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A counterexample to the weak density of smooth maps between

manifolds in Sobolev spaces

Fabrice BETHUEL ∗ †

Abstract

The present paper presents a counterexample to the sequential weak density of smooth
maps between two manifolds M and N in the Sobolev space W 1,p(M,N ), in the case p
is an integer. It has been shown (see e.g. [6]) that, if p < dimM is not an integer and
the [p]-th homotopy group π[p](N ) of N is not trivial, [p] denoting the largest integer
less then p, then smooth maps are not sequentially weakly dense in W 1,p(M,N ). On
the other hand, in the case p < dimM is an integer, examples have been provided where
smooth maps are actually sequentially weakly dense in W 1,p(M,N ) with πp(N ) 6= 0,
although they are not dense for the strong convergence. This is the case for instance for
M = Bm, the standard ball in Rm, and N = Sp the standard sphere of dimension p, for
which πp(N ) = Z. The main result of this paper shows however that such a property
does not holds for arbitrary manifolds N and integers p.

Our counterexample deals with the case p = 3, dimM≥ 4 and N = S2, for which the
homotopy group π3(S2) = Z is related to the Hopf fibration. We construct explicitly a
map which is not weakly approximable in W 1,3(M,S2) by maps in C∞(M,S2). One of
the central ingredients in our argument is related to issues in branched transportation and
irrigation theory in the case of the exponent is critical, which are possibly of independent
interest. As a byproduct of our method, we also address some questions concerning the
S3-lifting problem for S2-valued Sobolev maps.

1 Introduction

1.1 Setting and statements

LetM and N be two manifolds, with N isometrically embedded in some euclidean space R`,
M having possibly a boundary. For given numbers 0 < s <∞ and 1 ≤ p <∞, we consider
the Sobolev space W s,p(M,N ) of maps between M and N defined by

W s,p(M,N ) = {u ∈W s,p(M,R`), u(x) ∈ N for almost every x ∈M}.

The study of these spaces is motivated in particular by various problems in physics, as liquid
crystal theory, Yang-Mills-Higgs or Ginzburg-Landau models, where singularities of topo-
logical nature appear, yielding maps which are hence not continuous but belong to suitable
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Sobolev spaces, built up in view of the corresponding variational frameworks. Starting with
the seminal works of Schoen and Uhlenbeck ([29]), this field of research has grown quite fast
in the last decades. A central issue is the approximation of maps in W s,p(M,N ) by smooth
maps (or maps with singularities of prescribed type) betweenM andN . Restricting ourselves
to the case s = 1, is as we will do actually in the rest of the paper, it is easily seen that, if
p > m ≡ dimM then smooth maps are indeed dense in W 1,p(M,N ), with no restriction on
the target manifold N , since they are already Hölder continuous due to Sobolev embedding:
Standard arguments based on convolution by mollifiers and reprojections allow to conclude.
The result and the argument extend to the limiting case p = dimM. It turns out that, when
1 ≤ p < dimM, the answer to the approximation problem is strongly related to the nature
of the [p]-th homotopy group π[p](N ) of the target manifold N , where [p] denotes the largest
integer less or equal to p. Indeed, if π[p](N ) 6= 0, then as we will recall below, one may con-
struct maps in W 1,p(M,N ) which cannot be approximated by smooth maps betweenM and
N for the strong topology (see [6]), whereas the condition π[p](N ) = 0 yields approximability
be smooth maps when the domain has a simple topology, for instance a ball (see Sections I
to IV in [6]). When the domainM has a more complicated topology, it was shown in [16, 17]
that it might induce some other obstructions to the approximation problem, obstructions
which has actually been missed in [6]. 1

Approximation by sequences of smooth maps at the level of the weak convergence is the
focus of the present paper. In order to avoid problems with the topology of M we restrict
ourselves first to the case M = Bm, the standard unit ball of Rm and, motivated by the
above discussion, we assume that

1 ≤ p < m and π[p](N ) 6= 0. (1)

Indeed if one of the conditions in (1) is not met, then we already now that C∞(Bm,N ) is
dense for the strong topology in W 1,p(Bm,N ), hence also sequentially weakly dense. As a
matter of fact, we may even restrict ourselves to the case p is an integer, since the following
observation made in [6] settles the case p is not:

Theorem 1. Assume that (1) holds and that p is not an integer. Then C∞(Bm,N ) is not
sequentially weakly dense in W 1,p(Bm,N ).

Sketch of the proof of Theorem 1. The proof relies on a dimension reduction argument together
with the fact that homotopy classes are preserved under weak convergence in W 1,p(Sm−1,N )
for p > m − 1. First, since we assume in view of (1) that πm−1(N ) 6= 0, there exists some
smooth map ϕ : Sm−1 → N such that ϕ is not homotopic to a constant map and hence
cannot be extended continuously to the whole ball Bm. Consider next the map Using defined
by

Using(x) = ϕ

(
x

|x|

)
, for x ∈ Bm \ {0}, (2)

which is smooth, except at the origin. Introducing the p-Dirichlet energy Ep defined by

Ep(v,M) =

∫
M
|∇v|pdx, for v :M→ R`,

1the argument in Section V [6], which is aimed to extend the case of a cube to an arbitrary manifolds being
erroneous.
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we observe that

Ep(Using,Bm) =

∫ 1

0
rm−1−p (Ep(ϕ,Sm−1)

)
dr < +∞,

so that Using belongs to W 1,p(Bm,N ), provided 1 ≤ p < m. Assume by contradiction
that there exist a sequence (un)n∈N of maps in C∞(Bm,N ) converging weakly to Using in
W 1,p(Bm,R`). Then there exists 2 some radius 0 < r < 1 such that the restriction of (un)n∈N
to the sphere Sm−1

r of radius r and centered at 0 converges up to a subsequence to the
restriction of Using to Sm−1

r in W 1,p(Sm−1
r ). By compact Sobolev embedding the convergence

is uniform and hence Using and un restricted to Sm−1
r are in the same homotopy class for

n large. This however is a contradiction, since un can be extended inside the sphere Sm−1
r

whereas the restriction of Using to Sm−1
r does not possess this property. This contradiction

establishes the theorem in the case considered.

When p = m − 1 is an integer, the previous arguments can not be extended, since weak
convergence in W 1,m−1(Sm−1

r ) does not necessarily yield uniform convergence. As a matter
of fact, we have in this case:

Proposition 1. There exists a sequence of maps (Un)n∈N in C∞(Bm,N ) converging to Using

weakly in W 1,m−1(Bm,R`). Moreover, the sequence (Un)n∈N has the following properties:

• The sequence (Un)n∈N converges uniformly on every compact set of Bm \ Im to Using,
where Im denotes the segment Im = [0,Pnorth] where Pnorth denotes the north pole
Pnorth = (0, . . . , 0, 1) ∈ Rm.

• We have the convergenve

|∇Un|m−1 ⇀ |∇Using|m−1 + νH1 [0,Pnorth] in the sense of measures on Bm, where
(3)

ν = νN ,m−1(JϕK) = inf{Em−1(w), w ∈ C1(Sm−1,N ) homotopic to ϕ} > 0.

Since this type of results is central in the whole discussion, we briefly sketch the argument.
The proof of Proposition 1 combines a dimension reduction argument similar to the one we
used for Theorem 1 together with the bubbling phenomenon occuring in dimension m− 1 for
which the Em−1 energy is scale invariant. We discuss this property first.

The bubbling phenomenon. We recall first the scaling properties of the functional Ep. Consider
more generally an arbitrary integer q ∈ N, p > 0 and an arbitrary map u : Bq → N . The
scaling transformations yields the formula, for r > 0

Ep(ur,Bq
r) = rq−pEp(u,Bq) where ur(x) = u(

x

r
) for x ∈ Bq

r ≡ Bq(0, r), (4)

In particular in the critical case where the exponent is equal to the dimension, i.e. when
we have p = q, then the energy is scale invariant, namely Ep(ur,Bq

r) = Ep(u,Bq). Choosing
small values for r, this invariance allows for concentration of q− energy at isolated points for
weakly converging sequences.

2similar arguments, based an Fubini’s theorem combined with an averaging argument, will be detailed in
Section 5.
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We next replace the domain Bq by the sphere Sq of same dimension and consider now
regular maps from Sq to N assuming that πq(N ) is not trivial. Given ϕ ∈ C∞(Sq,N ) we
denote by JϕK its homotopy class. Homotopy class are not preserved in W 1,q under weak
convergence as the next result shows.

Lemma 1. Let ϕ : Sq → N be a given smooth map. Then there exists a sequence of smooth
maps (ϕn)n∈N from Sq to N such that such that the following holds

• ϕn is homotopic to a constant map for any n ∈ N

• ϕn(x) = ϕ(x), for any n ∈ N?, for any x ∈ Sq \ Bq+1(Pnorth, (n + 1)−1) where Pnorth

denotes the north pole Pnorth = (0, . . . , 0, 1)

• |∇ϕn|q ⇀ |∇ϕ|q + νqδP in the sense of measures on Sq as n→ +∞, where we have set

νq = νN ,q(JϕK) = inf{Eq(w), w ∈ C1(Sq,N ) homotopic to ϕ} > 0. (5)

The idea of the proof of Lemma 1 is to glue a scaled copy of a minimizer or an almost
minimizer for (5) at the north pole Pnorth.

Remark 1. There is also a kind of converse to Lemma 1. Indeed, given any sequence
(ψn)n∈N of smooth maps from Sq to N , there exists a subsequence still denoted (ψn)n∈N,
points a1, . . . , as, positive numbers µ1, . . . , µs and a positive measure ω? such that

|∇ϕn|q ⇀ |∇ϕ|q +
s∑
i=1

µiδai + ω? in the sense of measures on Sq as n→ +∞, (6)

with
∑
µi ≥ νq. We consider next the minimal energy of weakly approximating sequences

namely the number τ?(ϕ) given by

τ?(ϕ) ≡ inf

{
lim inf
n→+∞

Eq(wn), (wn)n∈N s.t. JwnK = 0 and wn ⇀
n→+∞

ϕ

}
. (7)

We may write τ?(ϕ) = Eq(ϕ)+ε?(ϕ). In view of Banach-Steinhaus theorem, we have ε?(ϕ) ≥
0: The number ε?(ϕ) will be called the defect energy for approximating sequences. If the
sequence (ψn)n∈N fulfills the optimality condition

lim inf
n→+∞

Eq(ψn) = Eq(ϕ) + ε?(ϕ)

then, one may show that we have ω? = 0 and
∑
µi = νq. Hence one deduces that the defect

energy is given by
ε?(ϕ) = νq, (8)

a number which depends only on the homotopy class of ϕ.

Sketch of the proof of Proposition 1. Proposition 1 is deduced from Lemma 1 for the choice
q = p = m− 1, constructing the sequence (Un)n∈N as

Un(x) = ϕn

(
x

|x|

)
for

1

n
≤ |x| ≤ 1. (9)
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and extend Un inside the small ball B( 1
n) is a smooth way: This is possible since the map

ϕn is in the trivial homotopy class, and with an energetical cost tending to 0 and n goes
to +∞. Since the energy of the map ϕn concentrates at the North Pole Pnorth in view of
Lemma 1, it follows from the construction (9) that the (m−1)-energy of the sequence (Un)n∈N
concentrates on the radial extension of the North Pole, that is the segment [0,Pnorth].

After this digression, we come back to the general problem of sequential weak density of
smooth maps. In view of the previous discussion, the main problem to consider is the case

p is an integer, 1 ≤ p < m and π[p](N ) 6= 0. (10)

So far several results have been obtained, where sequentially weak density of smooth maps
between Bm and N have been established3. For instance, when N = Sp for which πp(N ) = Z
we have:

Theorem 2 ([10, 5, 6]). Let p be an integer. Then given any manifold M, C∞(M, Sp) is
sequentially weakly dense in W 1,p(M,Sp).

In a related direction, a positive answer was given in [15, 26] for (p−1)-connected manifolds
N and in [26] in the case p = 2, whatever manifold N , similar results involving the H2 energy
are given in [22]. The main result of this paper presents an obstruction to sequential weak
density of smooth maps when (10) holds and deals with the special case N = S2 and p = 3,
for which π3(S2) = Z. More precisely, the main result of this paper is the following:

Theorem 3. Given any manifold M of dimension larger or equal to 4, C∞(M,S2) is not
sequentially weakly dense in W 1,3(M,S2).

As a matter of fact, the topology and the nature of the manifoldM is of little importance
in the proof. We rely indeed on the construction of a counterexample in the special case
M = B4, imposing however an additional condition on the boundary ∂B4.

Theorem 4. There exists a map U in W 1,3(B4, S2) which is not the weak limit in W 1,3(B4,R3)
of smooth maps between B4 and S2. Moreover the restriction of U to the boundary ∂B4 = S3

is a constant map.

As far as we are aware of, this is the first case where an obstruction to sequential weak density
of smooth maps between manifolds has been established when p is an integer. Theorem 3
also answers a question explicitly raised in [19, 20, 21].

Let us emphasize that the map U constructed in theorem 4 necessarily must have a infinite
number of singularities, and is hence very different from the example Using provided in (2).
Indeed, let us recall that, for m−1 ≤ p < m, the set of maps with a finite number of isolated
singularities

Rp(Bm,N ) = {u ∈W 1,p(Bm,N ), s.t u ∈ C∞(Bm \A) for a finite set A}}. (11)

is not only dense in W 1,p(Bm,N ) for the strong topology, but, in the case p = m− 1, is also
contained in the sequential weak closure of smooth maps with values into N . The proof of
this latest fact, given in [5, 6, 10] and which will be sketched in a moment, is actually inspired

3In several of these results, an additional boundary condition is imposed.
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by a method introduced in the seminal work of Brezis, Coron and Lieb [11], and along the
same idea the singularity of Using was removed using concentration of energy along lines
connecting the singularity to the boundary, or possibly to other singularities with opposite
topological charges. In view of (3), the energy of the constructed approximating maps are
controlled in the limit by a term which is of the order of the length of the connecting lines,
multiplied by a topological charge. This number, which corresponds to a defect energy, is
obviously bounded when the number of singularities is finite, yielding hence the mentioned
weak approximability of maps in R(B4,N ) ≡ R3(B4,N ) by smooth maps. We may however
not a priori exclude the fact that, when approximating a map in W 1,3(B4,N ) by maps with
a finite number of singularities, the defect energy grows when the number of singularities
grows. As a matter of fact, our strategy in the proof of Theorem 4 is to produce a map U for
which this phenomenon occurs.

As this stage, it is worthwhile to compare, when the exponent p is equal to 3, the results
obtained for the respective cases the target manifolds are S2 or S3. In both cases the ho-
motopy groups are similar, since π3(N ) = Z, for N = S2 or N = S3. However, we obtain,
provided dimM ≥ 4, sequentially weak density of smooth maps in the case N = S3 thanks
to Theorem 2, whereas in the case N = S2, we obtain exactly the opposite result, since there
are obstructions to weak density of smooth maps in view of Theorem 4. Hence ultimately,
not only the nature of the homotopy group matters, but also more subtle issues related to
the way its elements behave according to the Sobolev norms and the E3 energy.

In the next subsection, we review with more details the constructions mentioned above and
emphasize its connection with optimal transportation theory.

1.2 Defect measures and optimal transportation of topological charges

As in Remark 1, but now in a higher dimension, given u ∈ W 1,3(B4,N ), we introduce the
defect energy ε?(u) related to its weak approximability by smooth maps defined by

E3(u) + ε?(u) ≡ inf

{
lim inf
n→+∞

E3(wn), (wn)n∈N s.t. wn ∈ C∞(B4,N ) and wn ⇀
n→+∞

u

}
, (12)

with the convention that ε?(u) = +∞ if u cannot be approximated weakly by smooth maps.
In this subsection, we specify the discussion to maps u with a finite number of singularities
and describe briefly how one may approximate maps in R(B4,N ) weakly by smooth maps in
W 1,3-norm and how this leads to upper bounds for the defect energy ε?. As for identity (8)
in Remark 1, the numbers νN ,3 enter directly in these estimates and we describe first some
relevant properties of these numbers in the special cases π3(N ) = Z, emphasizing thereafter
asymptotic properties in the cases N = S3 or N = S2.

Infimum of energy in homotopy classes when π3(N ) = Z. When π3(N ) = Z, each homotopy
class in C0(S3,N ) can be labelled by an integer which will be termed the topological charge
of the homotopy class or of its elements. Setting in this case, for d given in Z

νN (d) ≡ νN ,3(JϕK) with JϕK = d,

We verify that νN (−d) = νN (d) and that concentrating bubbles of topological charge ±1 at
|d| distinct points, we are led, for d ∈ Z, to the upper bound

νN (d) ≤ |d|νN (1) and more generally νN (kd) ≤ kνN (d) for k ∈ N. (13)
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A natural question is therefore to determine whether this upper bound on νN (d) is sharp or
not. It turns out that the answer to the previous question strongly depends on the nature of
the target manifold N .

Asymptotic behavior of νN (d) as |d| → +∞ when N = S3 and N = S2. When N = S3 the
topological charge is called the degree and denoted deg (ϕ). It can be proved (see Section 2)
that, for any ϕ : S3 → S3, one has∫

S3

|∇ϕ|3dx ≥ |S3||deg (ϕ)|,

so that, setting ν3(d) = νS3(d) we are led to the identity

ν3(d) = |S3||d|. (14)

When N = S2, the topological charge is usually called the Hopf invariant and denoted in
this paper H(ϕ). As we will recall in Section 2 (see (2.11)), one verifies easily that for any
map u : S3 → S2, we have the lower bound∫

S3

|∇u|3dx ≥ Cν |d|
3
4 , d = H(u), (15)

so that ν2(d) ≥ Cν |d|
3
4 , where Cν > 0 is some universal constant, and where we have set

ν2(d) = νS2(d). In [28], Rivière made the remarkable observation that the bound on the left
hand side is in fact optimal, that is, there exist a universal constant Kν > 0 such that, for
any d

ν2(d) ≤ Kν |d|
3
4 with ν2(d) = νS2(d), (16)

so that the function ν2 is actually sublinear on N and in other words, the minimal energy
necessary for creating a map of charge d is no longer proportional to |d|, but grows in fact

sublinearily as |d|
3
4 . This fact has in turn important consequences on the way to connect

optimally defect for maps from B4 to S2 having a finite number of singularities and the
definition of the corresponding defect measures4.

Removing singularities of maps in Rct(B4,N ) when π3(N ) = Z. Consider again an arbitrary
manifold with π3(N ) = Z and a map v ∈ Rct(B4,N ), the subset of R(B4,N ) of maps which
are constant on the boundary ∂B4, that is

Rct(B4,N ) = {u ∈ R(B4,N ), u is constant on ∂B4}.

Given a singularity a of v, the homotopy class of the restriction of v to any small sphere
centered at a does not depend on the radius, provided the later is sufficiently small. We will
denote JaK this element in π3(N ) and in the case π3(N ) = Z, the number d labeling the
homotopy class JaK will be referred to as a the topological charge of the singularity a. For
sake of simplicity, we assume that that all singularities have either topological charges +1 or
−15. We denote by P1, . . . , Pr the singularities of charge +1 and Q1, . . . , Qr the singularities
of charge −1: Since we assume that the map v is constant on the boundary, there is indeed

4in [19], the authors extend this discussion to several other targets.
5This is not a true restriction, since the class of maps having this property is also strongly dense
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an equal number of singularities of charge +1 and −1. In order to approximate weakly v by
smooth maps, we adapt the idea of the proof of Proposition 1. For i = 1, . . . , r, we consider
bounded curves Li joining the singularities of opposite charges, for instance Pi with Qi, and
construct a sequence of smooth maps (ϕn)n∈N such that

|∇ϕn|3 ⇀ |∇v|3 + µ∗ as n→ +∞ where µ∗ = νN (1)H1

(
r
∪
i=1
Li
)
, (17)

so that

lim
n→∞

E3(ϕn) = E3(v) + |µ∗| with |µ∗| = νN (1)

(
r∑
i=1

H1(Li)

)
. (18)

The measure µ∗ represents a defect energy measure for the above convergence, and it follows
from the definition of ε? that

ε?(u) ≤ |µ?|, (19)

so that a good estimate for |µ?| yields an estimate of the defect energy. Notice that the
formula for µ? given in (18) depends not only on the position of the singularities but also on
the way we choose to connect them. In order to obtain general weak approximation results,
we choose therefore optimal connections of the singularities, with the hope that the upper
bound (19) can be turned into a related lower bound. It turns out that this program can be
completed in the case N = S3.

Minimal connections for N = S3. This notion has been introduced in the present context
in [11]. Consider as above v in Rct(B4,S3), with topological charges ±1 and constant on
the boundary. In order to have the value of energy defect as small as possible, it is natural
to connect the singularities with straight segments and to choose the configuration with the
smallest total length. This leads to introduce the notion of length of a minimal connection
between the points {Pi}i∈J and {Qi}i∈J given by

L ({Pi}, {Qi}) = inf

{∑
i∈J
|Pi −Qσ(i)|, for σ ∈ S

}
, (20)

where J = {1, . . . , r} and S denotes the set of permutations of J . In the language of optimal

transportation, this can be rephrased as the optimal transportation of the measure
∑

δPi to

the measure
∑

δQi with cost functional given by the distance function. Going back to (18)

we obtain hence

|µ?| = |S3|L(v) where L(v) ≡ L({Pi}, {Qi}) since νN (1) = |S3|. (21)

The important observation made in [11] (see also [1] for a different proof) is that the length
of a minimal connection can be related to the energy of the map as follows

E3(v) ≥ |S3|L(v) = |S3|L({Pi}, {Qi}), (22)

so that, in view of (19), the defect energy ε∗(v) is bounded by

ε∗(v) ≤ E3(v). (23)
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Using the fact that Rct(B4, S3) is dense in W 1,p
ct (B4, S3) where

W 1,p
ct (B4,S3) = {v ∈ R(B4, S3), s.t v is constant on ∂B4}

we deduce from (23) that maps in C∞ct (B4, S3) are sequentially weakly dense in W 1,p
ct (B4, S3).

As a matter of fact, it can even be shown that ε? = |µ?| so that our previous construct is
optimal (see [7, 13, 14]). This means that given any sequence (vn)n∈N of maps in C∞ct (B4, S3)
converging weakly to v one has

lim inf
n→+∞

E(vn) ≥ F(v) ≡ E3(v) + |S3|L(v), (24)

and as shown before, there are sequences for which equality holds. Morever, it can be proved
(see e.g [13]) that any sequence such that equality holds in (24) behaves according to (17).
Both functionals L and F, which is termed the relaxed energy of the problem (see [7]), are
continuous in the space W 1,3(B4,S3), F being lower-semicontinuous for the weak convergence.

Remark 2. We have assumed that all singularities have only topological charges of values
±1: This is indeed not a restriction since the subset of Rcte(B4, S2) maps with topological
charges ±1 is also dense. When N = S3, multiplicities do not really affect the property
of the functional L, it suffices to repeat each singularity in the collection according to its
multiplicity.

Removing singularities of maps in Rct(B4,S2): Branched transportation. The approximation
scheme proposed in (17) is not optimal when the growth of νN is sublinear, that means that
the defect energy ε? might by much smaller then |µ?| as constructed above. We illustrate
this on the case N = S2.

Given u in Rct(B4, S2) and assuming as before that all topological charges are equal to ±1,
we approximate weakly u by smooth maps from B4 to S2 connecting again the positive charges
(Pi)i∈J to the negative charges (Qi)i∈J . In contrast with the case N = S3 however, straight
lines joining positive charges to negative charges may however not be the optimal solution.
Indeed, it may be energetically more favorable, in view of the subadditivity property (16),
that some parts of the connection carry a higher topological charge and we need therefore to
introduce branching points. Such a connection with branching points has been modeled by
Q. Xia in his pioneering work [30] with the notion of transport path. We adapt this notion
and term it in our setting branched connection, a notion depending only on the distribution
of the charges.

A branched connection associated to the distribution of points A = {Pi, Qi}i∈J is given as
a directed graph G in B4 with corresponding source points given by the distribution. It is is
represented by the following data:

• a finite vertex set V (G) ⊂ B4, such that the collection of source points belongs to V (G),
thet is A ⊂ V (G). There may also be other points, called branching points.

• A set E(G) of oriented segments joining the vertices, possibly with multiplicity d: For
~e ∈ E(G), we denote by e− and e+ the endpoints of e, so that ~e = [e−, e+], with
e−, e+ ∈ V (G).
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For a ∈ V (G), set E±(a,G) = {e ∈ E(G), e± = a}. We impose for a ∈ V (G) \ ∂Ω the
Kirchhoff law 

]
(
E−(a,G)

)
= ]

(
E+(a,G)

)
+ 1 if a ∈ {Pi}i∈J

]
(
E−(a,G)

)
= ]

(
E+(a,G)

)
− 1 if a ∈ {Qi}i∈J

]
(
E−(a,G)

)
= ]

(
E+(a,G)

)
if a is a branching point,

(25)

In our context, the multiplicity or density d(~e) of a segment represents the topological charge
carried through the segment ~e and relation (25) expresses a conservation of this charge at
the vertex points, with a source provided by the topological charges at the point singularities
{Pi, Qi}. We denote by G({Pi, Qi}i∈J) the set of all graphs having the previous properties
and introduce the quantity

Lbranch({Pi, Qi}i∈J) = inf{W2(G), G ∈ G({Pi, Qi}i∈J)},

where the functional W2(G) is the weighted length of the graph connection defined by

W2(G) =
∑

e∈E(G)

ν2(d(~e))H1(~e) for G ∈ G({Pi, Qi}i∈J). (26)

As a matter of fact, we may notice at this point that the length of a minimal connection
L(Pi, Qi) may be defined using the same framework as the infimum of the function W3(G)
defined according to the formula (26) with ν2 turned into ν3: However a optimal connection
will not require additional branching points.

The functional Lbranch plays now a similar role for S2 valued maps as did the length of a
minimal connection for S3 valued maps: It yields the defect energy when approximating maps
in Rct(B4,S2) by sequences of smooth maps between B4 and S2. Indeed, let u ∈ Rct(B4, S2)
an G be a graph in G(Pi, Qi), where {Pi, Qi}i∈J denotes the set of singularities of u. Using
concentration of maps along the segements composing G, with the corresponding multiplicity,
one may construct a sequence (ϕn)n∈N of maps in C∞ct (B4, S2) converging weakly to u such
that

|∇ϕn|3 ⇀ |∇u|3 + µ∗ as n→ +∞ where µ∗ = H1

(
∪

~e∈E(G)
ν2(d)~e

)
,

so that
lim

n→+∞
E3(ϕn) = E3(u) + |µ?| with |µ?| = W2(G).

Choosing the graph G as a minimizer for W2(G) we obtain |µ?| = Lbranch({Pi, Qi}i∈J) so
that

ε?(u) ≤ Lbranch({Pi, Qi}i∈J).

The reverse inequality is also valid. More precisely it has been proved in [19] that, if (ϕn)n∈N
is a sequence of maps in C∞ct (B4, S2) such that ϕn ⇀ u in W 1,3(B4, S2), then

lim inf
n→∞

E3(ϕn) ≥ E3(u) + Lbranch({Pi, Qi}i∈J). (27)

So that we finally have

ε?(u) = Lbranch({Pi, Qi}i∈J),∀u ∈ Rct(B4, S2).

The defect energy is hence again described by a quantity involving only the location of the
singularities and the sign of their topological charge. For further uses, we will use the notation

Lbranch(u) ≡ Lbranch({Pi, Qi}i∈J) for u ∈ Rct(B4,S2).
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1.3 How to produce counterexamples

We have seen in the case of S3-valued that that we may bound the defect energy of a map
in Rct(B4,S3) by the 3-energy of the map itself (see inequality (23)) and that this upper
bound, combined with the strong density of Rct(B4,S3) directly leads to the weak density of
smooth maps. If an estimate similar to (23) would exist for S2-valued maps, then the same
line of thoughts would yield weak approximability as well. Our next result states precisely
that there is no analog for (23) for S2-valued maps.

Proposition 2. Given any k ∈ N∗, there exists a map vk ∈ Rct(B4, S2) such that

E3(vk) ≤ C1k
3 (28)

and
Lbranch(vk) ≥ C2 log(k)k3, (29)

where C1 > 0 and C2 > 0 are universal constants.

Notice that inequality (29) shows that

Lbranch(vk) ≥ C(log k ) E3(vk), so that
Lbranch(vk)

E3(vk)
→ +∞ as n→ +∞.

The functional Lbranch, which, as seen, corresponds also to the defect energy ε?, is therefore
not controled by the Dirichlet energy E3, in contrast to inequality (23) for N = S3. This
property is the heart of the paper. Indeed, not only does it show that the argument for
S2-valued maps cannot be transposed, it also provides a way to construct counterexamples.
The map U in Theorem 4 is obtained gluing together a infinite countable number of copies
of scaled and translated versions of the maps vk, for suitable choices of the integer k and the
scaling factors. We choose and tune these parameters in such a way the total sum of the
energies in finite, whereas the sum of the defect energies diverges.

