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Systemic mastocytosis is a heterogeneous disease characterized by
the accumulation of neoplastic mast cells in the bone marrow and
other organ organs/tissues. Mutations in KIT, most frequently KIT

D816V, are detected in over 80% of all systemic mastocytosis patients.
While most systemic mastocytosis patients suffer from an indolent dis-
ease variant, some present with more aggressive variants, collectively
called “advanced systemic mastocytosis”, which include aggressive sys-
temic mastocytosis, systemic mastocytosis with an associated hemato-
logic, clonal non mast cell-lineage disease, and mast cell leukemia.
Whereas patients with indolent systemic mastocytosis have a near nor-
mal life expectancy, patients with advanced systemic mastocytosis have
a reduced life expectancy. Although cladribine and interferon-alpha are
of benefit in a group of patients with advanced systemic mastocytosis,
no curative therapy is available for these patients except possible allo-
geneic hematopoietic stem cell transplantation. Recent studies have also
revealed additional somatic defects (apart from mutations in KIT) in a
majority of patients with advanced systemic mastocytosis. These
include TET2, SRSF2, ASXL1, RUNX1, JAK2, and/or RAS mutations,
which may adversely impact prognosis and survival in particular sys-
temic mastocytosis with an associated hematological neoplasm. In addi-
tion, several additional signaling molecules involved in the abnormal
proliferation of mast cells in systemic mastocytosis have been identified.
These advances have led to a better understanding of the biology of
advanced systemic mastocytosis and to the development of new target-
ed treatment concepts. Herein, we review the biology and pathogenesis
of advanced systemic mastocytosis, with a special focus on novel molec-
ular findings as well as current and evolving therapeutic options.
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ABSTRACT



Introduction

Mastocytosis comprises a pathomorphologically and
clinically heterogeneous spectrum of localized or systemic
disorders characterized by an abnormal accumulation of
mast cells (MCs) in one or more organs.1 In children, the
disease is mostly restricted to the skin (cutaneous masto-
cytosis: CM).2,3 By contrast, adult patients usually present
with systemic mastocytosis (SM). In patients with SM,
neoplastic MCs are almost always detectable in the bone
marrow (BM), and usually also in other internal organs.1,4-7
The exact incidence of SM remains uncertain, but a preva-
lence of mastocytosis including all the subtypes is estimat-
ed to be approximately 1 in 10,000 people.8 A recent study
from Denmark showed the incidence rate for all SM,
including CM, was 0.89 per 100,000/year.9

The World Health Organization (WHO) classification
has defined major categories and variants of SM (Online
Supplementary Table S1).1,6,10 Most adult patients present
with indolent SM (ISM), which is mainly characterized by
mediator-related symptoms, frequent skin involvement,
no organ dysfunction and a nearly normal life expectancy.1
By contrast, in advanced variants of the disease (AdvSM),
including SM with an associated clonal hematologic non-
MC lineage disease (SM-AHNMD; recently updated to
systemic mastocytosis with an associated hematological
neoplasm (SM-AHN) by WHO),11 aggressive SM (ASM),
and mast cell leukemia (MCL), the malignant expansion
and accumulation of neoplastic MCs can lead to organ
damage (“C-findings", Online Supplementary Table S2).6,7 No
skin lesions are found in some patients.12 Depending on
the subtype, the survival of patients with AdvSM ranges
from a few months to several years,1,13,14 therefore cytore-
ductive therapy is indicated in most of these patients.15
Response criteria were developed (Online Supplementary

Table S2),16 and updated and detailed17 for clinical trials by
a consensus group.

Molecular defects found in advanced systemic 
mastocytosis KIT mutations and their sensitivity 
to tyrosine kinase inhibitors
KIT is a type III tyrosine kinase (TK) transmembrane

receptor for stem cell factor (SCF), which is the major
growth factor of MCs in humans (Figure 1).18 Interestingly,
in most cases of SM (overall >80%, in typical ISM >90%,
and in AdvSM >70%), an acquired point mutation in the
gene coding for KIT (CD117) is found. Although KIT
D816V, an activation loop mutation, is the most common
mutation found, more than 20 other mutations in KIT
have been described in SM.19,20 The exact percentages vary,
depending on disease subtypes (e.g. ISM vs. ASM) and cell
source [e.g. BM vs. peripheral blood (PB)].18 The KIT
D816V mutation is detected in AHN cells in the majority
of cases, which reflects multilineage involvement.21-23
There are, however, cases in which two independent
(sub)clones exist and this might depend on the type of
AHN.24,25 KIT mutations often cause ligand-independent
constitutive phosphorylation and activation of KIT, which
transforms cell lines from factor-dependent growth to fac-
tor independence and tumorigenicity.26-28 Longley et al. pro-
posed to divide activating mutations of KIT into two
types: “regulatory type” mutations affecting regulation of
the kinase molecule, and “enzymatic pocket type” muta-
tions, which change the amino acid sequence of the enzy-

