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Abstract—The fundamental tasks of the control plane in
Software Defined Networking (SDN) are to customize forwarding
policies for the data plane and to provide global network view
for applications. The logically centralized design of control plane
brings the benefit of network programmability and promises to
ease network management. However, it also increases efficiency
concerns for large-scale networks. In this paper, our goal is
to build a high-performance SDN control plane using multi-
ple controllers. Previous work seeks to improve control plane
efficiency by balancing only the load for data plane behaviors
among multiple controllers. Deviating from conventional wisdom,
we propose the design and implementation of ParaCon, which
resorts to parallel computing to speed up the path computation
in SDN control plane. We also address the consistency problem
and synchronization overhead under the design. To the best
of our knowledge, ParaCon is the first attempt that utilizes
node parallelism in path computation for SDN control plane.
We experimented ParaCon using both Mininet and real-world
clusters. Our results show that the path computing time of
ParaCon is able to achieve speedup of 10x over POX baseline
implementation in a 300-node network with 20 controllers.

I. INTRODUCTION

Recently, Software-Defined Networking (SDN), has become
a hot topic in both academia and industry. SDN brings the
benefit of network controllability by separating the control
plane from the data plane. With OpenFlow [1], a southbound
interface specified by the ONF [2], a single centralized SDN
controller can control the behaviors of all the switches in
a network. Under the abstraction of OpenFlow, the SDN
controller offers a fully functional control plane, including
network state monitoring, QoS support, network function
virtualization, traffic engineering, etc. Despite its advantages,
the single centralized structure may also lead to scalability and
performance challenges. The SDN controller can easily suffer
from performance degradation resulting from a rapid increase
of the network scale. Thus, such a design cannot scale up
for real-world deployments, which is one of the reasons why
current SDN deployments do not take place in carrier-grade
networks.

Therefore, improving the SDN controller performance and
scalability is one of the major concerns in realizing SDN
benefits. To address this challenge, the academia and industry
have proposed a diverse range of methods. One approach
is to optimize the system architecture of existing single-

server controllers for higher efficiency. In order to achieve
better execution efficiency, some high-level languages based
controllers were redesigned as low-level languages based
controllers. NOX [3], a controller is written in Python has been
re-written in C++. Also, to exert the performance of multicore
processors, NOX-ML, a multi-threading version of NOX is
re-implemented. Another approach is offloading (partial or
full) load from the controller to switches, e.g. DIFANE [4]
and DevoFlow [5]. Although these techniques can improve
the performance of a single-server controller significantly, a
theoretical study shows that the solution of the single-server
design still suffers from a limited scalability [6].

Alternatively, utilizing multiple controllers in managing the
SDN provides yet another choice. HyperFlow [7], Kandoo [8],
Beehive [9], Onix [10] and ONOS [11] deploy multiple con-
trollers in one SDN. The distributed control plane designs are
becoming increasingly popular. For example, ONOS claims to
be the first carrier-grade distributed SDN controller, and Onix
is used in Google’s B4 [12] as their distributed control plane.

Existing multiple-controller solutions aim to tackle the
scalability issue in handling more switches, which may come
at a prohibitive cost for maintaining and computing network
information. More specifically, the SDN controllers periodi-
cally monitor the links, the forwarding tables and compute
the network information such as routing path and spanning
tree of the global network.

Among the variety of network information to be computed
and processed in SDN controllers, the routing path is the most
important one. Mainstream SDN applications such as traffic
engineering and content delivery networking [13] are tightly
coupled with the result of path computation. Path computation
in a large-scale network indeed requires a significant amount
of computation load. However, the path computation method
in most of the existing SDN controllers is unable to meet
the performance needs. As an example, ONOS [11], a widely
used SDN controller, cannot achieve the intended throughput
due to its inefficiency in path computation. It is reported that
the current ONOS design, though with multiple controller
instances, only uses one single controller instance to compute
paths, thus not fully utilizing the potential of parallelism in
path computation.

A straightforward approach to scaling path computation is to



leverage the multiple controller instances in a distributed SDN
control plane. For example, a possible solution is to implement
parallel Dijkstra or Floyd algorithms [14] on multiple con-
trollers. However, naively applying node parallelism to these
algorithms within the context of the SDN control plane has
suffered from two major challenges in practice.

