽh) 7→ d0qh + (I − P1

h)ṽh.

Consistent with the notation (6) and (32) we then let

(66) K̃0
h = Ṽ 0

h ∩ (ker d̃0
h)⊥, K̃1

h = Ṽ 1
h ∩ (ker d̃1

h)⊥, Z̃1
h = d̃0Ṽ 0

h

and we observe that d̃1Ṽ 1
h = d1V 1

h = Z2
h, indeed V 1

h ⊂ Ṽ 1
h yields P1

hṼ
1
h = V 1

h . As
shown below, this construction yields a new structure-preserving discretization.

Theorem 4.1. If the conforming discrete sequence (29) is structure-preserving in
the sense of (30) and (31), then the nonconforming discrete sequence

(67) Ṽ 0
h

d̃0
h−−→ Ṽ 1

h

d̃1
h−−→ W 2

h

is also structure-preserving, in the sense where: (i) it is exact, and specifically

(68) d̃0
hṼ

0
h = d0V 0

h ⊕ (I − P1
h)Ṽ 1

h = ker d̃1
h,
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(ii) the following Poincaré estimates hold

(69)
‖q̃h‖ ≤ c̃0‖d̃0

hq̃h‖ q̃h ∈ K̃0
h = Ṽ 0

h ∩ (ker d̃0
h)⊥,

‖ṽh‖ ≤ c̃1‖d̃1
hṽh‖ ṽh ∈ K̃1

h = Ṽ 1
h ∩ (ker d̃1

h)⊥,

with c̃0 = (2c20c
2
P + 1)

1
2 and c̃1 = c1.

Proof. For the exactness of (67) we recall the proof of [15]: using (30) we have

ṽh ∈ ker d̃1
h =⇒ P1

hṽh ∈ ker d1
h = d0V 0

h =⇒ ṽh ∈ d0V 0
h ⊕ (I − P1

h)Ṽ 1
h

with a direct sum checked by noting that any w̃h ∈ d0V 0
h ∩ (I −P1

h)Ṽ 1
h ⊂ V 1

h satisfies

w̃h = P1
hw̃h ∈ P1

h(I − P1
h)Ṽ 1

h = {0}. The reverse inclusion is readily verified, hence

the second equality in (68). The first one holds by construction of d̃0
h and Ṽ 0

h .

For the first stability estimate in (69) we infer from d0V 0
h ∩ (I − P1

h)Ṽ 1
h = {0}

that ker d̃0
h = ker d0

h × (Ṽ 1
h ∩ ker(I − P1

h)) = ker d0
h × V 1

h , hence

(70) K̃0
h = Ṽ 0

h ∩ (ker d̃0
h)⊥ = (V 0

h ∩ (ker d0)⊥)× (Ṽ 1
h ∩ (V 1

h )⊥).

Taking q̃h = (qh, ṽh) in the latter space we then compute

‖q̃h‖2 = ‖qh‖2 + ‖ṽh‖2 ≤ c20‖d0qh‖2 + ‖ṽh‖2

≤ c20(‖d0qh − P1
hṽh‖+ ‖P1

hṽh‖)2 + ‖ṽh‖2

≤ 2c20‖d0qh − P1
hṽh‖2 + (2c20c

2
P + 1)‖ṽh‖2

≤ c̃20(‖d0qh − P1
hṽh‖2 + ‖ṽh‖2)

= c̃20‖d0qh + (I − P1
h)ṽh‖2 = c̃20‖d̃0

hq̃h‖2.