matic site.29 These latter mutations induce stabilization of
the activation loop in an active conformation and/or struc-
tural alteration at the ATP-binding site of KIT, resulting in
a decreased affinity for type I TK inhibitors (TKI), such as
imatinib, that recognize the active conformation of a
kinase. The MCL-like cell line HMC-1 has developed two
sub-clones: HMC-1.1 which harbors a juxtamembrane
domain (JMD) regulatory type mutation, KITV560G, and
HMC-1.2 expressing both KIT D816V and KITV560G.30
Imatinib inhibits only the regulatory type mutant affecting
the juxtamembrane inhibitory helix, but does not signifi-
cantly inhibit KIT D816V.31 However, even some JMD-
type KIT mutations (e.g. KITV559I) can cause imatinib
resistance by leading to structural changes of the JMD of
KIT, which affects the structure of the kinase domain.32
Other TKIs, such as PKC412 (midostaurin) effectively sup-
press the activity of imatinib-resistant KIT mutants.33-35 Of
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Figure 1. Structure of the KIT receptor and position of the major mutation (KIT
D816V) found in systemic mastocytosis. The KIT gene, located on chromosome
4q12 in humans, contains 21 exons transcribed/translated into a transmem-
brane receptor tyrosine kinase (RTK) of 145 kDa and 976 amino acids. The
Figure shows the receptor under its monomeric form, comprising 5
immunoglobulin (Ig)-like subunits in the extracellular domain (ECD) with a lig-
and binding site (SCF for KIT) and a dimerization site, and a cytoplasmic region
with a transmembrane domain (TMD) made by a single helix. The cytoplasmic
region of KIT contains an autoinhibitory juxtamembrane domain (JMD) and a
kinase domain (in blue) arranged in a proximal (N-) and a distal (C-) lobe linked
by a hinge region. The C-lobe of RTKs type III includes a large Kinase Insert
Domain (KID) of ~ 60-100 residues. In adults, depending on the category of
mastocytosis, the KIT D81V located in the phosphotransferase domain mutant
(in red) is found in at least 80% of all patients, while other mutations at position
816 (in black) are less frequent by far. TK: tyrosine kinase. 



note, the allele burden of the KIT mutant, determined by
highly sensitive techniques, such as allele specific quanti-
tative PCR (ASO-qPCR), correlates with the burden of
neoplastic MCs, and with survival and prognosis.18,36,37
Finally, although the KIT D816V mutant is recurrently
found in SM patients, a recent report has pointed to the
possibility that such patients may present with concurrent
mutations in other codons of the KIT gene.38 Indeed, out
of 21 patients analyzed, the authors found 3 (15%)
patients with KIT D816V and a concurrent mutation.38
Overall, these data suggest an advantage for double muta-
tions that might contribute to the aggressiveness of SM.

Tyrosine kinase inhibitors (TKI)
Midostaurin (PKC412): Midostaurin (PKC412) is an oral

multi-kinase inhibitor with activity against protein kinase
C (PKC), FMS-related tyrosine kinase 3 (FLT3),
PDGFRA/B, vascular endothelial growth factor receptor 2
(VEGFR-2), and KIT. Midostaurin was evaluated in a cen-
trally adjudicated, phase II multi-center international

study in 116 patients with ASM, of which 89 were evalu-
able for efficacy.39 Overall, 73 patients (82%) had ASM, 16
(18%) had MCL, and 63/89 patients (71%) had an AHN.
Seventy-seven patients (87%) were positive for a codon
816 KITmutation. After a median follow-up of 26 months
(range 12-54 months), the overall response rate (ORR) was
60%. Most responses were major (75%), including
decreases of >50% in serum tryptase and BM mast cell
levels. These responses were durable: the median duration
of response and median OS were 24.1 and 28.7 months,
respectively. Median OS was 9.4 months in patients with
MCL; however, responders in the MCL group did not
reach a median OS. Midostaurin was tolerated fairly well
with grade 1-2 gastrointestinal side effects being the most
common adverse events (Table 1). Patient-reported out-
comes, including symptoms and quality of life,  measured
by the Memorial Symptom Assessment Scale and the
Short Form-12 Health Survey, respectively, significantly
improved with midostaurin therapy.  These results indi-
cate that the drug has a favorable efficacy and safety pro-
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Table 1. Treatment and outcomes in advanced SM
Author,                 Therapy                         Patient# Study Type Complications Outcomes

(Reference#)