First, the computation overhead is sensitive to topology
changes. Even when there are only minor changes in the
topology, offline algorithms need to start path computation
on the updated topology from scratch. More specifically, all-
pairs path computation on the updated graph involves roughly
O(n?) time complexity [14]. Due to the potentially large size
of SDN networks, frequent or even moderate network changes
will pose a substantial amount of computation overhead.

Second, parallel path computation needs to synchronize path
information among involved controllers. Hence, the processes
at different controllers will be frequently blocked by each
other. With the increase in the number of involved SDN con-
trollers, the synchronization overhead will result in significant
performance degradation.

In this paper, we propose ParaCon, a distributed SDN
control plane that addresses the performance challenges of
distributed path computation of SDN. Under this design, SDN
programmers can settle path computation without worrying
about the details of synchronization while achieving the
benefits offered by parallel computing. To the best of our
knowledge, ParaCon is the first control plane architecture to
utilize parallelism in path computation for SDN.

More specifically, ParaCon introduces several novel features
to make path computation in multiple controllers efficient. It
introduces a new distributed model in SDN that is capable of
asynchronous path computation among multiple controllers.

First, it includes an online algorithm that enables all SDN
controllers make incremental changes to the computed path
results upon receiving a particular topology change, while
existing approaches need to restart the computation from
scratch. This makes ParaCon more efficient in scenarios with
frequent topology updates.

Second, it seeks to minimize the overhead among multiple
controllers by designing an asynchronous algorithm. In this
algorithm, different controllers can synchronize information
without blocking.

Finally, it introduces a hybrid consistency model to maintain
the topology-related information and path information among
controllers during the asynchronous path computation. It uti-
lizes the both strong consistency and eventual consistency in
the maintenance of these information for further improving the
performance.

The experimental results show that ParaCon can signifi-
cantly reduce the path computation time when the scale of
the network is increasing.

The rest of the paper is organized as follows. Section II gives
an abstraction of problem space and challenges. Section III
gives an overview of ParaCon architecture. Section IV gives
the details of the algorithm. We present our evaluation in
Section V and related work in Section VI. We conclude in

Section VII.

II. PROBLEM STATEMENT

Let us consider a parallel all-pairs path computation model
for an SDN control plane with several switches and controllers.
Each switch belongs to at most one controller at a given
time, and all controllers constitute a logically centralized
controller. In the control plane, each controller does single-
pair path computation for its switches. Thus, the all-pairs path
computation can be calculated by all controllers.
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Controller
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Fig. 1. A synchronous and an asynchronous path computation. In synchronous
computation, the synchronization blocks the path computation. In asyn-
chronous computation, the synchronization happened during the computation.

Existing algorithms for parallel path computation are usu-
ally based on the Bulk Synchronous Parallel Computing (BSP)
model [15]. From Fig. 1(a) we can see the model separates
the computation into several steps. In each step, the controller
first individually computes the path of the switches that are
controlled by itself; then it waits for other controllers to
finish their computation; finally, after all controllers finish
their computation, they synchronize the intermediate results
and prepare the computation in next step.

Clearly, the blocking synchronization in the path com-
putation reduces the efficiency significantly. Moreover, syn-
chronous path computation does not adapt ‘online’ property
in the network either, i.e., if the topology is changed during
the computation, controllers cannot compute path based on the
new topology.

Hence, we consider an asynchronous model in Fig. 1(b).
Similar to the synchronous model, each controller in the con-
trol plane does the path computation separately, but controllers
can synchronize their intermediate path information during the
computation without blocking.

To motivate the asynchronous computing approach, we need
to consider several aspects, among which consistency problem
is the most important one. Namely, we need to consider what
information is to be synchronized, when to synchronize it, and
how to minimize the synchronization overhead during the path
computation.

Generally speaking, to compute path information in a dis-
tributed fashion, we need to maintain at least the following
information:

1) The topology-related information, i.e., the link/switch

status.



2) The association between switches and controllers.
3) The path information in each controller during the path
computation.

Suppose there are four switches S1, S2, S3 and S4 in a
network. If controllers C'1, C2 are added to the network with
the association as described in Fig. 2. Clearly, 1) topology-
related information needs to be synchronized between C'1 and
C?2 continuously to make sure the applications in different
controllers get the same global topology. Otherwise, an incon-
sistent link/switch status will make an inconsistent result of
path computation. We refer to this synchronization policy as
strong consistency policy.

