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Comparison of different coupling schemes between counterions and charged

nanoparticles in multiparticle collision dynamics

Vincent Dahirel, Xudong Zhao, Marie Jardat
Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8234, PHENIX, F-75005 Paris, France
(Dated: August 9, 2016)

We applied the multiparticle collision dynamics (MPC) simulation technique to highly asymmetric
electrolytes in solution, i.e. charged nanoparticles and their counterions in a solvent. These systems
belong to a domain of solute size which ranges between the electrolyte and the colloidal domains,
where most analytical theories are expected to fail, and efficient simulation techniques are still
missing. MPC is a mesoscopic simulation method which mimics hydrodynamics properties of a
fluid, includes thermal fluctuations and can be coupled to a molecular dynamics of solutes. We
took advantage of the size asymmetry between nanoparticles and counterions to treat the coupling
between solutes and the solvent bath within the MPC method. Counterions were coupled to the
solvent bath during the collision step, and nanoparticles either through a direct interaction force or
with stochastic rotation rules which mimic stick boundary conditions. Moreover, we adapted the
simulation procedure to address the issue of the strong electrostatic interactions between solutes of
opposite charges. We show that the short-ranged repulsion between counterions and nanoparticles
can be modeled by stochastic reflection rules. This new simulation scheme is very efficient from a
computational point of view. We have also computed the transport coefficients for various densities.
The diffusion of counterions was found in one case to increase slightly with the volume fraction of
nanoparticles. The deviation of the electric conductivity from the ideal behavior (solutes at infinite
dilution without any direct interactions) is found to be strong.

I. INTRODUCTION

Charged nanoparticles are ubiquitous in lots of fluids
of biological, ecological or industrial interest. Some of
the properties of these fluids are governed by the trans-
port properties of the nanoparticles. Moreover, the char-
acteristics of the nanoparticles themselves like their size
or their charge is often deduced from an interpretation
of their transport coefficients. For instance, widely used
analytical tools in labs are zetametry':2, which gives the
zeta potential of nanoparticles from their electrical mo-
bility, or dynamic light scattering®, which allows to mea-
sure a diffusion coefficient from which the approximate
radius of the nanoparticle can be deduced. Even in dark
dense media, there are ways to characterize the size of
the particles by measuring other transport coefficients,
such as the electroacoustic potential®®.

Despite the interest of transport coefficients in these
fluids, their theoretical prediction still remains a chal-
lenge, even in the case where interactions within the sys-
tem are well understood. For example, a solution of
charged globular proteins, with a radius of the protein
of about one nanometer, neutralized by its counterions,
can be considered as a colloidal system. But, as colloidal
particles are here very small, usual colloidal theories are
expected to fail®. Alternatively, this system can be han-
dled as an highly asymmetric electrolyte, but with such
an asymmetry in charge and in size between ions of oppo-
site charge, this system is much more difficult to describe
than simple electrolytes such as NaCl or CaCly in water.
Usual electrolyte theories are therefore also expected to
fail”.

For these kinds of systems where typical colloidal or
electrolyte theories should be used with much caution,

investigations through numerical simulations are impor-
tant. Molecular Dynamics (MD) at the atomistic level
is a possibility, but computing for instance the electrical
conductivity of a protein solution using such a detailed
modelling requires a very substantial use of computa-
tional capabilities. There are two main reasons for that.
First, the electrical conductivity is a collective transport
coefficient, which can be defined from the integral over
time of the autocorrelation function of the total electric
current within a given volume of the liquid, such as a
simulation box®°. This quantity is much more difficult
to compute with a good precision than individual trans-
port coefficients, such as the self-diffusion coefficient. In-
deed, the later can be deduced from the integral over
time of the autocorrelation function of individual veloci-
ties, which can be averaged out over the number of solute
particles. Second, the time scale at which the integral of
autocorrelation functions converges is of the order of a
few nanoseconds for such systems: Getting precise values
of these long time properties requires very long computed
trajectories. Therefore, using alternative coarse-grained
simulations is still necessary, despite the progress of com-
putational facilities. At least the description of the sol-
vent must be simplified, with all the care required if one
wants to reduce the number of degrees of freedom explic-
itly described in a system.

Dynamic properties of charged species in solution are
influenced by thermal fluctuations, by direct electrostatic
interactions and by hydrodynamic interactions mediated
by the solvent. The numerical simulation of fluids con-
taining nanoparticles thus requires the correct modeling
of all these direct and indirect interactions mediated by
the solvent. When the case of charged nanoparticles is
investigated, the presence of a possibly large amount of



small counter- and co-ions makes the simulation harder.
For some methodologies, this difficulty lies not only in
their abundance but also in their small size (compared
to nanoparticles). In particular, describing solutes of dif-
ferent sizes requires to correctly describe hydrodynamics
at different length scales. Hydrodynamic interactions are
long-range, compared to the size of the solute particles.
Therefore, in asymmetric systems, the size of the simu-
lation box must be much larger than that of the biggest
solute particle in order to resolve hydrodynamic inter-
actions far from these particles. Besides this constraint,
the fluid velocity field at the surface of the solute par-
ticles must also be carefully resolved, and therefore the
description of hydrodynamics around smaller ions have
to be carefully handled.

Moreover, another difficulty emerges due to the in-
tensity of electrostatic interactions, for instance in sit-
uations where electrostatic condensation is expected to
happen'®. In most coarse-grained simulation techniques,
dealing with strong interactions is avoided if possible,
especially because one objective of coarse-grained simu-
lations is to increase the time step compared to atomistic
ones''. Coarse-grained simulation algorithms like Dissi-
pative Particle Dynamics'? or Brownian dynamics'® 16
often include a stochastic component, which is a conse-
quence of the implicit description of the solvent. There-
fore, electrostatically condensed ions are more likely to
explore unstable regions of phase space with stochastic al-
gorithms than with MD: The random component of their
dynamics can lead them there. This problem disappears
when the time step decreases, but otherwise it can lead to
unphysical trajectories. This problem is particularly im-
portant when the stochastic component directly impacts
the positions of the solutes, like in Brownian Dynam-
ics'” 19, but it is less consequential when the stochastic
component impacts the velocities, like in multiparticle
collision dynamics, the mesoscopic methodology chosen
in this study?®-22.