Vega-Ruiz(40)             Imatinib          20 with ISM or AdvSM (n=9) Prospective, Phase II Grade IV: CR, 5%
                                                                                             Thrombocytopenia 5% Neutropenia 5%
                                                                                             Symptomatic improvement, 30%
                                                                                             Median OS was NR
Verstovsek(50)          Dasatinib        33 with ISM or AdvSM (n=15) Prospective, Phase II No Grade IV ORR, 33% 
                                                                                             Grade III: CR, 6.6%
                                                                                             Pleural effusion 21% Median OS was NR
                                                                                             Thrombocytopenia 18%
                                                                                             Nausea, headache
                                                                                             Fatigue, pain, dyspnea
Gotlib(39)                 Midostaurin                   116 with AdvSM Prospective, Phase II Grade III/IV: Neutropenia 5% ORR, 60% 
                                                                                             Leukopenia 4% MR, 75% 
                                                                                             Anemia 3% IR, 36%
                                                                                             Febrile neutropenia 3% PCR, 28%
                                                                                             Thrombocytopenia 3% Unspecified, 11%. 
                                                                                             Good PR, 21% 
                                                                                             Minor PR, 4%
                                                                                             Non-hematologic AEs: Median OS 
                                                                                             Nausea 6%, increased All, 29 mos
                                                                                             lipase 4%, fatigue 4% MCL  9.4 mos
                                                                                            Median duration of 
                                                                                             response 24 mos

Kluin-Nelemans(119)Cladribine      10 with ISM and AdvM (n=6) Prospective Cytopenia All patients responded, no CR
                                                                                             Median OS was NR
Barete(123)               Cladribine      68 with ISM and AdvSM (n=32) Retrospective, registry Grade III/IV ORR, 72% , No CR
                                                                                             study with a long Lymphopenia 82% ORR in AdvSM 50%
                                                                                             follow-up (>10 years) Neutropenia 47% Median duration of 
                                                                                             Infections 13% response 44 mos
Ustun(125)                   Allo-HCT                       57 with Adv SM Retrospective TRM at 6 months: 11% OS at 3 years: 57%
                                                                                             SM-AHN: 74%
                                                                                             ASM: 43%
                                                                                             MCL: 17% 

                                                                                             DFS at 3 years: 51%
                                                                                             SM-AHN: 63%
                                                                                             ASM: 43%
                                                                                             MCL: 17% 

AHN: associated hematological neoplasm; AdvSM: advanced systemic mastocytosis; AE: adverse event; Allo-HCT: allogeneic hematopoietic cell transplantation; CR: complete remission; DFS:
disease-free survival; IR: incomplete remission; ISM: indolent systemic mastocytosis; MCL: mast cell leukemia; Mos, months; MR: major response; NR, not reported; ORR: overall response rate;
OS: overall survival; PCR, pure clinical response; PR: partial response; SM: systemic mastocytosis; TRM: transplant-related mortality.



file with activity in AdvSM regardless of KITmutation sta-
tus. Although midostaurin has not been approved by
major drug authorities in either Europe or the USA, it is
available for patients with AdvSM within a compassion-
ate use program sponsored by the drug company.
Imatinib: After the remarkable success of TKIs in chronic

myeloid leukemia (CML), significant enthusiasm for TKI
in the treatment of SM emerged in the early 2000s.19
However, imatinib is largely ineffective in patients with
KIT D816V+ SM.40 On the other hand, some patients with
SM may respond very well to imatinib, especially those
with other KIT mutations such as K509I,41 F522C42 or KIT
WT.43 In patients with FIP1L1-PDGFRA-positive myeloid
neoplasms with eosinophilia, small doses of imatinib (100
mg/d) will effect durable hematologic and
cytogenetic/molecular remission in almost all cases.44.45
Although some of these patients may exhibit
scattered/interstitial distributions of increased abnormal
CD25+ MCs in the BM, these cases are not considered a
subtype of SM by the WHO because typical dense infil-
trates of spindle-shaped mast cells are missing. In SM
patients with KITWT, imatinib may even induce CR with
the disappearance of skin lesions and return of elevated
serum tryptase levels to the normal range (<15 ng/mL).46
Imatinib (400 mg daily) is still the only TKI approved by
the US Food and Drug Administration (FDA) for adult
patients who have ASM either without the KIT D816V
mutation or with unknown KIT mutational status.
Dasatinib: Dasatinib, a multikinase inhibitor (e.g. BCR-