Remark 3. The fact that the defect energy should grow at most linearly in terms of the
energy in order to obtain weak approximability as already been noticed in [18].

The next paragraphs present the main steps of the construction of the sequence (vk)k∈N.

1.4 On the construction of vk

The construction of the maps vk faces two, in principle opposite, constraints:

• having the functional Lbranch(vk) as large as possible. Since this functional is related
to the configuration of singularities, this task requires to have a large number of sin-
gularities, and branched transportation teaches us that the best way to to increase the
functional is to have singularities well-separated (at least if they have the same sign)

• having an energy as small as possible. An intuitive idea suggest that increasing the
number of singularities will increases the energy.

11



As we will see at the end of the construction, the number of singularities of vk will be of
order of k4, consisting of two well-separated clouds of singularities of the same sign, whereas
the energy will be of order k3.

Related to the energy constraint, the starting point of the construction is to step one
dimension below and consider maps from S3 (or actually R3 through compactification at
infinity, see details in subsection 2.1) to S2 which are nearly optimal for the energy inequality
(16). Such maps have been construction in [28]. These maps from R3 to S2, denoted Skpag
and termed in this paper k-spaghettons, carry a topological charge of order k4, with an energy
of order k3. For the definition of Skpag, we modify somewhat the original construction given
in [28], and recast it into a more general framework known as the Pontryagin construction
[27], see also [24] for a detailed presentation. In order to describe briefly Skpag, let us mention
that these maps are constant outside 2k2 closed thin tubes of section of order h = k−1, of
length of order 1. The thin tubes are gathered in two distinct regular bundles which are
linked : This linking provided the non trivial topology.

The next step is to go to dimension 4: This is provided by a deformation denoted Gk
ord of

Skpag on the strip Λ = R3 × [0, 50], which is such that:{
the restriction of Gk

ord to the slice R3 × {0} is equal to Skpag

its restriction to the slice R3 × {50} is a constant function.
(30)

Such a deformation is of course not possible in the continuous class, since the maps on the
top and on the botton belong to different homotopy classes. In constrast, it is allowed in the
Sobolev class W 1,3, with an energy of the same order than the energy restricted to the on
the bottom, that is the energy of the spaghetton Skpag. In particular, one is able to untie the

thin linked tubes thanks to crossings. We will term therefore this map Gk
ord the Gordian cut

of order k. Each of the cuts creates a singularity of the map Gk
ord.

Finally, the construction is completed deforming Gk
ord into a map on B4 with the desired

properties, a step which is more elementary than the previous ones.

We next go a little further in our description of the maps vk.

1.4.1 The Pontryagin construction and the k-spaghetton map.

The Pontryagin construction we present next provides a beautiful way to produce maps from
Rm+` a map from Rm+` to S` with non trivial topology. This construction, introduced first
in [27], relates to a framed smooth m-dimensional submanifold in Rm+` a map from Rm+`

to S`. By framed submanifold, we mean here that for each point a of the submanifold, we
are given an orthonormal basis e⊥ ≡ (~τ1(a), ~τ2(a), . . . , ~τ`(a)) of the `-dimensional cotangent
hyperplane at the point a, which varies continuously with the point a.

We specify the Pontryagin construction to the case m = 1 and ` = 2, which is the situation
of interest for us. The framed manifold we consider is therefore a framed closed curve C in
R3, for which we are given a orthonormal basis of its orthogonal plane e⊥(·) ≡ (~τ1(·), ~τ2(·)).
This frame in turn induces a natural orientation of the curve, choosing the vector ~τ3(a) =
~τ1(a)×~τ2(a) as a unit tangent vector to the curve at the point a, so that any framed curve is
oriented. Our next task is to map a small annular region around the curve to the sphere S2.

12



To that aim, we present first an preliminary ingredient which is the construction of a map
from a small disk onto the sphere S2.

Mapping a disk to the sphere. We consider in the plane R2 the unit disk D = {(x1, x2) ∈
R2, x2

1 + x2
2 ≤ 1} and define a map χ from the disk D onto the standard two-sphere S2 by

setting, for (x1, x2) ∈ R2,

χ(x1, x2) = (x1f(r), x2f(r), g(r)) with r =
√
x2

1 + x2
2, r

2f2(r) + g2(r) = 1, (31)

where f and g are smooth given real functions on [0, 1] such that{
f(0) = f(1) = 0, 0 ≤ rf(r) ≤ 1 for any r ∈ [0, 1]

− 1 ≤ g ≤ 1 and g decreases from g(0) = 1 to g(1) = −1.

It follows from this definition what χ maps one to one the interior of the disk D to the set
S2 \ {Psouth}, where Psouth denotes the south pole Psouth = (0, 0− 1). Moreover the boundary
∂D is mapped onto the south pole Psouth = (0, 0,−1), whereas the origin 0 is mapped to
the North pole Pnorth = (0, 0, 1). It is possible to choose the functions f and g so that ξ is
”almost conformal”in some suitable sense which is not relevant for the rest of the discussion.
Given % > 0 we then define the scaled function χ% on R2 by setting

χ%(x1, x2) = χ(
x1

%
,
x2

%
), for (x1, x2) ∈ D%, χ%(x1, x2) = Psouth otherwise,

so that we have the gradient estimate

‖∇χ%‖L∞(D%) ≤ C%−1. (32)

Mapping an annular neighborhood of C to S2. Let C be a framed curve in R3. For a ∈ C, let
P⊥a be the plane orthogonal to ~τa, and denote D⊥a (%) the disk in P⊥a centered at a of radius
% > 0. We consider the tubular neighborhood T%(C) of C defined by

T%(C) = ∪
a∈C

D⊥a (%). (33)

Notice that there exists some number %0 = %0(C) > 0 depending only on C, such that, if
0 < % ≤ %0 then all disk D⊥a (%) are mutually disjoint. In particular, for any x ∈ T%(C), there
exists a unique point a ∈ C, and a unique point (x1, x2) ∈ D% such that x has the form

x = a+ x1~τ1(a) + x2~τ2(a). (34)

For given 0 < % < %0, we construct a smooth map Pontya
% [C, e⊥] : T%(C)→ S2 as follows: For

given x ∈ T%(C) of the form (34) we set

Pontya
% [C, e⊥](x) = χ%(x1, x2). (35)

Since Pontya
% [C, e⊥] is equal to Psouth on ∂Tr(C) we may extend this map to the whole of R3

setting
Pontya
% [C, e⊥](x) = Psouth for x ∈ Ω%(C) ≡ R3 \ T%(C),

so that Pontya
% [C, e⊥] is now a Lipschitz map from R3 to S2. The map Pontya

% [C, e⊥] is called
the Pontryagin map related to the framed curve C of order %. Since Pontya

% [C, e⊥] is equal to
Psouth outside a bounded region and in view of (32), we have hence shown:
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Lemma 2. If 0 < % ≤ %0(C) then the map Pontya
% [C, e⊥] belongs to Lip ∩ C0

0 (R3, S2), where
we have set

C0
0 (R3,S2) = {u ∈ C0(R3,S2) such that lim

|x|→+∞
u(x) exists}. (36)

Moreover, we have
|∇Pontya

% [C, e⊥](x)| ≤ C%−1 for every x ∈ R3, (37)

where C > 0 is some constant depending possibly on the curve C as well as on the choice of
frame e⊥ of the orthonormal plane.

The case of planar curves. All curves C that will enter through the Pontryagin construction
in our later definition of the spaghetton map Skpag will be planar or be an union of planar
curves. Moreover, they will lie in planes either parallel to the plane P1,2 or to the plane P2,3

where{
P1,2 = (R~e3)⊥ = P1,2(0) where P1,2(s) ≡ {(x1, x2, x3) ∈ R3 s.t x3 = s},∀s ∈ R
P2,3 = (R~e1)⊥ = P2,3(0) where P2,3(s) ≡ {(x1, x2, x3) ∈ R3 s.t. x1 = s},∀s ∈ R,

where we set ~e1 = (1, 0, 0), ~e2 = (0, 1, 0) and ~e3 = (0, 0, 1). For such curves, we define
a reference framing as follows. We first choose the orientation of the curves: Curves in
P1,2 and P2,3 will be orientated trigonometrically, that is counter-clockwise according to the
orthonormal bases (~e1,~e2) and (~e2,~e3) of P1,2 and P2,3 respectively. With this convention, we
will denote by ~τtan(a) a unit tangent vector at the point a of the curve oriented accordingly.
Second, we choose the first orthonormal vector ~τ1 as{

~τ1(a) = ~e3 for curves in P1,2 and

~τ1(a) = ~e1 for curves in P2,3.
(38)

Finally, we set ~τ2(a) = ~τtan(a)× ~τ1(a), so that ~τ2(a) is a unit vector orthogonal to the vector
τtan(a) included in the plane P1,2 or P2,3 respectively, and exterior to the curve. We consider
the frame of the orthonormal plane given by

e⊥ref(a) = (~τ1(a), ~τ2(a)) for a ∈ C. (39)

It has in particular the property that (~τ1(a), ~τ2(a), ~τtan(a)) is a direct orthonormal basis of
R3. In order to simplify a little notation, we will often use the notation

Pontya
% [C] = Pontya

% [C, e⊥ref ],

in the case C is a planar curve in affine planes parallel to P1,2 or P2,3 or a infinite union of
such curves.

Homotopy classes of Pontryagin maps. If C is a planar curve in P1,2 or P2,3 framed with the
reference frame e⊥ref defined above then it turns out that the homotopy class of Pontya

% [C, e⊥ref ]
is trivial. There are at least two simple ways to make not trivial homotopy classes emerge
from the Pontryagin construction:

• Twisting the frame of the orthogonal plane to the curve, a method which we will not
use in this paper.
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Figure 1: The reference frame for a planar curve

• Considering planar curves as above which are linked.

The idea of the construction of the Spaghetton map relies on this latest idea.

On the construction of the k-spaghetton. The construction of the k-spaghetton maps involves
two sheaves of planar curves which will be denoted Lk and Lk,⊥ respectivement. Each of the
sheaves contains exactly k2 stadium shaped connected curves, included in k parallel planes,
each of the planes containing k such curves, which are concentric, so that the general idea is
that each of these sheaves consist of parallel 6 planar curve. Our construction yields actually

Lk ⊂
k
∪
q=1

P1,2(qh) and Lk,⊥ ⊂
k
∪
q=1

P2,3(qh) where h = k−1, (40)

so that the distance between neighboring parallel planes is exacly h = k−1. The curves in
each of these planes are deduced from the other by translation that is{

Lk ∩ P1,2(qh) = Lk ∩ P1,2(h) + (q − 1)h~e3 for q = 1, . . . , k

Lk,⊥ ∩ P2,3(qh) = Lk,⊥ ∩ P2,3(h) + (q − 1)h~e1 for q = 1, . . . , k.
(41)

Finally, the curves in each sheaves are organized in a quite regular way. For instance the
intersection of Lk, with the plane P2,3 is given by a set of 2k2 points organized in two two-
dimensional grids, namely

Lk ∩ P2,3 = {0} ×
((
�2
k(h)

)
∪
(
(13, 0) +�2

k(h)
))

(42)

where the symbol �2
k(h) represents the discrete sets of points located on the regular two

dimensional grid given, for k ∈ N∗ and h > 0 by

�2
k(h) = h�2

k = {hI, I ∈ {1, . . . , k}2}

Similarily, we have, for P1,3 = (R~e2)⊥

Lk,⊥ ∩ P1,3 =
{

(x1, 0, x3), with (x1, x3) ∈
(

(0,−7) + �̃
2
k(h)

)
∪
(
(0, 6) +�2

k(h)
)}
.

6parallel has to be taken here in an intuitive meaning and not in a rigorous mathematical sense
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Finally, the two sheaves do not intersect and each curve is linked to all curves of the other
sheaves, but with none of its own sheave. On each of the planar curves, we choose the
reference frame, set Sk = Lk ∪ Lk,⊥ and define the k-spaghetton map Sk as the Pontryagin
map related to Sk

Sk = Pontya
%k

[Sk, e⊥ref ], (43)

where the parameter parameter %k is choosen suitably of order h. Details are provided in
Section 3. We summarize some its main properties in the next proposition.

Proposition 3. The k-spaghetton Skpag is a smooth map from R3 to S2 with the following
properties:

• Skpag(x) = Psouth if |x| ≥ 17

• |∇Skpag(x)| ≤ Cspgk, for any x ∈ R3, where Cspg > 0 is a universal constant.

• The Hopf invariant of Skpag is H(Skpag) = 2k4

• The 3-energy verifies the energy bound E3(Skpag) ≤ Kspgk
3, where Kspg > 0 is a uni-

versal constant.

1.4.2 The Gordian cut

This construction represents the second step of the construction and yields now a map from
a subset Λ ⊂ R4 → S2, where Λ is the strip of R4 given by

Λ = R3 × [0, 50] = {x = (x, x4), x ∈ R3, 0 ≤ x4 ≤ 50}.

The gordian cut Gk
ord corresponds actually to a deformation of the k-spaghetton to a con-

stant map which belongs to the Sobolev class W 1,3, the fourth coordinate standing for the
defomation coordinates, similar to the time variable in usual deformations. The map Gk

ord

belongs to the class of maps w : Λ→ S2 such that the following four conditions are met:

w ∈ R(Λ, S2) and E3(w,Λ) ≡
∫

Λ
|∇w|3 <∞

w(x, 0) = Skpag(x, 0) for almost every x ∈ R3

w(x, 50) = Psouth for almost every x ∈ R3

w(x, s) = Psouth for every x ∈ R3 such that |x| ≥ 40 and 0 ≤ s ≤ 50.

(44)

The second and third conditions in (44) have already been encountered in a slightly weaker
form in (30). They make sense in view of the trace theorem and the boundedness of the
energy stated in the first condition.

Proposition 4. There exists a map Gk
ord : Λ→ S2 verifying (44) such that Gk

ord has exactly
k4 topological singularities of charge +2 and such that

E3(Gk
ord) ≤ KGord k

3, (45)

where KGord > 0 is some universal constant. Let Aksing denotes the set of singularities of

Gk
ord. We have

Aksing = �2
k(h)×Tk

(
�2
k(h)

)
, (46)
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where T
k is an affine one to one mapping from R2 into itself which is given by

Tk(x3, x4) = (x3,−2x3 + x4) +Mh where Mh = (0, 7− h

8
). (47)

Introducing the sets of points on a uniform grid of dimension 4 given by

�4
k = {1, . . . , k}4 and �4

k (h) = h�4
k = {hI, I ∈ {1, . . . , k}4}, (48)

we observe that a consequence of (46) is that

Aksing = Φk

(
�4
k(h)

)
with Φk(x) = (x1, x2,Tk(x3, x4)) for x = (x1, x2, x3, x4) ∈ R4, (49)

so that Φk is an affine one to one mapping on R3. It follows that Aksing a regular grid of
singularities: This observation is crucial, in particular in relation to the minimal branched
connection and the result described in Appendix A.

Although the detailed argument of the proof of Proposition 4 involves some technicalities,
The heuristic idea is rather simple: We consider x4 as a time variable, and push down along
the x3-axis the sheaf Lk,⊥, keeping however its shape essentially unchanged, whereas the
sheaf Lk does not move. This process presents no major difficulty as long as the sheaf Lk,⊥

does not encounter the sheaf Lk. When some fibers touch, we are no longer able to define
the corresponding Pontryagin map Pontya

%k . To overcome this difficulty, we take advantage of
the fact that we are working in a Sobolev class were singularities are allowed: Using such
singularities, the fiber in contact are able to cross, that is the sheaf Lk⊥ is able to pass through
the fibers of Lk. Each time fibers cross a singularities of topological charge 2 is created. These
singularities form a cloud of uniformly distributed points as stated in Proposition 4.

1.4.3 Construction of the sequences of map (vk)n∈N

The construction of the sequences of map (vk)k∈N described in Proposition 2 is then deduced
rather directly modifying the maps Gk

ord constructed in Proposition 4 using some elementary
transformations as affine mappings or reflections, in such a way that we have vk ∈ C0

ct(B4 \
Σk

sing,S2), where the set Σk
sing of singularities of vk is given by

Σk
sing = �4

k(hscal) ∪ Sym

(
�4
k(hscal)

)
where hscal =

h

400
=

1

400k
, (50)

and where Sym stands for the reflection symmetry through the hyperplane x4 = 0, i.e.

Sym(x1, x2, x3, x4) = (x1, x2, x3,−x4), for any (x1, x2, x3, x4) ∈ R4. (51)

The singumarities in �4
k(h) have Hopf invariant +2 whereas the singularities in Sym

(
�4
k(h)

)
have Hopf invariant −2, the total charge being equal to 0. The energy estimate (28) for the
map vk follows from the corresponding energy estimate for Gk

ord.
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1.4.4 Irrigability of a cloud of points

To complete the proof of Proposition 2, it remains to establish estimate (29) for the branched
transportation of the map vk, whose value involves only the location of singularities of vk.
The main property which we will use in the proof of (29) is expressed in property (50), which
shows that the singularities are located on a regular grid. It follows from (50) that

1

k4

 ∑
a∈Σsing

H(a)δa

→ f dx as k → +∞, where f = 2
[
1[0,a]4 − 1[0,a]3×[−a,0]

]
, (52)

where a = 1/400. It turns out, in view of (52), that the behavior of the functional Lbranch as
k growths is related to the irrigation problem for the Lebesgue measure, a central question
in the theory of branched transportation. It has been proven in [12] (see also Devillanova’s
thesis or the general description in [4], in particular Chap 10) that the Lebesgue measure is
not irrigable for the critical exponent αc = 3

4 . This result can be interpretated directly as
the fact that the functional Lbranch growth more rapidly that the number of points at the
power αc, hence more rapidly then k3. A lower bound for this divergence then directly yields
(29), completing hence the proof of Proposition 2. As a matter of fact, we will rely on a
precise lower bound of logarithmic form for this divergence which is established in a separate
Appendix at the end of this paper.

1.5 On the proof of the main theorems

Concerning Theorem 3, the proof consist in adding additional dimensions to the previous
constructing and is rather standard.

1.6 The lifting problem

As a by product of our method, in particular the construction of the spaghetton maps, we are
able to address some questions related to the lifting problem of S2-valued maps within the
Sobolev context. Such question have already been raised and partially solved in [8, 19, 20].
The main additional remark we wish to provide in the present paper is that the question is
not related in an essential way to topological singularities, since our counterexamples do not
have such singularities.

Recall that maps into S2 and maps into S3 are connected through a projection map Π :
S3 → S2 termed the Hopf map and which we describe briefly. To start with an intuitive
picture (but as we will see in a moment, this picture is not completely correct) the sphere S3

is very close, at least from the point of view of topology, to the group of rotations SO(3) of the
three dimensional space R3, the sphere S3 may be in fact identified with its universal cover.
Any rotation R in SO(3) yields an element on S2 considering the image by R of an arbitrary
fixed point of the sphere, for instance the North pole Pnorth = (0, 0, 1), so that we obtain a
projection from SO(3) to S2 considering the correspondance R 7→ R(P ). The construction
of the projection Π from S3 onto S2 is in the same spirit, but requires to introduce some
preliminary objects.

Identifying S3 with SU(2). Here SU(2) denotes the Lie group of two dimensional complex
unitary matrices of determinant one, i.e. SU(2) = {U ∈M2(C), UU∗ = I2 and det(U) = 1}
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or

SU(2) =

{(
a −b̄
b ā

)
, a ∈ C, b ∈ C with |a|2 + |b|2 = 1

}
' S3. (53)

The Lie algebra su(2) = {X ∈ M2(C), X + X∗ = 0 and tr(X) = 0} of SU(2) consists
in traceless anti-hermitian matrices. A canonical basis of this 3-dimensional space, which is
actually orthonormal for the euclidean norm |X|2 ≡ det(X) is provided by the Pauli matrices

σ1 ≡
(

i 0
0 −i

)
, σ2 ≡

(
0 1
−1 0

)
, σ3 ≡

(
0 i
i 0

)
.

We identify the 2-sphere S2 with the unit sphere of su(2) for the previous scalar product:

S2 ' {X ∈ su(2), |X|2 = det(X) = 1}.

The Hopf map. The group SU(2) acts naturally on su(2) by conjugation: If g ∈ SU(2), then

su(2) 3 X 7→ Adg(X) ≡ gXg−1 ∈ su(2) is an isometry of determinant 1.

Definition 1. The map Π : SU(2) ' S3 → S2 ⊂ su(2) defined by

Π(g) ≡ Adg(σ1) = gσ1g
−1 for g ∈ SU(2)

is called the Hopf map.

Notice that Π(g) = σ1 if and only if g is of the form

g = exp(σ1t) =

(
exp it 0

0 exp−it

)
with t ∈ [0, 2π]. More generally, if g and g′ are such that Π(g) = Π(g′), then g′ = g expσ1t
for some t ∈ [0, 2π], so that the fiber Π−1(u) is diffeomorphic to the circle S1 for every u ∈ S2.
By the Hopf map, SU(2) appears hence as a fiber bundle with base space S2 and fiber S1.
Moreover, this bundle is not trivial, but twisted since IdS2 does not admit a continuous lifting
Φ : S2 → S3 such that IdS2 = Π ◦ Φ. Indeed, Φ is homotopic to a constant, but not IdS2 .

Projecting maps onto S2. Given any domain M and a map U : M→ S3, we may associate
to this map the map u : M → S2 obtained through to the composition with the map Π,
that is setting u = Π ◦ U. This construction works for a rather general class of maps, with
mild regularity assumptions, for instance measurability. In particular, since Π is smooth, if
U belongs to W 1,3(M, S3), then the same Sobolev regularity holds for u = Π ◦ U and the
correspondence U 7→ u is smooth. This correspondence is of course not one to one. Indeed,
given any scalar function Θ :M→ R, then we have

u = Π ◦U = Π ◦ (U exp(σ1Θ(·))) .

Conversely, given two maps U1 and U2 such that u = Π ◦ U1 = Π ◦ U2 then there exists a
map Θ : M → R such that U2 = U1 exp(σ1Θ(·)). The map Θ is often referred to as the
gauge freedom.
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Lifting maps to S2 as maps to S3. The lifting problem corresponds to invert the projection
Π, which means that, given a map u fromM to S2 in a prescribed regularity class, one seeks
for a map U fromM to S3, if possible in the same regularity class, such that u = Π ◦U. The
map U is then called a lifting of u. As seen in the previous paragraph, if a lifting exists, then
there is no-uniqueness, since if U is a solution, then the same holds for the map U exp(σ1Θ),
where Θ is arbitrary scalar functions Θ :M→ R in the appropriate regularity class.

If M is simply connected with π2(M) = {0}, it can be shown that the lifting problem has
always a solution in the continuous class, i.e. for any continuous maps u fromM to S2 there
exists a continuous lifting U from M to S3 of u such that u = Π ◦ U. As an example in the
case M = S3, the identity from S3 into itself is a lifting of the Hopf map.

The fact that the lifting property holds in the continuous class allows to provide a one to
one correspondance between homotopy classes in C0(M,S3) and C0(M,S2). Indeed, two
maps u1 and u2 fromM to S2 are homotopic if and only if their respective liftings U1 and U2

are in the same homotopy class. Specifying this property to the case M = S3, we obtain as
already mentioned an identification of π3(S2) and π3(S3). On the level of Sobolev regularity,
the picture is quite different. We will prove in this paper:

Theorem 5. LetM be a smooth compact manifold. For any 2 ≤ p < m = dimM there exist
a map V in W 1,p(M, S2) such there exist no map V ∈ W 1,p(M,S3) satisfying V = Π ◦ V.
Moreover V belong to the strong closure of smooth maps in W 1,p(M,S2).

This results supplements earlier results obtained on this question in [8, 19]. It is proved
in [8] that, if 1 ≤ p < 2 ≤ dimM, p ≥ dimM ≥ 3 or p > dimM = 2, then any map V in
W 1,p(M,S2) admits a lifting V in W 1,p(M, S3), whereas a map was produced there in the
cases 2 ≤ p < 3 ≤ dimM or p = 3 < dimM, which possesses no lifting in W 1,p(M,S2). In
the later case, however, the example produced in [8] is not in the strong closure of smooth
maps, in contrast with the map constructed in Theorem 5. Notice that as a matter of fact,
Theorem 5 gives a negative answer to Open Question 4 in [8], and that the only case left
open is the case p = dimM = 2 corresponding to the Open Question 3 in [8].

1.7 Concluding remarks and open questions

As perhaps the previous presentation shows, the construction of our counterexample relies
on several specific properties of the Hopf invariant, a topological invariant which combines
in an appealing way various aspects of topology in the three dimensional space. Our proof
is built on the fact that the related branched transportation involves precisely the critical
exponent, yielding a divergence in some estimates which are crucial. An analog for this
exponent for more general target manifolds with infinite homotopy group πp(N ) has been
provided and worked out in [21], based on more sophisticated notions in topology. It is
likely that this exponent plays an important role in issues related to weak density of smooth
maps. In the case the exponent provided in [21] is larger then the critical exponent of the
related branched transportation, as described above, one may reasonably conjecture that
there should exist some obstruction the sequential weak density of smooth maps. However
the effective constructions of such obstructions, perhaps similar to the ones proposed in this
work remain unclear. In particular the Pontryagin construction used here seems at first sight
somehow restricted to the case the target is a sphere.
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In another direction, let us also notice that most if not all results related to the weak
closure of smooth maps between manifolds for integer exponents deal with manifolds having
infinite homotopy group πp(N ). The case when πp(N ) is finite seems widely open and raises
interesting questions also on the level of the related notions of minimal connections. As a
first example, one may start again with M = S2, p = 4, for with we have π4(S2) = Z2. In
this case a nice description of the homotopy classes in terms of the Pontragyin construction
is also available.

This paper is organized as follows. In the next section, we recall some notion of topology
which are used in the course of paper. Section 3 is devoted to the construction of the k-
spaghetton map, whereas in Section 4, we construct the Gordian cut Gk

ord, providing the
proof to Proposition 4, which is the central part of the paper. In Section 5, we provide the
proofs of the main results, relying also on some results provided in Appendix A, in particular
Theorem A.1, which, beside Proposition A.3, is the main result there.

Acknowledgements. The author wishes to thank the referees for their careful reading of
the first version of this paper, pointing out several mistakes and indicating several lines of
improvements.

2 Some topological background

We review in this section some basic properties of maps from S3 into S2 or S3.

2.1 Compactification at infinity of maps from R3 into N

Whereas the emphasis was put in several places of the previous discussion on maps defined
on the 3-sphere S3, it turns out that it is sometimes easier to work on the space R3 instead
of S3. Since our maps will have some limits at infinity or even are constant outside a large
ball, we are led to introduce the space

C0
0 (R3,R`) = {u ∈ C0(R3,R`) s.t lim

|x|→∞
u exists}

and define accordingly the space C0
0 (R3,N ). The space C0

0 (R3,R`) may be put in one to one
correspondance with the space C0(S3,R`) thanks to the stereographic projection St3 which
is a smooth map from S3 \ {Psouth} onto R3 and is defined by

St3(x1, x2, x3, x4) =

(
x1

1 + x4
,

x2

1 + x4
,

x3

1 + x4

)
for (x1, x2, x3, x4) ∈ R4 s.t

4∑
i=1

x2
i = 1.

For any map u ∈ C0(S3,N ) we may define u ◦ St3 ∈ C0
0 (R3,N ) and conversely given any

map v in C0
0 (R3,N ) the map v ◦ St−1

3 belongs to C0(S3,N ). This allows to handle maps in
C0

0 (R3,N ) as maps in C0(S3,N ) and yields a one to one correspondance of homotopy classes.
In particular, when N = S3 or N = S2 we may define the degree in the first case or the Hopf
invariant in the second for maps in C0

0 (R3,N ).
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2.2 Degree theory

Degree theory yields a topological invariant which classifies homotopy class for maps from S3

to S3. For a smooth U from S3 to S3, its analytical definition is given by

deg U =
1

|S3|

∫
S3

U?(ω
S3

) =
1

(2π2)

∫
S3

det(∇U) dx, (2.1)

where ω
S3

stands for a standard volume form on S3 and U∗ stands for pullback. It turns

out that deg U is an integer which is a homotopy invariant, that is, two maps in C1(S3, S3)
which are homotopic have same degrees and conversely, two maps with the same degree are
homotopic, leading as mentioned to a complete classification of homotopy classes. Notice
that the degree of the identity map of S3 whose homotopy class is the generator of π3(S3) is
1. The area formula yields a more geometrical interpretation, namely

deg u =
∑

a∈u−1(z0)

sign(det(∇u)), (2.2)

where z0 ∈ S3 is any regular point, so that u−1(z0) is a finite set. Finally, an important
property, which is quite immediately deduced from (2.1) is the lower bound

E3(U) ≡
∫
S3

|∇U|3 ≥ |S3| |d| = 2π2|d| provided deg (U) = d. (2.3)

This bounds is optimal. Indeed, as a consequence of the scale invariance of the energy E3 in
dimension 3, one may prove for any d ∈ Z, gluing |d| copies of degree one maps that

ν3(d) ≡ inf
{
E3(u), u ∈W 1,3(S3, S3), deg (u) = d

}
= |S3||d| = 2π2|d|. (2.4)

2.2.1 The Hopf invariant

We next turn to maps u from S3 into S2 which are assumed to have sufficient regularity.
Since in this case, there is a lifting U : S3 → S3 such that u = Π ◦U the degree theory for S3

valued maps allows to classify also the homotopy classes of maps from S3 to S2. Set

H(u) = deg (U).