One possibility to go beyond the simplification of the
sole solvent and to overcome the problem due to the
strong interactions between the nanoparticles and their
counterions is to use an effective interaction potential
between nanoparticles®2324 and to get rid of the explicit
description of small ions. Nevertheless, it is well known
that small ions play in some cases an important dynam-
ical role. One can define effective dynamical quantities,
such as an effective diffusion coefficient??, accounting for
the effect of the removed degrees of freedom, but still for
some applications the explicit description of counterions
is mandatory. For instance, an effective diffusion coeffi-
cient would not account properly for the effects of coun-
terions in non-equilibrium simulations, e.g. under the
presence of an electric field2%:27. Moreover, the computa-
tion of some collective transport coefficients, such as the
electrical conductivity, or even the mutual diffusion coef-
ficient which is measured by Dynamic Light Scattering,
requires an explicit description of the counterions?®2°.

In this context, our purpose in this work is to adapt

the multiparticle collision dynamics simulation (MPC)
method to systems which contain charged nanoparticles
and their counterions. MPC is an efficient mesoscopic
simulation method to describe the dynamic properties of
fluids in various regimes2® 22, In this algorithm, the fluid
is represented by point like particles that evolve in two
steps. Ballistic displacements of solvent particles are fol-
lowed by collision steps where solvent particles interact
through a momentum exchange. As this algorithm con-
serves momentum and energy, it generates the correct
Navier-Stokes hydrodynamics. This bath of solvent par-
ticles can be coupled to a molecular dynamics simulation
of the trajectories of solute particles?!»22.

Several variants of the coupling scheme between solutes
and solvent exist. This part of the methodology is par-
ticularly important because, as we proceed to show, this
is where the asymmetry between the nanoparticle and
its counterions can be exploited to decrease the compu-
tation time. The simplest way to couple solutes with the
solvent is to assume that solutes interact with the sol-
vent only during the collision step, exchanging momen-
tum with solvent particles?®:22. In this case, no excluded
volume exists for the solvent. We refer to this scheme
as CC (Collisional Coupling) in what follows. The ex-
cluded volume between solutes and solvent can be taken
into account via explicit repulsive forces, deriving for ex-
ample from a Weeks-Chandler-Andersen interaction po-
tential®?. We refer to this scheme as CFC (Central Force
Coupling) in what follows. The CFC coupling leads to
a slip boundary condition of the solvent at the surface
of the solute?!. Stick boundary conditions between so-
lutes and solvent can be mimicked thanks to stochas-
tic reflections of the solvent at the surface of the so-
lute®! 34, We refer to this scheme as SRR (Stochastic Re-
flections Rules) in what follows. We have shown recently
that, for neutral solutes and symmetric electrolytes, the
CFC MPC scheme compares very well with Brownian
Dynamics simulations accounting for hydrodynamic in-
teractions through the Rotne Prager hydrodynamic ten-
sor?®36. The later methodology is known to predict well
the effect of the volume fraction of charged solutes on
the transport coefficients'®37:3%, The CC scheme is less
effective in taking into account the effect of the size of
solutes and therefore the influence of volume fraction on
transport. However, the CC algorithm is more efficient
from a computational point of view, and is a good com-
promise for systems for which a precise description of the
hydrodynamic size is not mandatory. This is the case for
small ions in water: The size difference between ions and
solvent molecules is small, and the hydrodynamic size of
the ion is not well defined from structural data, such as
the cristallographic size or from the size of the fully hy-
drated ion. The description of continuous hydrodynam-
ics around an ion is deduced from an empirical top-down
strategy®®. The hydrodynamic boundaries of small ions
are not well defined microscopically, and the use of the
collisional coupling seems justified in this case. On the
other hand, this is not the case for colloidal particles with



clear hydrodynamic boundaries?®.

We propose here an efficient scheme based on MPC
simulations to compute the dynamic properties of
charged nanoparticles in solution in the presence of small
counterions. We suggest to use the CC coupling scheme
between the solvent and the small counterions, and either
CFC or SRR coupling schemes between nanoparticles
and the solvent bath. Moreover, to avoid the time con-
suming computation of short-range interactions between
counterions and nanoparticles, and to increase the stabil-
ity of the algorithm when the MD time step is increased,
we propose to use SRR conditions for counterions in the
vicinity of nanoparticles, using the same procedure as for
the solvent. It allows us to bypass the problem of the
exploration of the potential energy surface for highly at-
tracted charged solutes. Indeed, within this algorithm,
the short range repulsive interaction is replaced by an
exclusion scheme resulting in effective hard core inter-
actions. The discretization of the trajectory using finite
time steps is no longer a source of instability. The How-
ever, it is important to check whether this approximate
scheme, which affects the dynamics of the counterions at
the surface of the nanoparticle, leads to transport coef-
ficients that are quantitatively similar to the reference
scheme, where explicit interactions between counterions
and nanoparticles would be used.

In what follows, we study three different systems which
differ by the intensity of the electrostatic attraction be-
tween nanoparticles and counterions, with three different
variants of the MPC algorithm. In every case, small ions
are coupled to the solvent bath through a CC scheme. We
show that the dynamic properties computed with SRR
for small ions in the vicinity of nanoparticles are very
close to those obtained with explicit repulsive forces, even
for strong electrostatic attractions between them. More-
over, this procedure demands a computation time about
twenty times shorter than the usual one for the systems
investigated here. We also investigate the dynamic prop-
erties of nanoparticles and small ions with slip boundary
conditions of the solvent on nanoparticles (CFC scheme),
and we show that the nanoparticle/solvent boundary
condition also influences the dynamics of counterions.

Section II of this paper details the simulation meth-
ods, section III describes the systems under study and
contains the parameters of simulations. In section IV we
compare the results obtained with the different schemes,
and section V presents the application of the new simu-
lation scheme to the study of the influence of the volume
fraction on dynamic properties of solutes.