ABL1, KIT, and PDGFRα),47,48 has proven to be effective in
vitro against KIT D816V+ neoplastic MCs.49 However, the
half-life of the drug is very short, and no durable and
meaningful clinical responses were observed in clinical
studies in AdvSM (Table 1).50
Masitinib: Masitinib, which inhibits KITWT and LYN,51

is an effective drug for canine MC tumors.52 However, in
humans, the KIT D816V mutation introduces resistance
against masitinib. In one study, masitinib was adminis-
tered daily (3-6 mg orally) for 12 weeks in 25 patients
diagnosed as having SM or CM with a related “handicap”
(i.e. disabilities associated with flushes, depression, pruri-
tus and quality of life).53 ORR was 56% by AFIRMM
response criteria.54 Severe toxicities occurred in <10% of
all patients. Currently, a larger study is being performed
in patients with CM and ISM with a “handicap” (AdvSM
was excluded).
Nilotinib: In a phase II trial of 61 patients with SM (37

with AdvSM), nilotinib (400 mg twice a day) induced
overall responses of 21.6% (including a decrease in serum
tryptase and BM mast cells) and of 21% in ASM.55 All
responders had the KIT D816V mutation. Nine AdvSM
patients died during 34.7 months of follow-up. No active
study is currently being performed with nilotinib. 

Other targeted small-molecule inhibitors: Most of the data
on these TKIs resulted from pre-clinical studies or case
reports. Ponatinib, a multi-kinase blocker, inhibits the
kinase activity of KITV560G and, less effectively, KIT
D816V in HMC-1 cells.35,56 Ponatinib induced dose-depen-
dent growth inhibition and apoptosis in primary neoplas-
tic MCs, HMC-1.1 cells, and HMC-1.2 cells.56 Ponatinib
and midostaurin were found to exert synergistic growth-
inhibitory effects against neoplastic MCs harboring the
KIT D816V mutant.56 Other novel TKIs with potent TKI
inhibiting properties (e.g. EXEL-0862)57 and thiazole amine

derivatives inhibiting β-catenin signaling (e.g. semaxinib
(SU5416) and compound 126332).58,59 BLU-285, a selective
KIT D816V inhibitor with encouraging pre-clinical activity
and a narrow target profile, is expected to enter clinical
trial testing in AdvSM in the near future.60

Progress in somatic mutations other than KIT in SM
Recent studies have reported the presence of addition-

al, recurrent somatic mutations (apart from KIT muta-
tions) in AdvSM, especially in SM-AHN, including muta-
tions in TET2, SRSF2, ASXL1, RUNX1, JAK2, and/or RAS
(Figure 2).61-65

Mutations in TET2, also detected in healthy individu-
als,66 cause loss of function (i.e. regulating gene expression
at the cellular level),67 and are associated with increased
self-renewal capacity of hematopoietic stem cells.68
Recently, several investigators have identified TET2 muta-
tions scattered across several of its 12 exons in 1 or both
TET2 alleles, as an early event during the development of
various malignancies.69 Patients with mutant TET2+
myeloid disorders show a decreased level of 5-hmC with
hypomethylation or hypermethylation of DNA.70
Altogether these data show that TET2 plays a role in var-
ious hematologic malignancies. In line with these recently
published data, TET2mutations have been reported in 20-
40% of KIT D816V-positive AdvSM patients.25,61,62,64 The
cooperation between KIT D816V and loss of function of
TET2 in MC results in transformation to a more aggressive
disease phenotype in mice.71 It has also been suggested
that TET2mutations can occur before KITD816V in ASM-
AHN patients.72 Thus, the acquisition of KITD816V might
act as a phenotype modifier of ASM in these cases.72
Patients carrying a combination of TET2 and DNMT3A (a
DNA methyltransferase) mutations have a poor prognosis
compared to those with wild-type genes.61 In vitro, a com-
bination of dasatinib and decitabine (a hypomethylating
agent) was more effective at inducing apoptosis and cell
death in HMC-1.2 cells harboring a TET2 mutant com-
pared to each compound alone.71 This combination also
had less effect in TET2 wild-type cells due to a lower effi-
cacy of decitabine. The impact of TET2 mutations on
overall survival remains uncertain.61,62,73

The spliceosome machinery includes SRSF2, U2AF1,
and SF3B1 proteins, and is involved in the removal of
introns from a transcribed pre-mRNA.74 Mutations in the
spliceosome machinery have recently been identified
using whole exome/genome technologies in MDS and
MPN.75 A mutation in the hotspot region of SRSF2 (codon
P95) is found in approximately 1/3 of AdvSM patients64,65
but is usually not detectable in patients with ISM or SSM.25
It is more common in ASM-AHN25,64,65 and precedes KIT
D816V in these patients.25 The frequency of SF3B1 muta-
tions in AdvSM is low, ranging from 0 to 5%.64,65 U2AF1
mutations are less frequently reported in SM.64,65

