Djamel Eddine Khelladi

Reda Bendraou

Marie-Pierre Gervais

SAC-OCL: A Tool for A Semi Automatic Co-evolution of OCL Constraints

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

In Model-Driven Engineering, Object-Oriented Models (OOM) play an essential role to capture the dierent aspects of a system [START_REF] Hutchinson | Empirical assessment of mde in industry[END_REF]. This covers the system's architecture, its data structure or its design and GUI classes. A OOM alone is insucient to capture all the relevant aspects and information of a domain specication [START_REF] Mezei | An optimizing ocl compiler for metamodeling and model transformation environments[END_REF]. To overcome this limitation, the Object Constraint Language (OCL) [START_REF] Omg | Object constraints language (ocl)[END_REF] is used to dene constraints on top of OOMs. For instance, the Unied Modeling Language (UML) [START_REF]OMG. Unied modeling language[END_REF] metamodel (an OOM) in version 2.4.1 contains more than 750 OCL constraints expressing well-formedness rules. Whenever an OOM is evolved, its OCL constraints may become invalid and need to be co-evolved accordingly. However, existing tools have so far overlooked two main issues: 1) the existence of multiple and semantically dierent resolutions, and 2) a resolution can be applicable only to a subset of OCL constraints.

1) An impacted OCL constraint by an OOM evolution can be resolved with syntactically and/or semantically dierent resolutions. For instance, the change "multiplicity generalization of a property p from a single value to multiple values" requires the OCL constraints to work on a collection of values, e.g. by introducing an iterator. Alternative resolutions must be considered since multiple iterators with dierent semantics exist, e.g. forAll(), exists() etc.

2) A given resolution strategy is not always applicable for all OCL constraints. Figure 1 illustrates this issue. It depicts an evolution of an OOM where the property score is pushed from the superclass Course to the subclass Project. The Fig. 1: An evolution and co-evolution example. two constraints become invalid because score is no more accessible in Course. The rst constraint that uses the pushed property score through the reference courses, can be co-evolved by introducing an If expression that rst checks whether courses references an instance of the subclass Project so that score is accessible. In contrast, the second OCL constraint whose context (i.e. the element on which an OCL constraint is specied) is dened on the pushed property score, is co-evolved dierently by updating its context. Clearly, a resolution strategy cannot be applied for all impacted OCL constraints by the same change.

Existing tools [3,2,10,9,1] neither consider the two above issues, nor interact with the user.

In [START_REF] Khelladi | Metamodel and constraints co-evolution: A semi automatic maintenance of ocl constraints[END_REF] we addressed these issues by presenting an ecient approach for a semi automatic co-evolution of OCL constraints. We proposed a set of resolutions while considering alternative resolutions per impacted OCL constraint. We identied with a systematic analysis three inuencing factors that we rely on to propose the appropriate resolutions that can be applied to an impacted OCL constraint. To detect the OOM's evolution we use our previous tool [START_REF] Khelladi | Ad-room : a tool for automatic detection of refactorings in object-oriented models[END_REF][START_REF] Khelladi | Detecting complex changes during metamodel evolution[END_REF].

This paper presents SAC-OCL a tool that supports our previous work with a graphical user interface in the form of an Eclipse plugin. It allows to co-evolve OCL constraints that are impacted by the OOM's evolution. To demonstrate the usefulness of SAC-OCL, we validate it on six open-source case studies. The results show that we are able to co-evolve the impacted OCL constraints near to the user intent by reaching an average correct co-evolution rate of 92%.

Tool's Description

The conceptual framework of SAC-OCL has been already published in [START_REF] Khelladi | Metamodel and constraints co-evolution: A semi automatic maintenance of ocl constraints[END_REF]. In this section we present an overview of its main aspects. Figure 2 shows the workow phases of the tool: 1 detecting OOM's evolution, 2 identifying impacted OCL constraints, 3 proposing alternative and the appropriate resolutions for each impacted OCL constraint, and 4 applying automatically the resolutions. The entry point of our tool is the detected OOM's changes during evolution 1 . We start by loading the evolution trace and the specied OCL constraints Fig. 2: Overall approach and the SAC-OCL workow. to be parsed. Phase 2 runs an impact analysis to identify the impacted OCL constraints that need to be co-evolved. After that, the appropriate resolutions are proposed for each impacted constraint 3 . The user conrms the resolution to be applied for each impacted constraint among the proposed alternative ones. Finally, the selected resolutions are automatically performed in phase 4 .

OOM's Evolution

During evolution two types of changes are considered in phase 1 : a) Atomic changes that are additions, removals, and updates of a metamodel element, and b) Complex changes that consist in a sequence of atomic changes combined together [START_REF] Herrmannsdoerfer | An extensive catalog of operators for the coupled evolution of metamodels and models[END_REF]. Our previous tool AD-ROOM [START_REF] Khelladi | Ad-room : a tool for automatic detection of refactorings in object-oriented models[END_REF] considers all atomic changes and seven complex changes: move property, pull property, push property, extract super class, atten hierarchy, extract class, and inline class [START_REF] Herrmannsdoerfer | An extensive catalog of operators for the coupled evolution of metamodels and models[END_REF].