Here the first inequality uses the conforming stability (31), the third one uses the
uniform L2 bound (62) for P1

h (with cP ≥ 1), and the next to last equality follows
from the observation that d0qh−P1

hṽh ∈ V 1
h is orthogonal to ṽh, see (70). This shows

the first stability estimate. For the second one we consider ṽh ∈ K̃1
h. By construction

d̃1
hṽh is in d1V 1

h , hence there is a (unique) conforming vh ∈ K1
h such that d1vh = d̃1

hṽh.
Using the conforming stability (31) this gives

(71) ‖vh‖ ≤ c1‖d1vh‖ = c1‖d̃1
hṽh‖

so we are left to control ṽh by its conforming counterpart. For this we observe that
the difference vh − P1

hṽh is in V 1
h ∩ ker d1, hence it is orthogonal to ṽh. We thus

have 0 = 〈ṽh, vh − P1
hṽh〉 = 〈ṽh, vh − ṽh〉 where the second equality follows from

the fact that ṽh is also orthonal to the functions in (I − P1
h)Ṽ 1

h . As a consequence,
‖ṽh‖2 ≤ ‖ṽh‖2 + ‖vh − ṽh‖2 = ‖vh‖2 and the desired estimate follows by combining
this bound with (71).

For the nonconforming error analysis we introduce natural energy norms,

(72) ‖q̃h‖2Ṽ 0
h

:= ‖q̃h‖2 + ‖d̃0
hq̃h‖2, ‖ṽh‖2Ṽ 1

h

:= ‖ṽh‖2 + ‖d̃1
hṽh‖2.

Notice that the Ṽ 1
h norm is defined over W 1 (an L2 space) and on V 1

h it coincides
with the V 1 norm. Introducing a canonical conforming projection on V 0

h ,

(73) P0
h : Ṽ 0

h → V 0
h , (qh, w̃h) 7→ qh,
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and using the definition of d̃1
h, d̃0

h and the stability (62) of P1
h, we further observe that

‖q̃h‖Ṽ 0
h
∼ ‖(I − P0

h)q̃h‖+ ‖P0
hq̃h‖V 0 = ‖w̃h‖+ ‖qh‖V 0 , q̃h = (qh, w̃h) ∈ Ṽ 0

h ,

‖ṽh‖Ṽ 1
h
∼ ‖(I − P1

h)ṽh‖+ ‖P1
hṽh‖V 1 , ṽh ∈ Ṽ 1

h ,

hold with constants independent of h. In particular, the conforming projections are
stable in the proper energy norms,

(74) ‖P0
hq̃h‖V 0 . ‖q̃h‖Ṽ 0

h
and ‖P1

hṽh‖V 1 . ‖ṽh‖Ṽ 1
h
.

We also let δ̃1
h : Ṽ 1

h → Ṽ 0
h and δ̃2

h : W 2
h → Ṽ 1

h be the discrete adjoints of d̃0
h and d̃1

h,

(75)
〈δ̃1
hv, q〉 = 〈v, d̃0

hq〉, v ∈ Ṽ 1
h , q ∈ Ṽ 0

h

〈δ̃2
hξ, v〉 = 〈ξ, d̃1

hv〉, ξ ∈ W̃ 2
h , v ∈ Ṽ 1

h .

Using the discrete exact sequence property (68) we then observe that Z̃1
h coincides

with the kernel of d̃1
h and K̃1

h coincides with the kernel of δ̃1
h. Hence the decomposition

(76) Ṽ 1
h = K̃1

h

⊥
⊕ Z̃1

h = ker δ̃1
h

⊥
⊕ ker d̃1

h

is orthogonal both in the L2 and Ṽ 1
h inner products. Before discretizing the mixed

problems we discuss the compatibility of nonconforming approximation operators.

4.2. Z- and K-compatible nonconforming operators. In the nonconform-
ing case we extend Def. 3.10 as follows.

Definition 4.2. We say that an operator f 7→ f̃h ∈ Ṽ 1
h is Z-compatible (for the

nonconforming discretization) if

(77) fZ = 0 =⇒ f̃Zh = 0

holds for the Helmholtz decompositions f = fK +fZ and f̃h = f̃Kh + f̃Zh corresponding
to (11)-(12) and (76), respectively. If

(78) fK = 0 =⇒ f̃Kh = 0

then we shall say that it is K-compatible (for the nonconforming discretization).