The gene ASXL1 (additional sex combs–like 1) encodes
for a protein of the polycomb group and trithorax complex
family, which interacts with retinoic acid receptor and
may be involved in chromatin remodeling.76 The presence
of ASXL1 mutations has been reported in SM at various
frequencies,25,61,64,73 and alone or with other mutations
seems to be a poor prognostic factor for OS in
patients.61,64,73 RUNX1, and less frequently, JAK2mutations,
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are found in AdvSM, but not in ISM or SSM.64 The fre-
quency of RAS mutations (e.g. NRAS, KRAS or HRAS) in
SM has been investigated, with KRAS and NRAS mutants
being found in AdvSM at a relatively low frequency, and
not usually detectable in patients with ISM.63,64

The presence of additional genetic defects in KIT
D816V+ AdvSM patients may confer adverse prognosis as
compared with patients without such abnormalities.64,72 In
a recent study, Jawhar et al. have analyzed the impact of
several additional defects on 70 multi-mutated KIT
D816V+ patients with an AHN.77 In this study, the most
frequently identified mutated genes were TET2 (n=33 of
70 patients), SRSF2 (n=30), ASXL1 (n=20), RUNX1 (n=16)
and JAK2 (n=11).77 In multivariate analysis, SRSF2 and
ASXL1 remained the most predictive adverse indicators
concerning OS. Furthermore, the authors found that infe-
rior OS and adverse clinical characteristics were signifi-
cantly influenced by the number of mutated genes in the
SRSF2/ASXL1/RUNX1 (S/A/R) panel (P<0.0001).77

It appears that, based on these findings, the inclusion of
molecular markers should be considered in upcoming
prognostic scoring systems for patients with SM. This
might be particularly important for patients with SM-
AHN given that most of these studies were done in
patients with SM-AHN.73,78 Although it is arguable that
these mutations could be detected  due to the copresence
of an AHN, there are recent studies in pure SM showing
these mutations as well.72,79 In addition, it has been
described in many previous reports that KITmutations are
not restricted to the mast cell disease components in SM-
AHN.80 Although we are at an early stage in the under-
standing of the clinical and biological importance of these
mutations in SM, most likely these mutations affect
hematopoietic stem and progenitor cells, and the rate of
multilineage involvement increases with the aggressive-
ness of SM.

In addition, recent investigations on mutational profiles
of colonies grown from granulocyte-macrophage colony-
forming progenitor cells (CFU-GM) and microdissected
mature cells (tryptase or CD15 positive) revealed that
these additional mutations develop prior to KIT D816V in
almost all patients, indicating a multi-mutated stem cell
disease with strong phenotype modification (i.e. the mas-
tocytosis component) driven by KIT D816V.25

Critical intracellular pro-oncogenic pathways 
in neoplastic mast cells as novel potential 
therapeutic targets
Several studies have reported that the ability of wild-

type and oncogenic mutant forms of KIT to induce signal
transduction differs not only quantitatively but also quali-
tatively. These altered pathways, which are presented in
Figure 3 together with potential targeted drugs, may have
an effect on several properties of neoplastic MCs by reduc-
ing apoptosis and/or by inducing alterations in the cell
cycle.

MCL-1, a BCL-2 family member with anti-apoptotic
properties, is expressed in primary neoplastic MCs in SM
as well as in the HMC-1.1 and HMC-1.2 cell lines.81 The
targeting of MCL-1 by antisense oligonucleotides (ASOs)
or MCL-1-specific siRNA resulted in reduced survival and

increased apoptosis in these cell lines.81 Moreover, MCL-1
ASOs cooperated with various KIT-targeting TKIs in pro-
ducing growth inhibition in neoplastic MC lines.81 

BIM, a pro-apoptotic member of the BCL-2 family, has
been identified as a tumor suppressor in neoplastic MCs.82
BIM is downregulated in neoplastic MCs by SCF as well
as by KIT D816V.82 Midostaurin, bortezomib (a protea-
some inhibitor), and obatoclax (a pan-BCL-2 family block-
er) reportedly upregulate BIM expression in HMC-1 cells
and may thereby promote apoptosis.82,83 Obatoclax also
increased apoptosis in these cells.83 

Activated LYN and BTK are expressed in neoplastic
MCs in a KIT-independent manner in patients with ASM
and MCL, and may thus contribute to malignant transfor-
mation.49 LYN is a member of the SRC family involved in
cellular signaling processes regulating growth, differentia-
tion, and apoptosis. Activated LYN regulates BTK function
and may influence the process of degranulation and
cytokine production in MCs.84,85 Dasatinib and bosutinib
(SRC inhibitors) disrupt LYN and BTK activation and
oncogenic signaling in neoplastic MCs.49 Bosutinib inhibits
the growth of neoplastic MCs in vitro at relatively high
concentrations, with no effect on KIT.49,86 Bosutinib acts
synergistically with midostaurin on HMC-1 cell prolifera-
tion.49 However, bosutinib is unable to induce any
response in patients with AdvSM.87

Treatment in advanced SM
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Figure 2. Synthesis of the frequency of the various molecular defects found in
AdvSM, which sums up all the advanced (AdvSM) SM patients (n=122) report-
ed in the studies by Tefferi et al.,62 Wilson et al.,63 Traina et al.,61 Schwaab et
al.64 and Hanssens et al.65 The frequency (%) of cases found positive for each
genetic defect is represented in red, whereas the frequency of patients for
whom the corresponding defect was not tested is represented in blue. 