Before we define consistency policy formally, we introduce
some notations. Let H be a new information updated to a
controller such as a link state or path change. For a given
controller ¢ € C, where C' is controller set, p. indicates its
status such that p. € {NO,Y ES}: when in status NO, a
controller has not received or accepted H, when in YES it
has received or accepted H. The control plane is defined as
in a consistent state after H only if Vc € C,p. = YES.
The multiple-controller SDN control plane is said to be
available when it can reply to control plane request messages.
Otherwise, it is said to be not available. Different consistency
models impose diverse levels of strictness on the availability
of the control plane during in the inconsistent state. A strong
consistency policy only allows new changes to be accessed
after they are applied to all controllers.

Definition 1: (Strong Consistency Policy) After a control
plane global information update H, supposed to change the
status of the receiving controller from NO to Y ES, with a
strong consistency policy, the control plane is available only
if Vee C,p. =YES.

é 5 Global g Global
View View
s

st B s3 s4

S2

Fig. 2. The topology-related information needs to be synchronized to
controller C1 and controller C2 to make sure they have the same global view
on switches S1, S2, S3 and S4.

Meanwhile, 2) association information also needs to be
synchronized to each controller with a strong consistency
policy, or the assignment between controllers and switches

may be incoherent if migrations of switches happened in the
meantime.

However, synchronizing 3) path information during the path
computation, even at a minimum required frequency, may
eventually lead to network congestion due to the excessive
overhead in control message exchange under a strong con-
sistency policy [16]. For example, Two-Phase Commit [17] or
Paxos [18] are revealed to be inefficient by signaling overhead.

Therefore, it is necessary to reduce the synchronization
overhead of path information. Considering that the three types
of information we mentioned above involve different trans-
mission overhead, we need to study the amount of exchanged
messages quantitatively. We assume the exchange process on
the control plane adopts a message-passing model [19] [20],
and we consider the minimum number of messages transmitted
for reflecting the change in 1) a link/switch status and 2) a
switch-controller assignment is 1 unit. In Fig. 3, these two
types of operations only involve one simple message that is
associated with one switch. In contrast, synchronizing path
information requires more transmission overhead. If there are
n switches, the controller needs to transmit up to n? messages
because the change is associated with the path information that
has n? paths at most.

T1: Link 3, 4 down

M1: No path between 4, 3
M2: No path between 4, 2
M3: No path between 4, 1
M4: No path between 3, 4

Fig. 3. The different messages that are transmitted between two controllers.
Cl1 only needs to transmit T1 to C2 to modify the link status but has to
transmit at least 4 additional messages like M1, M2, M3 and M4 to C2 to
change the path information in C2.

Accordingly, synchronizing the path information can be
much more resource-intensive than other operations. This mo-
tivates us to minimize the overall overhead in synchronization
by reducing message transmission for path information. Differ-
ently than strong consistency policy, an eventual consistency
policy is a specific form of weak consistency. The SDN
control plane guarantees that if no new updates like link
status change, eventually all controllers will return the same
path information, which is computed based on the topology-
related status. Consequently, an eventual consistency policy
can be used for synchronizing path information to reduce the
transmission overhead.

Instead of synchronizing path information to all controllers
immediately, an eventual consistency policy allows a delay in
synchronization. The path information can be accessed during



the time with inconsistent results.

Definition 2: (Eventual Consistency Policy) After a control
plane global information update H, supposed to change the
status of the receiving controller from NO to Y ES, with an
eventual consistency policy, the control plane is available also
during the inconsistency window going from the instant when
Jle € C | p. = YES, and the instant when Ve € C, p. =
YES.

Naturally, eventual consistency results in inconsistent path
information during the inconsistency window. To avoid incon-
sistency effects as much as possible, each controller should in-
dependently compute the path information based on topology-
related information to ensure consistency. However, with the
increasing scale of the network, the computation overhead
will inflate rapidly since the time complexity of all-pairs path
computation algorithm is O(n?) in general [14].

In summary, finding an equilibrium between synchroniza-
tion overhead and computation time is difficult. This moti-
vates us to propose a distributed architecture, which neither
significantly increases synchronization overhead nor obviously
increases computation time for parallel path computation.

