
HAL Id: hal-01472060
https://hal.sorbonne-universite.fr/hal-01472060

Submitted on 20 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The equivalence of two classical list scheduling
algorithms for dependent typed tasks with release dates,

due dates and precedence delays
Aurélien Carlier, Claire C. Hanen, Alix Munier-Kordon

To cite this version:
Aurélien Carlier, Claire C. Hanen, Alix Munier-Kordon. The equivalence of two classical list scheduling
algorithms for dependent typed tasks with release dates, due dates and precedence delays. Journal of
Scheduling, 2017, pp.1-9. �10.1007/s10951-016-0507-8�. �hal-01472060�

https://hal.sorbonne-universite.fr/hal-01472060
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Equivalence of two classical list scheduling algorithms for

dependent typed tasks with release dates, due dates and

precedence delays

Aurélien Carlier · Claire Hanen · Alix

Munier Kordon

Received: date / Accepted: date

Abstract We consider a finite set of unit time execution tasks with release dates, due
dates and precedence delays. The machines are partitionned into k classes. Each task
requires one machine from a fixed class to be executed. The problem is the existence
of a feasible schedule.

This general problem is known to be NP-complete; many studies were devoted to
the determination of polynomial time algorithms for some special subcasses, most of
them based on a particular list schedule. The Garey-Johnson and Leung-Palem-Pnueli
algorithms (respectively GJ and LPP in short) are both improving the due dates to
build a priority list. They are modifiying them using necessary conditions until a fix
point is reached. The present paper shows that these two algorithms are different
implementations of a same generic one. The main consequence is that all the results
valid for GJ algorithm, are also for LPP and vice versa.

Keywords list scheduling algorithms · polynomial sub-problems · approximation
algorithms

1 Introduction

Scheduling problems with release and due dates have been considered for a long
time, either in their decision version (is there a schedule meeting all the constraints ?)
or in their optimization version, by minimizing the maximum lateness Lmax. Most of
the decision problems are NP-complete once precedence and resource constraints are
considered [6,12,15]. However, some particular instances have led to polynomial al-
gorithms. Garey and Johnson [5] solved polynomially P2|prec, pi = 1, ri, di|Lmax and
its preemptive version P2|prec, pmtn, ri, di|Lmax by using a particular list scheduling
algorithm. This algorithm was extended to get approximation algorithms for the Lmax

criteria with various hypothesis: parallel processors [8], preemptive jobs [7], commu-
nication delays [7], typed tasks systems, and unitary resource constraints scheduling
problems [1].

A.Carlier
Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu 75005 Paris
E-mail: Aurelien.Carlier@lip6.fr

C.Hanen
Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu 75005 Paris
and Univeristé Paris-Lumières, Université Paris Ouest Nanterre La Défense, 92000 Nanterre E-mail:
Claire.Hanen@lip6.fr

A.Munier Kordon
Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu 75005 Paris
E-mail: Alix.Munier@lip6.fr

A similar class of scheduling problems was also studied in the context of parallel
computing. Processing times are here unitary (i.e., pi = 1 for each task i) since each
task corresponds to a basic instruction. Precedence delays, corresponding to a minimum
duration between the executions of two dependent tasks, are introduced to model data
transfers between them. Minimizing the makespan or the maximum lateness is NP-
complete even for one machine [2,9,14]. Leung et al. [13] developped a new list schedul-
ing algorithm that solves polynomially several sub-problems including most of them
for which a polynomial algorithm was already known. For an interval order precedence
graph with monotone delays, the decision problem P |int. order,monotone ℓij , pi =
1, ri, di|⋆ is solved polynomially using the LPP algorithm [13]. This algorithm was
extended to handle monotone interval orders with typed tasks systems [4] or commu-
nications delays and dedicated procesors [11].

Garey and Johnson (in short GJ) and Leung, Palem and Pnueli (in short LPP)
algorithms rely both on an iterative process that modifies the due dates until either
a fixed point is reached (due dates are then said to be consistent), or a contradiction
is observed. These modified due dates are then used as priorities to build a feasible
schedule using a list scheduling algorithm. The main differences between these two
algorithms are the definition of the fix point, or equivalently the definition of a set
of consistent modified due dates, and the modification step of due dates. The aim
of our study is to prove that GJ and LPP algorithms are two implementations of
a generic modified due date algorithm for the general typed task decision problem
PΣk, |prec, ℓij , pi = 1, ri, di|⋆; they thus converge to the same unique fixed point. LPP
algorithm has a better worst case complexity and thus must be preferred to compute
efficiently modified due dates. From a theoretical point a view, our main conclusion is
that all the results proved for GJ algorithm are true for LPP, and vice versa.

The computation of the fix point is polynomial for both GJ and LPP algorithms.
However, the list priority algotithm based on the due dates obtained does not neces-
sarily provide an optimal solution. Thus, there is no contradiction with as example the
NP-hardness result from Yu et al. [16] for F2|ℓij , pi = 1, |Cmax.

The paper is organized as follows: Section 2 introduces the problem and notations.
Extended GJ and LPP consistencies are introduced in Section 3. Section 4 is devoted
to the proof of the equivalence between LPP and GJ consistency. A generic definition
of the due date modification algorithm is then presented in Section 5. It is also proved
the convergence to a unique fixed point, if it exists. The consequence is that LPP and
GJ algorithms are converging to the same modified due dates. The implementation of
LPP and GJ algorithms and their complexity are briefly recalled in Section 6, followed
by an experimental comparison of their performances for m identical machines and a
usual precedence graph. A list of polynomial sub-problems and approximation results
valid for both algorithms is established in Section 7. Section 8 is our conclusion.

