
HAL Id: hal-01474569
https://hal.sorbonne-universite.fr/hal-01474569v1

Submitted on 29 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a User-Guided Difference-Based Detection of
Atomic Changes

Djamel Eddine Khelladi, Reda Bendraou, Marie-Pierre Gervais

To cite this version:
Djamel Eddine Khelladi, Reda Bendraou, Marie-Pierre Gervais. Towards a User-Guided Difference-
Based Detection of Atomic Changes. International Conference on Engineering of Complex Computer
Systems., Sep 2016, Dubai, United Arab Emirates. pp.211 - 214, �10.1109/ICECCS.2016.036�. �hal-
01474569�

https://hal.sorbonne-universite.fr/hal-01474569v1
https://hal.archives-ouvertes.fr


Towards a User-Guided Difference-based Detection
of Atomic Changes

Djamel Eddine Khelladi
Sorbonne Universités,

UPMC Univ Paris 06, UMR 7606,
F-75005, Paris, France.

Atlanta, Georgia 30332–0250
Email: Djamel.khelladi@lip6.fr

Reda Bendraou
Sorbonne Universités,

UPMC Univ Paris 06, UMR 7606,
F-75005, Paris, France.

Université Paris
Ouest Nanterre La Defense,
F-92001, Nanterre, France.

Email: Reda.Bendraou@lip6.fr

Marie-Pierre Gervais
Sorbonne Universités,

UPMC Univ Paris 06, UMR 7606,
F-75005, Paris, France.

Université Paris
Ouest Nanterre La Defense,
F-92001, Nanterre, France.

Email: Marie-Pierre.Gervais@lip6.fr

Abstract—Detecting metamodel atomic changes during evo-
lution is prerequisite for co-evolution of models, constraints,
and transformations. They are also essential to detect complex
changes over the sequence of atomic ones. However when detect-
ing atomic changes with a difference-based technique, the applied
order of the atomic changes is not recovered and some hidden
changes are undetected. Thus, the quality of the detected atomic
change trace is reduced which could be harmful to both co-
evolution and detection of complex changes. This paper proposes
to identify potential hidden changes in order to add them to the
trace of atomic changes, and also to order the atomic changes
with ordering heuristics.

I. INTRODUCTION

Model-Driven Engineering (MDE) has proven to be effec-
tive in the development and maintenance of large scale and
embedded systems [6]. In MDE, metamodels are core com-
ponents of a modeling language ecosystem [6]. Metamodels
naturally evolve throughout their lifespan which may make the
model instances, constraints (e.g. OCL1), and transformation
scripts (e.g. ATL2 or ETL3) inconsistent and invalid.

Over the past years a growing interest has emerged for an
automatic repair, maintenance, and migration of the impacted
metamodel-based artifacts, with the prerequisite of correctly
detecting the metamodel changes.

Two types of metamodel changes are distinguished [8],
[9], [7]: a) Atomic changes that are additions, removals, and
updates of a metamodel element, and b) Complex changes that
consist of a sequence of atomic changes combined together
[5]. If not provided in an embedded editor, complex changes
are often detected over the sequence of applied atomic changes
(e.g. in [13], [9]).

Therefore, detecting precisely and correctly atomic changes
not only helps in better co-evolving the metamodel-based
artifacts, but also to correctly detect complex changes that
allow increasing and reaching a higher rate of co-evolution
in comparison to when atomic changes only are considered
during the co-evolution.

1http://www.omg.org/spec/OCL/
2https://eclipse.org/atl/
3http://www.eclipse.org/epsilon/doc/etl/

However, existing difference-based approaches (DBAs) nei-
ther achieve full recall (i.e. all correct changes are detected)
nor full precision (i.e. all detected changes are correct) when
detecting atomic changes because of two overlooked issues:
1) hidden changes that are missed during the detection, and
2) non-ordered sequence of atomic changes.

1) The first issue is that the DBAs cannot detect some
changes that are hidden by other changes during evolution.
Consequently, information might be lost which reduces the
quality of the trace of atomic changes. For example, in Figure
1 the move property type from class Composite to class
Information is hidden by the change rename property type
to kind. The DBAs cannot detect these last two changes, but
identify only two independent operations: deletion of property
type and addition of property kind.

2) The second drawback of the difference-based approach
is that the DBAs return an unordered sequence of all the
detected atomic changes. However, the chronological order of
changes might be relevant during later co-evolution tasks, and
can be used during complex change detection for improving
precision.