III. THE PARACON ARCHITECTURE

The core objective of ParaCon is to offer a high-
performance SDN control plane for path computation with
minimal transmission overhead among multiple controllers.
Fig. 4 shows the architecture of ParaCon. Our architecture
is based on a distributed structure with an asynchronous
parallel algorithm. We will give a brief introduction on its
two components.

A. The Distributed Structure

1) Switch: The data plane consists of switches and links.
If a switch needs to forward a packet to other switches, it will
request a path between two switches from the controller.

2) Topology Abstraction: We abstract the topology using a
graph [21]. The global topology view includes both link view
and path view. Link view is composed of nodes and edges,
where nodes are switches and edges are links. Link view
indeed reflects the topology of the underlying network. Path
view provides information on the best route between any two
switches. Path view indeed reflects a snapshot of the weights
for the all-pairs shortest paths at a given time. As the algorithm
progresses, path view will be updated till the results at all the
controllers converge.

3) Controller and Allocator: The control plane is dis-
tributed. Each controller monitors the status of their
switches/links which are allocated by the Allocator. If the sta-
tus of switches/links has changed, the controller will synchro-
nize the topology-related information to other controllers by
utilizing the strong consistency policy. Thus, all controllers are
sharing the same global topology view based on switches/links
status. Meanwhile, each controller also computes the path
information of their switches and receives the topology-
related/path information from other controllers.
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Fig. 4. ParaCon structure. All controllers are distributed and sharing the global
topology view. Switches are allocated to different controllers by an allocator,
and each controller only computes the path information of its own switches.
All the controllers can compute the path together by parallel computing.

B. The asynchronous parallel algorithm

An asynchronous parallel algorithm is introduced, which
uses eventual consistency policy to improve the efficiency of
the distributed controller design and eliminates the effects of
the inconsistency due to the eventual consistency policy. More
specifically, the design choice we choose is to synchronize
the topology-related information (link view) and the affiliation
with a strong consistency policy, and to synchronize path
information (path view) with an eventual consistency policy,
with a goal of making a right balance between transmitting
overhead and computing overhead.

Furthermore, different from existing algorithms such as
Floyd-Warshall [14] or Dijkstra [14], which are used in ex-
isting controllers, the proposed algorithm utilizes the ‘online’
property to reduce synchronization overhead. Upon a new
topology change event, it does not need to wait until the end of
updating the previous event. Instead, our algorithm can handle
the new event immediately.

IV. PARALLEL PATH COMPUTATION

As mentioned above, we synchronize the link/switch status
and the affiliation of switches with a strong consistency policy.
To this end, we use Tivo-Phase Commit policy to submit the
change so that all controllers can receive it. This section details
the asynchronous path computation algorithm. The algorithm
is more complicated than the synchronous one because of
its interweaving with the eventual consistency policy. We use
several steps to describe our algorithm.

A. Concept

Switch and controller sets: There are a number of switches
and controllers in an SDN. The controllers are spatially dis-
tributed, and each switch is only controlled by one controller.
Set S stands for the switches and C' stands for the controllers.



There are n switches si, So, S3, ..., S, in set S, and m
controllers ¢y, ¢a, c3, ..., ¢y, in set C. The element in vector
Con(s) means the controller which controls switch s.

Link view: Link view is a graph L(S, ') where S stands for
the switches set and E stands for the links set. All elements in
set E are two-tuples (z,y),x,y € S. The link status between
two switches is expressed in an integer as the weight w. The
link view is thus represented as an adjacency matrix. L
stands for the weight of link between s, and s;. If there is no
link between s, and s;, the L, ; = —1.

Path view: The path view provides information on the
cost of the best (usually the shortest) route between any two
switches. A path view can also be regarded as a weighted full
graph T'(S, W), where S stands for switches and W stands
for the weight of the shortest path between two switches. The
weight of the shortest path is expressed as an integer, which
is calculated based on link view L(S, E). The path view can
be implemented as an adjacency matrix as well. Ty, ; stands
for the weight of the shortest route between s, and s.

Forwarding table: Each switch has a list of forwarding
rules to indicate the next hop of the best path to other
switches. When we compute path view, we can also get
the corresponding forwarding table for the shortest paths.
Forwarding table is described as a matrix. Fy, ; represents the
next hop from s, to s, which is the first constituent edge
along the shortest path from s, to sy.

In summary, we use 1) link view L as the topology-
related information; 2) vector Con(S) as switch-controller
association; and 3) path view T and forwarding table F' as
path information.