Phosphoinositide 3-kinase (PI3-K), a lipid kinase, is
important for the function of intracellular signaling mole-
cules, like BTK, AKT and PDK1, by inducing phos-
phatidylinositol 3,4,5-trisphosphate (PIP3) that provides
membrane docking sites for these signaling molecules.88 In
both HMC-1 subclones (HMC-1.1 and HMC-1.2), mutat-
ed KIT leads to constitutive activation of PI3-K.89 Once
activated, the PI3-K subsequently activates AKT,89 a key
signaling molecule involved in KIT-dependent differentia-
tion and growth of neoplastic MCs harboring oncogenic
KIT mutants.90 Indeed, AKT was found to be phosphory-
lated in neoplastic MCs in patients with KIT D816V+ SM
and in the HMC-1.2 cell line.90,91

PI3-K and AKT are also important for the regulation of
the mammalian target of rapamycin (mTOR), a
serine/threonine kinase that interacts with 2 regulatory
protein complexes called mTOR complex 1 (mTORC1)
and complex 2 (mTORC2). PI3-K regulates the mTORC1
pathway via the activation of AKT which directly inacti-
vates tuberin, the inhibitor of mTOR activation. Once
activated, mTORC1 phosphorylates p70 ribosomal S6
kinase (p70S6K), resulting in increased gene transcription
that regulates cell growth, survival, protein synthesis and

metabolism. Smrz et al. showed that the expression and
activation of mTORC1 and mTORC2 was increased in
neoplastic human MC lines and in immature normal MCs,
as compared with mature normal MCs.92 Interestingly, the
authors demonstrated that mTORC1 might contribute to
MC survival, while mTORC2 might only fulfill critical
functions in the context of proliferating (dividing) neoplas-
tic and immature MCs.92 Rapamycin, a specific inhibitor
of mTORC1, has been shown to block FcεRI- and KIT-
induced mTORC1-dependent p70S6K phosphorylation in
normal MCs.88 Furthermore, BEZ235, a dual PI3-K/mTOR
blocker, exerted strong growth-inhibitory effects on neo-
plastic MCs in vitro.93 Of note, BEZ235 was also found to
reduce the engraftment and growth of HMC-1 cells in a
xenotransplanted mouse model employing NMR1-
Foxn1(nu) mice.93 Everolimus, another mTOR-blocker,
was ineffective in patients with SM.94

Neoplastic MCs express cytoplasmic and nuclear phos-
pho-STAT5 (pSTAT5).95 In an in vitro study,90 knockdown
of STAT5 was followed by growth inhibition of neoplastic
MCs. Furthermore, it has been shown that KIT D816V
directly promotes STAT5-activation, and that pSTAT5
contributes to the growth of neoplastic MCs.95 This makes
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Figure 3. Intracellular pathways
involved in the accumulation/prolif-
eration of neoplastic mast cells in
SM and agents which could be poten-
tially used to target one or the other
of these molecules. That KIT D816V
dimerizes spontaneously with itself or
with KIT WT, or is capable of transmit-
ting oncogenic signals as a single
molecule, remains largely unex-
plored. However, it has been postulat-
ed whether the KIT D816V protein
could activate substrates under a
monomeric form and could even be
located in the cell cytoplasm. The KIT
D816V oncogenic mutation alters the
substrate specificity of the mutant
protein, which shows a substrate
specificity resembling that of SRC and
ABL TKs. In addition, FES TK is acti-
vated by mutant KIT protein and neg-
atively regulates the STAT pathway,
although it induced phosphorylation
of mTOR. Furthermore, AKT activation
has been identified as a key signaling
molecule involved in KIT D816V-
dependent differentiation and growth
of neoplastic MCs. Also, STAT5 is
believed to play a pivotal role in the
growth of KIT D816V+ neoplastic MCs
and is constitutively phosphorylated
in such cells, probably because KIT
D816V can promote direct STAT5 acti-
vation, thus diverting the canonical
JAK-STAT pathway. A number of drugs
(in red and in italics) can potentially
selectively inhibit some of these criti-
cal pathways. Red arrows: inhibition;
black arrows: induction of survival or
functions; green arrows: activation of
signaling pathways; dark blue arrow:
induction of increased synthesis.