This number, is called the Hopf invariant of u and as seen before classifies homotopy classes
in C0(S3, S2). Notice that, since Π = Π ◦ IdS3 , the Hopf invariant of the Hopf map Π is
H(Π) = 1, so that its homotopy class [Π] is a generator of π3(S2).

Integral formulations. Let M be a simply connected manifold, U : M→ SU(2) sufficiently
smooth and set u ≡ Π ◦ U. We construct a 1-form A with values into the Lie algebra su(2)
setting A ≡ U−1dU. Conversely, given any sufficiently smooth su(2) valued 1-form A on
M, on object also called a connection, one may find a map U : M → SU(2) such that
A = U−1dU, provided the zero curvature equation for connections holds, that is provided

dA+
1

2
[A,A] = 0. (2.5)
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Decomposing A on the canonical basis of su(2) as A = A1σ1 + A2σ2 + A3σ3, where A1, A2

and A3 denote scalar 1-forms on M we are led to the relations

du = U [A,σ1]U−1 = A3σ2 −A2σ3,

so that the component A2 and A3 of A are completely determined by the projected map
u = Π◦U. On the other hand, A1 is not, a consequence of the gauge freedom mentioned before.
Indeed, for any sufficiently smooth function Θ : M→ R, let UΘ(x) ≡ exp(Θ(x)σ1)U(x), so
that u = Π ◦ UΘ and U−1

Θ dUΘ = U−1dU + (dΘ)σ1 = A + dΘσ1.The values of A2 and A3

are left unchanged by the gauge transformation, and A1 is changed into AΘ
1 = A1 + dΘ. We

notice also the relations{
u?(ω

S2
) = A2 ∧A3, U∗(ω

S3
) = A1 ∧A2 ∧A3,

|dU |2 = |A1|2 + |A2|2 + |A3|2 and |du|2 = (|A2|2 + |A3|2),
(2.6)

where ω
S2

stands for the standard volume form on S2. The curvature equation (2.5) yields
the relation

2dA1 = A2 ∧A3 = u?(ω
S2

), (2.7)

so that dA1 is also completely determined by the projected map u. Going back to (2.6) we
may write

U∗(ω
S3

) = A1 ∧ u?(ωS2
).

Specifying the discussion to the case M = S3, the integral formula for the degree yields in
turn an integral formula for the Hopf invariant namely, for any map u : S3 → S2, we have

H(u) =
1

4π2

∫
S3

α ∧ u?(ω
S2

), with dα = u?(ω
S2

), (2.8)

where actually α corresponds to the one form α = 2AΘ
1 , whatever choice of gauge Θ.

Choosing a good gauge. Recall that at this stage dα = dAΘ
1 is completely determined by

(2.7). To remove the gauge freedom we may supplement this condition imposing another one
in order to obtain an elliptic system. Hence are led a impose a condition on d?α, for instance

d?α = 0, and hence α = d?Φ, (2.9)

where Φ is some two form verifying dΦ = 0. In view of (2.7), (2.9) and the definition
∆ = dd? + d?d of the Laplacian, we have the identity

∆S3Φ = u?(ω
S2

). (2.10)

Hence Φ is determined up to some additive constant form.

Energy estimates and the Hopf invariant. By standard elliptic theory, we obtain the estimates

‖α‖L3(S3) ≤ C‖∇Φ‖L3(S3) ≤ C‖∇u‖2L3(S3) (2.11)

so that, going back to formula (2.8), we deduce thatH(u) ≤ C‖∇u‖43 and hence, as mentioned
the lower bound (15) is readily an immediat consequence of the integral formula for the Hopf
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invariant. The fact that this lower bound is optimal is proved [28] and stated here as (16)(see
also [3] for related ideas). It is far more subtle and relies on the identity

H(ω ◦ u) = (degω)2
H(u). (2.12)

for any ω : S2 → S2. Since this fact is somewhat central in our later arguments, we briefly
indicate how (2.12) may lead to the lower bound (16). A first elementary observation is that,
given any integer ` ∈ Z one may construct a smooth map ω` : S2 → S2 such that

deg (ω`) = ` and |∇ω`|L∞(S2) ≤ C
√
|`|, (2.13)

the idea being to glue together |`| copies of degree ±1 maps scaled down to cover disks of
radii of order

√
|`|. Set u` = ω` ◦Π. It follows from (2.12) and (2.13) that

H(u`) = `2 and |∇u`|L∞(S2) ≤ C
√
|`|

so that
E3(u`) ≤ C|`|

3
2 ≤ C|H(u`)|

3
4 ,

yielding hence the proof of (16), at least when the hopf invariant d = `2 is a square. The
spaghetton map which we will construct later corresponds actually to a modification of the
map u` and enjoys essentially the same properties, as it will be seen at the light of the next
paragraph.

2.3 Linking numbers for preimages and the Pontryagin construction

Properties of the preimages of regular points yield another, very appealing, geometrical in-
terpretation of the Hopf invariant which is parallel to (2.2) for the degree. Given a smooth
map u : R3 → S2 in C0

0 (R3,S2) and a regular point M of S2, its preimage LM ≡ u−1(M) is a
smooth bounded curve in S3. The curve LM inherits also from the original map u a normal
framing and hence an orientation. Indeed, consider an arbitrary point a ∈ LM , that is such
that u(a) = M . Since M is supposed to be a regular point, the differential Du(a) induces
an isomorphism of the normal plane P (a) ≡ (R~τtan(a))⊥ onto the tangent space TM (S2). If

(
−→
W 1,M ,

−→
W 2,M ) is an orthonormal basis of TM (S2) such that (

−→
W 1,M ,

−→
W 2,M ,

−−→
OM) is a direct

orthonormal basis of R3, then its image f⊥ by the inverse T = (Du(a)|P (a))
−1 is a frame of

P (a) which is however not necessarily orthonormal. We define a framing on LM , choosing
the first vector ~τ1(a) of the frame as

~τ1(a) =
T (
−→
W 1,M )

|T (
−→
W 1,M )|

and then ~τ2(a) as the unique unit vector orthogonal to ~τ1(a) such that e⊥u ≡ (~τ1(a), ~τ2(a))
has the same orientation as f⊥. A first remarkable observation (see [27] and [24], chapter XI,
section 3) is that (LM , e

⊥
u ) completely determines the homotopy class of u: Indeed, if % > 0

is sufficiently small, then

H(u) = H

(
Pontya
% [LM , e

⊥
u ]
)
.
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A second important property is that the linking number m(LM1 , LM2) of the preimages of
any two regular points M1 and M2 on S2 is independent of the choice of the two points and
is equal to the Hopf invariant, that is

m(LM1 , LM2) = H(u). (2.14)

Recall that the linking number of two oriented curves C1 and C2 in R3 is given by the Gauss
integral formula

m(C1, C2) =
1

4π

∮
C1

∮
C2

−−−−→
a1 − a2

|a1 − a2|3
.
−→
da1 ×

−→
da2. (2.15)

Notice in particular that the linking number is always an integer, that it is symmetric, i.e.

m(C1, C2) = m(C2, C1), (2.16)

that its sign changes when the orientation of one of the curves is reversed and that m(C2, C1) =
0 if the two curves are not linked. Moreover, in case of several connected components, we
have the rule

m(C1,1 ∪ C1,2, C2) = m(C1,1, C2) + m(C1,2, C2). (2.17)

In practice, as we will do, the linking number of two given curves can be computed as the
half sum of the signed crossing number of a projection on a two dimensional plane.

Remark 2.1. Chapter IX of [24] offers a good general background to the topics in this section
and their extensions. The book [25] offers a more elementary and intuitive presentation.

2.4 The Hopf invariant of an elementary spaghetto

We go back to the Pontryagin construction and consider here the case the curve C is planar
and connected. We may assume without loss of generally that C is included in the plane P1,2.
We assume moreover that it is framed with the reference frame e⊥ref . In that case, the map
Pontya
% [C] will be called an elementary spaghetto. We first observe:

Lemma 2.1. If 0 < % < %0(C) then H(Pontya
% [C, e⊥ref ]) = 0.

Proof. The most direct proof is to use formula (2.14) and to consider the linking number of
preimages of any two regular points. As a matter of fact, for the Pontryagin construction,
all points are regular points, except the south pole Psouth whose preimage is the boundary of
T%(C), so that we may consider as regular points the North pole Pnorth and the point M on
the equator given by M = (1, 0, 0). We have

L(Pnorth) = C whereas LM = C + g−1(0)%~e3,

where the function g is defined in (33). It follows that the two curves are parallel and hence
not linked so that in particular

m (L(Pnorth), LM ) = 0.

The conclusion then follows directly from (2.14).
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Remark 2.2. An alternate, perhaps more direct and more illuminating though also longer
proof would be to construct explicitely a continuous deformation with values into S2 of
Pontya
% [C, e⊥ref ] to a constant map. The main step in this construction is to show that there

exists a continuous map Φ from the exterior domain R3 \ C to the circle S1 such that

Φ (a+ x1~τ1(a) + x2~τ2(a)) =
(x1, x2)√
x2

1 + x2
2

for any a ∈ C and 0 < x2
1 + x2

2 ≤ %2. (2.18)

Assume for the moment that Φ is constructed and let us define the deformation. We set

F (x, t) =

(
(1− t)r(x)

%
f

(
r(x)

%
(1− t)

)
Φ(x), g

(
r(x)

%
(1− t)

))
for x ∈ R3 and t ∈ [0, 1],

where the functions f and g have been defined in (31) and where the function r is defined as r(x) =
√
x2

1 + x2
2 for any x = a+ x1~τ1(a) + x2~τ2(a) with a ∈ C and 0 < x2

1 + x2
2 ≤ %2,

r(x) = % otherwise.

It follows from the properties of f and g that F is continuous from R3 × [0, 1] to S2, that
F (·, t) belongs to C0

ct(R3, S2) for any t ∈ [0, 1] and that

F (·, 0) = Pontya
% [C, e⊥ref ] whereas F (·, 1) = Pnorth,

yielding hence the desired deformation. The construction of the map Φ is obtained adapting
the Biot and Savart formula, as done for instance in [2].

Remark 2.3. A first possible way to obtain not trivial homotopy classes through the Pon-
tryagin constructing with planar curves, is to twist the frame. Consider a map γ : C →
SO(2) ' S1, and consider the twisted frame

e⊥γ = γ(e⊥ref) ≡ (γ(·)(~τ1(·)), γ(·)(~τ2(·))) ,

where, for a ∈ C, the map γ(a) is considered as a rotation of the plane (τtan(a))⊥. Since C
is topologically equivalent to a circle, one may define a winding number of γ and prove, for
instance using the crossing numbers, that

H

(
Pontya
%

[
C, e⊥γ

])
= deg (γ).

In some places, we will denote, for given d ∈ Z, by e⊥twist=d a framing which corresponds to
a planer curves whose reference framing is twisted by a degree d map. As an exercise, the
reader may construct a deformation showing that if C1 and C2 are two planar curves which
do not intersect and which are not linked then we may merge them into a single curve with
a frame twisted by the sum of the twists so that

H

(
Pontya
%

[
(C1, e

⊥
twist=d1

) ∪ (C2, e
⊥
twist=d2

)
])

= d1 + d2. (2.19)
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2.5 The Hopf invariant of two linked spaghetti

Another simple way to obtain non trivial homotopy classes is to consider two linked planar
curves, yielding what is often called a Hopf link. Consider therefore two planar curves without
self-intersection, a curve C1 included in the plane P1,2 of equation x3 = 0 and a curve C2

included in the plane P2,3 of equation x1 = 0. To fixe ideas, on may take for C1 and C2 the
circles

C1 = {(x1, x2, 0) ∈ R3, x1
1 + x2

2 = 1} and C2 = {(0, x2, x3) ∈ R3, (x2 + 1)2 + x3 = 1}

so that the center of C1 is the origin, the center of C2 is the point O2 = (0,−1, 0), both circles
having radius 1. We choose for both circles the reference frames e⊥ref defined before and the
corresponding orientation. They are obviously linked, and using the crossing numbers, we
verify easily that

m(C1, C2) = 1.

We then set
C = C1 ∪ C2.

Lemma 2.2. We have, for sufficiently small % > 0, H(Pontya
% [C, e⊥ref ]) = 2.

Proof. We argue as in the proof of Lemma 2.1 an consider the pre-images LPnorth
= C = C1∪ C2

and LM = C′1 ∪ C′2 of the North pole and the point M = (1, 0, 0) of the equator respectively,
where we have set C′1 = C1 + g−1(0)%~e3 and C′2 = C2 + g−1(0)%~e1. It follows that

m(LPnorth
, LM ) = m(C1 ∪ C2, C′1 ∪ C′2)

= m(C1, C′1) + m(C1, C′2) + m(C2, C′1) + m(C2, C′2).
(2.20)

Since the curves C1 and C′1 are parallel and hence not linked m(C1, C′1) = 0 and likewise
m(C2, C′2) = 0. On the other hand m(C1, C′2) = m(C′1, C2) = m(C1, C2) = 1 so that we obtain
m(LPnorth

, LM ) = 2. Invoking (2.14) the conclusion follows.

3 Linked k-spaghetton map

We provide in this section a precise definition of the spaghetton map Skpag, which has already
been described more vaguely in the introduction. The general idea is to extend the construc-
tion performed in Subsection 2.5 when each planar curve is replaced by a sheaf of such curves
which are parallel. The spaghetton is then obtained by the Pontryagin construction with the
corresponding reference frame.

As mentioned in the introduction, each of the curves with which we will perform the
Pontragyin construction is stadium shaped. Let us recall that a stadium is a closed curve
whose interior consists of the interior of a rectangle, with two parallel ends capped off with
semidisks. Given an integer k ∈ N?, the total number of curves will be k2 in each of the two
sheaves Lk and Lk,⊥ of our construction. Each of the sheaves of Lk and Lk,⊥ is composed of
parallel segments on the straight part on the stadium in the direction of ~e1 and ~e2 respectively,
and nearly parallel on the round parts.
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Figure 2: The reference stadium L0

3.1 The sheaf Lk of the k2 stadium shaped curves Lkj,q

We describe here the curves Lkj,q, j, q = 1, . . . , k composing the sheave Lk. These curves are

modeled on a standard stadium L0 ⊂ R2, centered at the origin O = (0, 0) we present first.

Construction of the reference stadium L0 in the plane R2. Working in this paragraph on the
plane R2, we consider first two straight segments D1

0 and D2
0 parallel to ~~e1 = (1, 0) each of

length 12, given by

D1
0 = [−6, 6]× {−6} and D2

0 = [−6, 6]× {6}.

We complete these two parallel segments as a stadium L0 contained in the plane R2 adding
two half circles so that

L0 = D1
0 ∪ D2

0 ∪ S1,+
6 (O+

0 ) ∪ S1,−
6 (O−0 ) ⊂ R2,

where S1,+
5 (O+

0 ) and S1,−
5 (O−0 ) are two half circles of radius r = 6 in the plane R2 of centers

O+
0 ≡ ((6, 0) and O−0 ≡ (−6, 0) respectively, where we have set, for given r > 0 and A =

(a1, a2) ∈ R2{
S1,+
r (A) = {(x1, x2) ∈ R2, (x1 − a1)2 + (x2 − a2)2 = r2, x1 ≥ a1}

S1,−
r (A) = {(x1, x2) ∈ R2, (x1 − a1)2 + (x2 − a2)2 = r2, x1 ≤ a1}.

Notice that
L0 ⊂ [−12, 12]× [6, 6].

Construction of concentric stadia Lk`,0. Given k ∈ N∗, we construct a family of concentric
stadia which are deduce from the reference stadium by homothety as

Lk`,0 =

(
1 +

h(k − `)
6

)
L0, for ` = 0, . . . , k,where h = k−1.

It follows from this definition that Lkk,0 = L0 and that the domains of R2 bounded by the

curves Lk`,0 are decreasing as ` increases. Moreover one may verify that

dist
(
Lk`,0,Lk`+1,0

)
= h for ` = 0, . . . , k − 1.
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We set

Lk =
k
∪
`=1

Lk`,0.

Notice that the straight segments in Lk`,0 are all parallel to ~e1, of lengths varying between 12
and 14, that(

k
∪
`=1

Lk`,0
)
∩ ([−6, 6]× R) = [−6, 6]× [{−7 + h`, ` = 1, . . . , k} ∪ {7− h`, ` = 1, . . . , k}] (3.1)

and that, for any ` = 0, . . . , k Lk`,0 ⊂ [−14, 14]× [7, 7].

Figure 3: The 3 stadia L3
`,0, ` = 1, 2, 3 and the reference stadium L0

Construction of the stadia Lkj,q. For q = 1, . . . , k we consider the k parallel planes P1,2(hk) :

Identitying these planes with R2, we construct in each of them the lines Lkj,q corresponding

to the stadia Lkj,0 setting for j = 0, . . . , k

Lkj,q = Lkj,0 + qh~e3 for q = 1, . . . , k.

Notice that curves which distinct set of indices do not intersect. We finally consider the union
of the k2 curves Lkj,q obtained before, each contained in planes orthogonal to ~e3 = (0, 0, 1),
yielding the sheave

Lk =
k
∪

j,q=1
Lkj,q ⊂ [−14, 14]× [−7, 7]× [0, 1]

Construction of the curves Lkj,q and of Lk. They are deduced from Lkj,q and Lk by a simple
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Figure 4: The set L3 and the three planes P1,2(h), P1,2(2h) and P1,2(3h) = P1,2(1) containing
each three connected curves of the sheave L3.

translation in the direction of ~e2. We set, for j = 1, . . . , k and q = 1, . . . , k

Lkj,q = Lkj,q + 7~e2 and Lk = Lk + 7~e2

so that

Lk =
k
∪
j,q
Lkj,q ⊂ [−14, 14]× [h, 14]× [0, 1]

Property (42) presented in the introduction then follows from (3.1) and the above construc-
tions (see in particular figure 6).

The mutual distant between the individual spaghetti is bounded below by

dist(Lkj,q,L
k
j′,q′) ≥ h =

1

k
for (j, q) 6= (j′, q′). (3.2)

Moreover, going back to (33) we may observe also that, at least for large k we have

%0(Lk) ≥ 1

3k
. (3.3)

At this stage, the total linking number of Lk is still equal to zero. In order to produce
topology, we need to to define a second sheaf.

3.2 The sheaf Lk,⊥

We first construct as above a sheave Lk,⊥ deduced from the sheave Lk as

Lk,⊥ =
{

(x1, x2, x3) ∈ R3 s.t. (x2, x3, x1) ∈ Lk
}
.
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Figure 5: The set L3,⊥, k = 3 and the three hyperplanes P2,3(h), P2,3(2h) and P2,3(3h) with
h = 1/3.

Alternatively, we may define Lk,⊥ as the image of Lk by the rotations R0 of R3 which sends
~e1 onto ~e2, ~e2 onto ~e3 and ~e3 onto ~e1. We have

Lk,⊥ =
k
∪

i,q=1
Lk,⊥i,q where

Lk,⊥i,q = R0(Lkk−q+1,i) =
{

(x1, x2, x3) ∈ R3s.t. (x2, x3, x1) ∈ Lkq−k+1,i

}
,

(3.4)

so that, for q = 1, . . . , k, the connected curves Lk,⊥i,q are included in the plane P2,3(ih). Notice

an important difference in the way we label the curves Lk,⊥i,q with the way we label the curves

Lj,⊥i,q : The domain included in the plane P2,3(ih) bounded by the curves Lk,⊥i,q are increasing
with q, for fixed i. As a matter of fact, we may also write

Lk,⊥i,q =

(
1 +

h`

6

) (
L⊥0 + ih~e1

)
, for ` = 0, . . . , k,where L⊥0 = R0(L0). (3.5)

We notice
Lk,⊥ ⊂ ([0, 1]× [−14, 14]× [−7, 7]) (3.6)

And that Lk,⊥ is composed of segments in the direction ~e2 in its central part, of lengths
between 12 and 14. More precisely, we have

Lk,⊥ ∩ (R× [−6, 6]× R) = hIk × [−6, 6]× [(hIk − {7}) ∪ (hIk + {6− h})] ,

where we have set Ik = {1, . . . , k}.
The set Lk,⊥ is deduced from the set Lk,⊥ by a translation in the direction of ~e2. We set

Lk,⊥ = Lk,⊥ − 3~e2 and Lk,⊥i,q = Lk,⊥i,q − 3~e2 for i, q = 1, . . . , k.
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Inclusion (3.6) then yields{
Lk,⊥ ⊂ [0, 1]× [−17, 11]× [−7, 7]

Lk,⊥ ∩ (R× [−2, 2]× R) = hIk × [−2, 2]× [(hIk − {7} ∪ hIk + {6− h})] .
(3.7)

Remark 3.1. The labeling (3.4) and (3.5) of the curves Lk,⊥i,q which is different from the

labeling of the curves Lkj,q is motivated by the fact that

Lk,⊥i,q ∩ R× [−2, 2]× R+ = {ih} × [−2, 2]× {6 + qh} (3.8)

so that that the q index labels the upper straight part of the fibers with increasing height x3.

3.3 First properties of the sheaves Lk and Lk,⊥

Figure 6: The set S3 seen from above. The intersection of the orthogonal projection onto P1,2

of L3,⊥ with L3 is the grid �2
3(

1

3
).

Notice first (see figure 6 and 7) that the intersection of two sheaves Lk and Lk,⊥ is empty
and that moreover

dist(Lk,Lk,⊥) = 2. (3.9)

Since each of the curves Lkj,q and Lk,⊥i,q are planar curves which are either included in affine

planes parallel to P1,2 or to P2,3 we may frame them with the reference frames e⊥ref which have
been defined in Subsection 2.3. This yields, as we have already seen, a natural orientation
of the curves. For instance, the curves Lki,j are oriented counter-clokwise with respect to the

frame (~e1,~e2) and similarily the curves Lk,⊥i,q are oriented counter-clokwise with respect to
the frame (~e2,~e3).
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X3 axis

x2 axis (0,0)

L 3,

L3

e3

e2

the	vector-field X0

5+h
6+h

6+h

h

h

(0,	17,	0)

(0,	11,	0)

(0,	14,	0)

Figure 7: The set S3 seen from the ~e1 direction. The intersection of the orthogonal projection

onto P1,2 of L3,⊥ with L3 is the grid �2
3(

1

3
). The vector filed ~X0 pushes L3,⊥ onto L3 until

they meet.

Concerning topology, each curve Lki0,j0 is linked to the k2 curves Lk,⊥i,q with linking number

1 and each curve Lk,⊥i0q0 is linked with the k2 curves Lki,j with linking number 1. Hence, we
obtain for the total linking number:

Lemma 3.1. We have m(Lk,Lk,⊥) = k4 for any k ∈ N.

Proof. We have

m(Lk,Lk,⊥) = m

(
∪
j,q
Lkj,q, ∪

i,q′
Lk,⊥i,q′

)
=
∑
j,q

∑
j,q′

m
(
Lkj,q,L

k,⊥
i,q′

)
= k4m

(
L0,L

⊥
0

)
,

and the conclusion follows from the identities (2.16) and (2.17).

Finally, as mentioned in the introduction, we consider the one-dimensional set

Sk = Lk ∪ Lk,⊥. (3.10)

It follows from (3.3) and (3.9) that

%0(Sk) ≥ 1

3k
and Sk ⊂ B(17). (3.11)
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e3

e1

e2

L3

L3,

Figure 8: The sets Lk and Lk,⊥ are linked

3.4 The k-spaghetton map Skpag and its properties

Choosing %k = 10−3%0(Sk) we define the k-spaghetton map Sk as

Skpag = Pontya
%k

[Sk, e⊥ref ]. (3.12)

Some of its most relevant properties have been summarized in Proposition 3 in the introduc-
tion, which we prove next.

Proof of Proposition 3. The first assertion concerning the support of Skpag follows from the
inclusion given in (3.11), whereas the second, the bound on the gradient, is an immediate
consequence of (32). Since all fibers have the same shape, which does not depend on k, the
constant Cspg involved in the gradient estimate does not depend on k either. Turning to the
third assertion, the computation of H(Skpag) follows the same lines as the proof of Lemma
2.2, considering the pre-images

LPnorth
= Sk = Lk ∪ Lk,⊥ and LM = (Lk + g−1(0)%k~e3) ∪ (Lk,⊥ + g−1(0)%k~e1)

of the North pole Pnorth and the point M = (1, 0, 0) of the equator respectively. Arguing as
in (2.20), we obtain

m(LPnorth
, LM ) = m(Lk ∪ Lk,⊥,Lk + g−1(0)%~e3) ∪ (Lk,⊥ + g−1(0)%~e1)

= 2m(Lk,Lk,⊥) = 2k4,

where the last identity follows from Lemma 3.1. For the estimate on the energy in the
statement of Proposition 3, we observe that, since the support of |∇Skpag| is included in the
ball B(17) independently of k, it suffices to integrate the uniform bound of the gradient,
which is of order k to obtain the result for the 3-energy. In particulat, we may choose the
constant as Kspg = 173C3

spg.
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4 Untying the spaghetton map Skpag: the gordian cut Gk
ord

The proof of Proposition 4 is somewhat technical, its completion will be given at the end of
this Section. The heuristic idea is however rather simple: we push down along the x3-axis the
sheaf Lk,⊥, keeping however its shape essentially unchanged, whereas the sheaf Lk does not
move. This presents no major difficulty, pushing along a constant vector-field as long as the
sheaf Lk,⊥ does not encounter the sheaf Lk. When the two sheafs touch, we take advantage
of the fact that we are working in a Sobolev class were singularities are allowed: Using such
singularities, the sheaf Lk,⊥ is enabled to follow his way down and to pass through the fibers
of Lk, creating on the way point singularities. These singularities form a cloud of uniformly
distributed points, at least in the center of the cloud.

In order to provide a sound mathematical meaning to the previous construction, in partic-
ular the crossing of fibers, we single out a a few elementary tools which are used extensively
in the proof of Proposition 4 and gather them in a Sobolev deformation toolbox.

4.1 Sobolev deformation and surgery toolbox

4.1.1 Gluing maps

This is the most elementary operation. Assume first that we are given two subdomains Ω1

and Ω2 of a domain Ω0 of R3 such that Ω̄1 ∩ Ω̄2 = ∅ and let v1 and v2 be two functions with
values into S2 such that v1(x) = Psouth for x ∈ Ω0 \ Ω1 and v2(x) = Psouth for x ∈ Ω0 \ Ω2.
Then we define the function v1 ∨3 v2 on Ω0 by{

v1 ∨3 v2(x) = v1(x) for x ∈ Ω1, v1 ∨3 v2(x) = v2(x) for x ∈ Ω2

v1 ∨3 v2(x) = Psouth for x ∈ Ω0 \ (Ω1 ∪ Ω2),
(4.1)

an alternative and even simpler definition being

v1 ∨3 v2(x) = v1(x) + v2(x)− Psouth for any x ∈ R3.

In the case both v1 and v2 have bounded E3 energy, then the same holds for v1 ∨3 v2 with

E3(v1 ∨3 v2) = E3(v1) + E3(v2). (4.2)

A related situation is encountered in the case Ω2 = Ω0 \ Ω1, when both v1 and v2 have
bounded E3 energy. If the domains are sufficiently smooth, then one may define thanks to
the trace Theorem the restrictions vi|∂Ωi

for i = 1, 2 and if

v1(x) = v2(x) for x ∈ ∂Ω1 ⊂ ∂Ω2 = ∂Ω1 ∪ ∂Ω0

then we may define again v1 ∨3 v2 according to (4.1) and relation (4.2) still holds. Given two
disjoint oriented compact framed curves in R3, we have, provided % > 0 is sufficiently small

Pontya
% [(C1, e

⊥) ∪ (C2, e
⊥)] = Pontya

% [C1, e
⊥] ∨3 Pontya

% [C2, e
⊥].

so that in particular

Skpag =

(
k
∨3
j,q=1

Pontya
%k

[Lkj,q, e⊥ref ]

)
∨3

(
k
∨3
i,q=1

Pontya
%k

[Lk,⊥i,q , e
⊥
ref ]

)
Finally, we refer to similar gluing in R4, replacing the symbol ∨3 by the symbol ∨4 .
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4.1.2 Deformations of the domain

Definitions. We consider deformations of maps generated by deformations of the domain
R3 induced by the integration of a vector field. Given a smooth vector field ~X on R3, we
consider the flow Φ generated by the vector field ~X defined by

d

dt
Φ(·, t) = ~X[Φ(·, t)] with Φ(·, 0) = IdR3 , (4.3)

so that, for each fixed time t ≥ 0 the map Φ(·, t) : R3 → R3 is a diffeomorphism of R3. We
denote by Φ−1(·, t) its inverse at time t, so that Φ−1(·, t) = Φ(·,−t). The deformation of the
domain gives rise also to corresponding deformations of general functions: To each function
v defined on R3 and given t ≥ 0, we may relate a function vt(·) defined by

vt(x) = v
(
Φ−1 (x, t)

)
for x ∈ R3.