Identication of Impacted OCL Constraints

To identify the impacted OCL constraints we run an impact analysis at the level of the Abstract Syntax Tree (AST) of the OCL constraints (phase 2). Before identifying where an AST is impacted, we compute the Table 1 that lists for each metamodel element e, all OCL constraints using e with references to the AST nodes using e. Those references will be further used in the resolution step. Thus, for each change on an OOM element e i , we access the impacted OCL constraints and we access exactly the impacted AST nodes. Note that during the co-evolution, Table 1 is updated accordingly w.r.t. the applied resolutions. For instance, when a rename element e occurs, it is also renamed in the table.

Resolutions and Selection Process of the Appropriate Ones

In [START_REF] Khelladi | Metamodel and constraints co-evolution: A semi automatic maintenance of ocl constraints[END_REF] we rst conducted a systematic analysis that allowed us to identify three inuencing factors that must be considered to propose the appropriate resolu- impacted element is accessed. We then proposed a set of resolutions to co-evolve the impacted OCL constraints (can be found in [START_REF] Khelladi | Metamodel and constraints co-evolution: A semi automatic maintenance of ocl constraints[END_REF]). When dening each resolution we already specify under which inuencing factors each resolution will be proposed. Each resolution is implemented as a transformation function that updates the AST by adding, removing, or updating nodes.

When an OCL constraint is impacted by an OOM change, the process of Figure 3 is used to select a subset of the appropriate resolutions to be proposed to the user (phase 3). It starts with all the available resolutions from Table ?? and excludes a subset of resolutions based on the inuencing factors. The rst factor we consider is the metamodel change that excludes resolutions that are not associated to the given change (step 1). After that the two last factors are similarly considered (step 2 and 3) to further reduce the set of appropriate resolutions. This process is followed for each impacted part of an OCL constraint.

Implementation

The tool is implemented as an Eclipse IDE plugin to ease its use by software engineers who are already familiar with development IDEs like Eclipse. It supports the co-evolution of OCL constraints dened in an OCL le on both Ecore [START_REF] Steinberg | EMF: eclipse modeling framework[END_REF] and UML CD [START_REF]OMG. Unied modeling language[END_REF] models. The core functionalities are implemented with Java (4568 LoC) interfacing with our AD-ROOM [START_REF] Khelladi | Ad-room : a tool for automatic detection of refactorings in object-oriented models[END_REF] plugin. Figure 4 part 1 shows the OOM to be evolved. Figure 4 part 2 shows the OCL constraints to be co-evolved. In a rst step, the OOM evolution (atomic and complex changes) are taken as input with the OCL constraints. After performing the impact analysis, the impacted OCL constraints are highlighted to the user Fig. 4: Screenshot of the Eclipse plugin Tool SAC-OCL. as well as the impacting reason (i.e. the OOM change) for a prompt and a better understanding, as shown in Figure 4 part 3. Figure 4 part 4 shows the subset of the proposed resolutions that the user chooses from in a dropdown menu for each impacted OCL constraint. The user's eort is to select the resolutions to be applied automatically afterwards (phase 4). See the demonstration video: https://youtu.be/qLn2u0J2Wow. [START_REF] Herrmannsdoerfer | An extensive catalog of operators for the coupled evolution of metamodels and models[END_REF] Evaluation

We evaluated our tool on six open-source case studies that are Ecore metamodels (OOMs) with their associated OCL constraints from the OMG specication, namely: the UML Class Diagram (UML CD), the Structured Metrics metamodel (SMM), the Unied Prole for DoDAF/MoDAF (UPDM), the National Information Exchange Model (NIEM), the EXPRESS Information Modeling Language (EXPRESS), and the Requirements Interchange Format (ReqIF).

The evaluation process consisted in comparing how the OCL constraints were manually co-evolved in practice against how the same OCL constraints are co-evolved with our tool. In the experiment, the authors play the user role. We aimed at co-evolving the OCL constraints as close as possible to the co-evolution in practice, for an objective comparison. We highlight the obtained results. Table 2 presents the results of the measured co-evolution percentage. For four case studies, we reached 100% co-evolution percentage, whereas in UML CD and SMM, we had respectively 72%, 80% and 83% of co-evolution percentage. An average of 92% (syntactically) and 93% (semantically) correct co-evolution is reached in our evaluation. These results show that our approach can eciently support the user with a co-evolution near to her intent and needs.