In other terms, f 7→ f̃h is Z (resp. K)-compatible if f̃Zh (resp. f̃Kh ) only depends
on fZ (resp. fK). In the conforming case we have seen that the L2 projection on V 1

h

is a Z-compatible operator. With nonconforming spaces this is no longer true: indeed
the L2 projection on Ṽ 1

h does not satisfy (77) and we must use another approximation
operator (although not a projection).

Lemma 4.3. The operator (P1
h)∗ : W 1 → Ṽ 1

h , f 7→ f̃h, defined by

(79) 〈f̃h, ṽh〉 = 〈f,P1
hṽh〉, ṽh ∈ Ṽ 1

h ,

is Z-compatible in the sense of Def. 4.2.

Proof. From the relation (68) we infer that

(80) P1
h(Z̃1

h) ⊂ Z1
h ⊂ Z1.

For ṽ1
h ∈ Z̃1

h this yields 〈f̃Zh , ṽh〉 = 〈f̃h, ṽh〉 = 〈f,P1
hṽh〉 = 〈fZ ,P1

hṽh〉, hence (77).
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In Section 3.3 we have identified two K-compatibility criteria involving commut-
ing diagrams. For the nonconforming case, we first make an easy observation.

Lemma 4.4. If π1
h is an operator mapping on V 1

h that is K-compatible for the
conforming discretization, then it is also K-compatible for the nonconforming one.

Proof. Using the embedding V 1
h ⊂ Ṽ 1

h we see that π1
h maps on Ṽ 1

h , and from the

embedding Z1
h ⊂ Z̃1

h we infer that if fKh = 0, then fh ∈ Z̃1
h and hence f̃Kh = 0.

Due to the geometric structure we also check that the commuting diagram criteria
of Lemma 3.12 naturally extend to the nonconforming case.

Lemma 4.5. If the operator π̃1
h : V 1 → Ṽ 1

h satisfies a commuting diagram either

on d0 or on d1, in the sense that (i) there exists an operator π̃0
h : V 0 → Ṽ 0

h , such that

(81) π̃1
hd

0 = d̃0
hπ̃

0
h

holds on V 0, or (ii) there exists an operator π2
h : W 2 →W 2

h , such that

(82) d̃1
hπ̃

1
h = π2

hd
1

holds on V 1, then π̃1
h is K-compatible on V 1, in the sense that property (78), namely

fK = 0 =⇒ f̃Kh = 0, holds for all f ∈ V 1.

Proof. The proof is formally the same than for Lemma 3.12.

5. Nonconforming discretizations of the source problems.

5.1. Discretizations with arbitrary sources. As in the conforming case we
first study the stability of nonconforming discretizations with arbitrary sources.

5.1.1. Nonconforming discretization of the first problem. Based on the
nonconforming sequence (68) the discretization of Problem 2.1 reads: Given g̃h, f̃h in
the nonconforming spaces (Ṽ 0

h )′ and (Ṽ 1
h )′, find ũh ∈ Ṽ 1

h , p̃h ∈ K̃0
h such that

(83)

 〈d̃
1
hũh, d̃

1
hṽh〉+ 〈ṽh, d̃0

hp̃h〉 = 〈f̃h, ṽh〉(Ṽ 1
h )′×Ṽ 1

h
ṽh ∈ Ṽ 1

h

〈ũh, d̃0
hq̃h〉 = 〈g̃h, q̃h〉(Ṽ 0

h )′×Ṽ 0
h

q̃h ∈ K̃0
h.