II. SIMULATION METHODS
A. MPC algorithm: Pure fluid

The MPC algorithm for a pure fluid is already de-
scribed elsewhere?° 22, and we only recall here the main
lines. The fluid is described by point-like particles (the

MPC fluid), whose positions and velocities evolve in two
steps. First, in the streaming step, the particles evolve
like in molecular dynamics, through the integration of
Newton’s equations of motion. There is no force between
the fluid particles, thus the only forces acting on the
MPC fluid are due to external fields, solutes or walls.
Therefore, the computation time associated with this
step scales as the number N of fluid particles. This is
the major advantage of the methodology. The exchange
of momentum between the fluid particles occurs in a sec-
ond step, the collision step. The simulation box is di-
vided into cubic collision cells. For each collision cell, a
randomly oriented axis is chosen. The velocity of each
fluid particle relative to the velocity of the center of mass
of the cell is rotated by an angle o around this axis:

Vilt +0te) = Vg, (t) + Ralvi(t) = vESi, (0] (1)

where v; is the velocity of particle i, R is the rotation
matrix, ve¥! the velocity of the center of mass of the
cell, and dt,. is the time between two collision steps. This
second step locally mimics interactions between the fluid
particles. The hydrodynamic properties of the fluid de-
pend on the choice of the angle «, of the mean number
of fluid particles per unit cell v, and on the duration A of

the streaming step, i.e the period between two collisions.

B. Coupling the fluid and the solutes

There are several ways to couple the MPC fluid to
explicit particles embedded in this fluid. In the following,
we refer to the MPC fluid as the solvent, and to the
embedded particles as the solutes.

The simplest coupling scheme is to couple the solvent
and solutes particles during the collision step. In this pa-
per, we will refer to this scheme as Collisional Coupling
(CC). See a description in eg??#!. Within this scheme,
the solvent particles can enter the solute particles, and
therefore the effect of the size of the solute particles on
the long range hydrodynamics is not quantitatively re-
produced. Nevertheless, it has been used for instance
for polymers??> 4, and it was shown to be successful in
describing the effect of hydrodynamics on the polymer
dynamics.

A second possibility is to add a central repulsive force
between the solvent and the solute particles. In this
case, the coupling occurs during the streaming step. In
this paper, we will refer to this scheme as Central Force
Coupling (CFC). In this case, the solvent is excluded
from the solute, and it slips at the surface of the so-
lute. The solute has then an explicit hydrodynamic size,
which is however different from the typical hydrodynamic
radius in colloidal dynamics, due to the presence of a
non-hydrodynamic source of friction, the Enskog friction
(for more details, see reference?!). Beyond that difficulty,
this scheme requires quite small integration time steps to



resolve the solvent dynamics around the solute, there-
fore it increases substantially the computational cost. In
the present paper, when this coupling mode is chosen,
we use a Weeks-Chandler-Andersen (WCA) interaction
potential between the solvent and solute:

12
teve [ (2)" = ()] + v i <20
r r

0, otherwise
(2)

where €y, controls the intensity of the repulsion, o is a

size parameter, which is larger than the hydrodynamic

size of the solute to avoid spurious depletion effects?!.

As the interaction potential is rather steep, the streaming

step must be divided into smaller MD time steps, denoted

by At, in order to ensure the stability of the algorithm.

A third family of methods intends to reproduce no-slip
boundary conditions at the surface of the solute (or of a
wall). This condition is a better representation of so-
lutes as colloidal particles, since attractive short-ranged
interactions with the solvent are expected to stick sol-
vent molecules at the surface of the particles®32. In the
present study, we used the Stochastic Reflection Rules
algorithm (SRR). The SRR for solvent particles around
nanoparticles was first proposed by Inoue et al*>. Within
this scheme, when a solvent particle enters a solute par-
ticle, the time and position of the impact is computed,
the solvent particle is restored to this impact point and
is given a random velocity obtained through a half-plane
Maxwell-Boltzmann distribution. For the remainder of
the step, the solvent particle streams from the point of
contact using this random velocity. The following modi-
fication of the algorithm has been proposed in ref.3!. In-
stead of computing the exact impact time when a solvent
particle enters the solute, the dynamics is reversed so that
both solvent and solutes go half a step back. Then, the
position of the solvent particle is replaced by the closest
point at the surface of the solute. After that, a random
velocity is generated, which is used to propagate the sol-
vent particles for the remaining half time step.

We use here the implementation of the algorithm pro-
posed by Padding et al and described in ref.?!. The as-
signed position of the solvent particle at the surface of the
solute particle is denoted by r*. In order to implement
the momentum exchange between the solvent particle 4
and the solute or nanoparticle NP, the solvent particle is
assigned random normal and tangential velocities v}, and
vy respectively (relative to the velocity of the nanopar-
ticle). The probability distribution for the scattered ve-
locity is given by

Uwca(r) =

Pw) = mﬂv;exp(—mﬁvfﬁ) (3)

n

P(v}) = /mB/(2m)exp(~mpBv;*/2) (4)

where 3 = (kpT)~! with kg the Boltzmann constant, T
the temperature, m the mass of a solvent particle.

After the impact of a solvent particle ¢ with a solute
particle j, the velocity of solvent particle i, denoted by
v;, becomes:

vi(t+At) = VI (1) + QFF x [1* = R (1)) + v én + v} &

(5)
where é,, and &, are the unit vector in normal and tan-
gential directions, R is the position vector of the solute
particle j, Q?IP is the angular velocity of the solute par-

ticle j, VJ-NP is the velocity of the solute particle j. The
final velocity of the nanoparticle particle j encountered
by a solvent particle ¢ becomes:

VIP(t+ At) = VIP(8) + [vi(t) — vilt + A (6)

where M is the mass of the nanoparticle j. The angular
velocity of the nanoparticle is modified as well:

NP NP
QNP (t + At) =Q5F (t)+

e~ Ry(0)] x [vilt)

(7)

with the moment of inertia of the nanoparticle I =
Md?/10 with d the diameter of the nanoparticle.

Within this methodology, the question of the dis-
cretization of the equation of motion in the presence of a
steep interaction potential vanishes. It is not necessary
to divide the streaming step into smaller MD steps, ex-
cept if the density of solutes is important. In this case,
multiple reflections on the solute surface are expected to
become more likely, and a good way to avoid them is to
divide the streaming step.

C. Stochastic Reflection Rules for counterions

In the case of charged colloidal systems, the issue of
the discretization of the equations of motion for coun-
terions close to the surface of the nanoparticle is even
more problematic than in the case of solvent particles. As
counterions are attracted by the nanoparticle, they are
concentrated close to the surface. Using a short-ranged
repulsive interaction potential to mimic the excluded vol-
ume of the nanoparticle renders thus the description of
the dynamics of electrostatically condensed ions challeng-
ing.

In order to address this issue, we propose to apply the
Stochastic Reflection Rules mentioned above to counteri-
ons in the vicinity of nanoparticles. The same algorithm
is used for counterions and solvent particles when they
encounter a nanoparticle. The translational and angular
velocities are modified as well, following eqns. 5-7. The
finite size of the counterions in the real solution is taken
into account by replacing the radius of the nanoparticle
in eqns.5-7 by the sum of the nanoparticle radius and
that of the counterions.