2 Problem definition and notations

Let T = {1, · · · , n} a set of tasks with unit processing times pi = 1, release time ri
and due dates di for i ∈ T .

Precedence relations are given by a directed acyclic graph noted G = (T , E). Each
arc e = (i, j) ∈ E is valued by a non negative integer ℓij ; this value models a minimum
delay between the end of i and the beginning of j. If ti, i ∈ T denotes the starting
time of task i, the relation expressed by any arc e = (i, j) ∈ E is ti + pi + ℓij ≤ tj .
We assume without loss of generality that release times are consistent with respect to
precedence delays, i.e. if (i, j) ∈ E then ri + 1 + ℓij ≤ rj . All the values considered in
this paper in relation to time are integers.

Machines (or processors) are partitionned into k classes {C1, · · · , Ck}, each of them
containingmp identical processors for p ∈ {1, · · · , k}. Each task i requires one processor
from a fixed class τi ∈ {C1, · · · , Ck} and is then called typed task. Typed tasks systems

include both identical processors (only one class of processor) and dedicated processors
(only one processor per class).

The main problem consists in computing a starting times vector t = (t1, · · · , tn) of
tasks such that release and due dates vectors r = (r1, · · · , rn) and d = (d1, · · · , dn),
precedence delays and resource constraints are met. It is refered to PΣk|prec, ℓij , pi =
1, ri, di|⋆ using standard notations. The minimization of the maximum lateness, defined
as Lmax = maxi∈T (ti+1−di) is also discussed; this last optimization problem is noted
as PΣk|prec, ℓij , pi = 1, ri| Lmax.

We denote i → j if there is a path from i to j in G with i 6= j. We also set
Si = {j ∈ T , i → j} and Pi = {j ∈ T , j → i} for respectively the successors and
the predecessors of i. For any task i ∈ T , Indep(i) is the set of task from T with
no precedence relation with i, thus neither i → j nor j → i. For any task i ∈ T , let
Ti = Indep(i) ∪ Si. We set that ∀i ∈ T , i 6∈ Indep(i) and i 6∈ Ti.

For convenience, we denote by ℓ+ij the transitive latency between all pairs of tasks

(i, j) ∈ T 2 with j ∈ Si. Formally, for any path ν = i1, · · · , ip of G from i1 to ip with

p > 1, we set ℓ(ν) =
∑p−1

α=1
(ℓiαiα+1

+1)− 1. ℓ+ij is then the maximum value ℓ(ν) of any

path of G from i to j. These values may be easily computed in time-complexity Θ(n3)
using a simple modification of the Floyd-Warshall algorithm [3].

Consider the instance of our decision problem pictured by Figure 1 for 3 dedicated
processors, i.e. m1 = m2 = m3 = 1. Figure 2 presents a feasible solution.

i 1 2 3 4 5 6 7 8 9
ri 0 0 0 0 0 3 1 1 2
di 3 3 3 3 2 4 3 3 3
τi C1 C1 C1 C2 C2 C2 C3 C3 C3

1 2 3 4

5

6

7

8

9

2

0

0

1

Fig. 1: Release-dates, due dates, type of tasks and precedence graph with delays.

i 1 2 3 4 5 6 7 8 9
ti 0 1 2 1 0 3 1 2 3

t = 0

C1 1 2 3

C2 5 4 6

C3 7 8 9

Fig. 2: A feasible schedule for the instance pictured by Figure 1.

3 GJ and LPP consistencies

GJ and LPP algorithms modify due dates until a fixed point D ≤ d is reached,
expressing in both cases necessary conditions for the existence of a feasible schedule that
can be computed polynomially. This section aims at presenting these two consistency
conditions extended to typed-tasks systems and precedence delays.

3.1 GJ consistency

GJ consistency was introduced in [5] for solving polynomially the decision problem
2|prec, ri, di, pi = 1|⋆. It was extended to typed-tasks systems in [1]. A wider extension
is presented here to integrate precedence delays.

The main idea is expressed necessary conditions on ressource for testing if a fixed
due dates vector D = (D1, · · · , Dn) ≤ d is feasible or not. Let i be a fixed task from
T . Assuming that i is completed at time Di, release date for any task j from Ti is
adjusted following :

r′j =

{
rj if j ∈ Indep(i)
max(rj , Di + ℓ+ij) if j ∈ Si.

For any class of processors Cp, p ∈ {1, · · · , k} and any tuple (α, β) of integers such
that α < β and Di ≤ β, let Sp(i, α, β) be the set of tasks from Ti that must be executed
during the interval [α, β] if i is completed at time Di. More formally,

Sp(i, α, β) = {j ∈ Ti | τj = Cp, α ≤ r′j and Dj ≤ β}.

The total number of slots available for scheduling tasks from Sp(i, α, β) may depends
on the availability of the resource needed for i. Two cases must be considered:

– If α < Di and τi = Cp, then Di− 1 belongs to [α, β]. Task i is thus executed during
the interval [α, β] on a machine of type p (since it is executed at time Di − 1), and
the number of remaining idle slots equals mp(β−α)−1. Sp(i, α, β) is said consistent
if |Sp(i, α, β)| < mp(β − α);

– Otherwise, α ≥ Di or τi 6= Cp. Thus i is not executed in the interval [α, β] on a
machine of type p. Sp(i, α, β) is then said consistent if |Sp(i, α, β)| ≤ mp(β − α).