The curve t 7→ vt is now a continuous deformation of the initial function v, since v0 = v. We
will also consider the transportation of subsets of R3 by the flow Φ. We set accordingly for
a subset A ⊂ R3 and t ≥ 0

Φ(A, t) = {x ∈ R3,Φ−1(x, t) ∈ A}. (4.4)

Notice that, if C is a framed closed curve of R3, then in general(
Pontya
%

[
C, e⊥ref

])
t
(x) 6= Pontya

%

[
Φ(C, t), e⊥ref

]
(x) for x ∈ R3 and t ≥ 0, (4.5)

where the frame has been transported accordingly. However equality holds in case ~X is a
constant function, since in that case Φ(C, t) is a translate of C. This observation leads us to
introduce a variant of the Pontryagin construction for non-constant vector fields.

Vertical vector fields. We implement the previous construction with a very specific choice
of vector fields ~X. Since our aim is to push the sheave Lk,⊥ down according to x3-direction
we restrict ourselves to vector fields ~X of the form

~X(x1, x2, x3) = −ζ(x1, x2, x3)~e3, (4.6)

where ζ : R3 → R is a given non-negative function on R3. The related flow Φ can then be
integrated asΦ(x1, x2, x3, t) = (x1, x2,Ψ(x1, x2, x3, t)) where Ψ solves the ODE with respect t

d

dt
Ψ(x1, x2, x3, t) = −ζ(x1, x2,Ψ(x1, x2, x3, t), t).

(4.7)

It follows directly from (4.3) that

|∂Φ

∂t
| ≤ ‖ ~X‖L∞(R3) = ‖ζ‖L∞(R3). (4.8)

Differentating (4.3) with respect to the variable xi, we are led to a relation of the form

| ∂
∂t

[|∇3Φ|2]| ≤ C‖∇3ζ3‖L∞(R3)|∇Φ|2, (4.9)
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where C > 0 is some universal constant. Integrating (4.9), we obtain the exponential bound

|∇3Φ|2(·, t) ≤ C exp
(
C‖∇3ζ‖L∞(R3)t

)
for t ≥ 0. (4.10)

In the case ζ does not depend on x3, the integration of the vector field ~X given by (4.6) is
straightforward and yields Φ(x1, x2, x3, t) = (x1, x2, x3 − ζ(x1, x2)t).

We introduce a deformation operator Pζ which relates to an arbitrary map v : R3 → R`
and t ≥ 0 the map Pζ(v)(t) defined on R3 by the formula, for (x1, x2, x3) ∈ R3 and t ∈ R

Pζ(v)(t)(x1, x2, x3) = v(Φ−1(x1, x2, x3, t)) = v(Φ(x1, x2, x3,−t)). (4.11)

In some places, we will use the simpler notation vt(·) = Pζ(v)(t)(·), when this is not ambigu-
ous. In the special case the function ζ does not depend on x3, we have vt = v(x+ζ(x1, x2)t~e3).
As a direct consequence of the chain rule and estimates (4.8) and (4.10), we obtain:

Lemma 4.1. Assume that v and ζ are differentiable. Then we have for x ∈ R3 and t ≥ 0 |
∂

∂t
Pζ(v)(t)(x)| ≤ C‖∇3v‖L∞(R3)‖ζ‖L∞(R3)

|∇3Pζ(v)(t)(x)| ≤ C‖∇3v‖L∞(R3) exp
(
C‖∇3ζ‖L∞(R3)t

)
,

where C > 0 is some universal constant.

Two kinds of vertical fields. We will be even more specific and describe next the two
different kinds of vertical vector fields which are used in the construction of the Gordian cut.

Constant vertical fields. We consider here the vector field ~X0 related by (4.6) to the constant
function ζ0 = 1

ζ0(x1, x2, x3) = 1, ∀(x1, x2, x3) ∈ R3. (4.12)

Since |∇ζ0 | = 0, we obtain, if Φ0 is the flow related to ~X0, Φ0(x1, x2, x3, t) = (x1, x2, x3 − t)
so that

|∂tΦ0| ≤ 1 and |∇3Φ0(·, t)| ≤ C0,

where C0 is some constant. In this case, the map Pζ0(v)(t) has a simple form, since

Pζ0(v)(t)(x) = v(x1, x2, x3 + t), ∀x = (x1, x2, x3) ∈ R3.

It follows from Lemma 4.1 or computing directly using the chain rule that, for any t ≥ 0

‖ ∂
∂t
Pζ0(v)(t)‖L∞(R3) + ‖∇3Pζ0(v)(t)‖L∞(R3) ≤ K0‖∇3v‖L∞(R3). (4.13)

where K0 is some absolute constant.

Remark 4.1. In the course of the proof of Proposition 4, we will be led to transport the
Pontryagin maps of the fibers Lk,⊥i,q . We have, for t ≥ 0 and x ∈ R3

Pζ0(Pontya
% [Lk,⊥i,q ], e⊥ref)(t)(x) = Pontya

% [Lk,⊥i,q − t~e3, e
⊥
ref ](x) and hence

‖ ∂
∂t

Pontya
% [Lk,⊥i,q − t~e3, e

⊥
ref‖L∞(R3) + ‖∇3P

ontya
% [Lk,⊥i,q − t~e3, e

⊥
ref‖L∞(R3) ≤ C0

flowk.

where C0
flow is some universal constant
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The vector field ~Xk
1 . Let k ∈ N∗ and set h = k−1. We consider the numbers x`2 defined by

x`2 = `h for ` = 1, . . . , k, so that 0 < x1
2 = h < . . . < xk2 = 1.

The definition of these numbers is motivated by the fact that the collection of segments
[−6, 6]× {x`2}, ` = 1, . . . , k correspond to the straight segments, in the spaghetton construc-
tion, of the sheave Lk which lie below Lk,⊥ (see figure 6). We construct a vector field ~Xk

1

related by (4.6) to a push function ζk1 depending only on the last two variables, that is

ζk1 (x1, x2, x3) = ζk1 (x2, x3), ∀(x1, x2, x3) ∈ R3, (4.14)

so that we might possibly restrict ourselves to the plane P2,3, which actually depends only
on the second variable x2 in the region x3 ≥ 0, and such that

ζk1 (x2, x3) =
1

4
for x2 ∈

k
∪
`=1

[x`2 −
h

8
, x`2 +

h

8
] and for x3 ≥ 0,

ζk1 (x2, x3) = 1 for x2 6∈
k
∪
`=1

[x`2 −
h

4
, x`2 +

h

4
] and x3 ≥ 0,

ζk1 (x2, x3) = 1 for x3 ≤ −
h

2
1

4
≤ ζk1 (x2, x3) ≤ 1 for x3 ≥ 0.

(4.15)

It follows from the above conditions that

ζk1 (x) = 1 except possibly if x ∈ Oh ≡ R× [0, 1 +
h

4
]× [−h

2
,+∞). (4.16)

To construct the function ζk1 , we proceed as follows: We choose ζk1 of the form

ζk1 (x2, x3) = 1− fk(x2)g3(x3) with fk(x2) ≡
k∑
`=1

g2

(
k
(
x2 − x`2

))
, (4.17)

where g2 : R→ R denotes a given smooth non-negative function on R such that

g2(s) = 0 for s ∈ R \ [−1

4
,
1

4
], g2(s) =

3

4
for s ∈ [−1

8
,
1

8
], 0 ≤ g2(s) ≤ 3

4
otherwise, (4.18)

and where the function g3 : R → R denotes a smooth non-negative function such that
0 ≤ g3 ≤ 1 and

g3(s) = 1 for s ≥ 0 and g3(s) = 0 for s ≤ −1

2
. (4.19)

Notice that, in view of (4.18), we have

fk(s) =
k∑
`=1

g2

(
k
(
s− x`2

))
= 0 for s ∈ R \

k
∪
`=1

[x`2 −
h

4
, x`2 +

h

4
],

So that the conclusion (4.15) follows. The definition (4.17) yields the estimate

‖ζ1‖∞ ≤ C and ‖∇ζ1‖∞ ≤ Ck.
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for some universal constant C > 0 and we have therefore

exp
(
s ‖∇ζk1 ‖L∞(R3)

)
≤ K, for s ∈ [0, h],

where K > 0 is some universal constant. Hence, it follows from Lemma 4.1 that for any
x ∈ R3 and any s ∈ [0, h], we have

| ∂
∂t
Pζk1 (v)(s)(x)|+ |∇3Pζk1 (v)(s)(x)| ≤ K1‖∇v‖L∞(R3), (4.20)

where K1 ≥ K0 > 0 is some universal constant. In view of the simple form (4.6)-(4.17) of the
vector field ~Xk

1 , its integration reduced to the integration of the scalar differential equation
in (4.7) which can be solved by separation of variables. Going back to (4.7) and writing
Ψ(x1, x2, x3, s) = Ψk

1(x2, x3, s) for our specific choice (4.15) of vector-field we verify that the
function Ψk

1 is given as the solution of the integral equation∫ x3

Ψk1(x2,x3,s)

du

1− fk1(x2)g3(u)
= s.

It follows from this formula that Ψk(x2, x3) ≤ x3, and that

Ψk
1(x2, x3, s) = x3 −

[
s− s fk1(x2)

]
provided 0 ≤ s ≤ x3. (4.21)

Transportation of curves by the flow of ~Xk
1 . We next take a look at the fate of a curve when

transported by the flow Φk
1 of the vector field ~Xk

1 . Of special interest is the fate of the fibers
of the sheave Lk,⊥. In view of statement (4.16), all part of the fibers which are not in Oh are
transported downwards along the direction ~e3 with constant speed 1. Since the restrictions of
the fibers of Lk,⊥ to Oh are segments parallel to ~e2, let us first consider the line D = M+R~e2,
where M = (m1, 0,m3) is given, with m3 ≥ 0. Thanks to (4.7) and (4.21), we obtain, for
0 ≤ s ≤ m3

Φk
1(D, s) = {(m1, x2,m3 −

[
s− s fk1(x2)

]
)) for x2 ∈ R}. (4.22)

Hence, if m1 = 0 and restricting ourselves to the plane P2,3, the curve Φk
1(D, s) corresponds

to the graph of the function x2 7→ m3 −
[
s− s fk1(x2)

]
(see figure 9). In the course of the

proof of Proposition 4 we will use formula (4.22) for the special choice m3 ≥ s = h, so that

Φk
1(D,h) = {(m1, x2,m3 −

[
h− h fk1(x2)

]
)) for x2 ∈ R}.

and hence
Φk

1(m1, x2,m3, h) = (m1, x2,m3 −
h

4
) for x2 ∈

k
∪
`=1

[x`2 −
h

8
, x2`+

h

8
)]

Φk
1(m1, x2,m3, h) = (m1, x2,m3 − h) for x2 ∈ R \

k
∪
`=1

[x`2 −
h

8
, x2`+

h

8
)].

(4.23)

Transportation of translates of stadia Lk,⊥i,q by the flow of ~Xk
1 . As mentioned, the vector field

~Xk
1 will be used to transport verticale translates of the stadia Lk,⊥i,q , so that, for arbitrary
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Figure 9: The deformation of a line parallel to the x2 axis by the flow generated by Xk
1 , k = 4

at time h.

i, q = 1, . . . , k, and c > 0, we consider the curve Lk,⊥i,q − c~e3 and its deformation DefL
k,⊥
i,q (c, s)

by the flow Φk
1, given by, for s ∈ [0, h]

DefL
k,⊥
i,q (c, s) ≡ Φk

1(Lk,⊥i,q − c~e3, s) (4.24)

We will only be interested in the case 0 ≤ c ≤ 6+qh. The shape of these curves is represented
in figure 10. An analytical description is provided by the decomposition in the plane P2,3(ih)

DefL
k,⊥
i,q (c, s) = S1,−

6+qh (A−i,q(c, s)) ∪ S1,+
6+qh(A+

i,q(c, s)) ∪Gtop
i,q (c, s) ∪Dbot

i,q (c, s), (4.25)

where A−i,q(c, s) = (ih,−3+qh,−c−sh), A−i,q(c, s) = (ih, 9+qh,−c−sh), where Dbot
i,q denotes

the segment at the bottom of DefL
k,⊥
i,q (c, s) parallel to ~e2, that is{

Dbot
i,q (c, s) = [B−i,q(c, s), B

+
i,q(c, s)] where

B−i,q(c, s) = (ih,−3 + qh,−6− qh− c− s)) and B+
i,q(c, s) = (ih, 9 + qh,−6− qh− c− s)),

and where the set Gtop
i,q (c, s) has the form of a graph in the plane P2,3(h), namely

Gtop
i,q (c, s) =

{(
ih, x2, 6 + qh− c−

[
s− s fk1(x2)

])
, x2 ∈ [−3 + qh, 9 + qh]

}
. (4.26)

Remark 4.2. The set DefL
k,⊥
i,q (c, s) may be considered as a perturbation of the set Lk,⊥i,q −

(c+ s)~e3 in view of the relation

DefL
k,⊥
i,q (c, s) + (c+ s)~e3 \ Lk,⊥i,q ⊂ {

(
ih, x2, 6 + qh+ s fk1(x2)

)
, x2 ∈ [0, 1 +

h

4
]}.

We have hence
DefL

k,⊥
i,q (c, s) ⊂

[
Lk,⊥i,q − (c+ s)~e3

]
∪ V (c, s), (4.27)

where V (c, s) denotes the parallelipedic region

V (c, s) = −(c+ s)~e3 + [
h

2
, 1 +

h

2
]2× [0,

3h

4
]
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X1

P2,3 (ih)

Li,q
k,	

Def Li,q
k,	

(O,	h)

0,

0
0
0

0

Figure 10: The deformation of the curve Lk,⊥i,q by the flow Φk
1, k = 4 at time h.

4.1.3 A variant of the Pontryagin construction

Whereas deformations of the domain act both on curves and functions, we have seen in
(4.5) that it does not ”commute” in general with the Pontryagin construction, that is the
Pontryagin map of a deformed curve is not in general the deformation of the initial Pontryagin
map. Concerning the curves which are of interest for us, namely the curves DefL

k,⊥
i,q (c, s),

we taylor a specific variant of the Pontryagin construction for our later use. Given % > 0,
i, q = 1, . . . , k, 0 ≤ c ≤ 6 + qh and s > 0, our variant P̃ontya

% [DefL
k,⊥
i,q (c, s)] : R3 → S2 will

by different from the Pontryagin map only in a neighborhood of the top part Gtop
i,q (c, s). We

introduce therefore the set

Utop
i,q (c, s, %) = ∪

a∈Gtop
i,q (c,s)

D2
1,3(%, a)

where, for a = (a1, a2, a3) ∈ R3, D2
1,3(%, a) denotes the disk in the plane P1,3(a2) of radius %

centered at a, namely

D2
1,3(%, a) = {(x1, a2, x3) ∈ R3, (x1 − a1)2 + (x2 − a2)2 ≤ %2} ⊂ P1,3(a2).

We then define the variant P̃ontya
% [DefL

k,⊥
i,q (c, s), e⊥ref ] of the Pontryagin map in the following

way: We set

P̃ontya
% [DefL

k,⊥
i,q (c, s)](x) = Pontya

% [DefL
k,⊥
i,q (c, s)](x) for x 6∈ Utop

i,q (c, s, %) (4.28)

Otherwise, if x ∈ D2
1,3(%, a) for some a = (a1, a2, a3) ∈ Gtop

i,q (c, s), we set

P̃ontya
% [DefL

k,⊥
i,q (c, s)](x1, a2, x3) = χ% (x1 − a1, x3 − a3) . (4.29)
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where χ% is defined in (31) and (32). In other words, in the construction of P̃ontya
% [DefL

k,⊥
i,q (c, s)],

we replace the plane orthogonal to the curve by the plane parallel to P1,3
7 on the part

Gtop
i,q (c, s). We are going to rely on the following

Lemma 4.2. We have, provided DefL
k,⊥
i,q (c, s) ⊂ R2 × R+

P̃ontya
% [DefL

k,⊥
i,q (c, s)] = Pζk1

(Pontya
% [Lk,⊥i,q − c~e3, e

⊥
ref ]).

Sketch of the proof The proof follows from the observation that

Φk
1(D2

1,3(%, a), s) = D2
1,3(%,Φk

1(a, s))

a consequence of the fact that ζk1 depens only on the variable x2 in the region considered and
the fact that we consider only disks in planes orthogonal to ~e2.

Concerning gradient estimates, we have:

Lemma 4.3. We have, for some constant Cdef > 0 and for any c ∈ R+ and s ∈ [0, h]

|∇3DefL
k,⊥
i,q (c, s)|+ | ∂

∂s
DefL

k,⊥
i,q (c, s)| ≤ Cdefk,

One may deduce these estimates from (4.20) or might be proven directly.

4.1.4 Cubic extensions

Whereas the previous construction works for quite general classes of maps and are hence not
specific to the Sobolev framework, the extension method presented here induces singularities
and hence is specially appropriate in the Sobolev setting.

The cube Q4
r(a) and its boundary. We consider the ∞-norm on R4 given by

|x|∞ = sup
i=1,...,4

|x1| for x = (x1, x2, x3, x4) ∈ R4

and the corresponding ∞-sphere Q4
r of radius r > 0 defined by

Q4
r = Q4

r(0) where more generally Q4
r(a) ≡ {x ∈ R4, |x− a|∞ < r} for a ∈ R4,

so that actually Q4
r corresponds the hypercube Q4

r = [−r, r]4. Given a 4-dimensional hyper-
cube Q4

r(a), its boundary ∂Q4
r(a) is the union of 8 distinct three-dimensional cubes Q3,±

p (r,a)
of size r defined, for a = (a1, a2, a3, a4) and p = 1, . . . , 4 by

Q3,±
p (r,a) = {x = (x1, x2, x3, x4) ∈ R4, xp = ap ± r, sup

i 6=p
|xi − ai| < r}. (4.30)

The sets Q3,±
p (r,a) are therefore included in a 3-dimensional hyperplane of R4 orthogonal to

the vecteur ~ep. We have

∂Q4
r(a) =

4
∪
p=1

(
Q3,+
p (r,a) ∪Q3,−

p (r,a)
)
.

7these two planes coincide if g′(x2) = 0.
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Construction of the extension operator. Given a map v : ∂Q4
r(a) → R` defined on the

boundary ∂Q4
r(a) of a cube Q4

r(a) we consider its cubic-radial extension Extr,a(v) defined on
the full cube Q4

r(a) for v : ∂Q4
r(a)→ R` by

Extr,a(v)(x) = v

(
a + r

x− a

|x− a|∞

)
for x ∈ Q4

r(a), (4.31)

so that Extr,a(v) = v on the boundary ∂Q4
r(a). If v is Lipschitz, so is Extr,a(v), except near

a, where a singularity is created. However, if the map v has finite energy E3 on the three-
dimensional set ∂Q4

r(a), then the same assertion holds for its extension Extr,a(v) on the cube
Q4
r(a) with the estimate

E3

(
Extr,a(v), Q4

r(a)
)
≤ Kext rE3(v, ∂Q4

r(a)), (4.32)

where Kext denotes some universal constant.

4.1.5 Creating Hopf singularities through the crossing of lines

We analyze next a situation which accounts for the creation of singularities in the construction
of the Gordian cut Gk

ord. We restrict ourselves to cubes of radius r = h/2. The singularities
are created applying the extension operator to maps Υh

a defined on the boundary of cubes

Υh
a : ∂Q4

h/2(a)→ S2, where a = (a1, a2, a3, a4) ≡ (a, a4) ∈ R4, h ≥ 0. (4.33)

and which we are going to define next, using the Pontryagin construction or the variant that
we have seen before. These construction are build on relevant curves on each of the faces
Q3,±
p (h/2,a). We focus first on the top and bottom faces

Q3,±
4 (h/2,a) = Q3

h/2(a)× {a4 ±
h

2
}

and start the description working in the reference cube Q3
h/2(a) = {(x1, x2, x3) ∈ R3, |xi−ai| ≤

h/2, i = 1, 2, 3, where a = (a1, a2, a3) ∈ R3 is defined 8 in (4.33).

Some relevant curves in Q3
h/2(a), a = (a1, a2, a3). We consider the two segments of Q3

h/2(a)
given by {

D0,h(a) = {[a1 − h/2, a1 + h/2]× {(a2, a3)} and

D+
⊥,h(a) = {a1} × [a2 − h/2, a2 + h/2]× {a3 − 3h/8}

so that the two segments are parallel to ~e1 and ~e2 respectively, have hence orthogonal direc-
tions, each of them joining opposite faces of the cube: D0,h(a) ⊂ P1,3(a3) and D−⊥,h ⊂ P2,3(a1).

We consider also the smooth curve C−⊥,h(a) given as the following graph in the plane P2,3(a1)

C−⊥,h(a) =

{(
a1, x2, a3 +

[
h− hg2 (

x2 − a2

h
)

)]
, x2 ∈ [a2 − h/2, a2 + h/2]

}
, (4.34)

where the function g2 is defined in (4.18). This definition is consistent with (4.22) and (4.26):
Indeed D0,h(a) on one hand and C−⊥,h(a) and D+

⊥,h(a) on the other are aimed to model suitable

8As a general rule roman bold characters as a correspond to points in R4 whereas symbols as a refer to
points in R3
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subsets of fibers Lki,j and DefL
k,⊥
i,q respectively, as we will discuss later in Remark 4.3 below.

Notice that D+
⊥,h(a) and C−⊥,h(a) both belong to the plane P2,3(a1) and intersect along two

segments parallel to ~e2, namely we have

D+
⊥,h(a)∩C−⊥,h(a) = {a1}×([a2 − h/2, a2 + h/4] ∪ [a2 + h/4, a2 + h/2])×{a3−3h/8} (4.35)

In particular, their respective intersection with a suitably small neighborhood of the boundary
coincide, see Figure 12.

Remark 4.3. Relating C−⊥,h(a), D+
⊥,h(a) and D0,h(a) to Lk and DefL

k,⊥
i,q . As mentioned, the

sets D+
⊥,h(a), C−⊥,h(a) and D0,h(a) are designed to represent suitable subsets of fibers Lki,j and

DefL
k,⊥
i,q . In the proof of Proposition 4, we will be led to consider points of the form

a = ai,j,q ≡ h(i, j, q), for some integers i, j, q = 1, . . . , k, (4.36)

which belong to the cube [0, 1]3. We verify that

Q3
h/2(ai,j,q) ∩ Lk = Q3

h/2(ai,j,q) ∩ Lkj,q = D0,h(ai,j,q) (4.37)

and that  DefL
k,⊥
i,p (c, h) ∩Q3

h/2(ai,j,q) = C−⊥,h(ai,j,q)(
Lk,⊥i,p − (c+ h)~e3

)
∩Q3

h/2(ai,j,q) = D⊥,h(a),
(4.38)

provided we have the condition involving only the numbers c, p and q but not on the numbers
i and j

c = 5 +
3h

8
+ (p+ k − q − 1)h. (4.39)

S2-valued maps on Q3
h/2(a). Let % = 10−3h be given. We relate to the previously constructed

curves S2-valued maps through the Pontryagin construction or its variant. In order to have
orientations consistent with the constructions in subsection 4.2 in particular the framings
on the sheaves, we choose on D0,h the framing e⊥0 = (~e3,−~e2), whereas on D+

⊥,h(a) we set

e⊥0 = (~e1,−~e3). We first consider the map γ−%,h defined on Q3
r(a) by

γh,−a = Pontya
% [(D0,h(a), e⊥0 )] ∨3 P̃ontya

% [C−⊥,h(a)]. (4.40)

The notation P̃ontya
% [C+

⊥,h] which appears in (4.40) refers to the variant of the Pontragyin con-
struction defined in Paragraph 4.1.3, for which the plane orthogonal to the curve is replaced
by a plane parallel 9 to P1,3. More explicitely, it is defined on Q3

h/2(a) by

P̃ontya
% [C−⊥,h](x1, x2, x3) = χ%

(
x1,

[
x3 − [h− hg2(

x2 − a2

h
)

])
,

where χ% is defined in (31) and (32). We define on Q3
h/2(a) another map γ

h,+
a as

γh,+a = Pontya
% [(D0,h(a), e⊥0 )] ∨3 Pontya

% [D+
⊥,h(a), e⊥0 )], (4.41)

9the corresponding framing would correspond then to the framing on D−⊥,r that is (~e1,−~e3)
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Figure 11: The curve C−⊥,h(a) and the segment D0,h(a). These curves yield by Pontryagin’s

construction and its variant the map γha on Q3,−
4 (h/2,a).

An important consequence of the definitions (4.41) and (4.40) as well as of (4.35) is that

γh,−a (x) = γh,+a (x) for x ∈ ∂Q3
h/2(a), (4.42)

Setting in analogy with (4.30), for p = 1, 2, 3

Q2,±
p (r, a) = {x = (x1, x2, x3) ∈ R3, xp = ap ± r, sup

i 6=p
|xi − ai| < r},

so that ∂Q3
h/2(a) = ∪Q2,±

p (r, a), we notice that
γh,+a (x) = γh,−a (x) = Psouth for x ∈ Q2,+

3 (h/2, a)

γh,+a (x) = γh,−a (x) = χ%(x1,−x3 +
3h

8
) for x ∈ Q2,±

2 (h/2, a)

γh,+a (x) = γh,−a (x) = χ% ((x3 − a3),−(x2 − a2)) for x ∈ Q2,±
1 (h/2, a)

(4.43)

We notice also the symmetry properties on the boundary, for p = 1, 2, 3

γh,+a (x) = γh,−a (x) = γh,+a (x∓ h~ep) = γh,+a (x∓ h~ep) for x ∈ Q2,±
p (h/2, a). (4.44)

S2-valued maps on ∂Q4
h/2(a). Let a = (a, a4) = (a1, a2, a3, a4). We take advantage of (4.42)

and (4.43) to define on ∂Q4
h/2(a) an S2 valued map Υh

a whose restriction to the top face of

the boundary is γh,+a and whose restriction to the botton face is γh,−a . We define it as follows:
Υh

a(x, a4 +
h

2
) = γh,+a (x), for x ∈ Q3

h/2(a) i.e. x = (x, a4 +
h

2
) ∈ Q3,+

4 (h/2,a)

Υh
a(x, a4 −

h

2
) = γh,−a (x), x ∈ Q3

h/2(a) i.e. x = (x, a4 −
h

2
) ∈ Q3,−

4 (h/2,a) and

Υh
a(x, x4) = γh,+a (x) = γh,−a (x) for x ∈ ∂(Q3

h/2(a)) and x4 ∈ [a4 −
h

2
, a4 +

h

2
].

(4.45)
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Figure 12: The segment D+
⊥,h(a) and the segment D0,h(a). These curves yield by Pontryagin’s

construction and its variant the map γ
h,+
a on Q3,+

4 (h/2,a).

It follows from (4.42) that Υh
a is a Lipschitz S2-valued map on ∂Q4

h/2(a) which has the

topology of S3. As a matter of fact, the map Υh
a can be constructed through the Pontragyin

construction and its variant10 related to a curve Lha we describe next.

The map Υh
a and the Pontryagin construction. The map Υh

a can be defined usinf Pontryagin
constructions for a curve we define next. Consider the square

B(a) = a + [−h/2, h/2]× {(0, 0)} × [−h/2, h/2] ⊂ Q4
h/2(a) ⊂ R4.

It is included in the two-dimensional subspace P1,4(a2, a3) of R4 given by the equations
x2 = a2 and x3 = a3. Set L0(a) = ∂B(a), so that L0(a) is composed of four segments of
length h, two of then parallel to ~e1, the two others to ~e4. The vertices M±L (a),M±R (a) are
given by

M±L (a) = a + (−h
2
, 0, 0,±h

2
) and M±R (a) = a + (+

h

2
, 0, 0,±h

2
),

so that

L0(a) =
[
M+

L (a),M+
R (a)

]
∪
[
M−L (a),M−R (a)

]
∪
[
M−L (a),M+

L (a)
]
∪
[
M−R (a),M+

R (a)
]
.

Notice that
[
M±L (a),M±R (a)

]
= D0,h(a) × {a4 ± h

2} and that the two other segments are

10in the sense that Pontya is replaced by P̃ontya in some parts
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parallel to ~e4. Ones verifies that L0(a) ⊂ ∂(Q4
h/2(a)) since

F0,top ≡ D0,h(a)× {a4 + h/2} ⊂ Q3,+
4 (h/2,a),

F0,bot ≡ D0,h(a)× {a4 − h/2} ⊂ Q3,−
4 (h/2,a)

F0,L ≡
[
M−L (a),M+

L (a)
]
⊂ Q3,−

1 (h/2,a) and

F0,R ≡
[
M−R (a),M+

R (a)
]
⊂ Q3,+

1 (h/2,a).