From the definition of the operators d̃0
h and d̃1

h, system (83) amounts to{
〈d1P1

hũh, d
1P1

hṽh〉+ 〈ṽh, d0ph + (I − P1
h)x̃h〉 = 〈f̃h, ṽh〉(Ṽ 1

h )′×Ṽ 1
h

〈ũh, d0qh + (I − P1
h)ỹh〉 = 〈g̃h, q̃h〉(Ṽ 0

h )′×Ṽ 0
h

where we have written p̃h = (ph, x̃h) ∈ Ṽ 0
h = V 0

h × Ṽ 1
h and similarly q̃h = (qh, ỹh). We

decompose this problem as the previous ones. According to (76) we write

(84) ũh = ũKh + ũZh ∈ K̃1
h ⊕ Z̃1

h

and restate Problem (83) as: find (ũKh , ũ
Z
h , p̃h) ∈ K̃1

h × Z̃1
h × K̃0

h such that

(85)


〈d̃1
hũ

K
h , d̃

1
hṽh〉 = 〈f̃h, ṽh〉(Ṽ 1

h )′×Ṽ 1
h

ṽh ∈ K̃1
h

〈w̃h, d̃0
hp̃h〉 = 〈f̃h, w̃h〉(Ṽ 1

h )′×Ṽ 1
h

w̃h ∈ Z̃1
h

〈ũZh , d̃0
hq̃h〉 = 〈g̃h, q̃h〉(Ṽ 0

h )′×Ṽ 0
h

q̃h ∈ K̃0
h.
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Lemma 5.1. The discrete problem (83) is well-posed, and its solution satisfies

(86)
‖ũh‖Ṽ 1

h
. ‖f̃h|K̃1

h
‖(Ṽ 1

h )′ + ‖g̃h‖(Ṽ 0
h )′

‖p̃h‖Ṽ 0
h
. ‖f̃h|Z̃1

h
‖(Ṽ 1

h )′

where f̃h|K̃1
h

and f̃h|Z̃1
h

denote the restrictions of f̃h to the respective spaces. Here the

constants depending on c̃0, c̃1 from (69). Specifically, writing ũh as in (84) we have

(87)

‖ũKh ‖Ṽ 1
h
≤ (1 + c̃21)‖f̃h|K̃1

h
‖(Ṽ 1

h )′

‖ũZh ‖Ṽ 1
h
≤ (1 + c̃20)

1
2 ‖g̃h‖(Ṽ 0

h )′

‖p̃h‖Ṽ 0
h
≤ (1 + c̃20)

1
2 ‖f̃h|Z̃1

h
‖(Ṽ 1

h )′ .

Proof. The proof is formally the same than for Lemma 3.2, using the noncon-
forming Poincaré estimates (69) and the formulation (85) of Problem (83).

Remark 5.2. Using the discrete stability (69) and reasonning as in Section 2.2 one
verifies that the bilinear forms involved in (83), i.e. ãh(ṽh, w̃h) = 〈d̃1

hṽh, d̃
1
hw̃h〉 and

b̃h(ṽh, q̃h) = 〈ṽh, d̃0
hq̃h〉, satisfy standard stability properties, namely the coercivity of

ãh on the discrete kernel (here, K̃h) and a uniform discrete inf-sup condition for b̃h.

5.1.2. Nonconforming discretization of the second problem. Based on
the nonconforming sequence (68) the discretization of Problem 2.2 reads: Given dis-
crete sources f̃h, `h in (Ṽ 1

h )′ and W 2
h , find ũh ∈ Ṽ 1

h , ζh ∈ Z2
h such that

(88)

{
〈ũh, ṽh〉+ 〈d̃1

hṽh, ζh〉 = 〈f̃h, ṽh〉(Ṽ 1
h )′×Ṽ 1

h
ṽh ∈ Ṽ 1

h

〈d̃1
hũh, ξh〉 = 〈`h, ξh〉 ξh ∈ Z2

h.