B. Centralized Approach

We discuss a centralized algorithm first. There are several
centralized algorithms for computing the paths in a network.
The well-known Floyd-Warshall [14] and Dijkstra [14] algo-
rithms have a O(n?) time complexity for all-pairs shortest path
(APSP) problem in a network with n nodes. These algorithms
have been used in various SDN controllers. For example, POX
uses the Floyd-Warshall algorithm. However, both algorithms
are offline algorithms, i.e. they can not deal with any link
change while the algorithm is in progress. In contrast with
existing approaches, we first design an online APSP algorithm
based on Moore [14] algorithm and then tailor it for parallel
scenarios. Note that Moore algorithm is an optimized version
of the Bellman-Ford algorithm used for solving the single-pair
shortest path (SPSP) problem.

The centralizd algorithm uses a queue at each controller
to store the nodes that will be checked for path cost update.
We briefly explain how it works. If the queue is not empty,
fetching the head of queue and relaxing it. Relaxing a node
involves updating the cost of existing paths if the total cost can
be reduced by passing through the node. If the node can be
relaxed, which means that there is at least one path becomes
shorter by passing through this node, its neighbors will be
inserted into the queue.

The approach can deal with link status change by just
putting switches into the queue and waiting for the result.
Because of its ‘online’ property, the time complexity is
O(K xexn), where e is the number of links and K depends on
how many times switches are put into a queue. Intuitively, K is
related to the diameter of the graph. In general, if the network
diameter is small, e.g., the diameter of some topology in data-
center is less than 3, the iterations will be completed very fast.
In contrast, some extreme topologies with large diameter can
cause the K become large due to an iteration oscillation. For
example, a topology with a large linear subgraph (in which
most nodes have a degree <2) will lead to more iterations.
Fortunately, the graph of real network topology rarely has
a linear subgraph, and the oscillation can be with further
optimizations.

The algorithm runs in a centralized way in each controller,
which has no additional node-parallism advantages compared
to the other existing algorithms.

C. Asynchronous Parallel Path Computation

Adopting a parallel path computation approach makes all
controllers to compute the path collaboratively. We assign
the switches and computation load to different controllers.
However, due to the heterogeneity in computing power and
transmission overhead, the inconsistency of path view be-
comes severe under this design. A straightforward approach
to consistency is to add a barrier to the queue after an
iteration is done. The barrier is used for synchronizing the path
computation process at all controllers. If the head of the queue
is a barrier, the path computation thread will be blocked until
other controllers have reached the barrier. However, adopting a
barrier will introduce the synchronization delay substantially.

In order to turn our algorithm into an asynchronous one, we
redesign the barrier to trade consistency for synchronization
overhead. Insteed, we employ eventual consistency. A weak
synchronization signal, or SYNC, is introduced which allows
a controller to send it path view to other controllers without
blocking any computation thread.

Another concern is that we need to deal with the rising
conflicts when synchronizing the path view in different con-
trollers with eventual consistency. It is clear that some conflicts
must be overwritten, and some conflicts cannot be overwritten.
Otherwise, the algorithm may take extra time to compute the
path (e.g., if a new path is overwritten by an old one), and it
can significantly increase the overhead in our control plane.
We introduce the following policy for path overwriting.

1) If the received path information is newer than the existing

one, the existing one needs to be overwritten
2) If the received path information is older than the existing
one, the existing one need not to be overwritten

The chronological order, either newer or older, is based on
the logical clock. This motivates us to use Vector Clock to
establish the global logical clock for each element in path view
T.

Besides newer conflicts and older conflicts, there still exist
other conflicts, which are neither newer nor older in vector



Algorithm 1: Path computation (parallel, online, asyn-
chronous)

Input: Link view L, The number of switches n, The
queue of switches need to be maintained ;g

Output: Path view T

SYNC is a synchronization signal that makes the current

controller synchronize the path view to other controllers.

while True do

while Q,4.empty() is not true do

now < Q.get()

if now is a SYNC then

for : =1 — m except the c;q do

Send Q; to ¢;
L Q;.clear()

for i which Con(i) = ¢;q do
L Send T to other controllers.

continue

for k which has Ly # —1 do
fori=1—ndo
L temp_topoy ; < Tk i + Lypow,k

fori=1—ndo

Thow,i < min(temp_topoy, ;) with
Lnow,k 7& -1

Fyow,i < k which minimized prior
calculation 7,44,

if 7,0 has changed then

for k which has Ly # —1 do
L QCon(k)pUt(k)

