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Abstract 

Requiring that several properties are well reproduced is a severe test on density 

functional approximations. This can be assessed through the estimation of joint and 

conditional success probabilities. An example is provided for a small set of molecules, 

for properties characterizing the transition states (geometries and energies). 
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quantification 

  



3 
 

 

Introduction 

Very often, an approximate calculation method is used to describe more than a single 

property. One may need two properties well described, e.g., the ionization potential and 

the electron affinity in order to describe the fundamental gap that is the difference 

between the two [1-4]. In another typical situation, some prior reliable information 

about one of the properties is verifiable, but another property is of interest. In such a 

case, the approximate calculation is performed for both properties, and the 

approximation used is considered unreliable (and is rejected), if the agreement between 

the calculated and verifiable property is unsatisfactory. For example, if an approximate 

calculation provides a lattice constant too far from a measured one, the confidence in 

the (not known) bulk modulus of the same system may be shattered, and the result of 

the calculation may not be published. In a previous paper [5], some of us have pointed 

out a simple logic on the use of benchmarks for multiple properties, which states that a 

given approximation works best for each of the properties separately does not 

necessarily work best in the study cases mentioned above. The reason for this behavior 

is that the errors made by an approximate method for one of the properties is not 

necessarily positively correlated with those for another property. 

In the present paper, we choose to explore two important properties for reactions, 

through a data set characterizing molecular transition states, by both geometries and 

energies. The aim of our paper is to show that the requirements that 

1. two properties are simultaneously well reproduced for a given system, or 
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2. one of the properties is well reproduced, knowing that the other is well 

reproduced 

are strong, and selective, which are more severe than those usually considered. 

Our paper should not be seen as recommending or banning using one of the 36 

mentioned approximate methods showing up in the results section. The names of the 

studied functionals are presented only for illustration purpose only, and not for ranking. 

One reason is that the test set is small. Hence, the measures produced out of it are prone 

to large statistical errors. And another is that the reliability of the reference data is often 

not well quantified. Nevertheless, we believe that the present data set can be used as a 

plausible exemplification to show (i) that using the stronger requirements may be a 

more selective way to choose approximate methods, and (ii) that larger samples may 

be needed for the tests we propose. 

 

Technical details 

Reference data 

We have considered the transition states for the following 12 reactions [6] (see Figure 

1), which include three hydrogen transfer (HT) reactions, three heavy-atom transfer 

(HAT) reactions, three nucleophilic substitution (NS) reactions of anions, and three 

unimolecular and association (UA) reactions. These are subsets that belong to the 

widely used data sets developed by Zhao and Truhlar [7,8], NHTBH38 and HTBH38, 

each of which consists of 38 data points for non-hydrogen transfer barrier heights and 

hydrogen transfer barrier heights.  
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For these 12 reactions used in the present work, the geometric structures for the 

transition states have been used to set up a new dataset called TSG36 [9]. For the 

transition states (A. . . B. . . C, as shown in Figure 1), each is characterized by three 

distances (A. . . B, B. . . C, and C. . . A), involving the breaking and the forming bonds 

that make a total of 36 data points for the transition state geometries. As recommended 

[9], the reference geometric data are generally the BMC-CCSD [10] values.  

In consonance with the TSG36 set, we coin the TSE36 set, where each reaction is 

characterized by three energies (forward barrier, backward barrier, and difference 

between the two). For the bimolecular nucleophilic substitution (SN2) reaction between 

Cl- + CH3Cl, there exists a pre-complexation [Cl-…CH3Cl] before forming the 

transition state [Cl…CH3…Cl]-. The two barriers are with respect to the free reactants 

Cl- + CH3Cl and the complex [Cl-…CH3Cl], respectively. Hence the difference between 

the two barriers corresponds to the complexation energy. As recommended [7,8], the 

reference energy data are generally the W1 [11] values calculated at the optimized 

geometries at the QCISD/MG3 [12,13] level. 

 

Calculation results 

There is a plethora of approximate density functional methods. The acronyms for 33 

representatives are given in the Appendix, which include doubly hybrid functionals [14-

18], hybrid functionals [19-33], range-separated [34-37] or long range corrected [38,39] 

functionals, meta-GGAs [40,41] and GGAs (generalized gradient approximations) [42-

47]. For some functionals, the dispersion corrections are applied [18,21,36,42,43]. The 
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results of LDAs (local density approximations) are not considered, as it is well-known 

that LDAs always significantly underestimate the barrier heights [7,8,14-16] and often 

fail to locate the desired transition states [48-50]. In fact, GGAs, and meta-GGAs can 

also lead to erroneous transition state structures [9, 48-50], while even hybrid 

functionals sometimes give unacceptable geometries [51,52]. 