From the definition of d̃1
h this problem amounts to

(89)

{
〈ũh, ṽh〉+ 〈d1P1

hṽh, ζh〉 = 〈f̃h, ṽh〉(Ṽ 1
h )′×Ṽ 1

h
ṽh ∈ Ṽ 1

h

〈d1P1
hũh, ξh〉 = 〈`h, ξh〉 ξh ∈ Z2

h

and writing ũh as in (84) we recast it as: find (ũKh , ũ
Z
h , ζh) ∈ K̃1

h × Z̃1
h ×Z2

h such that

(90)


〈ũKh , ṽh〉+ 〈d̃1

hṽh, ζh〉 = 〈f̃h, ṽh〉(Ṽ 1
h )′×Ṽ 1

h
ṽh ∈ K̃1

h

〈ũZh , w̃h〉 = 〈f̃h, w̃h〉(Ṽ 1
h )′×Ṽ 1

h
w̃h ∈ Z̃1

h

〈d̃1
hũ

K
h , ξh〉 = 〈`h, ξh〉 ξh ∈ Z2

h.

Here the third, second and first equations define ũKh , ũZh and ζh, respectively.

Lemma 5.3. The discrete problem (88) is well-posed, and its solution satisfies

(91)
‖ũh‖Ṽ 1

h
. ‖f̃h|Z̃1

h
‖(Ṽ 1

h )′ + ‖`h‖

‖ζh‖ . ‖f̃h|K̃1
h
‖(Ṽ 1

h )′ + ‖`h‖

where f̃h|K̃1
h

and f̃h|Z̃1
h

denote the restrictions of f̃h to the respective spaces. Here the

constants depend only on c̃1 from (69). Specifically, writing ũh as in (84) we have

(92)

‖ũKh ‖Ṽ 1
h
≤ (1 + c̃21)

1
2 ‖`h‖

‖ũZh ‖Ṽ 1
h
≤ ‖f̃h|Z̃1

h
‖(Ṽ 1

h )′

‖ζh‖ ≤ (1 + c̃21)
1
2 ‖f̃h|K̃1

h
‖(Ṽ 1

h )′ + c̃21‖`h‖.
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Proof. The proof is formally the same than for Lemma 3.4, using the noncon-
forming Poincaré estimates (69) and the formulation (90) of Problem (88).

Remark 5.4. Using the discrete stability (69) and reasonning as in Section 2.3
one verifies that the bilinear forms involved in (88), namely ãh(ṽh, w̃h) = 〈ṽh, w̃h〉 and
b̃h(ṽh, ξh) = 〈d̃1

hṽh, ξh〉, satisfy standard stability properties: the coercivity of ãh on

the relevant discrete kernel (here, Z̃h) and a uniform discrete inf-sup condition for b̃h.

5.2. Z-compatible nonconforming approximation. Following Lemma 4.3,
we may use (P1

h)∗ as a natural extension of the L2 source projection (46) in the
nonconforming case.

5.2.1. Z-compatible nonconforming approximation of the first problem.
Using (P1

h)∗ for f and the canonical extension (P0
h)∗ for g, we obtain the following

nonconforming method for Problem 2.1: find ũh ∈ Ṽ 1
h , p̃h = (ph, x̃h) ∈ K̃0

h such that

(93)

{
〈d̃1
hũh, d̃

1
hṽh〉+ 〈ṽh, d̃0

hp̃h〉 = 〈f,P1
hṽh〉(V 1)′×V 1 ṽh ∈ Ṽ 1

h

〈ũh, d̃0
hq̃h〉 = 〈g,P0

hq̃h〉(V 0)′×V 0 q̃h ∈ K̃0
h.

The accuracy of the resulting method involves that of P1
h and its adjoint (P1

h)∗.

Theorem 5.5. The solution to the discrete problem (93) satisfies
‖u− ũh‖Ṽ 1

h
. ‖d1(I − P1

h)u‖+ inf
ūh∈V 1

h∩M
1
h

‖u− ūh‖V 1 + inf
p̄h∈K0

h

d0p̄h∈M1
h

‖d0(p− p̄h)‖

‖(p, 0)− p̃h‖Ṽ 0
h
. inf

p̄h∈K0
h

d0p̄h∈M1
h

‖p− p̄h‖V 0

with constants depending on c̃0, c̃1, cP , and M1
h the preserved moments (63) of P1

h.