(4.46)

We consider another curve, the curve L⊥(a), which is included in the hyperspace x1 = a1,
defined by

L⊥(a) = C−⊥,h(a)× {a4 −
h

2
} ∪D+

⊥,h(a)× {a4 +
h

2
} ∪ F⊥,1 ∪ F⊥,2,

where F⊥,1 and F⊥,2 denote the segments parallel to ~e4 given by

F⊥,1 ≡ {a1, a2−
h

2
, a3−

3h

8
}×[a4−

h

2
, a4+

h

2
] and F⊥,2 ≡ {a1, a2+

h

2
, a3−

3h

8
}×[a4−

h

2
, a4+

h

2
].

We verify that L⊥(a) is a connected closed curve in ∂(Q4
h/2(a)) since D+

⊥,h(a) × {a4 + h/

2} ⊂ Q3,+
4 (h/2,a), C−⊥,h(a) × {a4 − h/2} ⊂ Q3,−

4 (h/2,a) F⊥,1 ⊂ Q3,−
2 (h/2,a) and F⊥,2 ⊂

Q3,+
2 (h/2,a) and that it does not intersect L⊥(a). We set L(a) = L0(a) ∪ L⊥(a). One may

then verify that

Υh
a = P̃ontya

% [L(a), e⊥0 ]

where the frame e⊥0 corresponds to the frame defined in (4.40).

Remark 4.4. First Properties of the map Υh
a. In connection with Remark 4.3 we notice

that, for a point a of the form a = (ai,j,q, a4) where ai,j,q is of the form given by (4.36), we
have

Υh
a(x) = Pontya

[
Lk ∪ (Lk,⊥j,p − c~e3), e⊥ref

]
(x) for x ∈ ∂Q3(ai,j,q)× [a4 −

h

2
, a4 +

h

2
], (4.47)

provided the numbers c, p and q satisfy relation (4.39). Since

∂Q3(ai,j,q)× [a4 −
h

2
, a4 +

h

2
] = ∂Q4

h/2((ai,j,q), a4) \
(
Q3,+

4 (h/2,a) ∪Q3,−
4 (h/2,a)

)
It follows from (4.47) and (4.45) that

Υh
a(x) = Pontya

[
Lk ∪ (Lk,⊥ − c~e3), e⊥ref

]
(x) for x ∈ ∂Q4

h/2(a) \Q3,−
4 (h/2,a) (4.48)

provided there exists some number p ∈ {1, . . . , k} such that (4.39) holds, i.e. c = 5 + 3h/8 +
(p + k − q − 1)h. Notice that the r.h.s of (4.47) does no longer depend on i, j, q. As a
consequence we have the periodicity property

Υh
a(x, s) = Υh

a∓h~e`(x, s) if x ∈ Q2,±
` (h/2,a), ` = 1, 2 and s ∈ [a4 −

h

2
, a4 +

h

2
]. (4.49)

Topological Properties of the map Υh
a. We first have:
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Lemma 4.4. The two curves L0(a) and L⊥(a) are linked in ∂Q4
h/2(a) and

m (L0(a),L⊥(a)) = 1. (4.50)

Proof. To establish (4.50), we deform the two curves in a continuous way so to obtain a
simpler geometry. We may assume without loss of generally that a = 0 and that h = 1 and
set L0 = L0(0) and L⊥ = L⊥(0). We introduce the three-dimensional sphere for the∞-normS

3,cub
2,⊥ ≡

{
x = (x1, 0, x3, x4) s.t. |x|∞ =

1

2

}
= {x ∈ ∂Q4

1/2(0)x2 = 0} as well as

S
3,cub,+
2,⊥ ≡ S3,cub

2,⊥ ∩ {x3 ≥ 0} and S3,cub,−
2,⊥ ≡ S3,cub

2,⊥ ∩ {x3 < 0},

so that we have L0(0) ⊂ S3,cub,+
2,⊥ and

L⊥ ∩ S3,cub,+
2,⊥ = {(0, 0, 3

8
,−1

2
)} and L⊥ ∩ S3,cub,−

2,⊥ = {(0, 0,−1

8
,−1

2
), (0, 0,−1

8
,+

1

2
)}. (4.51)

We first deform the curve L0 staying inside S3,cub,+
2,⊥ ⊂ S3,cub

2,⊥ ⊂ ∂Q4
1/2(0) and in such a way

that, throughout the deformation, the deformed line has the shape of a rectangle, which, at
the end of the deformation, lies inside the face Q3,−

4 (1/2, 0) ⊂ R3 × {−1/2}. For 0 ≤ t ≤ 1,
denoting M±L (t) and M±R (t) the vertices of above mentioned the rectangle, we set

M−L (t) = M−L (0) = (−1

2
, 0, 0,−1

2
) and M−R (t) = M−R (0) = (

1

2
, 0, 0,−1

2
),

so that these vertices are not moved. For the two other vertices, we set, for 0 ≤ t ≤ 1/2

M+
L (t) = M+

L (0) + t~e3 = (−1

2
, 0, t,

1

2
) and M+

R (t) = M+
R (0) + t~e3 = (

1

2
, 0, t,

1

2
),

whereas for 1/2 ≤ t ≤ 1, we set
M+

L (t) = M+
L (0) +

1

2
~e3 − (2t− 1)~e4 = (−1

2
, 0,

1

2
,
3

2
− 2t) and

M+
R (t) = M+

L (0) +
1

2
~e3 − (2t− 1)~e4 = (

1

2
, 0,

1

2
,
3

2
− 2t).

The functions t 7→ M±L (t) and t 7→ M±L (t) are hence continuous on [0, 1], with values in
∂Q4

1/2(0). We define, for 0 ≤ t ≤ 1 the curve

L0(t) = F0,top(t) ∪ F0,bot(t) ∪ F0,L(t) ∪ F0,R(t),

where we set Fbot(t) ≡ [M−L (t),M−L (t)] = F0,bot(0) ∈ Q3,−
4 (1/2, 0), Ftop(t) = [M+

L (t),M+
L (t)],

FL(t) = [M−L (t),M+
L (t)] and FR(t) = [M−R (t),M+

R (t)]. We verify that Ftop(t) ⊂ Q3,+
4 (1/2, 0)

for t ∈ [0, 1/2], Ftop(t) ⊂ Q3,+
3 (1/2, 0), for t ∈ [1/2, 1], FL(t) ∈ Q1,−

4 (1/2, 0) and F0,R(t) ∈
Q1,+

4 (1/2, 0) for t ∈ [0, 1]. It follows that t 7→ L0(t) is a continuous deformation of L0 and
that for t ∈ [0, 1], we have

L0(t) ⊂ S3,cub,+
2,⊥ ⊂ ∂Q4

1/2(0) ∩ {x3 ≥ 0} and L0(t) ∩ L⊥ = ∅. (4.52)
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Hence, we have

m (L0(t),L⊥) = m (L0,L⊥) = m (L0(1),L⊥) ,∀t ∈ [0, 1]. (4.53)

At time t = 1, we observe that the points M+
L (1) = (−1

2 , 0,
1
2 ,−

1
2) and M+

R (1) = (1
2 , 0,

1
2 ,−

1
2)

belong to Q3,−
4 (1/2, 0)∩{x2 = 0}, so that all the points M±L (1) and M±R (1) belong to Q3,−

4 (1/
2, 0) ∩ {x2 = 0}. Hence the rectangle L0(1) satisfies

L0(1) ⊂ Q3,−
4 (

1

2
, 0) ∩ {x2 = 0} ⊂ R3 × {−1

2
} ∩ {x2 = 0} = P1,3(0)× {−1

2
}. (4.54)

Figure 13: The deformation of the curve L0 at times t = 0, 1/2 and t = 1.

We perform a similar deformation on the curve L⊥ in particular the three segments which
do not lie in Q3,−(1

2 , 0). We set

N−L (t) = N−L (0) = (0,−1

2
,−3

8
,−1

2
) and N−R (t) = N−R (0) = (0,

1

2
,−3

8
,−1

2
),

The two other points composing the segments are moved as follows: For 0 ≤ t ≤ 1/2, we set

N+
L (t) = (0,−1

2
,−3

8
− t

4
,
1

2
) and N+

R (t) = (0,
1

2
, 0, t,

1

2
),

so that N+
L (

1

2
) = (0,−1

2
,−1

2
,
1

2
) and N+

R (
1

2
) = (0,

1

2
,−1

2
,
1

2
). For 1/2 ≤ t ≤ 1, we set

N+
L (t) = N+

L (
1

2
)− (2t− 1)~e4 = (−1

2
, 0,

1

2
,
3

2
− 2t) and

N+
R (t) = N+

R (
1

2
)− (2t− 1)~e4 = ((

1

2
, 0,

1

2
,
3

2
− 2t),

so that

N+
L (1) = (0,−1

2
,−1

2
,−1

2
) and N+

R (1) = (0,
1

2
,−1

2
,−1

2
). (4.55)
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All the points N±L (1), N±R (1) hence belong the face Q3,−
4 (1/2, 0) ⊂ R3 × {−1/2}. We finally

consider the curve L⊥(t) defined, for 0 ≤ t ≤ 1 by

L⊥(t) ≡ [N−L (0), N+
L (t)] ∪ [N−R (0), N+

R (t)] ∪ [N+
L (t), N+

R (t)] ∪ C−⊥,h(0)× {−1

2
}.

the deformation t 7→ L⊥(t) is a deformation of L⊥(0) = L⊥ such that, for 0 ≤ t ≤ 1, we have

L⊥(t) ⊂ S3,cub,−
2,⊥ ⊂ ∂Q4

1/2(0) ∩ {x3 < 0} and L⊥(t) ∩ L0(1) = ∅.

We notice that, for t = 1, we have

L⊥(1) ⊂ Q3,−
4 (

1

2
, 0) ∩ {x1 = 0} ⊂ R3 × {−1

2
} ∩ {x1 = 0} = P2,3(0)× {−1

2
}. (4.56)

By continuity of the linking number, we have m (L0(1),L⊥(1)) = m (L0(1),L⊥(t)) = m (L0(1),L⊥(0)) =
m (L0(1),L⊥), for all t ∈ [0, 1]. Combining with (4.53) we deduce that

m (L0,L⊥) = m (L0(1),L⊥(1)) . (4.57)

Figure 14: The linking of the curves L0(1) and L⊥(1)

We may now take advantage, in view of (4.54) and (4.56), that the two curves are planar
curves in the three dimensional affine space R3 × {1/2}, included in planes which are not
parallel, see Figure 14. Using the methof of crossing numbers, we may then show that

m (L0(1),L⊥(1)) = 1.

Combining this identity with identity (4.57), we deduce the desired result.

Lemma 4.5. We have H(Υh
a) = 2.
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Proof. The proof follows immediately from Lemma 2.2 and identity (4.50).

Energy estimates. Concerning the E3 energy of Υh
a we verify that

|∇3Υh
a| ≤ Ch−1

where C > 0 is some constant. By integration on the boundary ∂Q4
h/2(a), whose measure is

of order h3, we deduce therefore that

E3

(
Υh

a, ∂Q4
h/2(a)

)
≤ C, (4.58)

where C > 0 is some constant. Finally, we consider the extension �h,a of Υh
a to the cube

Q4
h/2(a) given by

�h,a(x) = Exth/2,a

(
Υh

a(x)
)

for x ∈ Q4
h/2(a). (4.59)

Notice that �h,a is Lipschitz on the cube Q4
r(a) except at the origin, where, in view of Lemma

4.5 it possesses a point singularity of Hopf invariant equal to 2. Invoking scaling identities
(in the spirit of (4.32))and (4.58), we obtain the energy identity

E3(�h,a) = Kboxh, for any h > 0, (4.60)

where Kbox is a universal constant.

4.1.6 Deforming topologically trivial maps to constant maps

We assume here that we are given a map w ∈ Lip ∩W 1,3(R3,S2) such that we have

w(x) = Psouth for x ∈ R3 \ [−R,R]3, for some R > 0.

Hence, we may define a Hopf invariant of w. We have

Proposition 4.1. Let w and R > 0 be as above and assume that H(w) = 0. There exists a
map W ∈ C0 ∩W 1,3([−R,R]4, S2) such that the following holds:

• W (x,−R) = w(x) for x ∈ [−R,R]3

• W (x,R) = Psouth for x ∈ [−R,R]3

• W (x, s) = Psouth for x ∈ ∂([−R,R]3) and s ∈ [−R,R]

• E3(W, [−R,R]4) ≤ 2CextRE3(v, [−R,R]3).

Proof. We consider the continuous map w̃ from the boundary ∂([−R,R]4) to S2 defined by{
w̃(x,−R) = w(x) for x ∈ [−R,R]3 and

w̃(x) = Psouth for x ∈ ∂([−R,R]4) \ [−R,R]3 × {−R},

so that w̃ is Lipschitz ans the homotopy class of w̃ is trivial. There exists therefore a Lipschitz
map ϕ : [−R,R]4 → S2 such that

ϕ(x) = w̃(x) for x ∈ ∂([−R,R]4).
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Since ϕ is Lipschitz, we have

I1 ≡
∫

[−R,R]4
|∇4ϕ|3 < +∞.

Let 0 < ρ ≤ R be such that ρI1 ≤ CextR
2E3(v, [−R,R]3). We define W as

W (x) = w̃

(
x

|x|∞

)
if |x|∞ ≥ ρ

W (x) = ϕ

(
Rx

ρ

)
if |x|∞ ≤ ρ,

so that W satisfies the three first condition in Proposition 4.1. For the energy extimate, we
observe that, by (4.32), we have∫

|x|∞≥ρ
|∇4W |3 ≤ CextRE3(v, [−R,R]3).

On the other hand, by scaling we have

E3(W, [−ρ, ρ]4) =
ρ

R
E3(ϕ, [−R,R]4) =

ρI1

R
.

The conclusion follows combining the previous estimates.

Remark 4.5. Related constructions can be found for instance in [10, 6].

4.2 Proof of Proposition 4

As mentioned in the introduction, the map Gk
ord, which is defined on the strip Λ = R3 ×

[0, 50] ⊂ R4 to S2, is a deformation of the spaghetton map to a constant map, the fourth
space variable x4 standing for a deformation or time parameter. The construction relies on
corresponding deformations of the fibers of the sheaves Lk and Lk,⊥, the value of Gk

ord being
then obtained thanks to the Pontryagin construction or its variant. The main part of the
construction consist in deformed Skpag to a map of trivial homotopy class. The guiding idea

consists in ”pushing down” along the x3-axis the set Lk,⊥ while keeping the set Lk fixed,
singularities being created when two fibers meet and cross. When the sheave Lk,⊥ has been
pushed down sufficiently, then the two sheaves are no longer linked, so that we obtain for the
corresponding three dimensional ”time” slices a map with trivial homotopy class. It remain
to deform the later to a constant map, a task handled thanks to Proposition 4.1 present in
subsection 4.1.6.

Concerning the main step, i.e. the deformation of the fibers, the main technical tools that
we are going to use have been presented in Section 4.1, namely

• Deformations of curves and functions using the vector-fields ~X0 and ~Xk
1

• The extension operator as presented in subsection 4.1.5. It is used on small cubes of
size h near the crossing points of the fibers. It allows curves to cross while yielding
singularities for Gk

ord.
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Pushing down the sheave Lk,⊥ in the direction ~e3, we see that it might meet Lk in their
respective straight parts11, in the region Q3

0 = [0, 1]3. As a matter of fact, the points R3

where the fibers cross are given by

aki,j,q = (
i

k
,
j

k
,
q

k
) = (i h, j h, q h) = h(i, j, q) for i, j, q = 1, . . . , k with h =

1

k
, (4.61)

so that the set of crossing points in R3 is given by

{ai,j,q}i,j,q=1,...,k = (hIk)3 = �3
k(h) ⊂ [0, 1]3.

Given a time s > 0 will denote by Lkj,q(s) and Lk,⊥i,q (s) the deformations at time s of the

curves Lkj,q and Lk,⊥i,q respectively, so that

Lkj,q(0) = Lkj,q and Lk,⊥i,q (0) = Lk,⊥i,q .

As a matter of fact, the sheave Lk will not be moves, so that we have throughout

Lkj,q(s) = Lkj,q for every s ≥ 0. (4.62)

The construction will be divided in several distinct steps, where we use one of the above
methods, i.e. either pushing down using fields ~X0 or ~Xk

1 or using extensions creating singu-
larities at the points aki,j,q. Each step n corresponds to a specific time interval [Tk

n−1,T
k
n],

with Tk
0 = 0,

Tk
1 = 5 +

3h

8
and Tk

n+1 = Tk
n + h = nh+ τh, for n ∈ {1, . . . , 4k − 2}, where τh = 5− 5h

8
,

with h =
1

k
, so that all intervals, except the first and the last one, have size h. In each step

k, we will construct the restriction of the map Gk
ord to the corresponding strips in the R4

space, namely the strip Λkn given by

Λkn = R3 × [Tk
n−1,T

k
n],

taking care that the construction yield the sam value on the intersections, that is on the time
slices R3×{Tk

n}. In some strips, the map Gk
ord will have a finite number of point singularities:

These space-time singularities will have the form

aki,j,q,r ≡ (aki,j,q,T
k
2r+ 1

2

) = (aki,j,q,T
k
2r +

h

2
) = (aki,j,q, τh +

h

2
+ 2h r)

= (i h, j h, q h,Tk
2r +

h

2
) = (ih, j h, q h, 5− h

8
+ 2h r).

(4.63)

Remark 4.6. Throughout the proof, the main focus is on the region [0, 1]3 and its close
neighborhood. The restriction of the sheaves Lk(s) = Lk and Lk,⊥(s) as well as its translates
are segments parallel to ~e1 and ~e2 respectively, as shown in Figures 3 to 8. Thecurved parts of
the sheaves, which lie outside of this region are less relevant, except concerning the topological
properties.

11consisting of segments parallel to ~e2 and ~e3 respectively
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Step 1: Pushing Lk,⊥ downwards towards Lk.

We define in this step Gk
ord on Λk1 = R3 × [0,Tk

1]: We move Lk,⊥ along the constant vector

field ~X0 = −~e3 while keeping Lk fixed throughout. For 0 ≤ x4 ≤ Tk
1 the fibers Lk,⊥i,q are hence

translated with constant speed. We have therefore, for i, q = 1, . . . , k,

Lk,⊥i,q (x4) ≡ Pζ0 (Lki,q, x4) = Lk,⊥ − x4~e3 for x4 ∈ [0,Tk
1] = [0, 5 +

5h

8
] (4.64)

We define the map Gk
ord on the strip Λk1 ≡ R3 × [0,Tk

1] as

Gk
ord(x, s) =

[
Pζ0 (Pontya

% [Lk,⊥(s)]) ∨3 Pontya
% [Lk]

]
(x)

= Pontya
%

[
(Lk,⊥ − s~e3) ∪ Lk

]
(x), ∀x ∈ R3.

(4.65)

Here and in the sequel, the frame will be the reference frame, so that we omit to mention it
in the operatot Pontya. Notice that Gk

ord defined as above is smooth on the strip Λk1, that

Gk
ord(·, 0) = Skpag(·) on R3, (4.66)

that dist ((Lk,⊥ − s~e3,Lk) ≥
5h

8
for s ∈ [0,Tk

1] and that

dist ((Lk,⊥ − Tk
1~e3,Lk) =

5h

8
. (4.67)

Turning to energy estimates, it follows from Remark 4.1 that

|∇4Pζ0 (Pontya
% (Lk,⊥(s)(x)| ≤ C0

defk,

so that by integration on the set where Gk
ord is not constant, we are led to∫

Λk1

|∇4G
k
ord|3 ≤ K0

defk
3 with K0

def = 240
(
C0

def

)3
. (4.68)

In view of (4.67) we observe that the lowest fibers 12 of Lk,⊥(Tk
0), i.e. the curves Lk,⊥i,1 (Tk

0)

for i = 1, . . . , k are at distance 5h/8 of the upper fibers of Lk,⊥, i.e. the curves Lk,⊥j,k for
j = 1, . . . , k, the nearest points being the points in the set

Ak
1 = {ai,j,k, i, j = 1, . . . , k} = �2

k(h)× {1} (4.69)

with

dist(ai,j,k,L
k,⊥
i,1 ) =

5h

8
=
h

2
+
h

8
and ai,j,k ∈ Lk,⊥j,k .

Our next aim will be to continue to lower with the same speed ”most” of the fibers of
Lk,⊥ while keeping Lk fixed, without meeting the curves Lkj,k, j = 1, . . . , k hence avoiding

the singularities. In view of the above discussion, we are led to introduce the subset Lk1 of

Lk,⊥(Tk
1) corresponding to the union of fibers of Lk,⊥k which are the closest to Lk, that is, we

consider the sets

Lk,⊥1 =
k
∪
i=1

Lk,⊥i,1 and Lk,⊥1 (s) =
k
∪
i=1

Lk,⊥i,1 (s) (4.70)

12according to the x3 coordinate
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as well as there complements

Nk,⊥
1 = ∪

q∈{2,...,k}
i∈{1,...,k}

Lk,⊥i,q and Nk,⊥
1 (s) = ∪

q∈{2,...,k}
i∈{1,...,k}

Lk,⊥i,q (s) (4.71)

5+h/2

5+h/2a2 ,1,2

a1,1,2

1,2,2a

2,2,2
a

2,2,1a

L1,2

x3 axis

x2 axis

2

x1	 axis (0,	0,	0)

L2,2
2

L2,1
2

L1,1
2

L1,1
2, L2,1

2,

2

2

h

h/2

L2,2
2,

L1,2
2,

5+h

=(h,	h\2,1)

=(1,1,	1)

Figure 15: A zoom on the crossing area at time 0, k = 2.

Step 2: Avoiding the first crossings.

Defining Gk
ord on the strip Λk2. We define in this part Gk

ord on the strip Λk2 ≡ R3× [Tk
1,T

k
2] =

R3 × [Tk
1,T

k
1 + h]. We are going to invoke three different types of motions for the fibers:

• The fibers in Lk1(Tk
1) are moved according to the vector-field ~Xk

1 = −ζ1e3. In particular,
they are not going to reach the points ai,j,k in Ak

1.

• The fibers in Nk
1(Tk

1) = Lk,⊥(Tk
1) \Lk1(Tk

1) are moved with constant speed according to
the vector field ~X0 = −~e3. They hence will be translated down the ~e3 direction by a
lentgh equal to h at time Tk

2.

• The fibers in Lk are not moved, as already mentioned.

We define hence13 the map Gk
ord on the strip Λk2 ≡ R3 × [Tk

1,T
k
2] as

Gk
ord(x,Tk

1 + s) = Pζ0

(
Pontya
% [Nk,⊥

1 (Tk
1)]
)

(s) ∨3 Pζ1 (Pontya
% [Lk,⊥1 (Tk

1)](s)

∨3 Pontya
% [Lk].

(4.72)

13As mentioned, we have omitted the frame, which is throughout reference frame, in the notation for Pontya
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The reader may check that the three maps appearing in the definition (4.72) have, for any
s ∈ [0, h] disjoint supports, so that the gluing procedure in (4.72) is well-defined. Recall that
we have

Pζ0 (Pontya
% [Nk,⊥

1 (Tk
1)](s) = Pontya

% [Pζ0 (Nk,⊥
1 (Tk

1)(s)] = Pontya
% [Nk,⊥

1 − (Tk
1 + s)~e3] and

P
ζ1

(Pontya
% [Lk1(Tk

1)](s) = P̃ontya
% [DefL

k,⊥
1 (Tk

1, s)] where DefL
k,⊥
1 (Tk

1, s) =
k
∪
i=1
DefL

k,⊥
i,1 (Tk

1, s).

Going back to (4.72) we obtain hence

Gk
ord(·,Tk

1 + s) = Pontya
% [Nk,⊥

1 − (Tk
1 + s)~e3] ∨3 P̃ontya

% [DefL
k,⊥
1 (Tk

1, s)] ∨3 Pontya
% [Lk]. (4.73)

The shape of the fibers for s ∈ [Tk
1,T

k
2]. We have already studied the effect of the flow Φk

1

generated by the vector field Xk
1 on the fibers in Lk,⊥ or there translates in Subsection 4.1.2.

In view of the results there, we may write, for s ∈ [0, h], concerning the transported fibers
Lk,⊥i,1 (Tk

1 + s) = Φk
1(Lk,⊥i,1 − Tk

1~e3, s) = DefL
k,⊥
i,q (Tk

1, s)

Lk,⊥i,q (Tk
1 + s) = Φk

0(Lk,⊥i,q − Tk
1~e3, s) = Lk,⊥i,k − (Tk

1 + s)~e3 for q 6= 1.

Lkj,q(T
k
1 + s) = Lkj,q.

(4.74)

The shape of the curve DefL
k,⊥
i,q (Tk

1, s) is described in (4.25), see also Remark 4.2 and figures

9 and 10. Most of DefL
k,⊥
i,q (Tk

1, s) corresponds to the the translate Lk,⊥i,k − (Tk
1 + s)~e3 except

the part stuck above the points ai,j,k, at a vertical distance of 3h/8 when s = h.

The energy on the strip Λk2. It follows from the definition (4.72) of Gk
ord on the strip Λk2 ≡

R3 × [Tk
1,T

k
2] and the gradient estimate for DefL

k,⊥
i,q provided in Lemma 4.3 that

|∇4G
k
ord| ≤ Cdefk on Λk2,

so that by integration on the support of Gk
ord which is included in [−30, 30]3 restricted to

Λk1, we are led to the estimate∫
Λk2

|∇4G
k
ord|3 ≤ 603 hC3

defk
3 ≤ Kdefk

2. (4.75)

where the constant Kdef = 603C3
def does not depend on h.

On the shape of the fibers at time Tk
2. At time Tk

2, all fibers of Lk,⊥ have been translated
by−Tk

2~e3 = −(τh + h)~e3, except the files in Lk1(Tk
2) which are rounded near the points ai,j,k

in order to avoid collision with the fibers Lkj,k, which they would otherwise have crossed. This
situation is described in Figure 16. We have in view of the inclusion (4.27) of Remark 4.2

Lk,⊥(Tk
2) ⊂

(
Lk,⊥ − (τh + h)~e3

)
∪ [
h

2
, 1 +

h

2
]2 × [1− 3h

8
, 1 +

3h

8
]. (4.76)

We pay n special attention to the first crossing region defined by Ohcross,1 defined by

Ohcross,1 = [
h

2
, 1 +

h

2
]2 × [1− h

2
, 1 +

h

2
] ⊂ R3,
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since we already know that

Lk,⊥(Tk
2) \ Ohcross,1 =

(
Lk,⊥ − (τh + h)~e3

)
\ Ohcross,1. (4.77)

We consider the points in Ak
1 where fibers would have collided if transported by the constant

vector fields 14 and the k2 distinct cube Q3
h
2

(aki,j,k) so that

Ohcross,1 =
k
∪

i,j=1
Q3
h
2

(aki,j,k) where Q3
h
2

(aki,j,k) = {x ∈ R3, s.t |x− aki,j,k|∞ ≤
h

2
}. (4.78)

The intersection of two given cubes in the above collection is either void or included in the
intersections of the boundaries. We have, in view of (4.73), for s ∈ [0, h]

Lk,⊥i,1 (Tk
1 + s) = Φk

1(Lk,⊥i,1 − Tk
1~e3, s) = DefL

k,⊥
i,1 (Tk

1, s) for x ∈ Q3
h
2

(ai,j,k).

Going back to Remark 4.3, we notice that (4.39) is fullfilled with c = Tk
1, p = 1 and q = 1,

so that (4.38) yields

DefL
k,⊥
i,1 (Tk

1, h) ∩Q3
h/2(ai,j,k) = C−⊥,h(ai,j,k), for i ∈ {1, . . . , k}

and hence by the definition of Lk,⊥i,1 (Tk
2), we have for any i, j ∈ {1, . . . , k}

Lk,⊥i,1 (Tk
2) ∩Q3

h
2

(ai,j,k) = C−⊥,h(ai,j,k). (4.79)

The valued of Gk
ord on the crossing regions Ohcross,1 at time Tk

2. The value of Gk
ord provided

by (4.73) matches the definition of the map γ
h,−
ai,j,k given in (4.40), that is we have, for i, j =

1, . . . , k
Gk

ord(x,Tk
2) = γh,−ai,j,k

(x) for x = (x1, x2, x3) for x ∈ Q3
h
2

(ai,j,k), (4.80)

yields the value of Gk
ord on Ohcross,1 thanks to (4.78). This follows combing (4.37), (4.79)

together with (4.73) and the corresponding definition of the map we deduce the γ
h,−
ai,j,k .

Step 3: Allowing crossings of fibers thanks to singularities.