In this paper, we propose to address the issues of hidden
changes and changes order when detecting atomic changes
with a difference-based technique. We rely on EMF Compare
[12], a well-known tool, to detect a first version of the atomic
changes. Our approach proposes mechanisms to reintegrate
potential hidden changes that may have not been detected as
well as ordering heuristics to reach a better ordering of the
changes. Our approach is semi-automatic in the sense that it
asks for a user confirmation before altering the initial sequence
of atomic changes.

The rest of this paper is structured as follows. Section II
presents our differencing-based technique to detect atomic
changes that is built on top of EMF Compare [12], while
considering the hidden change issue as well as the ordering
issue of a differencing-based approach in Sections II-B and
II-C. Section III illustrates briefly our tool implementation
and its capabilities. Section IV presents the related works
and Section V concludes this paper and gives future work
perspectives.



(a) Original metamodel.

(b) Evolved metamodel.

Fig. 1: An evolution example of a composite pattern. It
evolves by deleting the properties id and type from the
class Composite and then adding them respectively in
Component class and in a new class Information. The
property type is then renamed to kind.

Fig. 2: Overall approach.

II. OVERALL APPROACH

This section presents our difference-based approach to
detect atomic changes. Figure 2 gives an overview of the
approach. We first interface with EMF Compare [12] to
retrieve the atomic changes between the original and evolved
metamodel versions 1 . After that we identify potential hidden
changes while allowing user’s intervention 2 . Finally, order-
ing heuristics with user interaction allow to sort the atomic
changes before to export them into a final trace of atomic
changes 3 so that complex changes can be detected and co-
evolution can be performed.

A. Extending EMF Compare
We decided to reuse EMF Compare due to its popularity

among model-driven community and for three other main
reasons: 1) we do not aim to build a difference-base tool from
scratch whereas existing tools are well adopted and have been
tested in the literature [12], [1], 2) EMF Compare already
supports wide range of models such as EMF/Ecore-based
models, UML models, the Graphical Modeling Framework and
its own extensions, papyrus, ecoretools, etc, and 3) handling
the issues related to the difference-based techniques is easier
to implement it as an additional top layer than handling them
in the core engine of EMF Compare. This also has the benefit
to reuse the additional layer on other difference-based tools
without altering them.

Fig. 3: Examples of move change in EMF Compare.

In EMF Compare, atomic changes (add, delete, and update)
are identified as well as a move change. The move change is
detected when an element is deleted from a container and
added to another container. For example, if a property p is
deleted in Class A and added in Class B, EMF Compare might
detect it as a move p from A to B. Figure 3 shows different
situations that are detected as a move change. We observed
in our experience with EMF Compare that non-related delete
and add changes, or the complex changes move property, pull
property, push property can all be grouped as a move change
by EMF Compare.

Artifacts such as models or OCL constraints are resolved
with different strategies (e.g. [3], [10]) depending on the
impacting changes that are detected. Therefore, in the current
approach when retrieving the changes, all EMF Compare
move changes are divided into delete and add changes so
that detection tools can afterward detect the correct applied
complex changes.

B. Handling the Hidden Change issue
This section addresses the issue of hidden changes in the

retrieved set of atomic changes (step 2 ). For each case of
hidden changes that can be encountered we show how it is
resolved in the current approach.

1) False Rename Detection: When deleting an element and
adding the same type of element in the same container, it is
identified as a rename change. This is due to the heuristics that
are used by EMF Compare during the change identification
phase, for example by checking type equality. Figure 4 shows
an example where a property email is deleted and another
property address is added in the same class Person.

In case a rename is detected, the user can decide that it
should be listed as a delete and add properties rather than the
rename, as shown in Figure 4. Thus, in the current approach
for each detected rename, the user confirms whether to keep
it or to split it into a delete and an add changes, as shown in
Figure 4.

2) Intermediate Atomic Changes: A second case of hidden
changes is when an element is moved from several successive



Fig. 4: Examples of a false rename change.

classes that are linked with each other by references and/or
inheritances.

Figure 5 shows an example where a property p can be
moved from a class A to a class B, before to be pulled up
from B to a class C. EMF Compare detects only the changes
delete property p in A and add property p in C, whereas
the intermediate changes delete property p in B and add
property p in B are not detected. These unidentified changes
are crucial when detecting complex changes. Without the two
intermediate changes, these two complex changes move and
pull of the property p in Figure 5 cannot be correctly detected.
Therefore, the impacted metamodel-based artifacts (models,
constraints, transformations) cannot be correctly co-evolved.