Proof. Consider ūh ∈ V 1
h ∩M1

h and p̄h ∈ K0
h with d0p̄h ∈ M1

h . Using (93), (14)

and the fact that d̃1
h = d1P1

h coincides with d1 on V 1
h , we write for ṽh ∈ K̃1

h,

〈d̃1
h(ũh − ūh), d̃1

hṽh〉 = 〈f,P1
hṽh〉(V 1)′×V 1 − 〈d1ūh, d

1P1
hṽh〉

= 〈d1(u− ūh), d1P1
hṽh〉+ 〈P1

hṽh, d
0p〉

= 〈d1(u− ūh), d1P1
hṽh〉+ 〈P1

hṽh, d
0(p− p̄h)〉,

where we used that 〈P1
hṽh, d

0p̄h〉 = 〈ṽh, d0p̄h〉 = 0 according to (63) and the embed-

ding Z1
h ⊂ Z̃1

h. For w̃h ∈ Z̃1
h, observing that P1

hw̃h ∈ Z1, see (80), and using the form
(17) of the exact problem, we write (using again d0p̄h ∈M1

h)

〈w̃h, d̃0
h(p̃h − (p̄h, 0))〉 = 〈f,P1

hw̃h〉(V 1)′×V 1 − 〈w̃h, d0p̄h〉 = 〈P1
hw̃h, d

0(p− p̄h)〉.

Next for q̃h = (qh, ỹh) ∈ K̃0
h, we infer from ūh ∈M1

h that 〈ūh, (P1
h − I)ỹh〉 = 0, hence

〈ūh, d̃0
hq̃h〉 = 〈ūh, d0qh〉. Using (17) with qh = P0

hq̃h ∈ V 0
h gives then

〈ũh − ūh, d̃0
hq̃h〉 = 〈g, qh〉(V 0)′×V 0 − 〈ūh, d0qh〉 = 〈u− ūh, d0P0

hq̃h〉.

Since (p̄h, 0) ∈ K̃0
h, Lemma 5.1 applies: Using the stability (74) of P0

h, P1
h this gives

‖ũh − ūh‖Ṽ 1
h
. ‖u− ūh‖V 1 + ‖d0(p− p̄h)‖ and ‖p̃h − (p̄h, 0)‖Ṽ 0

h
. ‖d0(p− p̄h)‖ with

constants involving c̃0, c̃1, cP . As ‖u− ūh‖Ṽ 1
h
≤ ‖u− ūh‖V 1 +‖d1(I−P1

h)u‖ this yields

‖u−ũh‖Ṽ 1
h
. ‖u−ūh‖V 1+‖d1(I−P1

h)u‖+‖d0(p−p̄h)‖ and ‖(p, 0)−p̃h‖Ṽ 0
h
. ‖p−p̄h‖V 0

and the result follows by taking the infimum over ūh and p̄h.
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5.2.2. Z-compatible nonconforming approximation of the second prob-
lem. Following (93), a Z-compatible nonconforming approximation analogous to
Problem 2.2 is: find ũh ∈ Ṽ 1

h , ζh ∈ Z2
h such that

(94)

{
〈ũh, ṽh〉+ 〈d̃1

hṽh, ζh〉 = 〈f,P1
hṽh〉(V 1)′×V 1 ṽh ∈ Ṽ 1

h

〈d̃1
hũh, ξh〉 = 〈`, ξh〉 ξh ∈ Z2

h.

The accuracy of the resulting method essentially involves that of the adjoint (P1
h)∗.