For comparison, calculation results from some wavefunction methods, QCISD, 

MP2 and Hartree-Fock (HF), are also included.  

Some of the results may be found in the literature [52-54], while, for the 

completeness, we have summarized all geometric and energetic results here and 

provided them as the supplementary material. For single point energies, the basis sets 

used are G3Large [55]. For geometry optimizations, the basis sets used are 6-

311+G(3df,2p) [56]. The xDH-PBE0 data are taken from Ref. 53, where the basis sets 

used were 6-311+G(3df,2p).  

 

Probabilities 

We consider such properties as geometrical parameters (noted g), and energy 

differences (noted e). For each of the properties, we consider an approximation 

successful, if it reproduces all reference data to a given accuracy, e.g., errors ≤ 3 pm for 

interatomic distances, and ≤ 3 kcal/mol for energy differences. 

Let N(p) be the number of systems for which property p ϵ {g, e} is successfully 

reproduced by the approximation under consideration. Furthermore, let N(g∩e) be the 

number of systems for which both properties are correctly reproduced. Finally, let N be 
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the number of systems in the benchmark set. For each of the functionals we calculate 

the probabilities 

● to have success for a given property, P(p) = N(p)/N; 

● to have success for both properties, P(g∩e) = N(g∩e)/N; 

● to have success for the distances, once the energy differences has been checked 

to be acceptable, P(g|e) = N(g∩e)/N(e); and 

● to have success for the energy differences, once the geometrical parameters have 

been checked to be acceptable, P(e|g) = N(g∩e)/N(g). 

The approximation is considered successful, for any of the N=12 reactions, when 

all three distances and/or all three energies are in error by less than the acceptance 

threshold. 

 

Results and discussion 

Some standard statistical indicators of the quality of an approximation (maximum 

absolute error, MAX; mean signed error, MSE; mean absolute deviation, MAD; root 

mean square deviation, RMSD) can be found in the supporting information. We notice 

that some methods can have very large maximal errors (MAX, up to 150 pm for 

geometries, or 40 kcal/mol for the energies), and that these will not disappear when 

enlarging the data set. Also sometimes a large bias (MSE) can be observed, and an 

important dispersion of the data (RMSD). 

The correlation between the MAD and RMSD for each property and the 

corresponding success probabilities P(g) and P(e) are shown in Figure 2. Although one 
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observes a general tendency to a negative correlation, it is very lax. The best correlation 

is observed for energies, between P(e) and the MAD. The Spearman correlation 

coefficient in this case is -0.9, and falls to -0.7 for the geometries. It appears therefore 

that the usual statistics cannot generally be used as proxies for the success probabilities, 

which encompass different information. In particular, the probabilities allow producing 

measures for simultaneous, or conditional success that forms the object of our paper. 

Figure 3 shows the estimated probabilities for the following acceptance thresholds: 

3 pm for distances, and 3 kcal/mol for energies. Despite these quite generous thresholds, 

we notice that only a few approximations reach the (modest) value of 0.5 or larger for 

all probabilities (XYG3, XYGJ-OS, xDH-PBE0). Even though some approximate 

methods can reach larger values for some of the probabilities, only these three methods 

get above 0.50 for P(g∩e). The limited accuracy is not a feature of density functional 

approximations only, but also of wave function methods: QCISD produces P(g), and 

P(e) larger than 0.5, but both P(g∩e) and P(e|g) are smaller than 0.5. This method 

provides an example where both P(g), and P(e) are considered acceptable, but not 

P(g∩e). 

If one considers conditional probabilities, many methods achieve values above 0.5. 

For instance, M06-L works apparently extremely well: both conditional probabilities 

equal to one, i.e., success for one property guarantees success for the other. However, 

we notice that both P(g) and P(e) are very small (1/6). Thus, it cannot be argued that 

the result is statistically significant with N(g)=N(e)=2. The conditional probabilities 

should not be considered when the success probabilities for individual properties are 
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low. 

If we choose tighter, i.e., more reasonable in the sense that they are closer to 

chemical accuracy, acceptance thresholds (1.5 pm and 1.5 kcal/mol), none of the 

methods pass even the loose criterion of “rather acceptable than unacceptable” result 

for both properties, P(g∩e)≥0.5, cf. Figure 4. Of course, the situation of the conditional 

probabilities cannot be considered as being improved, as N(g) and N(e) cannot be larger 

than those of the looser thresholds. 

Let us now lower our requirements, and put the thresholds to 4.5 pm and 4.5 

kcal/mol (Figure 5). Now, while many functionals still fail to give P(g∩e)≥0.5, we 

can remark that the situation is improved for M06-2X, the range-separated functionals 

ωB97X, ωB97X-D, LC-ωPBE, as well as QCISD. Notice that although both P(g) and 

P(e) are better for M06-2X than for ωB97X-D, P(g∩e) has the same value for both 

methods. 