Let us have the following OCL constraint (1) that is
defined on the class A and uses the property p. Without the
intermediate changes, and thus without the detected complex
changes, the OCL constraint is deleted by existing approaches
[3], [10]. Whereas with the intermediate changes, and thus
with the detected complex changes, existing approaches co-
evolve the OCL constraint from (1) to (2) by extending the
navigation path to access the property p in the new location.

context A inv: (self.p > 0) and (...) —— (1)
context A inv: (self.r.p > 0) and (...) —— (2)

In the current approach, we propose the identified interme-
diate changes to the user who can decide whether to include
them in the trace of atomic changes or not, i.e. in case the
intent was indeed to delete p in A and to add another property
p (which happens to have the same name) in C. Note that
the intermediate changes are identified only if there is a path
(represented with reference and/or inheritance) between the
source class and target class.

3) User Rename Reconstruction: As shown in Figure 1,
when differencing two metamodel versions, some applied
renames may not be detected. For example, when a class A is
renamed to B, EMF Compare can detect it as a delete class A
and add class B.

In our approach, we propose to the user the possibility to
reconstruct a rename change by selecting a delete and an add
changes of the same element type (i.e. delete and add property,
delete and add class, etc). Figure 6 shows an example of a
class rename reconstruction. We also propose to the user the
possibility to select a change and introduce hidden rename
after/before it. For example, the add property kind in Figure
1 can thus be splitted into an add property type and a rename

Fig. 5: Examples of intermediate atomic changes.

Fig. 6: Examples of a rename change reconstruction.

of type to kind, where the information ”type” is specified by
the user as input in a dialog box.

C. Handling the Ordering Issue
In this section, we handle the ordering issue when retrieving

the atomic changes (step 3 of the tool’s workflow).
1) Ordering Heuristics: This section presents three auto-

matic ordering strategies to handle three particular cases of
ordering.

The first case is when a container is added, the contained
elements must then be added after the addition of the container
in the trace. For example, when an operation op is added with
some parameters, the parameters are added in the trace only
after the addition of the operation op.

The second case is when a container is deleted, the con-
tained elements must first be deleted in the trace before to
delete the actual container. For example, when a class is
deleted, its owned properties (attributes, references, opera-
tions) are first deleted in the trace.

Finally, the third case that we need to consider when
ordering the trace of atomic changes is when the type of
an added element is an element that has been added during
evolution. For example, an added reference ref may have as
a type value a new added class B, as shown in Figure 7. Thus
in the trace of atomic changes, the add class B is put before
the change add reference ref and its type.



Fig. 7: Examples of ordering changes.

2) User Manual Ordering: The three above strategies apply
a principle of a dependency order, i.e. a type of changes must
be before/after another type of changes. Before generating the
final trace of atomic changes as an output for external tools,
the atomic changes are depicted to the user who can change
the position of each atomic change if desired by moving it
to another position. Thus, reflecting the real order as it was
applied by the user.

III. IMPLEMENTATION

We built our tool on top of EMF Compare [12] as an
extension to support the detection of potential hidden changes
as well as ordering the atomic changes. The processes of iden-
tifying hidden changes and the ordering strategies have been
implemented as a reusable component for other differencing-
based tools. So that it could be reused with UMLDiff [14] or
DSMDiff [11]. The core functionalities of this component are
implemented and packaged into an Eclipse plug-in.

IV. RELATED WORK

This section discusses the related work with the focus on
difference-based detection of atomic change and the issues of
order and hidden changes. In our approach, we rely on EMF
Compare [12] to detect atomic changes. Other differencing
approaches [14], [11] also compute the so-called difference
model (DM) between two (meta) model versions.

UMLDiff [14] is non-id-based similarly as EMF Compare
and uses a distance relation that considers structure and
names. UMLDiff focuses on UML models only, in contrast to
EMF Compare that supports EMF/Ecore-based models such
as Ecore, UML etc. DSMDiff [11] generalizes the UMLDiff
approach to cope with domain-specific modeling languages.

Garces et al. [4] propose to compute the difference model
using several heuristics implemented as transformations in
the Atlas Transformation Language (ATL) to detect atomic.
Cicchetti et al. [2] address the dependency ordering problem
of atomic changes. In fact, they focus on reordering atomic
changes in such a way that eases the detection of complex
changes. Vermolen et al. [13] propose to detect atomic changes
with EMF compare. They partially consider the issue of hidden
changes by proposing to the user with some atomic changes to
add so that the effect of the evolution trace remains the same
while user confirms it manually. This corresponds to the case
of the intermediate hidden changes in our approach.