STAT5 an attractive target for therapy in AdvSM.
However, until now, most drugs targeting STAT5 exert
anti-neoplastic effects only at high, non-pharmacological
concentrations in vitro. The inhibition of the JAK-STAT sig-
naling pathway in vitro decreased KIT D816V-mediated
cell growth.96 Ruxolitinib, a JAK1/2 inhibitor, has shown
clinical benefit in patients with MPN regardless of JAK2
V617F-mutation.97 Ruxolitinib decreased spleen size and
improved blood counts in a KIT-mutated but not JAK2-
mutated patient with SM-MPN primary myelofibrosis.98
Therefore, JAK1/2 blockers can be considered in studies of
patients with SM-MPN.

NF-kB, a dimeric transcription factor of the REL family,
was found to be spontaneously activated in HMC-1 cells.99
IMD-0354 inhibited translocation of NF-kB to the nucleus,
and thus led to decreased cyclin D3 expression and
increased cell cycle arrest in HMC-1 cells in vitro.99 Another
transcription factor of the REL family, nuclear factor of

activated T cells (NFAT), has also been found constitutive-
ly activated in KIT-mutated neoplastic MCs.100 The combi-
nation of a KIT inhibitor and of a calcineurin phosphatase
inhibitor (a NFAT regulator) exhibited a synergistic
inhibitory effect on cell viability and survival in KIT-
mutated MC lines.100

One promising class of targets within chromatin regula-
tory molecules and related antigens are the bromodomain
(BRD)-containing proteins.101-103 Indeed, inhibition of the
epigenetic reader bromodomain-containing protein-4
(BRD4) by exposure to RNA interference or treatment
with JQ1, a drug blocking the specific interactions
between BRD4 and acetylated histones, resulted in major
antileukemic effects in murine and human AML cells.102
More recently, BRD4 has been identified as a novel drug
target in AdvSM.104 The authors showed that neoplastic
MCs expressed substantial amounts of BRD4 in ASM and
MCL, as assessed by immunohistochemistry and PCR.104
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Figure 4. Proposed algorithm for the diagnosis and classification of the different categories of SM patients and for the preferable therapeutic options adapted to
each category of the disease. AHN: associated hematological neoplasm; Allo-HSCT: allogeneic hematopoietic stem cell transplantation; ASM: aggressive systemic
mastocytosis; BM: bone marrow; 2-CdA: cladribine; GC: glucocorticoids; HR: histamine receptors; IFN-α: interferon-alpha; IM: imatinib mesylate; ISM: indolent sys-
temic mastocytosis; MCL: mast cell leukemia; PKC412: midostaurin; SM: systemic mastocytosis; WT: wild-type. 



They also reported that the human MCL lines HMC-1 and
ROSA also expressed BRD4, and that a BRD4-specific
short hairpin RNA or the BRD4-targeting drug JQ1
induced dose-dependent growth inhibition and apoptosis
in HMC-1 and ROSA cells, regardless of the presence or
absence of the KIT D816V mutant.104 Moreover, the
authors demonstrated that JQ1 suppressed the prolifera-
tion of primary neoplastic MCs obtained from patients
with ASM or MCL. Finally, in drug combination experi-
ments, midostaurin (PKC412) and all-trans retinoic acids
were found by the authors to cooperate with JQ1 in pro-
ducing synergistic effects on survival in HMC-1 and ROSA
cells.104 Taken together, these data identified BRD4 as a
promising drug target in advanced SM. However, whether
JQ1 or other BET bromodomain inhibitors are effective in
vivo in patients with AdvSM remains to be elucidated.

Antibody-mediated therapeutic approach to target 
neoplastic mast cells and stem cells
Based on recent knowledge on the phenotype of malig-

nant MCs and their neoplastic progenitors, a number of
cell surface antigens might be aberrantly expressed,
including CD13, CD25, CD30, CD33, CD44, CD52,
CD87, and CD117, and therefore might be considered
also as potential targets of therapy in AdvSM.105-110 For
example, neoplastic MCs and their progenitors have been
shown to respond in vitro to gemtuzumab ozogamicin (a
monoclonal antibody targeting CD33 combined to a cyto-
static agent).111 The CD52-targeting antibody alemtuzum-
ab induces cell death in neoplastic MCs in vitro and in mice
xenotransplanted with HMC-1 cells.108 CD30 is expressed
on the surface of neoplastic MCs in a proportion of
patients with AdvSM, but not on normal/reactive MCs,
making this antigen an attractive target of specific therapy
in these patients.107,112,113 A single-arm, open-label clinical
trial applying brentuximab vedotin (SGN-35) to patients
with CD30-positive AdvSM (clinicaltrials.gov identifier:
01807598) is ongoing in the US. Neoplastic (leukemic)
stem cells (LSCs) have recently been identified in AdvSM.
These cells reside within a CD34+ cell fraction and co-
express aminopeptidase N (CD13), leukosialin (CD43),
Pgp-1 (CD44), the IL-3R α-chain (CD123), AC133
(CD133), CXCR4 (CD184), CD33, CD52 and CD117.114,115
As observed in chronic myeloid leukemia, a part of these
LSCs might be non-cycling and therefore probably resist-
ant to treatment with TKIs. Thus, a combination of a TKI
that targets KIT on neoplastic MCs and a mAb targeting a
surface antigen, such as CD52 for instance, expressed on
non-cycling LSCs, may help to achieve a minimal residual
disease negative state in AdvSM. 