Theorem 5.6. The solution to the nonconforming approximation (94) satisfies
‖u− ũh‖Ṽ 1

h
. inf
ūh∈V 1

h∩M
1
h

‖u− ūh‖V 1

‖ζ − ζh‖ . inf
ζ̄h∈Z2

h

‖ζ − ζ̄h‖+ inf
ūh∈V 1

h∩M
1
h

‖u− ūh‖V 1 .

Proof. We consider ūh ∈ V 1
h ∩M1

h and ζ̄h ∈ Z2
h. For w̃h ∈ Z̃1

h, using (20) we write

〈ũh− ūh, w̃h〉 = 〈f,P1
hw̃h〉(V 1)′×V 1−〈ūh, w̃h〉 = 〈u,P1

hw̃h〉−〈ūh, w̃h〉 = 〈u− ūh,P1
hw̃h〉

by using P1
hw̃h ∈ Z1, and the moment preserving property (63). For ξh ∈ Z2

h ⊂ Z2,

〈d̃1
h(ũh − ūh), ξh〉 = 〈`, ξh〉 − 〈d1ūh, ξh〉 = 〈d1(u− ūh), ξh〉

follows by using (20) again and d̃1
h = d1 on V 1

h . Finally for ṽh ∈ K̃1
h, we have

〈ũh − ūh, ṽh〉+ 〈d̃1
hṽh, ζh − ζ̄h〉 = 〈f,P1

hvh〉(V 1)′×V 1 − 〈ūh, ṽh〉 − 〈d̃1
hṽh, ζ̄h〉

= 〈u− ūh,P1
hṽh〉+ 〈d̃1

hṽh, ζ − ζ̄h〉

by using again (20) and (63). Applying Lemma 5.3 and the stability (74) of P1
h yields

then ‖ũh− ūh‖Ṽ 1
h
. ‖u− ūh‖V 1 and ‖ζh− ζ̄h‖ . ‖u− ūh‖V 1 +‖ζ− ζ̄h‖ with constants

depending on c̃1, cP . Taking the infimum over ūh and p̄h ends the proof.

5.3. K-compatible nonconforming approximation. As in Section 3.4 we
consider a K-compatible approximation operator π̃1

h defined on some domain D1,
see Def. 4.2. Again we assume that Z1 ⊂ D1 ⊂ W 1, so that if f ∈ D1 then both
components fK and fZ of its L2 Helmholtz decomposition (10) belong to D1.

5.3.1. K-compatible nonconforming approximation of the first prob-
lem. If f belongs to the domain D1 of π̃1

h, we can investigate a K-compatible version

of Problem (93): find ũh ∈ Ṽ 1
h , p̃h ∈ K̃0

h such that

(95)

{
〈d̃1
hũh, d̃

1
hṽh〉+ 〈ṽh, d̃0

hp̃h〉 = 〈π̃1
hf, ṽh〉 ṽh ∈ Ṽ 1

h

〈ũh, d̃0
hq̃h〉 = 〈g,P0

hq̃h〉(V 0)′×V 0 q̃h ∈ K̃0
h.

Theorem 5.7. If π̃1
h : D1 → Ṽ 1

h is a K-compatible operator in the sense of (78),
then for f ∈ D1 the solution to (95) satisfies the error estimate
‖u− ũh‖Ṽ 1

h
. ‖d1(I − P1

h)u‖+ ‖(π̃1
h − (P1

h)∗)fK‖(Ṽ 1
h )′ + inf

ūh∈V 1
h∩M

1
h

‖u− ūh‖V 1

‖(p, 0)− p̃h‖Ṽ 0
h
. ‖(π̃1

h − (P1
h)∗)f‖(Ṽ 1

h )′ + inf
p̄h∈K0

h

d0p̄h∈M1
h

‖p− p̄h‖V 0

with constants independent of h.
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Remark 5.8. As in Remark 3.15 we can eliminate f from these estimates.