Finally, let us consider a more satisfying selection probability for "good" methods, 

i.e., we require success probabilities larger than 0.68 (as for staying within one standard 

deviation for a normal distribution). Going back to the initially discussed “generous” 

thresholds of 3 pm and 3 kcal/mol (Figure 3), we see that none of the method yields a 

high enough probability for P(g∩e). 

 

Conclusion 

Transition state geometries and energy differences obtained using 36 approximate 

methods have been compared with reference data. We do not claim having established 
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a ranking of the approximations: there are many other functionals, e.g. Refs. 57-59, that 

could have been tested, and there are issues related to the size of the benchmark set, 

and of technical nature, e.g. the basis sets used. Hence, the objective of the present 

paper is different from some previous work, e.g. Ref. 60, where benchmarking study 

has been carried out to examine the functional performances on structural parameters 

and energies separately. 

However, our present data are sufficient to illustrate that situations can arise when 

1) different properties are required for a given system, or 

2) a priori information can be used to accept or reject an approximation. 

These requirements are stronger than those usually used, and could be more 

effectively used as selection criteria. For example, for a very generous acceptance of 

errors in distances not larger than 3 pm, and in energy differences not larger than 3 

kcal/mol, we found that less than ten percent of the studied methods were able to 

reproduce the reference results with a probability larger than ½. 
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Appendix 

The acronyms for 33 representative density functional approximations. 

Acronym Type References 

XYG3 Double hybrid [14] 

XYGJ-OS Double hybrid [15] 

xDH-PBE0 Double hybrid [16] 

B2PLYP Double hybrid [17] 

B2PLYP-D Double hybrid plus dispersion correction [18] 

B3LYP Hybrid GGA [19,20] 

B3LYP-D3 Hybrid GGA plus dispersion correction [19-21] 

B3PW91 Hybrid GGA [19] 

PBE0 Hybrid GGA [22,23] 

PBE0-D3 Hybrid GGA plus dispersion correction [21-23] 

O3LYP Hybrid GGA [24] 

X3LYP Hybrid GGA [25,26] 

BHHLYP Hybrid GGA [27] 

M06-2X Hybrid meta-GGA [28] 

M06 Hybrid meta-GGA [28] 

TPSSh Hybrid meta-GGA [29] 

BMK Hybrid meta-GGA [30] 

B97-1 Hybrid GGA [31] 

B97-2 Hybrid GGA [32] 
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B98 Hybrid GGA [33] 

CAM-B3LYP Range-separated hybrid GGA [34] 

ωB97X Range-separated hybrid GGA [35] 

ωB97X-D Range-separated hybrid GGA plus dispersion 

correction 

[36] 

HSE06 Range-separated hybrid GGA [37] 

LC-ωPBE Long range corrected hybrid GGA [38] 

LC-PBE Long range corrected GGA [39] 

TPSS meta-GGA [40] 

M06-L meta-GGA [41] 

B97D GGA plus dispersion correction [42] 

B97D3 GGA plus dispersion correction [43] 

HCTH407 GGA [44] 

BLYP GGA [45,46] 

PBE GGA [47] 
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Fig. 1 Transition state structures in the TSG36 [9] set, which include three hydrogen 

transfer (HT) reactions, three heavy-atom transfer (HAT) reactions, three nucleophilic 

substitution (NS) reactions of anions, and three unimolecular and association (UA) 

reactions. Each transition state structure is characterized by three distances (A. . . B, 

B. . . C, and C. . . A), involving the breaking and the forming bonds that make a total 

of 9 data points (G9) for each type of reaction.  
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Fig. 2 Correlations between the MAD and RMSD for each property of energy and 

geometry and the corresponding success probabilities P(g) and P(e). 
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Fig. 3 Probabilities of success (errors in distances ≤ 3 pm and in energies ≤ 3 kcal/mol), 

with different density functional approximations, to have success for geometries, P(g), 
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to have success for energy differences, P(e), to have success for both properties, P(g∩e), 

to have success for the distances, once the energy differences has been checked to be 

acceptable, P(g|e), to have success for the energy differences, once the geometrical 

parameters have been checked to be acceptable, P(e|g). The orange areas correspond to 

probabilities above 0.50. 
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Fig. 4 Same as Figure 3, but with smaller tolerances (errors in distances ≤ 1.5 pm and 

in energies ≤ 1.5 kcal/mol).  
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Fig. 5 Same as Figure 3, but with larger tolerances (errors in distances ≤ 4.5 pm and in 

energies ≤ 4.5 kcal/mol). 