B Qia-put(SYNC)

clock that should be solved manually. Fortunately, under
ParaCon design, these conflicts can be overwritten immedi-
ately, because directly overwriting path view is equivalent
to changing the sequence of the queue () in the centralized
approach. This operation does not affect the results of the path
computation which is an iteratively based approach.
Algorithm 1 is the ParaCon parallel path computation
algorithm we proposed; it keeps the path view eventually
consistent. The algorithm is deployed into all controllers
and makes controllers compute the paths concurrently. The
algorithm has a loop and is separated into three parts. First,
it fetches the head of the queue, and check if the head is a
synchronization signal. If yes, it sends its path view to other
controllers and continue the loop. Otherwise, it will relax its
path view of the head and put the adjacency nodes which
are relaxed by the head to the queue. At last, it will push a
synchronization signal into the queue. The algorithm can do
path computation in multiple controllers efficiently.
Example: Suppose we have a topology with 4 switches and
2 controllers. Switch sy and s; are controlled by controller cy,
while s, and s3 are controlled by ¢;. When we change the link

0 2
Q0 Q1
1 3
Q0 Q1
0 2
Qo0 Q1
1
Q0 Q1

Fig. 5. The distributed version. 4 switches are distributed into 2 controllers.
The matrix on the right is separated into two parts. The top two columns are
maintained by controller C'1 and the bottom two columns is maintained by
controller C2. They only uses 3 steps to finish the algorithm. Each controller
computes the path and synchronizes the path information to other controllers
at the end of each step.

status (weight) between sy and s; to 30, the changes of path
view and the queue QQp, @)1 are shown in Fig. 5.
We discuss the evaluation results in section V.

V. THE PARACON PROTOTYPE

Our work is motivated by the intuition that the performance
of multiple controllers can be improved using parallel comput-
ing in a cluster. We believe the most exciting results from the
efficiency of the structure can be achieved in the real-world
implementation.

A. Implementation

We implemented ParaCon structure using commodity hard-
ware. The distributed control plane are based on 10 Dell
PowerEdge 2950 (Xeon E5405 with 2G RAM) servers. We
build four virtual machines in one server and each virtual
machine handle one controller. Therefore, we have 40 con-
trollers at most. The controller is based on a modified POX,
in which we replace the module of path computation by our
parallel version. The switches are provided by Mininet [22].
Due to its programmability, we can use any topology to test
our distributed control plane. We will discuss the details as
follows.

1) Path View Module: The path view module is separated
into three threads: computing the path, handling event of
topology-related information change, transmitting and receiv-
ing messages. The module uses an adjacency matrix to store
the path view. We also implement a Two-Phase Commit
to submit the change of link/switch status and assignment
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Fig. 6. Average computing time from 1 controller to 40 controllers. With the
increasing of the number of switches, more controllers can get more benefit.

of switches. Transmitting and receiving thread uses TCP to
communicate with its counterpart in other controllers. To
improve efficiency, we employ eventlet, a concurrent network-
ing Python library that provides highly scalable non-blocking
I/0 [23].

2) Modified POX: We implement ParaCon based on
POX, a widely used controller in SDN research com-
munity. Two modules in POX are modified, namely,
Openflow.Discover, which controls the topology discov-
ery, and Forwarding.12_multi which controls path com-
puting. Briefly, first, POX catches link change event by LLDP
protocol using Openflow.Discover, and send to path
view module. Next, our module sends an event of topology-
related information change to all controllers and computes the
path using parallel computing. After the computing finished,
we get the route and modify the flow table in OpenFlow
switches using module Forwarding.12_multi.

B. Processing path computation after link change

To evaluate ParaCon’s performance in processing link
change, we generate several full-mesh topologies with a range
of switches from 50 to 300. With the dense topologies, we
can balance the heavy path computation load to controllers
using even switch assignment. Meanwhile, we also change
the number of controllers from 1 to 40 and assign switches
to controllers. We randomly shutdown links and measure the
time from when the link fails to when the new all-pairs
path computation is over. From Fig. 6, we can see that
with the increase in controllers, the computing time has been
reduced significantly. However, due to the virtual machine
overhead, the time shows only sightly improvement between
20 controllers and 40 controllers.