Only [2], [13] considers the issue of atomic changes order-
ing. Only [13] considers partially the issue of hidden changes
in a difference model. In this paper, we identified cases of
hidden changes to handle while asking for user confirmation
and intervention. We also handle the ordering issue with three
heuristics and by allowing the user to reorder the atomic

changes at the end. To the best of our knowledge, we are
the first to consider simultaneously the hidden change issue
and the ordering issue when detecting the atomic changes.

V. CONCLUSIONS

In this paper we presented a preliminary approach to detect
atomic changes via a difference-based technique. The raw
atomic changes are first identified with EMF Compare [12].
We then aimed at identifying potential hidden changes as well
as ordering the trace of atomic changes. In both activities, the
user decides whether to include the detected hidden changes
and to change the original order or not. In future work, we
plan to investigate how to reduce he user intervention and
whether we can automatically find the hidden changes and a
better order. Thus, non-expert user can easily adopt our tool.
We further plan to integrate other differencing-based tools and
to validate our tool with several case studies.

Acknowledgments. We would like to thank Jiangen YU
and Hanitriniaina RALIARIMANANA for implementing the
eclipse plugin. The research leading to these results has
received funding from the industrial innovation Project ANR
MoNoGe under grant FUI - AAP no. 15.

REFERENCES

[1] C. Brun and A. Pierantonio. Model differences in the eclipse modeling
framework. UPGRADE, The European Journal for the Informatics
Professional, 9(2):29–34, 2008.

[2] A. Cicchetti, D. D. Ruscio, and A. Pierantonio. Managing dependent
changes in coupled evolution. In R. F. Paige, editor, Theory and Practice
of Model Transformations, pages 35–51. Jan. 2009.

[3] A. Demuth, R. E. Lopez-Herrejon, and A. Egyed. Supporting the co-
evolution of metamodels and constraints through incremental constraint
management. In A. Moreira, B. Schatz, J. Gray, A. Vallecillo, and
P. Clarke, editors, Model-Driven Engineering Languages and Systems,
number 8107 in Lecture Notes in Computer Science, pages 287–303.
Springer Berlin Heidelberg, Jan. 2013.

[4] K. Garcés, F. Jouault, P. Cointe, and J. Bézivin. Managing model
adaptation by precise detection of metamodel changes. In ECMDA-FA,
pages 34–49. Jan. 2009.

[5] M. Herrmannsdoerfer, S. D. Vermolen, and G. Wachsmuth. An extensive
catalog of operators for the coupled evolution of metamodels and
models. In Software Language Engineering, pages 163–182. Jan. 2011.

[6] J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. Empir-
ical assessment of mde in industry. In The 33rd ICSE, pages 471–480.
ACM, 2011.

[7] D. E. Khelladi, R. Bendraou, and M.-P. Gervais. Ad-room: a tool for
automatic detection of refactorings in object-oriented models. In Pro-
ceedings of the 38th International Conference on Software Engineering
Companion, pages 617–620. ACM, 2016.

[8] D. E. Khelladi, R. Hebig, R. Bendraou, J. Robin, and M.-P. Gervais.
Detecting complex changes during metamodel evolution. In The 27th
CAISE, pages 264–278, 2015.

[9] D. E. Khelladi, R. Hebig, R. Bendraou, J. Robin, and M.-P. Gervais.
Detecting complex changes and refactorings during (meta) model evo-
lution. Information Systems, 2016.

[10] D. E. Khelladi, R. Hebig, R. Bendraou, J. Robin, and M.-P. Gervais.
Metamodel and constraints co-evolution: A semi automatic maintenance
of ocl constraints. In International Conference on Software Reuse, pages
333–349. Springer, 2016.

[11] Y. Lin, J. Gray, and F. Jouault. Dsmdiff: a differentiation tool for domain-
specific models. EJIS, 16(4):349–361, 2007.

[12] A. Toulmé and I. Inc. Presentation of emf compare utility. In Eclipse
Modeling Symposium, pages 1–8, 2006.

[13] S. D. Vermolen, G. Wachsmuth, and E. Visser. Reconstructing complex
metamodel evolution. In A. Sloane and U. Aßmann, editors, Software
Language Engineering, pages 201–221. Jan. 2012.

[14] Z. Xing and E. Stroulia. Umldiff: an algorithm for object-oriented design
differencing. In 20th IEEE/ACM ASE, pages 54–65, 2005.