Proof. We combine the proofs of Theorems 3.14 and 5.5. In particular, we write

〈d̃1
h(ũh − ūh), d̃1

hṽh〉 = 〈π̃1
hf, ṽh〉 − 〈d1ūh, d̃

1
hvh〉

= 〈π̃1
hf

K , ṽh〉 − 〈d1ūh, d̃
1
hvh〉

= 〈(π̃1
h − (P1

h)∗)fK , ṽh〉+ 〈fK ,P1
hṽh〉 − 〈d1ūh, d̃

1
hṽh〉

= 〈(π̃1
h − (P1

h)∗)fK , ṽh〉+ 〈d1(u− ūh), d̃1
hṽh〉

for ṽh ∈ K̃1
h, and for w̃h ∈ Z̃1

h we compute

〈w̃h, d̃0
h(p̃h − (p̄h, 0))〉 = 〈π̃1

hf, w̃h〉 − 〈w̃h, d0p̄h〉
= 〈(π̃1

h − (P1
h)∗)f, w̃h〉+ 〈f,P1

hw̃h〉 − 〈w̃h, d0p̄h〉
= 〈(π̃1

h − (P1
h)∗)f, w̃h〉+ 〈P1

hw̃h, d
0(p− p̄h)〉.

The end of the proof is the same than for Theorem 5.5.

5.3.2. K-compatible nonconforming approximation of the second prob-
lem. For the second problem we consider: find ũh ∈ Ṽ 1

h and ζh ∈ Z2
h such that

(96)

{
〈ũh, ṽh〉+ 〈d̃1

hṽh, ζh〉 = 〈π̃1
hf, ṽh〉 ṽh ∈ Ṽ 1

h

〈d̃1
hũh, ξh〉 = 〈`, ξh〉 ξh ∈ Z2

h.

As in the conforming case, it has the effect that uZ is no longer involved in the error
estimate for ζ, see Theorem 3.16.

Theorem 5.9. If π̃1
h : D1 → Ṽ 1

h is a K-compatible operator in the sense of (78),
then for f ∈ D1 the solution to (96) satisfies the error estimate
‖u− ũh‖Ṽ 1

h
. ‖(π̃1

h − (P1
h)∗)f‖(Ṽ 1

h )′ + inf
ūh∈V 1

h∩M
1
h

‖u− ūh‖V 1 .

‖ζ − ζh‖ . ‖(π̃1
h − (P1

h)∗)fK‖(Ṽ 1
h )′ + inf

ūh∈V 1
h∩M

1
h

‖uK − ūh‖V 1 + inf
ζ̄h∈Z2

h

‖ζ − ζ̄h‖.

Remark 5.10. As in Remark 3.17 we can eliminate f from these estimates.

Proof. Here we combine the proofs of Theorems 3.16 and 5.6. Thus, we write

〈ũh − ūh, w̃h〉 = 〈π̃1
hf, w̃h〉 − 〈ūh, w̃h〉 = 〈(π̃1

h − (P1
h)∗)f, w̃h〉+ 〈u− ūh,P1

hw̃h〉

for w̃h ∈ Z̃1
h. For ξh ∈ Z2

h the relation is unchanged and for ṽh ∈ K̃1
h we compute

〈ũh − ūh, ṽh〉+ 〈d̃1
hṽh, ζh − ζ̄h〉 = 〈π̃1

hf, ṽh〉 − 〈ūh, ṽh〉 − 〈d̃1
hṽh, ζ̄h〉

= 〈π̃1
hf

K , ṽh〉 − 〈ūh,P1
hṽh〉 − 〈d̃1

hṽh, ζ̄h〉
= 〈(π̃1

h − (P1
h)∗)fK , ṽh〉+ 〈uK − ūh,P1

hṽh〉
+ 〈d̃1

hṽh, ζ − ζ̄h〉

The proof ends like the one of Theorem 5.6.
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[17] M. Campos Pinto and E. Sonnendrücker, Compatible Maxwell solvers with particles II:
conforming and non-conforming 2D schemes with a strong Faraday law. 〈hal-01303861〉,
2016.
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