For any task i ∈ T , the due dates vector D is GJ-consistent for i if ∀p ∈ {1, · · · , k},
∀(α, β) ∈ N

2 such as α < β and Di ≤ β, the set Sp(i, α, β) is consistent. Due dates
vector D is said to be GJ-consistent if it is GJ-consistent for any task i ∈ T . A non-
consistent set is said to be critical.

Consider for example the instance pictured by Figure 1 and set D = d, i = 5, α = 2
and β = 4. Observe that T5 = T − {5} and that r′ = (0, 0, 0, 0,−, 4, 2, 2, 3). We get
S1(5, 2, 4) = ∅, S2(5, 2, 4) = {6} and S3(5, 2, 4) = {7, 8, 9}.

Observe that |S1(5, 2, 4)| = 0 ≤ 2 and |S2(5, 2, 4)| = 1 ≤ 2. These two sets are
thus consistent. Now, we get that |S3(5, 2, 4)| = 3 > 2. If task 5 is performed at time
D5 − 1 = 1, all tasks from S3(5, 2, 4) have to be performed in the time slot [2, 4]
by processor C3 to satisfy precedence constraints and deadlines, which is impossible.
S3(5, 2, 4) is thus a critical set, and the due dates vector D is not GJ-consistent.

3.2 LPP consistency

LPP consistency [13] was initially given for solving P |prec, ℓij , ri, di, pi = 1|⋆. It
is based on a polynomial algorithm checking necessary conditions for the feasibility
of a due dates vector D. This algorithm for computing feasible due dates vectors has
already been extended by [4] to include typed tasks.

Let i ∈ T . Consider release and due dates vectors r and D and a value t ∈
{ri + 1, · · · , Di}. Then, Existencei(t, r,D) defined as follows is a necessary condi-
tion for the existence of a feasible schedule such that i ends at time t:

Existencei(t, r,D): is there a schedule of tasks from Ti ∪ {i} considered as inde-
pendent meeting resource constraints, release dates r′ and due dates D′ defined as
follows:

1. r′i = t− 1 and D′
i = t;

2. ∀j ∈ Indep(i), r′j = rj and D′
j = Dj ;

3. ∀j ∈ Si, r
′
j = max(rj , t+ ℓ+ij) and D′

j = Dj .

The tasks considered here are unitary (i.e. pj = 1, ∀j ∈ Ti). So, Existencei(t, r,D)
can be solved using the Jackson priority list algorithm [10] (i.e. an earliest deadline first
priority list scheduling) until either a task miss its deadline or all tasks are scheduled,
in a time-complexity Θ(n log n).

Let the due dates vector D = (D1, · · · , Dn), a fixed task i ∈ T and t ≤ Di the
maximum integer value such that Existencei(t, r,D) is true. The due dates vector D is
LPP-consistent for task i if t = Di. It is said to be LPP-consistent if it is LPP-consistent
for all tasks i ∈ T .

Consider the decision problem Existence5(D5, r,D) with D = d for the example
pictured by Figure 1. Release and due dates vectors are respectively r′ = (0, 0, 0, 0, 1, 4, 2, 2, 3)
and D′ = D. The schedule obtained using Jackson’s algorithm is pictured by Figure 3.
Tasks 6, 8 and 9 are not meeting their due date, thus the answer to Existence5(D5, r,D)
is negative and D is not LPP-consistent for task 5.

t = 0

C1 1 2 3

C2 54 6

C3 7 8 9

Fig. 3: The Jackson’s schedule for the instance Existence5(D5, r,D).

Lemma 1 Assume that D is LPP-consistent. For any couple (i, j) ∈ T 2 with j ∈ Si,
the inequality Di < Dj holds.

Proof Suppose by contradiction that j ∈ Si and Di ≥ Dj . Since D is LPP-consistent,
the answer to Existencei(Di, r,D) is positive. Thus, r′j = max(rj , Di + ℓ+ij) ≥ Di ≥
Dj = D′

j i.e. r′j ≥ D′
j , a contradiction.

4 Equivalence between GJ and LPP consistencies

As pointed before, GJ and LPP consistencies were defined separately using different
approaches. This section aims to prove that they are in fact equivalent for our general
problem. Lemmas 2 and 3 are considered to show by contraposition in Lemma 4 that
any LPP-consistent due dates vector D is GJ-consistent. The inverse is deduced in
Lemma 7 from Lemmas 5 and 6. Theorem 1 is then a simple outcome.

Lemma 2 Let D = (D1, · · · , Dn) be a due dates vector. For any p ∈ {1, · · · , k},
for any task i ∈ T and any tuple (α, β) ∈ N

2 such as α < β and Di ≤ β, if
j ∈ Sp(i, α, β), then j is scheduled in [α, β] for any solution of the decision problem
Existencei(Di, r,D).

Proof Since j ∈ Sp(i, α, β), we have α ≤ r′j and Dj ≤ β. Thus, j must be scheduled
during [α, β] for any solution of the decision problem Existencei(Di, r,D).

Lemma 3 simply derives from Lemma 2.