Aim and strategy. We define here the value of Gk
ord on the strip Λk3 = R3× [Tk

2,T
k
2 +h = Tk

3].
Our aim, is to have at time Tk

3

Lk,⊥(Tk
3) = Lk,⊥ − (τh + h)~e3, (4.81)

and to define Gk
ord accordingly using the operator Pontya

% . Notice that this is already achieved
at time Tk

2 off the set Ohcross,1 thanks to (4.77), so that we are not going to change the values

on this set, that is, we will set, for s ∈ [0, h] and for x ∈ R3 \ Ohcross,1

Gk
ord(x,Tk

2 + s) = Gk
ord(x,Tk

2) = Pontya
%

[
(Lk,⊥ − Tk

2~e3) ∪ Lk, e⊥ref

]
(x). (4.82)

14as a matter of fact, we have {ai,j,k} = Lk,⊥j,k ∩(Lk,⊥i,1 −(τh+ 5h
8

)~e3), so that the collision would have occured

at time τh + 5h
8

is the vector-field would have been ~X0 instead
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Figure 16: The curves Lk,⊥i,1 (Tk
2) and Lkj,k at time Tk

2, k = 3 as well as the set Ohcross,1 formed

of k2 = 9 cubes of edge h/2.

It remains hence to defined the value of Gk
ord on the space-time crossing region

Θh
cross,1 = Ohcross,1 × [Tk

2,T
k
2 + h = Tk

3].

This region can be divided in four-dimensional cubes, so that we have

Θh
cross,1 =

k
∪

i,j=1
Q4
h
2

(aki,j,k,1), (4.83)

where the points aki,j,q,1 are defined in (4.63). The intersection of two given cubes in the above
collection is either void or included in the intersections of the boundaries. We first fixe the
value of Gk

ord on the boundary of each of the cubes as

Gk
ord(x) = Υh

aki,j,q,1
(x) on ∂(Q4

h
2

(aki,j,k,1)),

where the maps Υh
a are defined in (4.45). We then extend it inside by cubic extension

Gk
ord(x) = �h,aki,j,q,1(x) = Exth/2,aki,j,q,1

(
Υaki,j,q,1

(x)
)

for x ∈ Q4
h/2(aki,j,q,1). (4.84)

It follows from this definition that the map Gk
ord(x) is continuous on Q4

h/2(aki,j,q,1) \ {aki,j,q,1},
but singular at the point aki,j,q,1. At this stage, the map Gk

ord is defined on the whole strip Λk3
thanks to definitions (4.82) and (4.84). We show next that the two definitions are consistent
and that the map is continuous near the boundaries of the cubes.

Continuity properties of Gk
ord on Θh

cross,1. We consider the set Ak1 of k2 space-time singularities

induced by definition (4.84) of Gk
ord on Λk2, namely

Ak1 =
k
∪

i,j=1
{aki,j,k,1} = �2

k(h)× {1} × {Tk
3/2} ⊂ Λk2,with Tk

3/2 =
Tk

2 + Tk
3

2
= τh +

3h

2
. (4.85)
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We claim that:

The restriction of Gk
ord to Θh

cross,1 belongs to C0(Θh
cross,1 \ Ak1,S2). (4.86)

The only point to check is that the definition (4.84) yield the same value on the parts of the
boundary of cubes which meet, that is for i, j, i, j′ in {1, . . . , k}

Υh
aki,j,q,1

(x) = Υh
ak
i′,j′,q,1

(x) for x ∈ ∂Q4
h/2(aki,j,q,1) ∩ ∂Q4

h/2(aki′,j′,q,1), (4.87)

the intersection being not empty if and only if |i − i′| ≤ 1 and |j − j′| ≤ 1 This is direct
consequence of Remark 4.4 and specially identity (4.49) there, which yields for a ∈ Ak1

Υh
a(x) = Pontya

%

[
(Lk,⊥ − Tk

2~e3) ∪ Lk, e⊥ref

]
(x) on ∂Q4

h/2(a). (4.88)

This yields (4.87), since the r.h.s of (4.88) does not depend on the choice of point a ∈ Ak1,
and establishes the claim (4.86).

Continuity properties of Gk
ord on Λk2∪Λk3. It follows from (4.88) again that the value given by

(4.84) coincides with Pontya
%

[
(Lk,⊥ − Tk

2~e3) ∪ Lk, e⊥ref

]
on ∂Θh

cross,1 \R3 × {Tk
2} and coincides

with the value of (4.82) and the definitions are consistent. Hence Gk
ord is continuous near

∂Θh
cross,1\R3×{Tk

2}. To complete the continuity properties, it remains to verify that definition
(4.84) and (4.114) are consistent and yield the same result: This is an immediat consequence
of the definition of the map Υh

a.

We have hence established the Gk
ord belongs to C0(Λk2 ∪ Λk3 \ Ak1).

Energy of Gk
ord on the strip Λk3. In view of the decomposition (4.83) of Θcross,1, we have

E3(Gk
ord,Θcross,1) =

k∑
i,j=1

E3

(
�h,aki,j,q,1 ,Q

4
h/2(aki,j,q,1)

)

=
k∑

i,j=1

Kbox h = k2Kbox h = Kboxk.

(4.89)

Next, we turn to the complement, i. e. the set Λk3 \Θcross,1. We first notice, that according

to formula (4.82) we have
∂Gk

ord

∂x4
= 0 on Λk3 \Θcross,1, so that

E3(Gk
ord,Λ

k
3 \Θcross,1) =

∫ Tk3

Tk2

E3(Pontya
%

[
(Lk,⊥ − Tk

2~e3) ∪ Lk, e⊥ref

]
,R3 \ Ocross,1)

≤ hE3(Skpag,R3) ≤ hC3
spgk

3 = Kspgk
2.

(4.90)

and hence we are led to the estimate∫
Λk3

|∇Gk
ord|3 ≤ Kspgk

2 + Kboxk. (4.91)
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The value of Gk
ord at time Tk

3. Combining (4.82) with (4.88), we deduce that for any x ∈ R3,
we have the identity

Gk
ord(x,Tk

3) = Pontya
%

[
(Lk,⊥ − Tk

2~e3) ∪ Lk, e⊥ref

]
(x)

= Pontya
%

[
Lk,⊥ − Tk

2~e3, e
⊥
ref

]
∨3 Pontya

%

[
Lk, e⊥ref

]
(x).

(4.92)

We have also
Lk,⊥(Tk

3) = Lk,⊥ − Tk
2~e3 and Lk(Tk

3) = Lk. (4.93)

It corresponds hence to a downwards translation of the sheaf Lk,⊥ , the absolute value of the
total linking number being decreased by k2.

h\8

h/8

h\8

h\2

L	1,2 L2,2
22

L2,1
2,

L1,1
2,

L1,2
2,

L2,2

e2

e1

e3

a1,2,1

a2,2,1

Figure 17: The shape of the fibers Lk,⊥(Tk
3) at time Tk

3 for k = 2. The set of fibers Lk,⊥1 (Tk
3)

have crossed the upper layer of fibers on Lk.

As in Steps 2 and 3, we will next use alternatively and in an iterative way the two previous
construction : First pushing along the vector field ~Xk

1 to circumvent singularities, and then
crossing of the singularities using cubic extensions. However, the number of fibers which
cross increases in a first stage of the process. We first show how this works on step 4 and 5,
emphasing the few necessary adaptations, and then give the general scheme.

Step 4 : Avoiding the second crossings.

We define here Gk
ord on the strip Λk4 = R3× [Tk

3,T
k
4]. Step 4 is similar to step 2, that is we

lower the fibers of Lk,⊥(Tk
3) ≡ Lk,⊥ − Tk

2~e3 by a length equal to h far from singularities and
circumventing the singularities aki,j,q which are on the way. These singularities are now twice

as much as in Step 2, that is the 2k2 elements of set of points

Ak
2 ≡

k
∪

i,j=1
{ai,j,k, ai,j,k−1} = �2

k(h)× {1, 1− h} ⊃ Ak
1. (4.94)
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The main difference with Step 2 is that here we have two layers of fibers which are concerned
by bypassing the singularities. We replace therefore the sets Lk,⊥1 and Nk,⊥

1 defined in (4.70)
and (4.71) respectively by the sets Lk,⊥2 (Tk

3) =
k
∪
i=1

(
Lk,⊥i,1 (Tk

3) ∪ Lk,⊥i,2 (Tk
3)
)

Nk,⊥
2 (Tk

3) = Lk,⊥(Tk
3) \ Lk,⊥2 (Tk

3) = (Lk,⊥ − Tk
2~e3) \ Lk,⊥2 (Tk

3)

and define Gk
ord on the strip Λk4 = R3 × [Tk

3,T
k
4] in a way similar to (4.72), that is, for

s ∈ [0, h], we set

Gk
ord(x,Tk

3 + s) = Pontya
%

[
Nk,⊥

2 (Tk
3 + s)

]
∨3 P̃ontya

%

[
Lk,⊥2 (Tk

3 + s)
]
∨3 Pontya

%

[
Lk
]
, (4.95)

where we have setNk,⊥
2 (Tk

3 + s) ≡ Nk,⊥
2 (Tk

3)− s~e3

Lk,⊥2 (Tk
3 + s) ≡ DefL

k,⊥
2 (Tk

3, s) =
k
∪
i=1

(
DefL

k,⊥
i,1 (Tk

3, s) ∪ DefL
k,⊥
i,2 (Tk

3, s)
)
,

so that the maps involved in the definition (4.95) have disjoint supports. It follows in view

of definition (4.95) and invoking, as in Step 1, the gradient estimate for DefL
k,⊥
i,q provided

in Lemma 4.3 that is |∇4G
k
ord| ≤ Cdefk on Λk4, so that we are led, by integration, to the

estimate ∫
Λk4

|∇Gk
ord|3 ≤ Kdefk

2. (4.96)

The shape of the fibers and the value of Gk
ord at time Tk

4. At time Tk
4, all fibers of Lk,⊥ have

been translated by−(τh + 2h)~e3, except the files in Lk2(Tk
2) which have been rounded near

the points in A2, in order to avoid collision with the fibers Lkj,k or Lkj,k−1, which they would

otherwise have crossed. We introduce the second spatial crossing region Ohcross,2 defined by

Ohcross,2 = [
h

2
, 1 +

h

2
]2 × [1− 3h

2
, 1 +

h

2
] ⊃ Ohcross,1

and deduce from the inclusion (4.27) in Remark 4.2, arguing as in Step 3, that

Lk,⊥(Tk
4) \ Ohcross,2 =

(
Lk,⊥ − (τh + 2h)~e3

)
\ Ohcross,2. (4.97)

We decompose Ohcross,2 into cubes of edge of size h centered at the collisions points in Ak
2 as

Ohcross,2 = ∪
a∈Ak

2

Q3
h/2(a)

where the cubes may possibly touch only on their boundaries. We have, in view of (4.95),
for any a ∈ Ak

2, any s ∈ [0, h], q = 1, 2 and any i ∈ {1, . . . , k}

Lk,⊥i,q (Tk
3 + s) = Φk

1(Lk,⊥i,q − Tk
2~e3, s) = DefL

k,⊥
i,q (Tk

1, s) on Q3
h
2

(a).
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Going back to Remark 4.3, we notice that (4.39) is fullfilled with c = τh + 2h = Tk
2, p = 1 or

p = 2 and q = 1 or q = 2 respectively, so that (4.38) yields{
DefL

k,⊥
i,1 (Tk

3, h) ∩Q3
h/2(ai,j,k−1) = C−⊥,h(ai,j,k−1) and

DefL
k,⊥
i,2 (Tk

3, h) ∩Q3
h/2(ai,j,k) = C−⊥,h(ai,j,k),

and hence Lk,⊥i,1 (Tk
4) ∩Q3

h
2

(ai,j,k−1) = C−⊥,h(ai,j,k−1)

Lk,⊥i,2 (Tk
4) ∩Q3

h
2

(ai,j,k) = C−⊥,h(ai,j,k).
(4.98)

The value of Gk
ord provided by (4.95) matches the definition of the map γ

h,−
ai,j,k given in (4.40),

that is we have, for i, j = 1, . . . , k and a ∈ Ak
2

Gk
ord(x,Tk

4) = γh,−a (x) for x = (x1, x2, x3) ∈ Q3
h
2

(a), (4.99)

Step 5: crossing once more through singularities.

This step is parallel to Step 3, our aim being to define the value of Gk
ord on the strip

Λk5 = R3 × [Tk
4,T

k
4 + h = Tk

5], so that at time Tk
5, we have Lk,⊥(Tk

5) = Lk,⊥ − (τh + 2h)~e3,
defining Gk

ord accordingly using the operator Pontya
% . This is already achieved at time Tk

4 off
the set Ohcross,2 thanks to (4.77), so that we are not going to change the values on this set. We

defined next the value of Gk
ord on the space-time crossing region Θh

cross,2 = Ocross,2× [Tk
4,T

k
5]

which can be divided in four-dimensional cubes of size h

Θh
cross,2 =

k
∪

i,j=1

(
Q4
h
2

(aki,j,k,2) ∪Q4
h
2

(aki,j,k−1,2)
)

= ∪
a∈Ak2

Q4
h
2

(a), (4.100)

where

Ak2 =
k
∪

i,j=1
{aki,j,k,2,aki,j,k−1,2} = Ak

2 × {Tk
9/2}, with Tk

9/2 =
Tk

4 + Tk
5

2
,

the points aki,j,q,r being defined in (4.63), the intersection of two given cubes in the above
collection being either void or included in the intersections of the boundaries. We fix the
value of Gk

ord on the boundary of each of the cubes as

Gk
ord(x) = Υh

a(x) on ∂(Q4
h
2

(a)) for x ∈ ∂Q4
h/2(a),a ∈ Ak2,

where the maps Υh
a are defined in (4.45). We then extend it inside by cubic extension

Gk
ord(x) = �h,a(x) = Exth/2,a (Υa(x)) for x ∈ Q4

h/2(a),a ∈ Ak2. (4.101)

It follows that Gk
ord is continuous on Q4

h/2(a) \ {a}, a ∈ Ak2, but singular at the point a. The

map Gk
ord is now defined on the whole strip Λk5 thanks to definitions (4.82) and (4.101). As

in Step 3, one may show that the definitions are consistent and that the restriction of Gk
ord

to Λk4 ∪ Λk5 is a map in C0(Λk4 ∪ Λk5 \ Ak2,S2), each of the singularities in Ak2 having Hopf
invariant equal to +2.
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The value of Gk
ord at time Tk

5. We verify, as in Step 3, that

Gk
ord(x,Tk

5) = Pontya
%

((
Lk,⊥ − (τ − h+ 2h~e3)

)
∪ Lk

)
(x) for x ∈ R3. (4.102)

and that
Lk,⊥(Tk

5) = Lk,⊥ − (τh + 2h)~e3 and Lk(Tk
5) = Lk.

Figure 18: The shape of the fibers Lk,⊥(Tk
5) at time Tk

5 for k = 2. The set of fibers Lk,⊥2 (Tk
5)

have crossed the upper layer of fibers on Lk.

The energy of Gk
ord on the strip Λk5. In order to estimate the energy on the strip Λk5 we argue

as in Step 3. In view of (4.115), we have

E3(Gk
ord,Θ

h
cross,2) =

∑
a∈Ak2

E3

(
�h,a,Q4

h/2(a)
)

= ](Ak2)Kbox h = 2k2Kbox h = 2Kboxk. (4.103)

For the complement Λk5 \Θh
cross,2 we have

E3(Gk
ord,Λ

k
5 \Θh

cross,2) =

∫ Tk3

Tk2

E3(Pontya
%

[
(Lk,⊥ − Tk

2~e3) ∪ Lk, e⊥ref

]
,R3 \ Ohcross,2)

≤ hE3(Skpag,R3) ≤ hCspgk
3 = Kspgk

2.

(4.104)

Hence, we are led to the estimate∫
Λk5

|∇4G
k
ord|3 ≤ Kspgk

2 + 2Kboxk. (4.105)
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We proceed now iteratively using the same constructions (namely pushing along the flow
~Xk

1 and then using cubic extensions) up to step 4k+1, after which the fibers will be no longer
linked. As seen on the previous steps, we distinguish even and odd steps, in each of the two
classes the construction follows the same pattern. Each pair of even and odd steps will be
labelled by an integer ` running from 1 to 2k. Similar to (4.94), we are led to consider for
p ∈ {1, . . . , `} the sets of ”collisions points” of the fibers:

Ak
p ≡

k
∪

i,j=1

k
∪

q=k−p+1
{aki,j,q} = �2

k(h)× {1, 1− h, . . . , 1− (p− 1)h}

= �2
k(h)× Jkp where Jkp ≡ {1, 1− h, . . . , 1− (p− 1)h}

(4.106)

so that Ap contains pk2 elements and Ak
p ⊂ Ak

p+1 if p ≤ k − 1. We also generalize the

definitions of Lk,⊥1 (s) and Nk,⊥
1 (s) as follows:

Lp(s)
k,⊥ =

k
∪
i=1

p
∪
q=1

Lk,⊥i,q (s)

Np(s)
k,⊥ =

k
∪
i=1

k
∪

q=p+1
Lk,⊥i,q (s),

(4.107)

so that Lp(s)
k,⊥ ∪Np(s)

k,⊥ = Lk,⊥(s) and Lp(s)
k,⊥ ∩Np(s)

k,⊥ = ∅.
We describe next more precisely the pattern of these steps, dividing the presentation into

two periods.

Step 6 to Step 2k + 1.

Assume that at step 2`+ 1, for ` ∈ {1, . . . , k − 1}, the map Gk
ord has been constructed on

R3 × [0,Tk
2`+1] and satisfies for x4 = Tk

2`+1 we have

Gk
ord(x1, x2, x3,T

k
2`+1) = Pontya

%

[(
Lk,⊥ − (τh + ` h)~e3

)
∪ Lk

]
(x1, x2, x3). (4.108)

This is indeed the case for ` = 1 and ` = 2, as seen in Step 3 and Step 5. We have hence

Lk,⊥(Tk
2`+1) ≡ Lk,⊥ − (τh + ` h)~e3 and Lk(Tk

2`+1) = Lk.

In particular, the lowest fiber (according to the x3 variable) in Lk,⊥(Tk
2`+1), that it the set

Lk,⊥1 (Tk
2`+1) has crossed the ` upper fibers of Lk, that is the fibers Lki,q with q ∈ {k−`+1, k}.

We have moreover

dist(Lk,⊥1 (Tk
2`),L

k
j,k−`) =

5h

8
,

Lk,⊥1 (Tk
2`+1) being above Lkj,k−`, according to the x3 coordinate. Moreover, all fibers in

L`(T
k
2`+1) have crossed at least one fiber of Lk, whereas none in N`(T

k
2`+1) has done it. At

step 2`+ 3, we wish to have

Lk,⊥(Tk
2`+3) ≡ Lk,⊥ − (τh + (`+ 1)h)~e3 and Lk(Tk

2`+1) = Lk, (4.109)

For this purpose, we proceed exactly as seen in the previous steps.

Defining Gk
ord on the strip Λk2`+2. At step 2` + 2, we construct the map Gk

ord on the

strip Λk2`+2 = R3 × [Tk
2`+1,T

k
2`+2] lowering the fibers of Lk,⊥(Tk

2`+1) by a length equal to
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h circumventing the singularities a ∈ Ak
`+1 which are on the way. Similar to (4.73) and (4.95)

we are led to define Gk
ord on the strip Λk2`+2 for s ∈ [0, h] by the formula

Gk
ord(x,Tk

2`+1 + s) = Pontya
%

[
Nk,⊥
`+1(Tk

2`+1 + s)
]
∨3 P̃ontya

%

[
Lk,⊥`+1(Tk

2`+1 + s)
]
∨3 Pontya

% [Lk],

(4.110)
where we have set

Nk,⊥
`+1(Tk

2`+1 + s) ≡ Nk,⊥
` − (τh + ` h+ s)~e3

Lk,⊥`+1(Tk
2`+1 + s) = DefL

k,⊥
`+1(Tk

2`+1, s) ≡
k
∪
i=1

`+1
∪
q=1
DefL

k,⊥
i,q (Tk

2`+1, s),

It follows from the definition (4.110) of Gk
ord on the strip Λk2`+2 ≡ R3 × [Tk

2`+1,T
k
2`+2] that

Gk
ord is Lipschitz on Λk2`+2 and that |∇4G

k
ord| ≤ Cdefk on Λk2`+2, so that by integration on

the support of Gk
ord we have ∫

Λk2`+2

|∇4G
k
ord|3 ≤ Kdefk

2. (4.111)

The value of Gk
ord at time Tk

2`+2. At time Tk
2`+2, all fibers of Lk,⊥ have been translated

by−(τh+(`+1)h)~e3, except the files in Lk`+1(Tk
2) which are rounded near the points in A`+1,

in order to avoid collision with the fibers Lkj,q for q = k, . . . , k − `. We introduce the spatial
crossing region of order `+ 1 defined by

Ohcross,`+1 = [
h

2
, 1 +

h

2
]2 × [1− (`+

1

2
)h, 1 +

h

2
] ⊃ Ohcross,`

and deduce from the inclusion (4.27) of Remark 4.2 and arguing as in Step 3, that

Lk,⊥(Tk
2`+2) \ Ohcross,`+1 =

(
Lk,⊥ − (τh + (`+ 1)h)~e3

)
\ Ohcross,`+1. (4.112)

We decompose Ohcross,`+1 into cubes of edge of size h centered at the points in Ak
`+1 as

Ohcross,`+1 = ∪
a∈Ak

`+1

Q3
h/2(a)

where the cubes may possibly touch only on their boundaries. We have, in view of (4.95),
for any a ∈ Ak

`+2, any s ∈ [0, h], q = 1, . . . , `+ 1 and any i ∈ {1, . . . , k}

Lk,⊥i,q (Tk
2`+1 + s) = Φk

1(Lk,⊥i,q − (τh + `+ s)~e3, s) = DefL
k,⊥
i,q (Tk

2`+1, s) on Q3
h
2

(a).

Given q ∈ {1, ` + 1} and going back to Remark 4.3, we notice that (4.39) is fullfilled for
c = τh + (`+ 1)h, and p = q, so that (4.38) yields

DefL
k,⊥
i,q (Tk

2`+1, h) ∩Q3
h/2(ai,j,k−`−1+q) = C−⊥,h(ai,j,k−`−1+q).

Hence, we have
Lk,⊥i,q (Tk

2`+2) ∩Q3
h
2

(ai,j,k−`−1+q) = C−⊥,h(ai,j,k−`−1+q) (4.113)
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It follows that the value of Gk
ord provided by (4.110) satisfies for i, j = 1, . . . , k and a ∈ Ak

`+1

Gk
ord(x,Tk

2`+2) = γh,−a (x) for x ∈ Q3
h
2

(a), (4.114)

Defining Gk
ord on Λk2`+3. This step, Step 2`+ 3, is parallel to Step 3 and 5. We consider the

space-time crossing region Θh
cross,`+1 = Ocross,`+1 × [Tk

2`+2,T
k
2`+3] which can be decomposed

as

Θh
cross,`+1 =

k
∪

i,j=1

k
∪

q=k−`
Q4
h
2

(aki,j,q,`+1) = ∪
a∈Ak`+1

Q4
h
2

(a), (4.115)

where

Ak`+1 =
k
∪

i,j=1

k
∪

q=k−`
{ai,j,q,`+1} = Ak

`+1 × {Tk
2`+ 5

2

},

= �2
k(h)× Jk`+1 × {Tk

2`+ 5
2

}.
(4.116)

We fix the value of Gk
ord on the boundary of each of the cubes as

Gk
ord(x) = Υh

a(x) on ∂(Q4
h
2

(a)) for x ∈ ∂Q4
h/2(a),a ∈ Ak`+1,

and extend it inside by cubic extension

Gk
ord(x) = �h,a(x) = Exth/2,a (Υa(x)) for x ∈ Q4

h/2(a),a ∈ Ak`+1. (4.117)

It follows Gk
ord is continuous on Q4

h/2(a) \ {a}, a ∈ Ak`+1, but singular at the point a. The

map Gk
ord is now defined on the whole strip Λk2`+2 thanks to definitions (4.110) and (4.117).

As in Step 3, one may show that the definitions are consistent and that the restriction of Gk
ord

to Λk2`+1 ∪ Λk2`+2 is a map in C0(Λk2`+1 ∪ Λk2`+2 \Ak`+1,S2), each of the (`+ 1)k2 singularities

in Ak`+1 having Hopf invariant equal to +2.

The value of Gk
ord at time Tk

2`+3. We verify, as in Step 3, that (4.109) holds and that

Gk
ord(x,Tk

2`+3) = Pontya
%

[(
Lk,⊥ − (τh + (`+ 1)h~e3)

)
∪ Lk

]
(x) for x ∈ R3. (4.118)

The energy of Gk
ord on the strip Λk2`+3. Arguing as in Step 3 and Step 5, we have

E3(Gk
ord,Θcross,`+1) =

∑
a∈Ak`+1

E3

(
�h,a,Q4

h/2(a)
)

= ](Ak`+1)Kbox h

= Kboxk
2(`+ 1)h = k2Kbox h = Kbox(`+ 1)k.

The energy on the complement is computed as in Step 3 and Step 5, we that we finally obtain∫
Λk2`+3

|∇4G
k
ord|3 ≤ Kspgk

2 + (`+ 1)Kboxk. (4.119)

The construction described above can go on as long as the fibers in Lk1 have to cross some
layers of fibers in Lk: Consequently, the process stops at step 2k+ 1, when Lk1 is now able to
move down freely, since it it no longer linked to Lk. In order to complete the untying of the
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Spaghetton map, and to ” set free” the remaining fibers, we show next how to adapt slightly
the description, in particular the definition (4.107).

Step 2k + 2 to Step 4k − 1.
The constructions follows the same patterns, the only difference being that at each addi-

tional pair of steps fibers are now leaving the crossing region, inducing modifications in the
description of the labels and indices for the various sets which have been introduced before.
In particular, the index ` runs from now from here from ` = k + 1 to 2k − 1.

As before, we assume that we are given some ` ∈ {k, . . . , 2k− 2} and we assume that Gk
ord

has been constructed on [0,Tk
2`+1], and satisfies at time Tk

2`+1 the identity (4.110): This is for

instance the case for ` = k, as seen before. The corresponding formulae for Lk,⊥(2`+ 1) are
hence also valid, so that the highest (according to the x3 coordinate) fibers in Lk,⊥(2`+ 1),

that is the fibers Lk,⊥i,k (2` + 1), i = 1, . . . , k are now squeezed between the fibers Lkj,2k−` and

Lkj,2k−`+1, j = 1, . . . , k. Our aim, in Steps 2`+ 2 and 2`+ 3 will be to construct Gk
ord on the

strips Λk2`+2 and Λk2`+3 in such a way that identity (4.110) holds with ` replaced by ` + 1.

This yields hence an iterative construction of Gk
ord.

The constructions in Steps 2`+ 2 and 2`+ 3 are essentially the same as in the construction
for Steps 2 to 2`+ 1, except that we need to modify a number of definitions. Firstly, we
extend the definition of the sets Ak

p given in (4.106) for values of p > k setting

Ak
p ≡

k
∪

i,j=1

`−k
∪
q=1
{aki,j,q} = �2

k(h)× {h, 2h, . . . , (p− k)h}

= �2
k(h)× Jkp where Jkp ≡ h{1, . . . , p− k} for p > k.

(4.120)

Likewise, we extend the definition of the sets Lp(s)
k,⊥ and Np(s)

k,⊥ accordingly, for values
of p > k and s ≥ Tk

2k+2

Lp(s)
k,⊥ =

k
∪
i=1

k
∪
`−k

Lk,⊥i,q (s) and Np(s)
k,⊥ =

k
∪
i=1

k
∪

q=p+1
Lk,⊥i,q (s), (4.121)

so that Lp(s)
k,⊥ ∪Np(s)

k,⊥ = Lk,⊥(s) and Lp(s)
k,⊥ ∩Np(s)

k,⊥ = ∅. Finally, we define the
spatial crossing region Ocross,` and the space-time crossing region Θcross,` asOhcross,` = [

h

2
, 1 +

h

2
]2 × [

h

2
, (2k − `+ 1)(

h

2
)] ⊂ Ohcross,`+1

Θh
cross,` = Ohcross,` × [Tk

2`+2,T
k
2`+3].

Step 2` + 2: defining Gk
ord on Λ2`+2 = R3 × [Tk

2`+1,T
k
2`+2]. We define Gk

ord again by
formula (4.110), where the definitions of the various sets have been changed according to
(4.121). It follows from the definition (4.110) of Gk

ord is Lipschitz on Λk2`+2 and that, as

before, |∇4G
k
ord| ≤ Cdefk on Λk2`+2, so that by integration on the support of Gk

ord we have
the estimate (4.111) remains valid. We observe also that at time Tk

2`+2 identities (4.112) and
(4.114) remain valid.

Step 2` + 3: defining Gk
ord on Λk2`+3 = R3 × [Tk

2`+2,T
k
2`+3]. We define again Gk

ord by cubic

extension by formula (4.117). One verifies that this definition of Gk
ord yields a map whose
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restriction to Λk2`+2∪Λk2`+3 is in C0(Λk2`+2∪Λk2`+3\Ak`+1,S2), where Ak`+1 is defined in (4.116).
Each singularity having Hopf invariant +2. Arguing as before, we obtain the energy estimate∫

Λk2`+2

|∇4G
k
ord|3 ≤ Kspgk

2 + (2k − `)Kboxk. (4.122)

At time Tk
2`+3, we notice that identity (4.110) holds with ` replaced by ` + 1, so that the

iteration is complete.