However, some constraints where co-evolved dierently in our approach than in practice. We further investigated these cases in particular for UML CD and SMM case studies. We noticed that those cases were due to a refactoring that changed their semantic either by removing/adding a part in the constraint. Or by replacing some elements in the original constraint with other elements that are dierently typed. For example, constraint 1 is impacted by the renaming of GeneralizableElement to PackageableElement. It is co-evolved by our approach as follows from (1) to (2) by propagating the rename. However, in practice the context of constraint (1) was changed to the subclass Classifier instead of applying a rename. Therefore, the semantic is slightly dierent since the applicability scope of the new constraint is reduced to elements of type Classifier. context GeneralizableElement inv: not self.allParents()-> includes(self) -(1) context PackageableElement inv: not self.allParents()-> includes(self) (2)

Related Work

Here we give a succinct related work to OCL co-evolution. Demuth et al. [START_REF] Demuth | Supporting the co-evolution of metamodels and constraints through incremental constraint management[END_REF] proposed an approach for OCL co-evolution based on templates. They provided 11 templates that dene a xed structure for OCL constraints. Hassam et al. [START_REF] Hassam | Assistance system for ocl constraints adaptation during metamodel evolution[END_REF] proposed to co-evolve OCL constraints using QVT [START_REF] Omg | Query/views/transformations (qvt)[END_REF] a transformation language. Similarly, Markovic et al. [START_REF] Markovic | Refactoring OCL annotated UML class diagrams[END_REF] proposed to refactor, based on QVT, OCL constraints annotated on UML class diagrams when these last evolve. Kusel et al. [START_REF] Kusel | Systematic co-evolution of ocl expressions[END_REF] discussed the impact of metamodel evolution on OCL expressions and proposed to resolve impacted expressions. Cabot et al. [START_REF] Cabot | Automatic integrity constraint evolution due to model subtract operations[END_REF] focused on the metamodel change delete element. In particular, they aimed at removing only a sub part of the OCL constraint that is using the deleted element. All existing approaches [START_REF] Demuth | Supporting the co-evolution of metamodels and constraints through incremental constraint management[END_REF][START_REF] Hassam | Assistance system for ocl constraints adaptation during metamodel evolution[END_REF][START_REF] Markovic | Refactoring OCL annotated UML class diagrams[END_REF][START_REF] Cabot | Automatic integrity constraint evolution due to model subtract operations[END_REF][START_REF] Kusel | Systematic co-evolution of ocl expressions[END_REF] consider only the metamodel change as a factor to propose a resolution. Thus, they dene for each metamodel change only a unique resolution. In contrast, we propose alternative resolutions while considering three inuencing factors instead of one, i.e. the OOM change.

Conclusion

We presented SAC-OCL a tool for a semi automatic co-evolution of OCL constraints dened on OOMs. SAC-OCL is designed to consider alternative res-olutions and to propose the appropriate resolutions for each impacted OCL constraint. It is implemented as a plugin for the Eclipse IDE a wide-spread development environment for software developers. The evaluation illustrates our tool's ability to co-evolve OCL constraints near to the user intent while releasing the burden of manual co-evolution from the user.

Fig. 3 :

 3 Fig.3: Process of selecting the appropriate resolution strategies per impacted part of a constraint and per metamodel change. tions for an impacted OCL constraints. The three factors are highlighted in the framebox here under. 1. The OOM change of an element e. 2. Location of the impacted element e in an OCL constraint: (a) e is used in the context of an OCL constraint (b) e is used in the OCL expression through a navigation path. 3. The context of the impacted constraint, to know from which class theimpacted element is accessed. We then proposed a set of resolutions to co-evolve the impacted OCL constraints (can be found in[START_REF] Khelladi | Metamodel and constraints co-evolution: A semi automatic maintenance of ocl constraints[END_REF]). When dening each resolution we already specify under which inuencing factors each resolution will be proposed. Each resolution is implemented as a transformation function that updates the AST by adding, removing, or updating nodes.When an OCL constraint is impacted by an OOM change, the process of Figure3is used to select a subset of the appropriate resolutions to be proposed to the user (phase 3). It starts with all the available resolutions from Table?? and excludes a subset of resolutions based on the inuencing factors. The rst factor we consider is the metamodel change that excludes resolutions that are not associated to the given change (step 1). After that the two last factors are similarly considered (step 2 and 3) to further reduce the set of appropriate resolutions. This process is followed for each impacted part of an OCL constraint.

Table 1 :

 1 Impact Identication on OCL constraints.

OOM Elements OCL Constraints References To AST Nodes e1 OCL1, ... ref1, ref2, ...

Table 2 :

 2 Correct Co-evolution Percentage (%).

	UML CD SMM UPDM NIEM EXPRESS ReqIF
	Syntactically correct co-evolution % 72%	83% 100% 100% 100%	100%
	Semantically correct co-evolution % 80%	83% 100% 100% 100%	100%

Acknowledgment. The research leading to these results has received funding from the industrial innovation Project MoNoGe under grant FUI -AAP no. 15.