Lemma 3 Let i ∈ T and a due date vector D. If D is not GJ-consistent for i, then
D is not LPP-consistent for i.

Proof Assume that D is not GJ-consistent for a fixed task i ∈ T . Then, there exists
p ∈ {1, · · · , k}, and two integers α, β such as α < β, Di ≤ β and the set Sp(i, α, β) is
critical. Two cases must be considered following the definition of GJ consistency:

1. Assume first that α < Di and τi = Cp. Since Sp(i, α, β) is critical, |Sp(i, α, β)| ≥
mp(β−α). Now, i must be scheduled at Di− 1 by Existencei(Di, r,D) and i does
not belong to Sp(i, α, β). Moreover, by Lemma 2, every task j ∈ Sp(i, α, β) must
be scheduled by Existencei(Di, r,D) in the interval [α, β]. Thus, there are at least
mp(β − α) + 1 tasks to be scheduled by Existencei(Di, r,D) in the time interval
[α, β] by the mp processors of type Cp, which is impossible.

2. Now, if α ≥ Di or τi 6= Cp, we get that |Sp(i, α, β)| > mp(β−α). By Lemma 2, tasks
from Sp(i, α, β) have to be scheduled by Existencei(Di, r,D) in the interval [α, β].
As those tasks have to be schedule by a processor of type Cp, Existencei(Di, r,D)
is also false.

In both cases, D is not LPP-consistent for i, which proves the lemma.

For the example given by Figure 1, the set S3(5, 2, 4) = {7, 8, 9} is critical and thus
D is not GJ-consistent. The corresponding scheduling problem Existence5(D5, r,D)
pictured by Figure 3 does not meet due dates and D is not LPP-consistent.

Lemma 4 If D is a LPP-consistent due dates vector, then D is GJ-consistent.

Proof IfD is not GJ-consistent, then there exists i ∈ T such thatD is not GJ-consistent
for i. By Lemma 3, D is not LPP-consistent for i, which proves the lemma.

In the following, we show that the reverse of Lemma 4 is true. Lemma 5 is a simple
technical property of Jackson algorithm widely used to get next lemmas.

Lemma 5 Let I be an unfeasible instance of PΣk|ri, pi = 1, di|⋆ with ∀i ∈ T , ri < di.
Let also σ = {t1, · · · , tn} be a schedule obtained using Jackson algorithm (i.e. a priority
list algorithm using earliest deadline first). If j is a task of minimum starting time tj
such that dj ≤ tj, then dj = tj.

Proof Any task u performed at tj − 1 meets its deadline, thus tj = tu + 1 ≤ du. Now,
rj < dj , thus j was ready at time tj − 1, so by the priority list algorithm, du ≤ dj . We
get thus tj = tu + 1 ≤ du ≤ dj ≤ tj , and then tj = dj .

Lemma 6 shows that a critical set may be associated to any execution of Existence
which answer is negative.

Lemma 6 Let i be a task from T such that for any task ℓ ∈ Ti, rℓ < Dℓ and
Existencei(Di, r,D) is false. Then, there exist p ∈ {1, · · · , k}, a task u ∈ Ti ∪ {i}
and a tuple of integers (α, β) with α < β and Du ≤ β such that Sp(u, α, β) is a critical
set.

Proof Consider a task i ∈ T such that for any task ℓ ∈ Ti, rℓ < Dℓ andExistencei(Di, r,D)
is false. Let us denote by r′j and D′

j , for j ∈ Ti ∪ {i} respectively release and due
dates computed locally by this function. Note that ∀j ∈ Ti ∪ {i}, D′

j = Dj . Let
σ = {tj, j ∈ Ti ∪ {i}} be the schedule obtained by using Jackson algorithm.

Let us consider the first task j ∈ Ti ∪ {i} missing its due date (Dj ≤ tj). Let
p ∈ {1, · · · , k} be such that τj = Cp. By Lemma 5, tj = Dj.

Let α ≤ tj be the rightmost date for which either there exists an idle processor of
type p at time α − 1 (situation 1) or there exists a task v with τv = Cp and Dv > Dj

performed in this interval (situation 2). If no such event occurs, then set α = 0.
Let us set now β = tj = Dj and denote by X the set of tasks k with τk = Cp

performed in the interval [α, β], to which we add j. Formally, this set can be define as

X = {k ∈ Ti ∪ {i} | τk = Cp and α ≤ tk ≤ β − 1} ∪ {j}.

Notice that any task ℓ of X fulfills α ≤ r′ℓ, where r′ is the release dates vector
computed by Existencei(Di, r,D), and Dℓ ≤ Dj = β. If α = 0, the inequality r′ℓ ≥ 0
is trivial. Else, in both situations (1 and 2), α ≤ r′ℓ otherwise ℓ would have been
scheduled at time α − 1 (either on the idle processor in situation 1 or instead of task
v in situation 2). Furthermore, every tasks of X − {j} are considered before j in the
Jackson’s schedule, meaning thatDℓ ≤ Dj = β. And finally, we observe that X contains
exactly mp(β − α) + 1 tasks.

Now, two main cases are considered:

Case 1: Assume that, ∀ℓ ∈ X , α ≤ rℓ and let u ∈ X be a task with tu = α. Since
u ∈ X , we have Du ≤ Dj . Note that any task ℓ ∈ X − {u} satisfies α ≤ r′ℓ and
Dℓ ≤ β. Thus, X −{u} ⊆ Sp(u, α, β) and therefore that |X −{u}| = mp(β−α) with
α ≤ ru < Du. We deduce that Sp(u, α, β) is critical, so that D is not GJ-consistent
for u.