The map Gk
ord at time Tk

4k−1. The iteration is stopped when ` = 2k−1, hence at step 4k−1,

that is at time Tk
4k−1 = τh + (4k− 1)h. Then, all fibers of Lk,⊥(Tk

4k+1) have left the crossing

region and the two sheafs Lk,⊥(Tk
4k+1) and Lk are not longer linked since

Lk,⊥(Tk
4k+1) = Lk,⊥ − (τh + (2k − 1)h)~e3 = Lk,⊥ − (τh + 2− h)~e3 ⊂ R2 × [−1,

5h

8
]

whereas Lk((Tk
4k+1) = Lk ⊂ R2 × [h, 1]. It follows, in view of (4.118) that

H

(
Gk

ord(·,Tk
4k+1)

)
= 0 and

∫
R3

|∇3G
k
ord(·,Tk

4k−1)|3 ≤ Kspgk
3. (4.123)

and that the map Gk
ord(·,Tk

4k−1) is constant, equal to Psouth on R3 \ [−20, 20]3.

X3 axis

axis (time)X4

h

1=kh

2h

T 5/2

(0,	T2)

T9/2 T13/2 T17/2 T21/2 T25/2

T29/2

2h

3h

4h

5h

T33/2

T13

T37/2 T41/2

T45/2

K=6
T23

Figure 19: The singularitie Aksing for k = 6 projected on the (~e3,~e4) plane, that is Y6
sing

Step 4k: deforming to a constant map.

In this last step, we define the map Gk
ord and the strip Λ4k

fin = [Tk
4k−1,T

k
4k] ≡ Tk

4k−1+40]. We

deform that that purpose the map Gk
ord(·,Tk

4k−1) which is Lipschitz and has trivial homotopy
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class to a constant map in Lipschitz way invoking Proposition 4.1 with R = 20, take as map
w = wk the restriction of Gk

ord(·,Tk
4k−1) to the cube [−20, 20]3: This yields aLipschitz map

W = W k defined on [−20, 20]4 satisfying the four properties listed in Proposition 4.1. We set

Gk
ord(x,Tk

4k−1 + s) = W k(x, s− 20) for x ∈ R3 and s ∈ [0, 40]. (4.124)

It follows that Gk
ord is Lipschitz on Λ4k, continuous near R3 × Tk

4k−1 and such that

Gk
ord(x, s) = Psouth on (R3 \ [−20, 20]3)× [Tk

4k−1,T
k
4k] ∪ R3 × {Tk

4k}. (4.125)

The fourth property in Proposition 4.1 yields the energy estimate

E3(Gk
ord,Λ

4k) ≤ 40CextE3(Gk
ord(·,Tk

4k−1,R3)

≤ 40CextKspgk
3.

(4.126)

Finally, we notice that Tk
4k = Tk

4k−1 + 40 = Tk
1 + (4k− 1)h+ 40 = 5 + 3h/8 + 4−h+ 40 ≤ 50,

so that we set

Gk
ord(x) ≡ Psouth for x ∈ Λk4k+1 = R3 × [Tk

4k,T
k
4k+1 = 50], (4.127)

This definition yields a continuous map on a open neighborhood of Λk4k+1.

Proof of Proposition 4 completed.

First properties of Gk
ord: Proof of Property (44). So far, we have constructed the map Gk

ord

on each of the strips Λkn, for n = 1, . . . , 4k + 1 by formulae (4.66), (4.74), (4.82), (4.84),
(4.95), (4.101), (4.110), (4.117), (4.124) and (4.127). We notice that the definitions coincide
on the intersections R3×{Tk

n} and are Lipschitz in an open neighborhood of these time slices.
Moreover, for each n, the restriction of the map Gk

ord to Λkn belongs to W 1,3(Λkn,S2) with
only a finite number of point singularities. Hence, we have defined the map Gk

ord on the

union Λ =
4k
∪
p=1

Λkp = R3 × [0, 50] in such a way that Gk
ord : Λ → S2 is Lipschitz, having only

a finite number of singularities. As a result of the definitions (4.66), (4.74), (4.82), (4.84),
(4.95), (4.101), (4.110), (4.117), (4.124) and (4.127) we notice that Gk

ord(x, 0) = Skpag(x) for
x ∈ R3 and

Gk
ord(x) = Psouth for x = (x, x4) with |x| ≥ 30 or x4 = 50.

This established property (44).

Energy estimate. Adding the energy estimates (4.68), (4.75), (4.91), (4.96), (4.105), (4.111),
(4.119), (4.122) and (4.126), we are led to the estimate

E3(Gk
ord,Λ) ≤ K0

defk
3 + 2kKdefk

2 +

[
k∑
`=1

`

]
Kboxk+

+ 2kKspgk
2 +

[
2k−1∑
`=k+1

(2k − `)

]
Kboxk + 40CextKspgk

3.

Since
k∑̀
=1

` = k(k+1)
2 and

2k−1∑
`=k+1

(2k − `) = k(k−1)
2 , we obtain

E3(Gk
ord,Λ) ≤

(
K0

def + 2Kdef + 2Kspg + Kbox + 40CextKspg

)
k3 ≡ Kgordk

3.
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This establishes (45).

Properties of the singularities of Gk
ord. The singularities of Gk

ord are those already described
on each the strips Λk2`+1, since the map is continuous near there intersections. Set

Aksing =
2k−1
∪
`=1

Ak` = �2
k(h)×

2k−1
∪
`=1

Jk` × {Tk
2`+3/2} ⊂ Λ

= �2
k(h)× Yksing with Yksing =

2k−1
∪
`=1

Jk` × {2`h+ δh} ⊂ [0, 1]× [0, 50],

where we have set δh = τh+h/2 = 5−h/8. It follows from our discussion that Gk
ord ∈ C0(Λ\

Aksing, S2), each singularity having Hopf invariant equal to +2. The set Yksing is represented

in Figure 19 for k = 6. We show next, as the figure shows, that the points in Yksing are the
vertices of a grid modelled on a parallelogram. We turn next to the proof of (47).

Proof of (47). We decompose Yksing as Yksing = Yk,up
sing ∪ Yk,down

sing , where
Yk,up

sing = h
k
∪
`=1

k
∪

j=k−`+1
{j, 2`}+ (0, δh) = h

k
∪
`=1

k
∪

j=k−`+1
{j, 2(`− k)}+ (0, 7− h/8) and

Yk,down
sing = h

2k−1
∪

`=k+1

2k−`
∪
j=1
{j, 2(`− k)}+ (0, 7− h/8).

For the first set, we introduce the new indices `′ and j′ such that j = j′ and ` − k = j′ − `′
so that

Yk,up
sing = Φk

(
h

k
∪
`′=1

k
∪

j′=`′
{j′, `′}

)
and Yk,up

sing = Φk

(
h

k
∪
`′=1

`′−1
∪
j′=1
{j′, `′}

)
.

which yields the desired result (47) and completes the proof of Proposition 4.

5 Proof of the main results

5.1 Proof of Proposition 2

5.1.1 Constructing the sequence (vk)k∈N

The maps vk are directly deduced from the maps Gk
ord performing some elementary trans-

formations. Our main aim will be to transform the set of singularities given by (49), which
are the nodes of a distorted grid into the nodes of a four dimensional orthonormal regular
grid.

Transforming singularities into an orthonormal regular grid: The map G̃k
ord. The map Gk

ord

is only defined on the strip Λ defined in (44). Given an integer k ∈ N?, we first extend the
map Gk

ord to the whole space R3 × R setting{
Gk

ord(x, s) = Psouth for x ∈ R3 and s ≥ 30,

Gk
ord(x, s) = Skpag(x) for x ∈ R3 and s ≤ 0.

(5.1)

It follows from this definition that

Gk
ord(x) = Psouth for x ∈ R4 \V where V ≡ {(x, s) ∈ R3×R s.t. |x| ≤ 40 and s ≤ 50}. (5.2)
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In view of the results in Proposition 4 and Proposition 3, we have the energy estimate, for
any a ≥ 0

E3(Gk
ord,R3 × [−a, 0]) ≤ (KGord + aKspg) k3. (5.3)

We introduce the map G̃k
ord defined on R3 × R+ by

G̃k
ord(x) = Gk

ord ◦Φk(x) = Gk
ord (Φk(x)) for x ∈ R3 × [0,+∞).

It follows from property (47) that G̃k
ord ∈ C0(R4 \ �4

k(h), S2) that is the set of singularities
of G̃k

ord is �4
k(h), each of the k4 singularities having Hopf invariant equal to +2. We claim

that {
G̃k

ord(x) = Psouth for |x| ≥ 400 and

E3(G̃k
ord,R3 × [0,+∞)) ≤ 5

√
5 (KGord + 131Kspg) k3.

(5.4)

Indeed, consider the set

Ωk ≡ Φk(R3 × R+) = {(x1, x2, x3,−2x3 + x4 + 7− h/8) with x4 ≥ 0}

and the intersection Ωk ∩ V. If y ∈ Ωk ∩ V, then it is of the form
y = (x1, x2, x3,− 2x3 + x4 + 7− h

8
) with x4 ≥ 0, |xi| ≤ 40, for i = 1, 2, 3

and − 2x3 + x4 + 7− h

8
≤ 50.

Hence we deduce that 0 ≤ x4 ≤ 51 + 2x3 ≤ 51 + 2× 40 = 131, so that

Ωk ∩ V ⊂ B4(131).

The inverse Φ−1
k of Φk, can be computed explicitely as

Φ−1
k (x) = (x1, x2, x3, 2x3 + x4) + (0,−7 +

h

8
), for x = (x1, x2, x3, x4)

so that Φ−1
k (B4(131)) ⊂ B4(3×131+7) = B4(400), and hence Φ−1

k (Ωk∩V) ⊂ B4(400), which
establishes the the first assertion of the claim (5.4). For the second assertion in (5.4), we
have, by the chain rule

|∇4G̃
k
ord(x)|2 ≤ 5|∇4G̃

k
ord(Φk(x))|2,

which yields the second assertions thanks to change of variables.

Extending G̃k
ord by symmetry. The extend the map G̃k

ord by symmetry to the whole on R4,
setting

G̃k
ord(x, s) = G̃k

ord(x,−s) for x ∈ R3 and s ≤ 0. (5.5)

It follows from this construction and the trace theorem that this extension in in W 1,3
loc (R4, S2)

and in C0(R4 \ Ãksing, S2), where the set Ãksing is given by

Ãksing = �4
k(h) ∪ Ssym

(
�4
k(h)

)
,

where Ssym corresponds to the symmetry defined in (51). It follws from (5.4) that on{
G̃k

ord(x) = Psouth for |x| ≥ 400 and

E3(G̃k
ord,R4) ≤ 10

√
5 (KGord + 131Kspg) k3.

(5.6)
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Rescaling G̃k
ord. We now are in position to define the map vk as

vk(x) = G̃k
ord(400 x) for x ∈ R4.

It follows then from (5.6) and scaling laws that
vk(x) = Psouth for |x| ≥ 1 and

E3(vk,R4) ≤ 1

8
√

5
(KGord + 131Kspg) k3.

(5.7)

Moreover vk ∈ C0(R4 \Σsing, S2) where Σsing is described in (50). In order to prove (29), we
will rely on some additional notion related to branched transportation which are exposed in
Appendix A, in particular the branched connection to the boundary Lα

brbd, with the exponent
α equal to the critical exponent in dimension 4, namely α4 = 3

4 . As a direct is a direct
consequence of Proposition A.1 of the Appendix, we have:

Proposition 5.1. We have the lower bound, for some universal constant C > 0

Lα4
brbd(�4

k(hscal), ∂([0,
1

400
]3) ≥ Ck3 log k, for any k ∈ N∗.

5.1.2 Proof of Proposition 2 completed

The only part of proposition 2 which has to be established is (29). For that purpose, we
invoke the relationship between the functionals Lα

branch and Lα4
brbd presented in Lemma A.11,

choosing P = {1} and Ω1 = [0, 1/400]4. Since all singularities in �4
k(hscal) have the same

charge equal to +2, the conclusion applies showing that

Lα4
branch(vk) ≥ Lα4

brbd(�4
k(hscal), [0, ∂([0,

1

400
]4]) ≥ Ck3 log k, (5.8)

where we have used the result of Proposition 5.1 for the last inequality. On the other hand,
combining (16) and (15) with the respective definitions (26) and (A.61) of Lbranch and Lα4

branch

respectively, we are led, for general singularities (Pi, Qj) to the inequality

Lbranch(Pi, Qj) ≥ CνL
α4
branch(Pi, Qj), (5.9)

where Cν > 0 is the constant introduced in (15). Inequality (29) then follows, combining
(5.8) and (5.9). The proof of Proposition 2 is hence complete.

5.2 Proof of Theorem 4

5.2.1 Sequences of radii and multiplicities

The following elementary observation will be used in our proof:

Lemma 5.1. There exists a sequence of radii (ri)i∈N and a sequence of integers (ki)i∈N such
that the following properties are satisfied∑

i∈N
ri =

1

8
,
∑
i∈N

rik
3
i < +∞ and

∑
i∈N

ri k3
i log (ki) = +∞ (5.10)

We may assume furthermore that
3ri+1 ≥ ri. (5.11)
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Proof. Consider first the sequences (r̃i)i∈N and (k̃i)i∈N given for i ∈ N \ {0, 1} by

r̃i =
1

i4(log i)2
and ki = i, so that

+∞∑
i=2

r̃i =
+∞∑
i=2

1

i4(log i)2
< +∞,

+∞∑
i=2

r̃i k3
i =

+∞∑
i=2

1

i (log i)2
< +∞, whereas

+∞∑
i=2

r̃i k3
i log(ki) =

+∞∑
i=2

1

i (log i)
= +∞.

We then choose arbitrary values for i = 0 and i = 1 and finally set ri = cri, where the positive

constant c is defined so that the first condition holds, that is satisfies c−1 = 8
+∞∑
i=0

r̃i.

5.2.2 Defining U gluing copies of the vk’s

We introduce the set of points {Mi}i∈N in R4 defined by

Mi = 4

 i∑
j=0

rj

~e1 where ~e1 = (1, 0, 0, 0), for i ∈ N, (5.12)

so that the points Mi are all on the segment joining the origin to the point

M? =
1

2
~e1 = (

1

2
, 0, . . . , 0),

converging thanks to the first identity in (5.10), to the point M? as i → +∞. We consider
the collection of disjoint balls (Bi)i∈N defined by

Bi ≡ B4(Mi, ri) for i ∈ N, so that dist(Bi, Bj) ≥ ri + rj if i 6= j,

The last assertion being a consequence of (5.11). We then define the map U on B4(1) as

U(x) = vki

(
x−Mi

ri

)
if x ∈ Bi, U(x) = Psouth if x ∈ B4(1) \ ∪

i∈N
Bi. (5.13)

We have in particular U = Psouth on the boundary ∂B(1). Likewise we define a sequence of
maps (Ui)i∈N setting for i ∈ N

Ui(x) = U(x) if x ∈
i
∪
j=0
Bj, Ui = Psouth otherwise. (5.14)

Since the map vk belongs to Rct(B4,S2) for any k ∈ N, it follows that for any i ∈ N, the
map Ui belongs to Rct(B4, S2). Notice that the map U has an infinite countable number
of singularities, whose only accumulation point is M?. We notice also that U = Ui on any
compact subset K of B̄4 \ {M?} provided i is choosen sufficiently large.
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Lemma 5.2. The map U belongs to W 1,3
ct (B4,S2). Moreover

Ui → U in W 1,3(B4,R3) strongly as i→ +∞. (5.15)

Proof. It follows from the definition (5.13), the scaling properties (4) of the energy E3 and
inequality (28) of Proposition 2 that

E3(U ,B4) =
∑
i∈N

E3(U , Bi) =
∑
i∈N

riE3(vki
) ≤ C1

∑
i∈N

rik
3
i < +∞

and likewise for i ∈ N, we have the estimate

E3 (U − Ui,B4) =

+∞∑
j=i+1

rjE3 (vkj
) ≤

+∞∑
j=i+1

rjk
3
j → 0 as j → +∞,

which establishes the assertions of the Lemma.

We turn to the description of the singular set Σi
sing = Σi

ing,+ ∪ Σi
ing,− of Ui, where Σi

ing,+

(resp. Σi
ing,−) denotes the set of singularities of positive (resp. negative) topological charges,

actually all equal to +2 (resp −2). We may write

Σi
ing,+ =

i
∪
j=0

(
�mkj

(
rjhj

400
) + Mj

)
and Σi

ing,− =
i
∪
j=0

(
Ssym

(
�mkj

rjhj

400

)
+ Mj

)
. (5.16)

We have hence

Σi
ing,− ∩

([
0,

rjhj

400

]4

+ Mj

)
= ∅,

so that arguing as in Proposition 5.1 and using the scaling properties of the branched trans-
portation functional, we derive that, for any j ∈ N∗, we have

Lα4
brbd(Σi

ing,+, ∂

([
0,

rjhj

400

]4

+ Mj

)
) ≥ C rj k

3
j log kj. (5.17)

5.2.3 Proof of theorem 4 completed

In order to prove Theorem 4 we will invoke a variant of (24), which applies to maps which
are not necessarily constant on the boundary.

A variant of (24). If Ω is a smooth domain in R4, w is a map in R(Ω, S2) and (ϕn)n∈N∗ is
a sequence of maps in C∞(Ω̄,S2) such that ϕn ⇀ w in W 1,3(Ω) as n → +∞, then, we have
the lower bound

lim inf
n→+∞

E3(ϕn) ≥ E3(w) + Lbrbd(w, ∂Ω). (5.18)

The functional Lbrbd appearing on the r.h.s of (5.18) is defined, for an arbitrary w ∈ R(Ω, S2)
with ±1 singularities as

Lbrbd(w, ∂Ω) = inf{W2(G), G ∈ G({Pi}i∈J+ , {Q}j∈J− , ∂Ω)},
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where {Pi}i∈J+ denotes set of +1 singularities of w, {Qi}i∈J− the set of negative singularities
and G({Pi}i∈J+ , {Qj}j∈J− , ∂Ω) represents the set of graphs satisfying conditions (A.1) and
(??) in the Appendix. Notice that, in view of (15) and (16), we have, similar to (5.9)

CνL
α4
brbd(Pi, Qj) ≤ Lbrbd(Pi, Qj). (5.19)

Arguing by contradiction. We argue by contradiction and assume that there exist a sequence
(vn)n∈N of maps in C∞(B4,S2) such that

vn ⇀ U weakly in W 1,p(B4,S2) as n→ +∞, (5.20)

so that in particular, by the Banach-Steinhaus Theorem

γ ≡ lim sup
n→+∞

E3 (vn,B4) < +∞. (5.21)

Weak convergence to Ui on the sets Ωi. For given i ∈ N∗, we consider the domain

Ωi = B4 \ B4(M?, %i) where %i = 4

(
+∞∑
j=i+1

rj

)
+ ri+1 → 0 as i→ +∞,

so that, in particular B(Mj, rj) ⊂ Ωi if j ≤ i and Ωi ∩ B(Mj, rj) = ∅ if j > i. Let vin be the
restriction of vn to the set Ωi. It follows from (5.20) that

vin ⇀ Ui weakly in W 1,3(Ωi,S2) as n→ +∞,

so that by (5.18) and (5.21) we have for any i ∈ N∗

γ ≥ lim inf
n→+∞

E3(vin) ≥ E3(U1) + Lbrbd(w, ∂Ω)

≥ CνL
α4
brbd(Σing,+,Σing,−, ∂Ωi) = C1L

α4
brbd

(
i
∪
j=1

Σj
ing,+,

i
∪
j=1

Σj
ing,−, ∂Ωj

)
.

(5.22)

The contradiction. In view of (5.17), we may apply Lemma A.11 of the Appendix to the
sets Bj

ox and assert that

Lα4
brbd

(
i
∪
j=1

Σj
ing,+

i
∪
j=1

Σj
ing,−, ∂Ωj

)
≥

i∑
j=1

Lα4
brbd(Σj

ing,+,

([
0,

rjhj

400

]4

+ Mj

)
))

≥ C
i∑

j=1

rj k
3
j log kj,

(5.23)

where we have invoked (5.17) for the last inequality. Combining (5.22) and (5.23) we obtain

C
+∞∑
j=1

rj k
3
j log kj ≤ γ, which contradicts property (5.10), and hence completes the proof of

Theorem 4.
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5.3 Proof of Theorem 3

The main additional arguments leading for the proof of Theorem 3 are not specific to the
sphere S2, so that we may consider a general a compact manifolf N . We will invoke the
folllowing:

Proposition 5.2. Let m0 ∈ N∗, and assume that there exists a map u in W 1,p
ct (Bm0 ,N )

which is not the weak limit of smooth maps between Bm0 and N . That given any integer
m ≥ m0 there exists a map v in W 1,p

ct (Bm,N ) which is not the weak limit of smooth maps
between Bm0 and N .

The proof relies on two constructions we present next.

5.3.1 Adding dimensions

Let m ∈ N∗ and consider a map u : Rm → R` such that u is constant equal to some value c0

outside the unit ball Bm. We construct a map I
m+1
cyl (u) from Rm+1 → R` constant equal to

c0 outside in the unit ball Bm+1 as follows. First, we consider the translated map uA defined
on Rm by

uA(x) = u(x−A) where A = (2, 0, . . . , 0),

so that uA is equal to c0 outside the ball Bm1 (A) ⊂ Bm3 (0), in particular in the region {x1 ≤ 1}.
We then introduce the map Tm+1(u) defined for (x1, x2, . . . , xm, xm+1) ∈ Rm+1 by

Tm+1(u)(x1, x2, . . . , xm, xm+1) = uA(r(x1, x2), x3, x4, . . . , xm+1) with r(x1, x2) =
√
x2

1 + x2
2.

The map Tm+1(u) possesses hence cylindrical symmetry around the m − 1 hypersurface
x1 = x2 = 0. Moreover, It follows from the properties of u that Tm+1(u) is equal to c0

outside the ball Bm+1(3) and actually also on in region {r(x1, x2) ≤ 1}, that is on the set
B2 × Rm−1. Since we wish to obtain maps which are constant outside the unit ball Bm+1(1)
we normalize Tm+1(u) and consider the map Icyl

m+1(u) given, for x ∈ Rm+1, by

Icyl
m+1(x) = Tm+1(u)(3x), (5.24)

so that Icyl
m+1(u) equals c0 outside B(1) and also

Icyl
m+1(u)(x) = c0 for x ∈ Am+1 ≡ B2

1/3 × Rm−1.

5.3.2 Restrictions to lower dimensional hyperplanes

For θ ∈ R, we consider the m-dimensional hyperplane Pmθ of Rm+1 defined by

Pmθ ≡ Vect {cos θ~e1 + sin θ~e2, ~e3, . . . , ~em+1}

and the half-hyperplane Pm,+θ defined by

Pm,+θ = {v ∈ Pmθ , v.(cos θ~e1 + sin θ~e2) ≥ 0}. (5.25)

Let 1 < p < +∞ and consider a map v ∈ W 1,p(Bm+1,R`). Its restriction to the intersection
of the half-hyperplane Pm,+θ with the ball Bm+1(1) is in view of the trace theorem a map
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in W
1− 1

p
,p

(Pm,+θ ∩ Bm+1). It yields a map Tm
r,θ(v) defined on the m-dimensional half-ball

Bm,+ = Bm ∩ {x1 ≥ 0} setting for (x1, . . . , xm) ∈ Bm,+

T
m
r,θ(v)(x1, . . . , xm) = v(x1 cos θ, x1 sin θ, x2, . . . , xm). (5.26)

Proposition 5.3. Let c0 ∈ R` be given and let U be given in W 1,p
ct (Bm+1,R`) such that

U = c0 on Am+1 and let (Wn)n∈N be a sequence converging weakly to U in W 1,p(Bm+1,R`).
Then, there exists a subsequence

(
wσ(n)

)
n∈N and a sequence of angles (θn)n∈N converging to

some limit θ? such that

T
m
r,θn(Wσ(n))(·) ⇀ T

m
r,θ?(U) weakly in W 1,p(Bm,+,R`) as n→ +∞,

Proof. Since U is constant on the Am+1, and since the sequence (wn)n∈N is bounded in
W 1,p(Bm+1,R`) we have by Banach-Steinhaus theorem, for some constant C > 0 independent
of n

C ≥
∫
Bm+1

|∇Wn|pdx =

∫ 2π

0

(∫
Pm,+θ ∩Bm+1

|∇Wn|p|xθ|

)
dθ with xθ = x · (cos θ~e1 + sin θ~e2)

≥ 1

2

(∫
Pm,+θ ∩Bm+1

|∇Wn|p
)

dθ.

We may hence invoke Fubini’s theorem to assert that given any n ∈ N, there exists some
angle θ̃n ∈ R such that ∫

Pm,+
θ̃n
∩Bm+1

|∇Wn|p ≤ 2C,

It follows that the sequence T
m
r,θn

(Wn) is bounded in W 1,p
ct (Bm,R`). By sequential weak

compactness, we may extract a subsequence (σ(n))n∈N such that θn = θ̃σ(n) converges to
some limit θ? and such that T

m
r,θ)

(Wσ(n)) converges some map v in W 1,p(Bm). Since by the

trace theorem we already now that the sequence converges to the map T
m
r,θ?

U , the conclusion
follows.

Notice that the two operatorsTm
r,θ and Icyl

m+1 we have introduce above are related through
the identity

T
m
r,θ ◦ Icyl

m+1(v) = w, for any v with compact support in Bm and any θ ∈ R, (5.27)

where the map w is defined by w(x) = v(3x−A), for any x ∈ Bm,+ ≡ Bm ∩ {x1 ≥ 0}.

5.4 Proof of Proposition 5.2

For m ∈ N∗, we define property P(m) as

P(m) : there exists um inW 1,p
ct (Bm,N ) which is not the weak limit of maps in C∞(Bm,N ).

We argue by induction and assume that P(m) holds. We claim that if P(m) holds, then

Icyl
m+1(u) is not the weak limit in W 1,p(Bm+1,N ) of maps in C∞(Bm+1,N ). (5.28)
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In order to proof the claim (5.28), we argue by contradiction on assume that there exists
a sequence of maps (Wn)n∈N in C∞(Bm+1,N ) converging weakly to U ≡ Icyl(u).We apply
Proposition 5.3 to the map U and the sequence (Wn)n∈N so that, for some subsequence

T
m
r,θn(Wσ(n))(·) ⇀ T

m
r,θ?(U) = T

m
r,θ? ◦ Icyl

m+1(v) = u(3 · −A)

weakly in W 1,p(Bm,+,R`) as n→ +∞, where we have invoked (5.27). It follow that the map
v = u(3 · −A) is the weak limit of smooth maps between Bm,+ and N . Since u(x) = v(x+A

3 )
on Bm the same holds for u, but this contradicts our assumption and proves the claim (5.28)
by contradiction.

It follows from (5.28) that, if P(m) holds then P(m+ 1) holds also, so that the proposition
is proved by induction.

5.4.1 Proof of Theorem 3 completed

In Theorem 3, we have constructed a map U in W 1,3
ct (B4,S2) which is not the weak limit of

smooth maps. Applying Proposition 5.2 with m0 = 4and N = S2), we deduce that for any
given integer m ≥ 4 there exists a map Vm in W 1,3

Cte(B
m,S2) which is not the weak limit of

maps in C∞(Bm, S2). This provides the proof of Theorem 3 in the special case M = Bm.
We extend next the result to an arbitrary smooth manifold M of dimension m. For that

purpose, we choose an arbitrary point A on M and glue a suitably adapted copy of Vm at
the point A. More precisely, we consider for ρ > 0 the geodesic ball Oρ(A) centered at A. If
ρ is choosen sufficiently small, then there exist a diffeomorphism Φ : Oρ(A) → Bm and we
may define a map W :M→ S2 setting

W(x) = V (Φ(x)) if x ∈ Oρ(A), W(x) = Psouth otherwise.

One may then verify that W belongs W 1,3(M, S2) and cannot be approximated weakly by
maps in C∞(M,S2), which completes the proof.

6 The lifting problem

6.1 Lifting the k-spaghetton map

Let k ∈ N∗ be given and consider on R3 an arbitrary lifting Uk of the spaghetton map Skpag,

that is a map Uk : R3 → SU(2) ' S3 such that Π ◦ Uk = Skpag. Although the relationship

between Uk and Skpag has a genuine nonlocal nature, as suggestion by the relation (2.10), the
peculiar geometry of the spaghetton map allows to recover some locality. This is expressed
in the next lower bound.