In the framework of this new scheme, the only forces
to be explicitly computed in the system are actually
Coulomb forces. In particular, short-range repulsive
forces between counterions which would account for their
finite size are not taken into account. This does not lead
to unphysical situations because Coulomb interactions
between counterions are repulsive. It would be more
tricky to handle the case of added salt, with Coulomb
attraction between ions of opposite size. We are work-
ing on this issue which will be dealt with in a forth-
coming article. Finally, this method is computationally
lighter than the usual one where all interactions between
charged species are taken into account. Moreover, larger
time steps can be used.

D. Summary of the different coupling schemes used

In the current study, our main effort is focused on the
comparison of three algorithms adapted to the simula-
tion of the dynamic properties of charged nanoparticles
and their counterions in suspension in the framework of
MPC. In all cases, nanoparticles interact with each other
through Coulomb interactions and a WCA potential with
parameters ey p and oy p. Nanoparticles and their coun-
terions interact through Coulomb interactions. Direct
interactions between counterions consist in Coulomb in-
teractions and in short-ranged repulsions with parame-
ters €. and o. in two cases over three. In every case,
long-ranged Coulomb interactions are computed using
the usual Ewald summation technique®S.

In all three cases, counterions are coupled to the sol-
vent within the collision steps, i.e we use the CC cou-
pling scheme for these small solutes. The nanoparticles
are coupled to the solvent bath either through WCA
interactions (CFC algorithm) with parameters eyp,y
and oxp/s, or by using the Stochastic Reflection Rules
mimicking no-slip boundary conditions (SRR algorithm).
With SRR, the minimal distance of approach between the
solvent and the nanoparticle is called oy p/ .

When nanoparticles are treated within the CFC al-
gorithm, counterions also interact with nanoparticles
through a central WCA potential, with parameters ey p/.
and onp/., and they interact with each other through a
WCA potential with parameters €. and o.. We therefore
call this method F-CFC, for Full Central Force Coupling.

When SRR conditions are used for the solvent in the
vicinity of nanoparticles, interactions between counteri-
ons and nanoparticles are treated in two different ways.
In the first case, counterions interact with nanoparti-
cles through a WCA potential with parameters eyp/.
and onp/. in addition to Coulomb interactions. Coun-
terions interact with each other through Coulomb inter-
actions and short-ranged WCA repulsions with param-
eters ¢, and o.. This method is called SRR-CFC, as
it combines SRR for solvent/nanoparticle and CFC for
counterions/nanoparticle), and differs from the F-CFC
variant in the treatment of solvent/nanoparticle inter-

TABLE I: Different coupling schemes

Acronym of|solvent/nanoparticle |counterion/nanoparticle
the method |interactions interactions

F-CFC
SRR-CFC

Central Force Central Force

Stochastic Reflection |Central Force

F-SRR Stochastic Reflection |Stochastic Reflection

actions only. In the second case, counterions interact
with nanoparticles through the SRR scheme in addition
to Coulomb interactions, and interactions between coute-
rions only consist in Coulomb interactions (no WCA
potential between counterions in this case). We call
this method F-SRR, for Full Stochastic Reflection Rules.
Within the F-SRR variant, the minimal distance of ap-
proach between a counterion and a nanoparticle is called
onpje = (onp +0c)/2.

The main characteristics of the three methods are sum-
marized in tab. I.

E. Computation of the transport coefficients of
solutes

In order to understand the ability of the different
MPC simulation techniques to be quantitatively predic-
tive in terms of transport coefficients, we compute the
self-diffusion coefficient and the electrical conductivity of
the solution. These quantities can be obtained from the
computation of the integrals over time of adequate cor-
relation functions.

The self-diffusion coefficient of solutes is computed
from the autocorrelation function of the velocity:

1
D= lim -

t—o00 0

dt/ <(V1 (to) . Vi(t/ -+ tO))to (8)

or using the mean square displacements:

. <(ri(t0 +1t) — I‘z‘(to))2>to
b= tlggo 6t ©)

We also define a time-dependent diffusion coefficient:

{(xilto +1) — ri(to))” )
6t

The electrical conductivity, which is a collective trans-
port coefficient, is computed from the autocorrelation
function of the electric current in the simulation box:

D(t) = t“ (10)

N

€2 ¢ N ,
t1i>oo 3kgTV / Z z@vilto +¢) ; zvilto) at

=1 to

(11)




where kp is the Boltzmann constant and T' the tempera-
ture, V is the volume of the simulation box, z; the valency
of ion i, e the elementary charge and N the total number
of solute particles in the simulation box.

In what follows, these transport coefficients are divided
by their value at infinite dilution, denoted by D° and x°,
where x° depends on D through x° = 72 ZN z2e2DY.

i=1"1

III. SYSTEMS UNDER STUDY AND
PARAMETERS OF THE SIMULATIONS

In order to examine the precision and the numerical
efficiency of the three algorithms mentioned above, we
study several systems which differ from their asymme-
try in terms of size and charge. The types of systems for
which the explicit description of counterions is important
from a physical point of view and stays moderate from a
computational point of view include solutions of proteins,
small micelles, small inorganic particles such as polyox-
ometallates. With these systems in mind, we chose to
constrain ourselves to the study of three systems.

The diameter oy p of nanoparticles, which is involved
in the direct interaction potential between them, and al-
lows us to define the volume excluded to solvent parti-
cles and to counterions, takes two different values: Ei-
ther 1 nm or 4 nm. The nanoparticles are surrounded by
neutralizing monovalent counterions with a diameter o,
equal to 0.35 nm.

When the diameter of the nanoparticle is 1 nm, its
charge Zyp is either —4e or —8e, with e the elementary
charge. These characteristics are close to those of a sys-
tem used as a standard in electrokinetic measurements,
especially in electroacoustic experiments*’, namely the
silicotungstate polyoxoanion (SiW12040)*~. We also in-
vestigate the case where the charge is equal to —8e in-
stead of —4e, because we expect a stronger electrostatic
coupling with counterions, whose dynamic properties are
difficult to account for in numerical simulations.