Case 2: Assume now that there exists at least one task ℓ ∈ X such that rℓ < α. As
ℓ ∈ X , we deduce that rℓ < α ≤ r′ℓ and thus ℓ ∈ Si or ℓ = i.
We also observe that ri < α and Di ≤ β. Indeed:
– if ℓ ∈ Si, then ri < rℓ < α since release dates are consistent with precedence

constraints. Furthermore, since ℓ ∈ X must be completed at the latest time β

(i.e. Dℓ ≤ β) thus by Lemma 1 task imust complete at the latest timeDℓ−1 < β

(i.e. Di < β);
– if ℓ = i, then ri = rℓ < α and since ℓ ∈ X , then Dℓ = Di ≤ β.
We prove in the following that Sp(i, α, β) is critical by considering two cases de-
pending on task i:
Case 2.1: Assume that τi = Cp and α < Di. Since α ≤ Di − 1 = r′i and Di ≤ β,

then i is scheduled between times α and β. Furthermore, since τi = Cp, then
i ∈ X .
Now we show that X − {i} ⊆ Sp(i, α, β). Let ℓ be a task picked in X − {i}. By
definition of X , we have τℓ = Cp, α ≤ r′ℓ and Dℓ ≤ β. Thus, ℓ ∈ Sp(i, α, β).
Now, |X − {i}| = mp(β − α). Since X − {i} ⊆ Sp(i, α, β), then mp(β − α) ≤
|Sp(i, α, β)| with α < Di and thus Sp(i, α, β) is critical.

Case 2.2: We suppose now that τi 6= Cp or Di ≤ α. If τi 6= Cp, then i 6∈ X .
Otherwise Di ≤ α; since r′i = Di − 1, then i is not scheduled between times α

and β and thus i 6∈ X .
Now we show that X ⊆ Sp(i, α, β). Let ℓ be a task picked in X . By definition of
X , we have τℓ = Cp, α ≤ r′ℓ and Dℓ ≤ β. Thus, ℓ ∈ Sp(i, α, β).
Now, |X | = mp(β−α)+1 > mp(β−α). Since X ⊆ Sp(i, α, β), then mp(β−α) <
|Sp(i, α, β)| and thus Sp(i, α, β) is critical.

Consiter for example the Jackson’s schedule pictured by Figure 3 which violates
some due dates. We get i = 5, and the first task missing its due date is j = 8. Thus
p = 3, α = 2 and β = 3. As r7 = 1 < α, it illustrates Case 2. Now, τi = τ5 = C2, thus
we get Case 2.2 and |S3(5, 2, 3)| = |{7, 8, 9}| = 3 > 1 and thus is critical.

Lemma 7 If D is a GJ-consistent due dates vector, then D is LPP-consistent.

Proof IfD is not LPP-consistent, then there exists i ∈ T such thatExistencei(Di, r,D)
is false. By Lemma 6, we deduce that there exists a critical set associated with D and
thus D is not GJ consistent.

Theorem 1 is thus a simple outcome of lemmas 4 and 7.

Theorem 1 Consider an instance of the problem PΣk|prec, ℓij , ri, di, pi = 1|⋆ and
let D = (D1, · · · , Dn) be a vector of due dates such that Di ≤ di, ∀i ∈ T . D is GJ-
consistent if and only if D is LPP-consistent.

5 A generic fixed point algorithm for the due dates modifications

GJ and LPP consistencies are naturally leading to a simple algorithm, starting from
initial due dates, and iteratively decreases them until either a contradiction is found,
or the modified due dates are consistent. In this latter case, any feasible schedule meets
these due dates.

This simple generic algorithm is formulated by Algorithm 1. For any task i ∈ T
which is not consistent for D (in the sense of LPP or GJ consistency), the function
Adjust computes an integer value ∆ < Di such that, for any value δ ∈ {∆+1, · · · , Di},
the vector D defined as

∀j ∈ T , Dj =

{
δ if i = j

Dj otherwise

is not consistent for i. Note that the vector D = D is not consistent for i, thus the
adjustement always returns a value strictly lower than Di insuring the convergence of
the algorithm.

Algorithm 1 A generic modified due dates algorithm

Require: An instance of PΣk|prec, ℓij , pi = 1, ri, di|⋆
Ensure: Modified feasible due dates D⋆ or a contradiction.

∀i ∈ T , set Di = di
while D is not consistent do

choose a task i ∈ T not consistent for D

Di = Adjust(i, D)
if Di ≤ ri then

exit with a contradition
end if

end while

Notice that GJ (resp. LPP) algorithm is a particular implementation of algorithm
1, (see the next section for details), using GJ (resp. LPP) consistency in the loop test,
and defining a particular version of the adjustement function. By Theorem 1, LPP and
GJ consistencies are strictly equivalent. Next Lemma is a simple fundamental property
for insuring the unicity of the convergence for both algorithms.

Lemma 8 Let i ∈ T . Let also D and D′ be two due dates vectors with Di = D′
i and

∀j ∈ T −{i}, Dj ≤ D′
j. If D

′ is not GJ-consistent (resp. LPP-consistent) for i, neither
is D.