Conventional therapies with anti-neoplastic drugs 
and allogeneic hematopoietic cell transplantation
Cytarabine, fludarabine, hydroxyurea (a drug of choice

in palliative care)15 and interferon-alpha (IFN−α),116-118 have
been frequently used for cytoreduction in the treatment of
AdvSM. Hydroxyurea is useful to control leukocyte
counts in AdvSM, especially in SM-AHN (palliative thera-
py) and in patients with comorbidity.  Cladribine (2-CDA)
is the most effective and frequently used drug. Kluin-
Nelemans et al., used 2-CdA in 10 patients with SM, most
of them suffering from AdvSM (Table 1).119 All patients
responded concerning clinical symptoms and MC burden
as reflected in declining serum tryptase values and urinary
histamine metabolite excretion. Although no patient

achieved a complete remission (CR), clinically meaningful
and some durable responses were seen, suggesting that 2-
CdA may be a potentially effective treatment option for
some patients with severe SM.119 These results have been
supported by more recent studies.120-123 For instance, in a
study on 44 SM patients, the median duration of response
was 20 months; however, none of the patients with SM-
AHN responded.122 However, 2-CdA usually does not con-
trol the disease for prolonged periods of time in rapidly
progressing ASM and MCL. For these patients, more
intensive therapy, such as AML-like multi-agent
chemotherapy, including fludarabine and cytarabine124
should be considered in induction therapy and then for
allogeneic hematopoietic cell transplantation (HCT) for
consolidation therapy.125-127 Allogeneic HCT remains the
only potentially curative treatment option for patients
with AdvSM. We have recently reported data on the effect
of allo-HCT in patients with AdvSM (Table 1).125 Most
patients (the median age was 46) received a graft from
HLA-identical siblings (n=34) or unrelated donors (URD)
(n=17). Overall survival (OS) and SM progression-free sur-
vival (PFS) at 3 years for all patients were 57% and 51%,
respectively. They were significantly affected, however,
by the type of advanced SM: 74% and 63%, respectively,
for SM-AHN; 43% and 43%, respectively, for ASM; and
17% and 17%, respectively, for MCL. Although the data
presented are very encouraging, future prospective stud-
ies, perhaps per recommended consensus opinion to
homogenously collect data,128 are required to confirm the
safety129 and efficacy of this treatment approach in
AdvSM.

Miscellaneous aspects of management in AdvSM
Patients with SM-AHN should be treated according to

generally accepted guidelines: the SM component of the
disease is treated as if no AHN was diagnosed, and the
AHN component of the disease is treated as if no SM
was diagnosed, with the recognition of potential drug
interactions10.15 deciding whether the SM or AHN compo-
nent is primarily contributing to organ damage or other
related clinical, laboratory concerns. However, admitted-
ly it is often not possible to clearly delineate whether one
or the other component is responsible for the clinical
issues/organ damage.  

As a supportive therapy, H1-receptor antagonists, such
as the classical antihistamine hydroxyzine, or non-sedat-
ing antihistamines, such as loratadine or fexofenadine,
can be administered for the alleviation of symptoms
caused by the release of the mediators (e.g. pruritus and
flushing).130-132

Conclusion and perspectives

Advanced variants of SM share two major characteris-
tics: i) the prognosis of the disease remains poor, and ii)
other than allogeneic HCT no curative therapy is avail-
able. Only a few drugs have shown beneficial effects in
AdvSM (2-CdA, interferon-alpha, and midostaurin). We
propose a treatment algorithm with current therapy
options (Figure 4). However, this is a subject to change in
the future due to remarkable progress in the biology of
AdvSM. Neoplastic cells in SM are usually driven by a
canonical KIT-downstream pathway as well as by addi-
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tional somatic mutations and KIT-independent pathways
and molecules, including TET2, the spliceosome machin-
ery, ASXL1, or RAS. We may better prognosticate AdvSM
using these additional genetic defects. The PI3-kinase,
AKT, STAT-5, BTK, FES, mTORC2, and BCL-2 family
members as well as certain surface molecules and disease
initiating (quiescent) neoplastic stem cells can be a target
for therapies in the future. Potentially, studies will com-
bine the most effective targeted drugs with one another
and/or with conventional chemotherapy options to
improve patient survival.
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