When the diameter of the nanoparticle is 4 nm, its
charge Zyp is equal to —16e. The ratio Zyp/onp
takes thus exactly the same value as for the system with
onyp = 1 nm and Zyp = —4e. These characteristics are
here typical of aqueous micellar systems, such as DTABr,
dodecyltrimethylammonium bromide, where micelles are
spheres of radius 2 nm and charge —16e, as measured by
electric conductimetry??.

The three families of systems will be referred to in the
following using the charge of nanoparticles: Zyp = —4e,
Znyp = —8e, and Zyp = —16e. The concentration of
the suspension is evaluated through the packing fraction
of nanoparticles ¢np, as it is usually done in electroki-
netic theories of colloids. Theories of electrolytes usu-
ally focus on the electrolyte concentration, which here
would be equal to the number of nanoparticles divided
by the volume of the simulation box. It must be no-
ticed that, at a given volume fraction ¢np, the numerical
concentration of nanoparticles with Zyp = —16e is 43

smaller than with Zyp = —4e or Zyp = —8e. In section
IV, the volume fraction of nanoparticles is one percent
(¢np = 0.01). In section V, it varies between 0.005 and
0.04.

For each system, the parameters used to simulate the
MPC fluid bath are: o = 130, v = 5, A = 0.1ag, where
we chose the size of the cubic collision cells a¢ as the
unit length. The unit of mass is that of solvent parti-
cles, my = 1, the unit of energy is kg7 = 1, and the

unit of time is ¢ty = ,/g—fT = 1. The box length is the

same in every case (Lpox = 32ap), the volume fraction
of solutes being varied by changing the number of so-
lutes in the simulation box. The mass of nanoparticles is
M = 150my with m; the mass of solvent particles, and
the mass of counterions is m. = 10my. The repulsion pa-
rameter of the WCA interaction potential is the same in
every case: ewca = 1 kpT'. onp;y, which is the the size
parameter of the nanoparticle/solvent WCA interaction
potential in F-CFC and the radius of the nanoparticle
in other schemes is equal to: onp/; = 2.31ag in F-CFC
and o p/s = 1.81ag in F-SRR and SRR-CFC. The WCA
size parameter for the nanoparticle/nanoparticle interac-
tion is either onyp = 4.95a¢ in F-CFC or onxp = 3.88a
for the other schemes. The WCA size parameter o, for
the counterion/counterion interaction is 3 times smaller
than oxp for Zyp = —4e and Zyp = —8e. o, is 12
times smaller than oxp for Znyp = —16e.

The computed diffusion coefficients of solutes are in
principle affected by the finite size of the simulation box.
It was shown previously (see e.g.?!) that for Lje, = 32aq
and the parameters we use here, this finite size effect is
negligible. As for the nanoparticles, the diffusion coef-
ficient at infinite dilution D° was extrapolated at zero
volume fraction from the values of the diffusion coeffi-
cients D of neutral solutes at low concentration. We
have obtained D° = 0.0109a3/to in every case. As for
the counterions, we have taken the value of the diffusion
coefficient at infinite dilution computed in our previous
paper3% in the same conditions as in the present work:
D° = 0.0418a2/tg. The results presented in following
sections were obtained by averaging over 7 independent
trajectories of duration between 5 - 10°ty (F-CFC and
SRR-CFC schemes) to 107 tg (F-SRR scheme).

IV. COMPARISON OF THE DIFFERENT
SIMULATION SCHEMES

A. Numerical efficiency

When the F-CFC algorithm is used, the time step of
the simulation is At = 0.01 ¢y and the time between two
collision steps is §t, = 0.1¢g. In the SRR-CFC scheme,
SRR rules for solvent particles in the vicinity of nanopar-
ticles are used instead of pair interaction forces. The
time step is the same as in the F-CFC scheme: It can’t
be increased because of the combination of short-range



repulsions and strong attractive electrostatic interactions
between counterions and nanoparticles. If At is too large,
the discretized equation of motion of counterions deviates
too much from the exact trajectory. Nevertheless, sim-
ulations with the SRR-CFC scheme are more than two
times faster than with the F-CFC scheme, thanks to the
SRR rules for solvent particles. The F-SRR algorithm
combines two main advantages. First, the use of the SRR
rules for solvent particles is more efficient than direct in-
teractions, and second, the time step At can be increased
by a factor 10. This is possible because the integration of
the equations of motions of counterions does not involve
a pair interaction potential combining a short-range re-
pulsion and a long-range attraction anymore. We have
then with the F-SRR scheme: At = 0.1¢g and §t. = 1.
Finally, simulations with the F-SRR scheme are found
to be almost twenty times faster than with the F-CFC
scheme for the systems investigated here.

B. Radial distribution functions
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FIG. 1: Radial distribution functions between nanoparticles
and counterions for the system Znxp = —16e at the volume
fraction ¢np = 0.01 obtained with the SRR algorithm for
counterions (dotted red, F-SRR algorithm), a WCA inter-
action potential between counterions and nanoparticles and
SRR for the solvent (dashed blue, SRR-CFC algorithm), and
full WCA interactions (plain black, F-CFC algorithm). onp/.
stands for the sum of counterions and nanoparticles radii:
onp/e = (ONP +0c)/2.

To validate the new scheme, where SRR is applied for
counterions in the vicinity of nanoparticles (F-SRR), the
first thing to check is that the spatial organization of
the solution is well reproduced. In Fig. 1, we give the
radial distribution functions (rdfs) between counterions
and nanoparticles obtained with the three different algo-
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FIG. 2: Radial distribution functions between counterions for
system Znyp = —16e at the volume fraction ¢np = 0.01 ob-
tained with the SRR algorithm for counterions (dotted red, F-
SRR algorithm), a WCA interaction potential between coun-
terions and nanoparticles and SRR for the solvent (dashed
blue, SRR-CFC algorithm), and full WCA interactions (plain
black, F-CFC algorithm). o. stands for the WCA diameter
of counterions.
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FIG. 3: Radial distribution functions between counterions for
systems Zyp = —4e (plain black) and Zyp = —8e (dashed
red) at a volume fraction ¢np = 0.01 obtained with the F-
SRR algorithm.

rithms, F-SRR, SRR-CFC and F-CFC. We obtain an ex-
cellent agreement between these methods. As expected,
the rdf does not depend on the solvent/nanoparticle in-
teraction (agreement between SRR-CFC and F-CFC).
A small difference at contact appears between results



obtained with the F-SRR scheme and other ones, be-
cause the interaction between counterions and nanopar-
ticles is an effective hard-core interaction when the F-
SRR scheme is used. Even if the WCA interaction po-
tential is strongly repulsive at short range, it is not an
hard-core potential. The agreement is also excellent for
the rdf between counterions displayed in Fig. 2. The
good prediction of structural properties by the F-SRR
schemes is an argument to show that counterions are ad-
equately thermostated by the stochastic reflections. It
also suggests that the structure of the cloud of counte-
rions around nanoparticles is not affected by artefacts
of the simulation procedure, such as multiple reflections.
We double-checked this by computing the temperature
using only the velocities of counterions, which confirmed
their perfect thermostating.