Proof We show the lemma separately for both consistencies:

– Suppose that D′ is not GJ-consistent for i, then there exists p ∈ {1, · · · , k} and
a couple (α, β) ∈ N

2 with α < β and such that the set S′
p(i, α, β) associated with

the due dates vector D′ is critical. We denote by Sp(i, α, β) the corresponding set
associated to D.
Now, as D′

i = Di, modified release dates r′j are identical for both sets Sp(i, α, β) and
S′
p(i, α, β). Moreover, as Dj ≤ D′

j for any task j ∈ T −{i}, S′
p(i, α, β) ⊆ Sp(i, α, β).

Sp(i, α, β) is thus critical, the lemma.
– Suppose that D′ is not LPP-consistent for i, then Existencei(D

′
i, r,D

′) is false.
As D′

i = Di, modified release dates r′j are identical for Existencei(D
′
i, r,D

′) and
Existencei(Di, r,D). As Dj ≤ D′

j for any task j ∈ T − {i}, Existencei(Di, r,D)
is also false, the result.

Theorem 2 insures that the algorithm converges to a unique fixed point if it exists.

Theorem 2 For any instance of the decision problem PΣk|prec, ℓij , pi = 1, ri, di|⋆,
all possible executions of the generic algorithm for a fixed consistency (GJ or LPP)
end with the same result: either a contradiction is found or the algorithm computes a
unique consistent due dates vector D⋆ with ∀i ∈ T , D⋆

i ≤ di.

Proof Suppose by contradiction that two distinct executions of the algorithm for a
fixed consistency (GJ or LPP) do not end with the same result. Two cases may occur:

Case a: There are two distinct consistent due dates vectors denoted by D⋆1 and D⋆2.
Assume without loss of generality that there exists a task i ∈ T for which D⋆1

i <

D⋆2
i .

Case b: An execution ends with a contradiction whereas the second one ends with a
consistent due dates vector. In this case, we assume without loss of generality that
the first execution of the generic algorithm induces a contradiction. Similarly to
Case a, we denote by D⋆2 the set of consistent due dates produced by the second
execution of the generic algorithm.

Along the iterative process for both executions, as they start with the same due
dates di ≥ D⋆2

i , there was an iteration of the first execution before which the variable
Di became less than D⋆2

i . We consider the first such iteration in the first execution of

the generic algorithm. Let D̂ be the due date vector just before this iteration, and D̃

the due date vector computed at this iteration.
Clearly, D̃i < D⋆2

i ≤ D̂i, and ∀j ∈ T − {i}, D̂j = D̃j ≥ D⋆2
j . Now, let us define the

due date vector D′ as

∀j ∈ T , D′
j =

{
D⋆2

i if i = j

D̂j otherwise.

D̂ is not consistent for i by hypothesis, and D̃i < D⋆2
i . Thus, by definition of the

adjustement function, D′ is not consistent for i. As D′
i = D⋆2

i and ∀j ∈ T − {i},
D′

j ≥ D⋆2
j , D⋆2 is not consistent for i by Lemma 8, a contradiction.

Corollary 1 LPP and GJ algorithms do end with the same result.

Proof By Theorem 1, a due date vector is LPP-consistent if and only if it is GJ-
consistent. Moreover, by Lemma 3, at each step of the GJ algorithm, the task i chosen
is also not LPP-consistent for D. The consequence is that an execution of the GJ
algorithm can be seen as a special case of LPP algorithm. By Theorem 2, they are all
ending in the same way, the corollary.

6 Implementation of LPP and GJ algorithms

This section aims at recalling the implementation details of the GJ and LPP al-
gorithm and their worst-case complexity. An experimental comparison of their perfor-
mance is also provided for identical processors.

6.1 Implementation of GJ algorithm

The implementation developed in [5] concerns a usual precedence graph (without
delays) and 2 identical processors. Algorithm 2 is an extended version of Garey-Johnson
algorithm to a typed tasks system with precedence delays. The global loop for testing
the consistency of a due date vector of the Algorithm 1 is replaced by 4 nested loops to
enumerate all possible critical sets. Its time complexity clearly belongs to O(n3 × k).

Algorithm 2 Garey-Johnson extended algorithm

Require: An instance of PΣk|prec, ℓij , pi = 1, ri, di|⋆
Ensure: Modified due dates D⋆

∀i ∈ T , set Di = di;
for β = n to 1 do

for any task i ∈ T with Di ≤ β do

for α = 0 to Di − 1 do

for any p ∈ {1, · · · , k} do

set Y = Sp(i, α, β);
if Y is critical then

set Di = maxj∈Y Dj − ⌈
|Y |
mp

⌉;

end if

end for

end for

end for

end for

6.2 Implementation of LPP algorithm

The implementation initially developed in [13] concerns precedence graphs with
delays and identical machines. An extension to typed tasks systems is developed in [4].

Algorithm 3 is an extended version of the Leung-Palem-Pnueli algorithm. Consistent
release dates r are first evaluated and tasks are numbered such that r1 ≥ r2 ≥ · · · ≥ rn.
This numbering insures the convergence of the algorithm. Each adjustement is evalu-
ated using a double dichotomic search, leading to an algorithm of global complexity
belonging to O(n2log(n)α(n) + ne); α(n) is here the functional inverse of the Acker-
mann function. It is proved in [13] that, at the end of the algorithm, the computed due
date vector is LPP-consistent.