We also compare our module to other existing modules: a
standard POX module (implemented by Floyd-Warshall algo-
rithm), and an OSPF module (implemented by a distributed
Dijkstra algorithm). From Fig. 7, we can see that with an
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Fig. 7. Average computing time between 3 different modes in 20 controllers.
The standard POX uses much more time in path computation by a single
controller, and the OSPF uses much more time in waiting for the finish of
last computation task.

increasing number of switches, the computing time used by
ParaCon is far less than other modules.

We count the average frequency of communication between
controllers in one controller. From TABLE I, we can see that
with an increasing number of controllers, the communication
overhead is well balanced into all controllers.

TABLE I
COMMUNICATION OVERHEAD

Number of controllers 4 20 40
Average corpmumcatlon times 196917 | 2.8478 1.4506
(per link change)

C. Comparing with ONOS

1) Setup: To study the performance gain of ParaCon over
the state-of-the-art solution, we compare it with ONOS v1.3, a
popular and stable distributed OpenFlow controller [24]. Note
that the path computation in ParaCon is in a different way from
that in ONOS. ONOS uses an on-demand mechanism of path
computation, but ParaCon uses a pre-compute one. In ONOS,
the forwarding module (fwd.ReactiveForwarding) re-
ceives the Packetln and fetches the source and destination
address. Then it calls path computation module to get a path
from the source to the destination. ONOS provides a varity
of algorithms for path computation. The default algorithm
getPaths () uses a DijkstraGraphSearch () method.
Finally, the forwarding module converts the path to flows and
inserts them into switches.

Therefore, we compare the path computation module of
ParaCon with the getPaths () (using Dijkstra by default)
method in ONOS.

In this evaluation, we do not use a full-mesh topology
because a Dijkstra-based module (e.g., OSPE, ONOS) is
obviously slower than ParaCon with an increasing number of



nodes in a full-mesh topology. Therefore, we compare path
computation module between ParaCon and ONOS using real
topologies. We set up 4 ParaCon controllers, and we use three
typical topologies as shown in TABLE II. ‘CERNET’ and
‘USCarrier’ are provided by Topology Zoo [25]. ‘CERNET’
is a small topology with small diameter; while ‘USCarrier’ is
a large topology with a larger diameter. The third one Leaf-
Spine is a generated topology, which is usually used in a data
center. Although it has a large number of nodes and links, the
diameter is the smallest (only two hops from any hosts to any
hosts in this topology).

TABLE 11
SIMULATED TOPOLOGIES
Topology Node Link Diameter
CERNET (2006) 41 57 6
USCarrier (Region, 2008) 158 189 35
Leaf-Spine (Core:1, Spine:50, Leaf:500) 551 25050 2

2) Path Computation Latency: It is not straightforward to
evaluate the performance between ParaCon and ONOS due to
the different mechanisms for path computation (pre-compute
v.s. on-demand). If there’s no topology change, ParaCon can
reply to the path request immediately with no extra latency
because the results have been pre-computed. Consequently,
ParaCon will definitely outperform ONOS in scenarios with
infrequent topology change.

For a fair comparison, we consider the case with link
failures. Suppose the network topology has changed resulted
from a link failure, the controller must re-compute the path.
We compare the average latency for answering a batch of
path requests. For ParaCon, the latency mainly rely on APSP
computation despite of the batch size, because ParaCon only
computes APSP once, and it does not consume any time in
querying a path. Therefore, to evaluate the computing time
in ParaCon, we set up the topology and fail a link, then we
measure the running time from when the link fail to when
new APSP are computed. Finally, we divide the running time
with the number of requests to get the average computing
time of one request. For ONOS, we set up the same topology
and fail a link; then we also measure the running time of
getPaths () method for getting a path in the new topology.
The running time for one request is stable, no matter how
many requests it received. This is because the running time
of getPaths () method only depends on the number of
nodes (switches). Note that Dijkstra algorithm can have a time
complexity of O(e + nlogn) if implemented with a Fibonacci
heap. However, without loss of generality, we consider the
general case O(n?) [14].