Moreover, the study of rdfs allows us to check that the
chosen systems are representative of qualitatively differ-
ent regimes in terms of electrostatic coupling. (i) Systems
Znp = —4e and Znyp = —16e show no clear sign of elec-
trostatic condensation, which was checked by computing
the coordination numbers for counterions as function of
the distance, N.(r). There is no clear inflexion point
of the curve N.(r), which would be a signature of elec-
trostatic condensation (Bjerrum criterion'?). The coun-
terion/counterion rdfs also show that interionic correla-
tions within the electrostatic double layer are relatively
weak (see Figs. 2 and 3). (ii) Conversely, the system
Znp = —8e is a good model for highly charged nanopar-
ticles moving with electrostatically condensed counteri-
ons. First, as expected, at a given volume fraction,
the peak of the rdf between counterions and nanopar-
ticles is higher for system Zyp = —4e than for system
Znp = —8e, where the electrostatic interaction increases
(see Fig. 4.). Second, the correlation between counte-
rions is stronger in the system Zyp = —8e than for
Znp = —4e, as it can be seen in Fig. 3. Third, the
counterion coordination number N.(r) (not shown here)
displays an inflexion point as a function of distance, typ-
ical of ionic condensation.

Finally, as the correlation between counterions in-
creases from Zyp = —4e to Zyp = —16¢ and then to
Znp = —8e (see Figs. 2 and 3), the electrostatic coupling
between the nanoparticles and their counterions increases
in the same way. The kink in the rdfs between counteri-
ons which appears at r/o. = 13 for Zyp = —16e (Fig.
2) and r/o. = 4 for Zyp = —4e or Zyp = —8e (Fig. 3)
corresponds to the maximal distance between two coun-
terions situated in the vicinity of a given nanoparticle.
This maximal distance is reached when two counterions
are diametrically opposed to each other on a nanopar-
ticle, i.e. at a distance equal to (onxp + 0.)/0.. For
Znp = —16e, the WCA size parameter of counterions
o¢ is 12 times smaller than that of nanoparticles, so that
the kink appears at about /o, = 13; For Zyp = —4e
or Znyp = —8e, the diameter of counterions o. is about
3 times smaller than that of nanoparticles, so that the
kink appears at about /0. = 4.
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FIG. 4: Radial distribution functions between counterions
and nanoparticles for systems Zyp = —4e (plain black) and
Znp = —8e (dashed red)at a volume fraction ¢xp = 0.01,
obtained with the F-SRR algorithm.

C. Dynamic properties of solutes
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FIG. 5: Diffusion coefficient of counterions as a function of
time for the three different systems (black: Zyp = —4, red:
Znp = —8 and blue: Zyp = —16) obtained with the F-CFC
(plain line), SRR-CFC (dashed line) and F-SRR (dotted line)
algorithms at the volume fraction ¢xp = 0.01.

We present in Figs. 5 and 6 the diffusion coefficients
of nanoparticles and of counterions respectively, as func-
tions of time. The time is rescaled by 75 which is the
Brownian relaxation time, i.e. the characteristic time
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FIG. 6: Diffusion coefficient of nanoparticles as a function of
time for the three different systems (black: Zyp = —4, red:
Znp = —8 and blue: Zyp = —16) obtained with the F-CFC
(plain line), SRR-CFC (dashed line) and F-SRR (dotted line)
algorithms at the volume fraction ¢xp = 0.01.

over which the velocity correlations of nanoparticles de-
cay. These quantities were deduced from the mean square
displacements divided by time. They are presented for
the three algorithms, F-CFC, SRR-CFC, and F-SRR,
and for the three systems Zyp = —4e, Zyp = —8e and
Znp = —16e, for a unique volume fraction (¢xp = 0.01).
The diffusion coefficients are divided by their value at in-
finite dilution extrapolated from simulations with only a
few solutes in the simulation box.

In every case, the diffusion coefficient is smaller than
its value at infinite dilution. This is expected from elec-
trolyte transport theories?*® and was also obtained with
other simulation techniques, such as Brownian Dynam-
ics!6:49:50 " In the framework of usual theories of elec-
trolytes, the decrease of the diffusion coefficient as a
function of concentration is assumed to be mainly due
the electrostatic coupling between a solute and its ionic
atmosphere, accounted for by the so-called electrostatic
relaxation force. Hydrodynamic interactions also have
an influence on this quantity as was shown for exam-
ple by BD simulations??®!53: They increase the diffu-
sion coeflicient compared to situations where they are
neglected, because hydrodynamic couplings tend to de-
crease the amplitude of the electrostatic relaxation.

As for counterions (Fig. 5), the decrease of the diffu-
sion coefficient due to the combined effect of electrostatic
interactions and hydrodynamics is moderate for systems
Znp = —4e and Zyp = —16e, with a decrease of about
10 percent whatever the method. The decrease is sig-
nificantly more pronounced for the system Zyp = —8e:
This is a dynamical signature of the electrostatic conden-
sation of counterions on nanoparticles in this case. As

condensed counterions move with the larger and slower
nanoparticle, they diffuse slower than free ions: In aver-
age, counterions are slowed down.

The diffusion coefficients of counterions obtained by
F-SSR and SRR-CFC are in excellent agreement. Both
schemes only differ in the treatment of the dynamics
of counterions in the vicinity of nanoparticles: Explicit
WCA interactions in the SRR-CFC algorithm, and ef-
fective hard core interactions in the F-SRR one. The
difference between results obtained by these methods is
below the statistical noise of our calculations. First of
all, this means that the simplified description of the dy-
namics of counterions in the vicinity of nanoparticles in
the F-SRR scheme is adequate. Moreover, this suggests
two things: (i) the small difference in the structure of the
ionic clouds observed in the rdfs in Fig. 1 does not in-
fluence the dynamics of counterions; (ii) as long as coun-
terions cannot penetrate the core of nanoparticles, the
friction induced by the nanoparticle/counterion coupling
does not depend on the mechanism by which counterions
are excluded from the nanoparticles. Also, the CC cou-
pling between counterions and solvent tends to equalize
the velocities of ions and solvent molecules so that sol-
vent velocities impose the counterion ones at the surface
of the nanoparticle. The solvent evolves through the SRR
scheme, which mimics no-slip boundary conditions: They
are transmitted to counterions in the SRR-CFC scheme.