Algorithm 3 Leung-Palem-Pnueli extended algorithm

Require: An instance of PΣk|prec, ℓij , pi = 1, ri, di|⋆
Ensure: Modified due dates D⋆

Compute ∀i ∈ {1, · · · , n}, ri = maxj∈Pi
(ri, rj + 1 + ℓ+ji) following a topological order of G;

Renumber tasks such as r1 ≥ r2 ≥ · · · ≥ rn;
Compute ∀i ∈ {1, · · · , n}, Di = minj∈Si

(Di,Dj − 1− ℓ
+

ij) following an inverse topological order;
for i = 1 to n do

Di = Adjust(i,D);
Compute ∀i ∈ {1, · · · , n}, Di = minj∈Si

(Di,Dj − 1− ℓ
+

ij) following an inverse topological order;
end for

6.3 An experimental comparison of the performance for m identical processors

The time complexity of the two previous implementation of GJ and LPP algorithms
were compared form indentical processors and no delays (i.e. ℓij = 0 for any precedence
arc (i, j)).

Fig. 4: Comparison of the execution time of LPP and GJ algorithms

Random instances were generated as follows. A fixed number of layer k < n,
each of them with at least one task, allows to generate randomly acyclic precedence
graphs. Release dates are them randomly fixed, and then updated by setting ri =
max(ri,maxj∈Pi

rj + 1). Deadlines are lastly determined by dj = rj + α, where α is a
small random value.

Our main surprise was to notice that the deadlines fixed for most of the instances
(about 90 percent) are consistent. We consider for our experiments only the remaining
ones for which the deadlines are modified. Figure 4 reports the comparison between
the execution times of the implementations of the LPP and the GJ algorithms. The
performance of the LPP algorithm is clearly better and corresponds to the difference
between the two theoretical worst-case complexities.

7 Theoretical outcomes of Theorem 1

The aim of this part is to exploit the equivalence between GJ and LPP algorithms.
We start by breafly recalling that a polynomial time algorithm for a decision problem
with due dates can be considered to minimize the makespan or the maximum lateness.
Polynomial problem and approximation algorithms based on GJ or LPP algorithms
are then listed.

7.1 Computation of a feasible schedule

As seen before, GJ and LPP algorithms are decreasing due dates following necessary
conditions until a fixed point is reached. The second phase of the algorithm consists
in building a schedule using a classical earliest due date first priority list algorithm.
Whereas several tasks can be executed by a same resource, the selected task is the one
with a minimum due date.

Schedules build are solving a decision problem. It can be extended easily to minimize
the makespan or the maximum lateness. Indeed, assume that the decision problem
considered can be solved polynomially for any values of the initial due dates.

1. By setting di = C for any task i ∈ T , LPP or GJ fixed point algorithms can
either compute consistent due dates, or a contradiction is found. This process can
be used with a dichotomic binary search to minimize C leading to consistent due

dates. Whereas a minimum value C is fixed, a list schedule using the corresponding
consistent due dates builds a feasible schedule minimizing the makespan.

2. A similar scheme can be used to minimize the lateness. The idea is to minimize ∆

by a dichotomic search such that a set of consistent due dates can be computed
from due dates di + ∆, ∀i ∈ T . As before, a second step consists in building a
feasible schedule using a list schedule algorithm for which priority of tasks decreases
proportionaly to their (consistent) due date.

7.2 Polynomial time algorithms based on LPP consistency

LPP algorithm was considered to get polynomial time algorithms for several classes
of instances, solving most of the polynomially solvable m machines problems with
precedence constraints. Table 1 summarizes the maximal polynomial problems solved
by the LPP algorithm. By Theorem 1, these results also holds for GJ algorithm.

An outtree (resp. intree) is an acyclic precedence graph where each task has no
more than one immediate predecessor (resp. successor). An interval order graph is an
acyclic precedence graph G = (T , E) such that there exists a mapping f from T to
intervals on the real line with the following property: (i, j) ∈ E if and only if ∀x ∈ f(i)
and ∀y ∈ f(j), x < y. An interval order graph is monotone if for every pair of arcs
(i, j) and (i, j′) from E, ℓij ≤ ℓij′ if Pj ⊆ Pj′ .

Problem Ref.
1|prec, ℓij ∈ {0, 1}, ri, pi = 1|Lmax [13]
1|prec, ℓij ∈ {0, 1}, pi ≥ 1|Cmax [13]
2|prec, ℓij ∈ {−1, 0}, ri, pi = 1|Lmax [13]
P |intree, ℓij = ℓ, pi = 1|Lmax [13]
P |outtree, ℓij = ℓ, ri, pi = 1|Cmax [13]
PΣk|int.order,monotone ℓij , ri, pi = 1|Lmax [4]

Table 1: Maximal polynomial problems solved by LPP and GJ algorithms.

7.3 Approximation algorithms based on GJ consistency

GJ consistency can be exploited to obtain approximation algorithms for minimizing
the maximum lateness, using the scheme described previously. Theorem 3 was proved
by Hanen and Zinder [8] using GJ algorithm and is true for the two optimization
algorithms by Theorem 1.

Theorem 3 An upper-bound of the maximum lateness Lmax of the solution obtained
using a LPP or GJ consistency-based algorithm for the problem P |prec, pi = 1, ri, di| Lmax

is

Lmax ≤ (2 −
2

u(m)
)Lmax(σ

⋆) + (1−
2

u(m)
)dmax − (1−

2

u(m)
)

where σ⋆ is an optimum schedule, dmax = maxi∈T di and u(m) = m if m is even, m+1
if m is odd.