From Fig. 8, we can see that ParaCon performs better than
ONOS in CERNET and Leaf-Spine because these topologies
have a small diameter. Although the iterations of our algorithm
are closely related to the diameter of the graph, the increasing
number of nodes and links does not reduce the performance
of the algorithm significantly. The USCarrier is the worst case
for ParaCon: if the number of queries is smaller than 60,
the efficiency of ParaCon is less than ONOS. Howver, with

the increase in path requests, the computing time decreases
substantially. In CERNET, the efficiency of ParaCon exceeds
that of ONOS in the early stage. In Leaf-Spine, the ParaCon
uses less time to finish the computation of APSP than ONOS,
while ONOS uses more time to compute only a single-pair
path. We believe ParaCon is more suitable for a data center
environment than ONOS, given that data center topologies
usually have a small diameter.

3) Recovery Time Upon Failure: We define recovery time
as the time between when a link fails and when a new path is
obtained. From TABLE III, we can see that in CERNET and
USCarrier, ParaCon only increases the overhead slightly, but
in Leaf-Spine, ParaCon is much faster than ONOS. This is be-
cause a larger number of iterations will make ParaCon perform
worse. A topology with a large diameter will make the number
of iterations larger. In the linear part of the topology, where
nodes have fewer degrees, path change information propagates
slowly. This will increase a larger number of iterations in
ParaCon. The result is evidenced by the observation that there
are many linear topology subgraphs in USCarrier.

TABLE III
RECOVERY TIME UPON FAILURE
Topology CERNET | USCarrier | Leaf-Spine
ParaCon Recovery Time (ms) | 110.7091 175.2438 115.9289
ONOS Recovery Time (ms) 50.6363 107.5338 526.5933

VI. RELATED WORK

1) Large-scale graph computation: As the scale of many
graphs, e.g. web graphs or social network graphs, can reach
billions of nodes and trillions of edges, data processing over
such graphs become a concern. GraphChi [26] proposes a
disk-based system with a parallel sliding windows method,
which enables large-scale graph computation using just one
PC. Obviously, single PC has only limited scalability in large-
scale graph computation. Thus, Pregel [27] presents a parallel
computation model for solving this task. Other solutions such
as GraphX [28] and PowerGraph [29] also focus on increasing
the performance of large-scale graph computation. However,
most of them are BSP-based algorithms, which are inflexible
in networking path computation.

2) SDN graph modeling: In SDN environments, a net-
work can be represented as a graph. SDN controllers thus
can compute the network information by utilizing the graph
algorithms [21]. Most of the current SDN controllers such as
POX, OpenDaylight and ONOS directly use Dijkstra or Floyd
algorithm for path computation. Apparently, such designs lack
scalability when processing all-pairs shortest path due to the
O(n?) time complexity.

3) Consistency model: The consistency problem is a no-
table trade-off in the distributed system. As for distributed
SDN controller, the consistency model can either be coarse-
grained or fine-grained. Under coarse-grained design, con-
sistency is guaranteed by controllers and is transparent to
applications. For example, HyperFlow [7] manipulates a pub-
lish/subscribe system and Kandoo [8] utilizes a hierarchical
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Fig. 8. The computing time per request with ONOS and ParaCon in different topologies and with 4 controllers

design (root controller and local controller) for maintaining
the consistency of network information. Although ONOS [11]
employs a gossip protocol, which relaxes the constraints in
data consistency of topology-related information, it cannot
provide effective optimization for some particular operations
like path computation. Moreover, ONOS delegates the com-
plexity of maintaining the consistency to an external system
while using an external system also increases the management
difficulty. A fine-grained consistency policy is firmly corre-
lated to a particular algorithm or application. A proper fine-
grained consistency model can increase the synchronization
efficiency significantly. That is the reason why Onix [10] does
not synchronize network information in a transparent way for
the SDN programmers, who have to create and maintain the
network information by themselves explicitly.

VII. CONCLUSION

In this paper, we proposed ParaCon as a solution to address
the performance bottleneck in the SDN control plane. To
accelerate the path computation, we designed a set of mech-
anisms that utilize the untapped parallel computing potential
of multiple controllers. More specifically, ParaCon integrates
the following features into an overall design: first, it exploits
an asynchronous distributed algorithm for path computation in
SDN; second, it reduces the transmission overhead by utilizing
a hybrid consistent model. The evaluation results show that our
design achieved high performance over the single-controller
design, and it also improved efficiency over the existing
algorithms. Furthermore, we also evaluated our design using
real-world network topologies and compared with the state-of-
the-art solutions. The results demonstrated the effectiveness of
our architecture.
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