The comparison of F-CFC and SRR-CFC schemes is
particularly interesting for counterions. These methods
differ from the treatment of the nanoparticle/solvent cou-
pling but do not differ from the treatment of the nanopar-
ticle/counterion coupling. The results show a quantita-
tive effect of the solvent-nanoparticle boundary condi-
tion on the friction felt by counterions for both systems
Znp = —4de,and Zyp = —8e. We remind the reader
that the solvent-counterion coupling (within the collision
steps) does not change in the methodologies we are com-
paring here. We interpret this effect as follows: In the
full CFC algorithm (F-CFC), the solvent-nanoparticle in-
teractions result in effective slip boundary conditions,
which means that the trajectories of the solvent parti-
cles are less coupled to those of the nanoparticles than in
the case of the SRR algorithm (the latter models no-slip
boundary conditions). This differenceis transmitted to
counterions through the solvent. As a result, the hydro-
dynamic coupling between counterions and nanoparticles
is smaller within the F-CFC methodology than within
the SRR-CFC one. As hydrodynamic effects reduce the
electrostatic couplings, the electrostatic friction is more
important with the F-CFC scheme. In other words, the
stronger is the hydrodynamic coupling, the weaker is
the electrostatic friction; The less intense is the friction,
the higher is the diffusion coefficient. For the system
Znp = —8e for instance, this explanation may account
for the increase of the diffusion coefficient from about
0.73D° with F-CFC to 0.78D° with SRR-CFC.

The picture is slightly less straightforward for the
transport of nanoparticles (Fig. 6). For all three sys-



tems, there are differences for the computed values of
the diffusion coefficient D using the three methodolo-
gies, with the same sequence D(F-CFC) > D(F-SRR)
> D(SRR-CFC). The values obtained from the F-SRR
and SRR-CFC methods do not exactly agree for a given
system, contrarily to what was observed for counterions,
but the difference between the diffusion coefficients stays
relatively small, around 0.02D°, i.e close to the limit of
statistical significance (the number of nanoparticles in
the simulation box is smaller than that of counterions,
which decreases the precision of the evaluation of D).
Moreover, the ratio of diffusion coefficients of the differ-
ent systems is almost the same for all three methods:
D(Zyp=-4e)/D(Znp=-16e)=0.713 for F-CFC; 0.725 for
F-SRR and 0.715 for SRR-CFC. This comparaison of rel-
ative transport coefficients makes sense in an analytical
perspective, as experimental transport quantities are of-
ten obtained through the use of calibration curves using
referent materials.
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FIG. 7: Electrical conductivity of the suspension for the three
different systems (black: Zyp = —4, red: Zyp = —8 and
blue: Znxp = —16) obtained with the SRR-CFC (dashed line)
and F-SRR (dotted line) algorithms at the volume fraction
¢np = 0.01.

Collective transport coefficients are more difficult to
compute than individual transport coefficients, as they
require longer trajectories, but they can give complemen-
tary information. In particular, the electrical conductiv-
ity is particularly sensitive to the coupling between the
nanoparticles and their counterions, since under an elec-
tric field, these two types of particles move in opposite
direction relative to the electric field. Hydrodynamics
couplings strongly reduce the ability of particles to move
with opposing velocities, and thus considerably decrease
the conductivity of the fluid. The integral of the auto-
correlation function of the electric current divided by the
electrical conductivity at infinite dilution is shown as a
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function of time in Fig. 7 for all three systems, and for
the two counterion /nanoparticle coupling schemes (SRR~
CFC and F-SRR). The long time limit of this integral is
the electric conductivity of the fluid. The agreement be-
tween both methods is again very satisfying.

All together, the comparisons between SRR-CFC and
F-SRR methods make a strong argument for the use of
the Stochastic Reflection Rules for counterions. It yields
computed dynamical quantities which are very close to
those obtained with the use of a central repulsive force,
and it enables to avoid instabilities due to the discretiza-
tion of the trajectories within rapidly varying energy
landscapes. Finally, as already stated before, the F-SRR
scheme is more efficient from the computational point of
view.

V. APPLICATION: INFLUENCE OF THE
VOLUME FRACTION ON THE DYNAMIC
PROPERTIES
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FIG. 8: Diffusion coefficient of the nanoparticles computed
with the F-SRR algorithm as a function of the volume fraction
of the solutes, for the three different systems (plain black:
Znp = —4, dashed red: Zyp = —8 and dotted blue: Zyp =
—16).

As we showed previously, the F-SRR proposed method-
ology is able to predict reliable transport coefficients
for suspensions of nanoparticles and their counterions in
the framework of multiparticle collision dynamics, and
is faster than alternative MPC coupling schemes. We
present hereafter (Figs. 8-10) series of results obtained
within this methodology as a function of the volume frac-
tion of nanoparticles ¢y p.

The diffusion coefficients of nanoparticles shown in Fig.
8 decrease monotically with the volume fraction of the
solute, as expected from an increase of the effect of re-
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FIG. 9: Diffusion coefficient of the counterions computed with
the F-SRR algorithm as a function of the volume fraction
of the solutes, for the three different systems (plain black:
Znp = —4, dashed red: Znyp = —8 and dotted blue: Zyp =
—16).
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FIG. 10: Electrical conductivity of the suspension computed
with the F-SRR algorithm as a function of the volume fraction
of the solutes, for the three different systems (plain black:
Znp = —4, dashed red: Zyp = —8 and dotted blue: Zxp =
—16).

pulsive interactions that slow down the overall dynam-
ics. Indeed, the free space available for the diffusion of
the particles decreases when the density increases. For a
given volume fraction, the fastest nanoparticles are the
smallest and less charged ones (system Zyp = —4e).
The diffusion coefficient of the most charged nanoparti-
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cles (Zyp = —16e) is the smallest one, even if the ratio
Znp/onp is the same for this system and for that with
Znp = —4e. This is an effect of the electrostatic fric-
tion of counterions: The attraction between counterions
and nanoparticles is almost the same for Zyp = —4e and
Znp = —16e but the number of counterions surrounding
the nanoparticles is much larger.