In the same way, Theorem 4 was proved by Benabid and Hanen [1] using initially
GJ algorithm and is thus also valid for LPP algorithm:

Theorem 4 An upper-bound of the maximum lateness Lmax of the solution obtained
using a LPP or GJ consistency-based algorithm for the problem PΣk|prec, ℓij = ℓ, pi =
1, ri, di| Lmax is

Lmax ≤ (k + 1−
α(mx)

ℓ+ 1
)Lmax(σ

⋆) + (k −
α(mx)

ℓ+ 1
)dmax −

α(mx)

ℓ + 1

where σ⋆ is an optimum schedule, dmax = maxi∈T di, mx = maxr∈{1,··· ,k} mr and

α(mx) =

{
2

mx
if mx is even

2

mx+1
otherwise.

8 Conclusion and further approach

We proved in this paper that GJ and LPP algorithms are equivalent for the general
decision problem PΣk|prec, ℓij , pi = 1, ri, di|⋆. This result allows us to unify prior
results of the literature. Several polynomial subcases proved using LPP algorithm are
thus also polynomially solved using GJ algorithm. Approximation results proved using
GJ algorithms are valid for LPPs one. As the complexity of LPP is slightly better, it
should be prefered if an implementation is needed.

This equivalence should be further investigated for variants of the initial problem
as communication delays or preemptive tasks. We also hope that a careful investigation
of the two algorithms may lead to a more efficient algorithm taking the best of both.
One can also think that the due date modification algorithm could be used reversely to
modify release times on the reverse graph, and iterate until a fixed point is reached. The
question is then to evaluate if a better worst case performance ratio may be achieved
for approximation algorithms.

References

1. Benabid, A., Hanen, C.: Performance of garey johnson algorithm for pipelined type tasks systems.
International Transactions on Operational Research 17(6), 797–808 (2010)

2. Brucker, P., Knust, S.: Complexity results for single-machine problems with positive finish-
start time-lags. Computing 63(4), 299–316 (1999). DOI 10.1007/s006070050036. URL
http://dx.doi.org/10.1007/s006070050036

3. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2 edn. The
MIT Press (2001)

4. Dupont de Dinechin, B.: Scheduling monotone interval orders on typed task systems. In: PLANSIG
2007, 26th Worshop of the UK Planning and Scheduling Special Interest Group, pp. 25–31 (2007)

5. Garey, M.R., Johnson, D.S.: Two-processor scheduling with start-time and deadlines. SIAM
Journal on Computing 6, 416–426 (1977)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. Studienreihe Informatik. W.H. Freeman and Company, San Francisco (1979)

7. Hanen, C., Zinder, Y.: The worst case analysis of garey-johnson algorithm for preemptive m pro-
cessors. In: Multidisciplinary International Conference on Scheduling: Theory and Applications,
vol. 2, pp. 453–470 (2005)

8. Hanen, C., Zinder, Y.: The worst-case analysis of the garey-johnson algorithm. Journal of Schedul-
ing 12(4), 389–400 (2009)

9. Hennessy, J.L., Gross, T.: Postpass code optimization of pipeline constraints. ACM
Trans. Program. Lang. Syst. 5(3), 422–448 (1983). DOI 10.1145/2166.357217. URL
http://doi.acm.org/10.1145/2166.357217

10. Horn, W.: Some simple scheduling algorithms. Naval Research Logistics Quarterly 21, 177–185
(1974)

11. Kordon, A.M., Kacem, F., Dupont de Dinechin, B., Finta, L.: Scheduling an interval ordered
precedence graph with communication delays and a limited number of processors. RAIRO
- Operations Research 47, 73–87 (2013). DOI 10.1051/ro/2013028. URL http://www.rairo-
ro.org/action/articleS0399055913000280

12. Lenstra, J., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems. In: B.K.
P.L. Hammer E.L. Johnson, G. Nemhauser (eds.) Studies in Integer Programming, Annals of Dis-

crete Mathematics, vol. 1, pp. 343 – 362. Elsevier (1977). DOI http://dx.doi.org/10.1016/S0167-
5060(08)70743-X. URL http://www.sciencedirect.com/science/article/pii/S016750600870743X

13. Leung, A., Palem, K.V., Pnueli, A.: Scheduling time-constrained instructions on
pipelined processors. ACM Trans. Program. Lang. Syst. 23, 73–103 (2001). DOI
http://doi.acm.org/10.1145/383721.383733. URL http://doi.acm.org/10.1145/383721.383733

14. Palem, K.V., Simons, B.B.: Scheduling time-critical instructions on risc machines. ACM
Trans. Program. Lang. Syst. 15(4), 632–658 (1993). DOI 10.1145/155183.155190. URL
http://doi.acm.org/10.1145/155183.155190

15. Ullman, J.D.: Np-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384–393 (1975).
DOI 10.1016/S0022-0000(75)80008-0. URL http://dx.doi.org/10.1016/S0022-0000(75)80008-0

16. Yu, W., Hoogeveen, H., Lenstra, J.K.: Minimizing makespan in a two-machine flow shop with
delays and unit-time operations is np-hard. Journal of Scheduling 7(5), 333–348 (2004)