As for counterions, the results displayed on Figure 9 re-
veal two regimes: (i) for the less electrostatically coupled
systems (Znyp = —4e,Zyp = —16¢) the diffusion coeffi-
cients of the counterions show a monotic decrease with
the density in solutes; (ii) oppositely, for the systems con-
taining electrostatically condensed ions (Zyp = —8e),
the diffusion coefficients of the counterions have a mono-
tonic increase with the density in solutes. This counter-
intuitive result is due to an electrostatic effect: The ionic
condensation of counterions on nanoparticles decreases
when the global concentration of the system increases,
because the electrostatic screening increases. Counte-
rions are thus less attracted to nanoparticles and can
diffuse faster. This behavior has already been observed
in related systems by using Brownian Dynamics simula-
tions®455,

The electrical conductivity of the fluid displayed in Fig.
10 decreases monotically with the density in solutes. For
the systems Zyp = —8e, the fact that the diffusion coef-
ficient of couterions increases with increasing concentra-
tion does not yield an increase of the conductivity with
increasing concentration. It is noteworthy that the de-
viation from ideality (case without any interactions be-
tween solutes) is very high for systems Znyp = —8e and
Znp = —16e. The analytical theories of transport in
electrolytes often rely on the calculation of corrections
relative to the ideal case®®. By principle, they cannot be
applied for such strong deviations from ideality.

VI. CONCLUSION

In this study, we applied the MPC simulation tech-
nique to study suspensions of highly asymmetric elec-
trolytes, i.e. charged nanoparticles and their counterions
in a solvent. While the asymmetry between nanoparticles
and counterions is in principle a source of computational
difficulty, we took advantage of it, and we chose to couple
the dynamics of these two kinds of solutes to the MPC
solvent with a rule adapted to their respective size.

Counterions were coupled to the MPC solvent bath
during the collision step. This results in an effective hy-
drodynamic size of counterions which is different from
their real size, but the coupling between the solvent
bath and solutes is simple, computationally efficient, and
rather pertinent for small ions whose hydrodynamic ra-
dius is not unambiguously defined. Nanoparticles were
coupled to the solvent particles either through a direct
interaction force or with stochastic rotation rules which
mimic stick boundary conditions.

Difficulties arising from the coupling between the MPC



solvent and solutes have already been addressed by other
studies, but our work is the first one which combines two
different coupling schemes for two different types of so-
lutes in the same simulation. This mixed coupling rule
seems particularly adapted for suspensions containing so-
lutes with different sizes. We studied systems with a size
ratio between solutes from 3 to 12, and this mixed cou-
pling rule can be used in principle in MPC simulations
devoted to suspensions of solutes of different sizes, within
size ratios of the same order as in our study.

Moreover, we adapted the simulation procedure to ad-
dress a second issue: The treatment of the strong electro-
static interactions in systems where both types of solutes
have opposite charges, namely asymmetric electrolytes or
nanoparticles and their counterions. We compared two
different schemes to treat nanoparticles/counterions in-
teractions. In both cases, the treatment of electrostatics
at long range is similar, using the Ewald summation tech-
nique. But the short-ranged interaction potential, which
is particularly difficult to sample as it combines a short-
ranged repulsion (counterions must be excluded from the
volume of the nanoparticle) and a strong attraction (lead-
ing to an ionic condensation in some cases). In the first
method, the short-ranged repulsion is modeled by a cen-
tral repulsive force (WCA interaction potential). In the
second method, counterions are reflected on the surface of
nanoparticles. In other words, we described the dynam-
ics of counterions in the vicinity of nanoparticles with
two different schemes similar to the two usual nanopar-
ticle/solvent coupling methodologies (central force cou-
pling leading to slip boundary conditions or stochastic re-
flection rules leading to stick boundary conditions). We
also investigated whether the nanoparticle/solvent cou-
pling scheme had an influence on the dynamics of coun-
terions.

The central result of our study is that the use of re-
flection rules for counterions at the surface of nanoparti-
cles compares very well with the use of a central repul-
sive force. Moreover, the reflection rules are much more
computationally efficient than the explicit computation
of direct repulsive forces. This is an important result
because the systems under study here belong to a do-
main of solute size which ranges between the electrolyte
and the colloidal domains. Most analytical theories are
expected to fail for such systems, and efficient simula-
tion techniques are still missing. Thus, we did not in-
tend here to confront our results to existing analytical or
semi-analytical theories. Nevertheless, one disadvantage
of the F-SRR method is that it is unable to represent
detailed short-ranged interactions between the surface of
the nanoparticle and the counterions.

In the last section, we also presented series of calcula-
tion of transport coefficients in suspensions of nanoparti-
cles and their counterions for various densities. In every
case the diffusion coefficient of nanoparticles is found to
decrease with the volume fraction. As for the counteri-
ons, their diffusion coefficient is more affected when the
electrostatic coupling with the nanoparticle increases, as
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expected. In one case, the diffusion coefficient of coun-
terions is found to increase with the volume fraction of
nanoparticles, a counterintuitive result which was already
obtained in related systems by Brownian dynamics®®. In
the case of the electrical conductivity, the deviation from
the ideal behavior (solutes at infinite dilution without
any direct interactions) is strong: The conductivity is
equal to half of its ideal value for the more electrostati-
cally coupled system. For such systems, analytical elec-
trolyte theories are meaningless, as they only make sense
with small deviations from the ideal behavior3®. More-
over, electrokinetic theories of colloidal systems, which
usually relies on effective quantities such as the effec-
tive charge or the zeta potential, assume in most cases
that colloidal particles do not contribute to the electrical
conductivity"?. We remind the reader that the relative
contribution of each species to the ideal electric conduc-
tivity scales as nDz2, where n is the density, D is the
diffusion coefficient and z is the charge. For the system
Znp = —8e, the contribution to the electrical conduc-
tivity of nanoparticles is higher than the contribution of
the counterions, which is therefore an indication that col-
loidal theories are not adapted either.

The present study is a first step towards a a more
quantitative understanding of the dynamics of charged
nanoparticles in solution. A complete comparison of
MPC results to available analytical transport theories in
the cases where analytical theories are reliable, and then
novel extensions of electrolyte theories will be discussed
in subsequent papers.
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