Proposition 6.1. Let Uk be any lipschitz lifting of the spaghetton map Skpag, that is such

that Skpag = Π ◦ Uk. Then, we have, for every 1 ≤ p < +∞ and for some constant Cp > 0
depending only on p ∫

Lk
|∇Uk|p ≥ Cpk2p. (6.1)

The result is mainly a consequence of the following:
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Lemma 6.1. Let a ∈ [0, 1] and let Ω ⊂ P1,2(a) ∩ {x2 ≥ 0} be a smooth regular convex set
such that Ω ⊃ [0, 1]× [8, 11]× {a} . We have∣∣∣∣∫

Ω
[Skpag]∗(ω

S2
)

∣∣∣∣ = 4πk2. (6.2)

If Uk is as in Proposition 6.1 and C = ∂Ω, then we have∫
C
|∇3Uk| ≥ 2πk2. (6.3)

Proof of Lemma 6.1. Each of the k2 fibers Lk,⊥i,q intersect the half-plane R × [0,+∞[×{a}
at a unique point Bi,q(a) (see Figures 6 and 7). we notice that the points Bi,q(0) belong
to the square [0, 1] × [9, 11] × {0}, a little trigonometry shows that more generally Bi,q(a)
belongs to the rectangle [0, 1] × [17/2, 11] × {a}. Our assumption on Ω hence implies that
a neighborhood of the points Bi,q(a) belongs to Ω. In view of the Pontryagin construction,
near each point Mi,j(a) , the restriction of the spaghetton map Skpag to the plane P1,2(a)
maps a small neighborhood of Mi,j(a) onto the sphere S2 yielding a contribution equal to the
area S2, that is 4π to the integral in (6.1). Adding the contributions of the k2 points, (6.2).

For the second assertion, we consider, as in subsection 2.2.1, the su(2) valued 1-form
Ak ≡ (Uk)−1 · dUk and its first component the real-valued 1-form Ak1 = Ak.σ1, so that the
curvature equation (2.5) leads to the relation

dAk1 = 2[Skpag]∗(ω
S2

). (6.4)

Integrating on Ω we deduce from (6.2) and (6.4) that |
∫
C
Ak1| = 2πk2. Since |∇3Uk| ≥ |Ak1|,

we conclusion (6.3) follows.

Proof of Proposition 6.1. Let a ∈ [0, 1]. We choose as sets Ω the disks

D(r, a) ≡ D2(r)× {0}+N0(a) where N0(a) = {(1/2, 19/2} × {a}

so that for r ≥ 2 we have D(r, a) ⊃ [0, 1] × [8, 11] × {a} and D(r, a) ⊂ R × [0,+∞[×{a} for
r ≤ 8. We may hence apply (6.3) to the circles C(r, a) ≡ ∂D(r, a) for 2 ≤ r ≤ 8. Integrating
the obtain estimate with respect to the variable r, we are led to∫

D(a,8)\D(a,2)
|∇3Uk|dx1 dx1 ≥ 12πk2 (6.5)

We set W = ∪
a∈[0,1]

(D(a, 8) \ D(a, 2)). Integrating (6.5) with respect to a, we are led to

∫
W
|∇3Uk|dx ≥ 12πk2,

which leads directly to (6.1) in the case p = 1. The general case is deduced using Hölder’s
inequality.
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Notice that, in view of Proposition 3, we have |∇Skpag| ≤ Cspgk so that, for any 1 ≤ p <
+∞, we have ∫

Lk
|∇Skpag|p ≤ Cpkp, (6.6)

which has to be compared with (6.1). The result in Lemma 6.1 carries over to some extend
to Sobolev maps.

Proposition 6.2. Let 2 ≤ p < +∞ and Uk ∈ W 1,p
loc (R3, S3) be such that Skpag = Π ◦ Uk.

Then (6.1) holds.

Proof. In the case p ≥ 3 smooth maps are dense inW 1,p
loc (R3,S3) and a standard approximation

result yields the result. In the case 2 ≤ p < 3 smooth maps are no longer dense, but one may
prove that, since the spaghetton map is smooth, any W 1,p lifting of the spaghetton map can
be approximated by smooth maps, yielding hence a similar proof.

Remark 6.1. In contrast, the result of Lemma 6.2 is no longer true for 1 ≤ p < 2. This
observation related to the fact that there are lifting W 1,p

loc (R3,S3) which are singular, for

instance on the fibers Lki,j and Lk,⊥i,j (see e.g. the corresponding results in [8]). Moreover, it
that case, it is difficult to give a meaning to (6.4).

6.2 Extension to higher dimensions

We add dimensions following the same scheme as in subsection 5.3.1. Since the spaghetton
map Skpag is constant outside the ball B4(20) we renormalize it first so to obtain a constant

map outside the unit ball, introducing the map S̃kpag(·) = Skpag (20 ·) , and then consider the
map

Sk,5pag = I
5
cyl(S̃

k
pag))

which is a lipschitz map on R5 which is constant outside the unit ball B5. More generally,
given m ≥ 5, we define iteratively the map Sk,mpag on the ball Bm as

Sk,mpag(x) = I
m
cyl(S

k,m−1
pag (20x)) for X ∈ Bm

with the convention Sk,3pag = S̃kpag. In view of (6.6), we obtain the bound∫
Bm
|∇Sk,mpag|p ≤ Ckp. (6.7)

Lemma 6.2. Let 2 ≤ p < +∞ and Um
k ∈ W

1,p
loc (Bm,S3) be such that Sk,mpag = Π ◦ Um

k . Then
we have ∫

Bm
|∇Um

k |p ≥ Cm
p k

2p. (6.8)

Proof. We establish inequality (6.8) arguing by induction on the dimension m. We first
observe that the lower bound (6.8) has already been established for m = 3 in Lemma 6.2
with the choice of constant Cm

p = Cp, where Cp refers to the constant in inequality (6.1).
We next assume by induction that inequality (6.8) has been established some integer m ≥ 3
and we are going to show that it then holds also in dimension m + 1. For that purpose,
let Um+1

k ∈ W 1,p
loc (Bm+1,S3) be an arbitrary lifting of the map Sk,m+1

pag . For θ ∈ [0, 2π), we
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consider the half-hyperplane Pm,+θ defined in (5.25) and the map Tm
r,θ(U

m+1
k ) defined on the

m-dimensional ball Bm thanks to (5.26). It follows from these definitions that(
Π ◦Tm

r,θ(U
m+1
k )

)
(x) = Sk,mpag(3x−A) for x ∈ Bm,+.

Hence, since by induction we assume that (6.8) holds in dimension m, we are led to the lower
bound ∫

Pm,+θ ∩Bm( 1
3
A, 1

3
)
|∇Um+1

k |p ≥ Cm
p

(
1

3

)m−p
k2p.

Integrating with respect to θ on the interval (0, 2π) we obtain∫
Bm+1

|∇Um+1
k |p ≥ Cm

p

2π

3

(
1

3

)m−p
k2p,

so that the property (6.8) is established for the dimension m+ 1 choosing the constant Cm+1
p

as Cm+1
p = 2π

(
1
3

)m+1−p
Cm
p .

6.3 Proof of Theorem 5

We first construct a map V = V0 in the special case M = Bm, imposing moreover the addi-
tional condition V0 = Psouth on ∂Bm.

6.3.1 Construction of V0 on ∂Bm.

Gluing copies of the Sk,mpag’s. We construct as in subsection 5.2.1 a sequence of radii (ri,p)i∈N∗

and a sequence of integers (ki,p)i∈N such that the following properties are satisfied:∑
i∈N

ri,p =
1

8
,
∑
i∈N

rm−pi,p kpi,p < +∞ and
∑
i∈N

rm−pi,p k2p
i,p = +∞. (6.9)

In the case m−p > 1, a possible choice for these sequences is given, for i ≥ 2, by ri =
c

i(log i)2

and ki =
[
i
m−p−1

p

]
, where c =

1

8

∑
i∈N

1

i(log i)2
. In the case 0 < m − p ≤ 1, we may choose

instead for i ≥ 2, ri = i
− 3
m−p and ki = i

1
p .

We define as above the set of points {Mi}i∈N in Bm by Mi = 4

(
i∑

j=0
ri

)
~e1 where ~e1 =

(1, 0, . . . , 0), for i ∈ N, so that these points converge to M? = 1
2~e1 as i → +∞, and consider

the collection of disjoint balls (Bi)i∈N defined by Bi ≡ Bm(Mi, ri) for i ∈ N. We then define
the map V0 on Bm as

V0(x) = Sk,mpag

(
x−Mi

ri

)
if x ∈ Bi, U(x) = Psouth if x ∈ B4(1) \ ∪

i∈N
Bi. (6.10)

so that V0 = Psouth on the boundary ∂Bm. Invoking the scaling properties (4) of the p-energy,
we are led to

Ep(V0,Bm) =
∑
i∈N

Ep(V0, Bi) =
∑
i∈N

rm−pi Ep(Ski
) ≤ C

∑
i∈N

rm−pi kpi < +∞,
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so that V0 belongs to W 1,p(Bm, S2). Next assume that there exists a lifting U0 of V0 in
W 1,p(Bm,S3) and consider its restriction Ui to the ball Bi. It follows from Lemma 6.2 and
the scaling properties of the energy that

Ep(U0, Bi) ≥ Cmp rm−pi k2p
i and hence Ep(U0,Bm) ≥ Cmp

∑
i∈N

rm−pi k2p
i = +∞,

leading to a contradiction, which established the proof of the theorem in the special case
considered in this subsection.

6.3.2 Proof of Theorem 5 completed for a general manifold M

The argument is somewhat parallel to the argument in subsection 5.4.1. With the same
notation, we set

V = V0 (Φ(x)) if x ∈ Oa,V = Psouth otherwise,

and we verify that the map V has the desired property.

Appendix: related notions on branched transportation

In this Appendix we recall and recast some aspects of branched transportation, an optimiza-
tion problem which is involved in a wide area of applications, including practical ones, for
instance leafs growth, or network design. We focus on questions directly related to our main
problem, trying to keep however this part completely self-contained.

Branched transportation appears when one seeks to optimize transportation costs when
the average cost decreases with density. Consider a finite set A of points belonging to the
closure of a bounded open domain Ω of Rm: We wish to connect (or transport) them to the
boundary ∂Ω. The total cost be to be minimized is the sum of the length of paths joining the
given points to the boundary multiplied by a density function ϕ, depending on the density
representing the number of points using the same portion of paths. For minimizers, such
paths are unions of segments, but possibly with varying densities. The intuitive idea is that
it is cheaper to share the same path than to travel alone, so that high densities are selected
by the minimization process. This induces branching points, i.e. points where segments join
to induce higher multiplicity. The density function appearing in our context, as well as in
a large of part of the literature, is given by the power law ϕ(d) = dα, with given parameter
0 < α < 1. Notice that ϕ is sublinear, (d1 + d2)α << dα1 + dα2 for large numbers. Our
aim is to describe the behavior of minimal branched transportation when the number of
points increases and ultimately goes to +∞. A special emphasis is put on the critical case
α = αm = 1−1/m. Our presentation closely follows [30, 31] and also the general presentation
in [4]: We perform however the necessary adaptation for connections to the boundary, which
have been less considered so far. As far as we are aware of, the main result of this Appendix,
presented in Theorem A.1, is new.
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A.1 Directed graphs connecting a finite set to the boundary

A.1.1 Directed graphs and charges

The theory of oriented graphs offers an appropriate framework to describe the object we have
in mind15. Such oriented graphs involve:

• Points. These points are of two kinds: The points in A we wish to connect to the
boundary, but also additional points, the branching points and points on the boundary.

• Oriented segments. They join the points above. Orientation is important, as well as
multiplicity which is a positive integer.

A general directed graphs G is defined by a finite set E(G) of oriented segments with
endpoints belonging to Ω: If e is a segment E(G), then we denote by e− and e+ the endpoints
of e, e− (resp e+) denoting the entrance point (resp the exit point), so that e = [e−, e+] and
∂e = {e−, e+}. We assume that for any segment e in the additional condition that

if [e−, e+] ∈ E(G) then [e+, e−] 6∈ E(G) (A.1)

holds, i.e. if an oriented segment belongs to the graph, the segment with opposite direction
does not. Segments may be repeated with multiplicity. If e ∈ E(G), we denote by d(e,G) ∈ N?
its multiplicity16 and simply write d(e) is this is not a source of confusion. We denote by
G(Ω) the set of graphs having the previous properties, namely

G(Ω) = {graphs G such that (A.1) holds} .

We denote by V (G) be set of vertex of the graph, i.e.

V (G) = ∪
e∈E(G)

∂e = ∪
e∈E(G)

{e−, e+} ⊂ Ω.

Given a vertex σ ∈ V (G), we set

E±(σ, G) = {e ∈ E(G), e∓ = a} and E(σ, G) = E+(σ, G) ∪ E−(σ, G),

so that E+(σ, G) (resp E−(σ, G)) represents the sets of segments of the graph G having σ as
entrance point (resp. as exit point) and E(σ, G) the subset of segments having σ as endpoint.
We set

]
(
E±(σ, G)

)
=

∑
e∈E±(σ,G)

d(e) ∈ N?

and introduce the notion of charge of a point σ ∈ V (G) as

Chg(σ, G) = ]
(
E+(σ, G)

)
− ]
(
E−(σ, G)

)
∈ Z. (A.2)

We consider the subsets V0(G), Vchg(G) and Vbd(G) of V (G) defined by
V0(G) = {σ ∈ V (G),Chg(σ, G) = 0}

Vchg(G) = {σ ∈ V (G),Chg(σ, G) 6= 0,σ ∈ V (G) \ (V0(G) ∪ ∂Ω)}
Vbd(G) = {σ ∈ V (G),σ ∈ ∂Ω}.

(A.3)

15we might also invoke the theory of 1-dimensional integer currents, which is however more abstract
16This is of course an essential feature for branched transportation
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A point σ ∈ V0(G) will be termed a pure branching point, a point in Vchg(G) a charged point
or simply a charge17. The set of graphs with only positive charges plays a distinguished role
in the later analysis. We set{

G+(Ω) = {G ∈ G(Ω), s.t. Chg(σ, G) ≥ 0 ∀σ ∈ G}
G0(Ω) = {G ∈ G(Ω), s.t. Chg(σ, G) = 0 ∀σ ∈ G} .

(A.4)

In several places, we will invoke the fact that, if G ∈ G+(Ω), then

E+(σ, G) 6= ∅ for any σ ∈ V (G). (A.5)

Indeed, by definition E(σ, G) contains at least one element, and since the charge is positive
there are at least as many elements in E+(σ, G) as in E−(σ, G).

A.1.2 Elementary operations on directed graphs

Gluing graphs. Let G1 and G2 be two graphs in G(Ω). We assume furthermore that

if e1 ∈ E(G1), e2 ∈ E(G2) then e1 = e2 or e1 ∩ e2 contains at most one point. (A.6)

If condition (A.6) is not met one may add new points and divide some segments in two so that
the transformed graph satisfy the condition. Given a segment e, we denote −e the segment
with opposite orientation, i.e. if e = [e−, e+], then −e ≡ [e+, e−]. We consider the following
subsets of E(G1) ∪ E(G2)

E0(G1, G2) ≡ {e ∈ G1 s.t. ,−e ∈ G2 with d(e,G1) = d(−e,G2)}
E+(G1, G2) ≡ {e ∈ G1 s.t. − e 6∈ G2} ∪ {e ∈ G2 s.t. − e 6∈ G1}
E±(G1, G2) ≡ {e ∈ G1 s.t. − e ∈ G2 with d(e,G1) > d(−e,G2)}
E∓(G1, G2) ≡ {e ∈ G2 s.t. − e ∈ G1 with d(e,G2) > d(−e,G1)}

We define the glued graph
G = G1 gG2 ∈ G(Ω), (A.7)

given by the set of its directed segments

E(G) ≡ E(G1) ∪ E(G2) \ E0(G1, G2)

= E+(G1, G2) ∪ E±(G1, G2) ∪ E∓(G1, G2).
(A.8)

with multiplicities given by
d(e,G) = d(e,G1) + d(e,G2) if e ∈ E+(G1, G2)

d(e,G) = d(e,G1)− d(e,G2) if e ∈ E±(G1, G2)

d(e,G) = d(e,G2)− d(e,G1) if e ∈ E∓(G1, G2),

(A.9)

where we have used the convention, for i = 1, 2, that d(e,Gi) = 0 if e 6∈ Gi. His vertex
set is then provided by the endpoints of the segments, so that V (G) ⊂ V (G1) ∪ V (G2). The
inclusion might be strict in the general case. We have:

17Notice that a charged point may however also be a branching point
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Proposition A.1. Let σ ∈ V (G). We have

Chg(σ, G1 gG2) = Chg(σ, G1) + Chg(σ, G2), (A.10)

with the convention, for i = 1, 2, that Chg(σ, Gi) = 0 if σ 6∈ Gi. If Gi ∈ G+(Ω) for i = 1, 2,
then we have

Vchg(G) = Vchg(G1) ∪ Vchg(G2). (A.11)

The result is a direct consequence of (A.9). We reader may check also that the gluing
operation g enjoies classical properties as commutativity and associativity. Finally we write

G = G1
?
gG2 (A.12)

in the case when, if a segment e belongs to E(G1), then the opposite segment does not belong
to G2, so that no cancellations for segments occur in the gluing process. The set E(G) is in
that case the union E(G1) ∪ E(G2), the multiplicities being sumed.

Subgraphs. Let G1 and G be two graphs in G(Ω). We say that G1 is a subgraph of G if
E(G1) ⊂ E(G) and if the multiplicities satisfy the conditions

d(e,G1) ≤ d(e,G) for e ∈ E(G1). (A.13)

If the two conditions above are satisfied, then we write G1 b G. We introduce next the
complement G2 of G1 with respect to G. We define the set of oriented segments of G2 as

E(G2) = [E(G) \ E(G1)] ∪ Ecomp(G1, G)

where Ecomp(G1, G) is defined as

Ecomp(G1, G) ≡ {e ∈ E(G1), d(e,G1) < d(e,G)},

and with multiplicities given by{
d(e,G2) = d(e,G) if e ∈ E(G) \ E(G1)

d(e,G2) = d(e,G)− d(e,G1) if e ∈ Ecomp(G1, G).
(A.14)

Notice that there are no segments in G1 and G2 with opposite orientations. It follows from
these definitions that

G = G1
?
gG2, so that we may write G2 = GrG1.

We observe that, in view of Proposition A.1 , if G and G1 belong to G+(Ω) and if furthermore

Chg(σ, G1) ≤ Chg(σ, G), for any σ ∈ Vchg(G) (A.15)

then G2 ∈ G+(Ω). If G1 and G are two graphs in G(Ω) such that G1 b G and such that

condition (A.15) is satifies, then we write G1
?
b G.

Restrictions of graphs to subdomains. Let Ω1 ⊂ Ω be a subdomain of Ω and assume for the
sake of simplicity (and also for further applications) that both Ω1 and Ω are polytopes. Let

85



G a graph in G(Ω). We define the restriction G1 of G to Ω1 as the graph such that its set of
segments is given by

E(G1) = {e ∩ Ω̄1, e ∈ E(G)}.

Its set of vertices is then given by

V (G1) = (V (G) ∩ Ω1) ∪
(
∪

e∈E(G)
∂
(
ē ∩ Ω̄1

))
.

We use the notation G1 = G Ω1. One may check that G1 ∈ G(Ω1) and also G1 ∈ G(Ω); If
we assume moreover that G ∈ G+(Ω), then we have G ∈ G+(Ω1), but it does not belong, in
general to G+(Ω), since negative charges may be created on ∂Ω1.

A.1.3 The single path property

The next property, termed the single path property, has been considered in [30, 31, 4].

Definition A.1. Let G ∈ G(Ω). We say that G possesses the single path property, if for
any vertex σ ∈ V (G) ∩ Ω there is at most one segment e in E(G), possibly repeated with
multiplicity, such that σ is the entrance point of e, that is E+(σ, G) is a singleton or empty.

In other words, if G possesses the single path property, then there might be several segments
ending at the same vertex, but at most one starting from it. This property possibly models
some intuitive features, as for instance in river networks. We denote by Gsp(Ω) (resp. G+

sp(Ω))
the set of all graphs in G(Ω) (resp. G+(Ω)) which possess the single path property. Notice
that if G ∈ G+(Ω), then E+(σ, G) can not be empty for σ ∈ Ω, so that it is necessarily a
singleton.

A.1.4 Threads, loops and bridges

A heuristic image of the notion of thread we describe next, is provided by a a curve for with
one end in given by a point in A, reaching to the boundary ∂Ω, and constructed using only
segments in E(G). This suggest the following definition.

Definition A.2. A directed graph G is said to be a polygonal curve in Ω, in short a PΩ-curve,
if and only if there exists an ordered collection B = (b1, . . . , bq) of q not necessary distinct
points in Ω̄ such that G satisfies V (G) = B, relation (A.1) holds, and

E(G) = {[bi, bi+1], with multiplicity 1, i = 1, . . . , q} and bq ∈ ∂Ω or bq = b1. (A.16)

Since the PΩ-curve G is completely determined by the orderet set B, we may set

G = Grp(B).

Notice that, even if in (A.16) each segment [bi, bi+1] appears with multiplicity one, the same
segment may appear possibly in a further part of the sequence, so that its final multiplicity
might be larger that one.

Definition A.3. Let G = Grp(B) be a PΩ-curve. We say that Grp(B) is

• a loop if either b1 = bq.
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• a bridge if b1 ∈ ∂Ω and bq ∈ ∂Ω.

• A thread emanating from a point p ∈ Ω if p = b1 and bq ∈ ∂Ω.

We denote by Thread(p,Ω) the set of all threads emanating from p. We notice that{
Vchg(Grp(B) = ∅ when Grp(B) is a loop or a bridge

Vchg(Grp(B)) = {a} with Chg(a) = 1 if Grp(B) is in Thread(p,Ω).
(A.17)

Notice that loops and bridges are elements in G0(Ω). We denote by Loop(Ω) the set of loops.
We say that a graph G has a loop if there exists a loop L such that L b G. In particular
a thread G = Grp(B) has a loop if there exists a subset formed of consecutive points in B
yielding a loop. Given a point p ∈ Ω we denote by

Thread(p,Ω) ⊂ Thread(p,Ω)

the set of all threads without loops emanating from p. It follows a a quite straightforward
way from the definitions above that the segments of a thread in Thread(p,Ω) have exactly
multiplicity one and that, if a thread has the single path property, then it has not loops. One
may moreover verify:

Lemma A.1. Let σ ∈ Ω and let T ∈ Thread(σ,Ω). There exists a finite family (Lj)j∈J of
loops such that

T = Tp
?
g

(
?
g
j∈J

Lj

)
with Tp ∈ Thread(p,Ω). (A.18)

Proof. We may write T = Grp(B) where B denotes an ordered set B = {b1 = σ, b2, . . . , bq},
with bq ∈ ∂Ω. If all points in B are distinct, then T ∈ Thread(σ,Ω) and there is nothing
to prove. Otherwise there are two points, say bi1 and bi2 with 1 ≤ i1 < i2 < bq which are
identical. Then we set L1 = Grp{bi1 , . . . , bi2 = bi1} and T̃1 = Grp{b1, . . . , bi1 , bi2+1, . . . , bq}.
We verify that

T = T̃1
?
gL1 with T̃1 ∈ Thread(p,Ω) and L1 is a loop.

If T̃1 has no loop, then we are done. Otherwise, we start the process again with T̃1. It stops
in a finite number of iterations, since the number of points is finite.

A.1.5 Subthreads and subloops

Consider a graph G in G+(Ω) and an ordered set B = (b1, . . . , bq) of elements of V (G).

Definition A.4. The PΩ-curve Grp(B) is said to be a maximal subcurve of G if Grp(B) b G
and if bi ∈ Ω for i = 1, . . . , bq−1 and

• either bq ∈ ∂Ω or

• either there does not exist any point bq+1 ∈ V (G) such that Grp(b1, . . . , bq, bq+1) b G.

Our next result readily follows from the definition:

Lemma A.2. Let G ∈ G+(Ω) and σ ∈ V (G). There exists an ordered set B = (b1, . . . , bq)
such that b1 = σ and such that Grp(B) is a maximal subcurve of G.
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Proof. We construct the maximal subcurve inductively. Since G ∈ G+(Ω), it follows from
(A.5) that E+(σ, G) is not empty, hence there exists some point b2 ∈ V (G) such that [σ, b2] ∈
E+(σ, G) and therefore Grp{σ, b2} b G. If b2 ∈ ∂Ω then B ≡ {σ, b2} is maximal and be are
done. Otherwise, we notice as above that E+(b2, G) is not empty so that there exists some
point b3 ∈ V (G) such that [b2, b3] ∈ E+(σ, G) and therefore Grp{σ, b2, b3} b G. If b3 ∈ ∂Ω
then B ≡ {σ, b2, b3} is maximal and we are done. Otherwise we go on, until we reach the
boundary or have no more segments available to go on.

Lemma A.3. Let G ∈ G+(Ω). A maximal subcurve Grp(B) of of G is either a thread
emanating from b1 or a maximal loop.

Proof. If bq ∈ ∂Ω, then Grp(B) is a thread emanating from σ and the statement is proved.
We consider next the case when bq ∈ Ω and show that in this case Grp(B) is a loop. To that
aim, we claim first that there exist some index i0 ∈ {1, . . . , q− 1} such that

bq = bi0 . (A.19)

Since G ∈ G+(Ω), it follows from (A.5) that the set E+(bq, G) contains at least one seg-
ment, say [b1, bq+1], where bq+1 ∈ V (G). if (A.19) were not true, then we would have
Grp(b1, . . . , bq, bq+1) b G leading to a contradiction. It remains to show that

i0 = 1. (A.20)

Assume by contradiction that (A.20) is not true and let k be the number of times the point bi0
appears in the ordered set B. Since it is both an exit and an entrance point for the segments
in E(Grp(B)) except for the segment [bq−1, bq] for which it it only an exit point, we deduce
that

E+(bi0 ,Grp(B)) = E−(bi0 ,Grp(B))− 1.

On the other hand, we deduce from (A.13) that

E−(bi0 ,Grp(B)) ≤ E−((bi0 , G) ≤ E+((bi0 , G).

so that E+(bi0 ,Grp(B)) ≤ E+((bi0 , G)− 1. Hence we may choose some point bq+1 such that
Grp(b1, . . . , bq, bq+1) b G, which leads is a contradiction with the definition of maximal sub-
curves, so that (A.20) is established. This finally show that Grp(B) is a loop in the case
considered.

Lemma A.4. Let B = (b1, . . . , bq) such that Grp(B) is a maximal subcurve of G. If Chg(b1) >
0 then Grp(B) is a thread emanating from b1.

Proof. We have to show that Grp(B) is not a loop, that is bq 6= b1. Assume by contradiction
that bq = b1. Arguing as in the proof of Lemma A.3, we obtain{

E+(bi0 ,Grp(B)) = E−(bi0 ,Grp(B)) and

E−(bi0 ,Grp(B)) ≤ E−((bi0 , G) = E+((bi0 , G)− Chg(σ, G)

so that E+(bi0 ,Grp(B)) ≤ E+((bi0 , G)− 1. Hence we may choose some point bq+1 such that
Grp(b1, . . . , bq, bq+1) b G, which leads to a contradiction.

Combining Lemmas A.1, A.2, A.3 and A.4, we deduce:

Corollary A.1. Let σ ∈ VchgG. There exists a thread Tσ ∈ T(σ,Ω) such that Tσ
?
b G.
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A.1.6 Decomposing graphs into threads and loops and bridges

Consider a graph G ∈ G+(Ω). Since V (G) is a finite set, we may write

Vchg(G) = {p1, . . . , p`c},

each point pi in the collection having multiplicity Mi ≡ Chg(p1, G) ∈ N∗. The following
result emphasizes the importance of threads in this context:

Proposition A.2. Let G ∈ G+(Ω). We may decompose the graph G as

G =
?
g

i∈{1,...,`c}

(
?
g

j∈{1,...,Mi}
Ti,j

)
?
gT0 with Ti,j ∈ Thread(pi,Ω) and T0 ∈ G0(Ω). (A.21)

If moreover G ∈ G+
sg(Ω), that is if G posssesses the single path property, then decomposition

(A.21) is unique and, for any i ∈ {1, . . . , `c}, we have

Ti,j = Ti,j′ for j and j′ in {1, . . . ,Mi}. (A.22)

Proof. We present first the construction of the subgraphs T1,1 and then proceed in an recur-
sive way.

Step 1: construction of T1,1. Since the point p1 has positive charge Mi with respect to G,
we may apply Corollary A.1 and choose T1,1 = Tp1 , so that define the graph

G1,1 = G \ T1,1, and hence G = G1,1
?
gT1,1 with G1 ∈ G+(Ω).

the total charge of G1 has now decreases by 1. More precisely, it follows from the rules (A.14)
and (A.17) for charges that for i = 2, . . . , `c, we have

Chg(pi, G1,1) = Chg(pi, G) for i = 2, . . . , `c and Chg(p1, G1,1) = Chg(p1, G)− 1,

in case p1 ∈ V (G1,1), which occurs in particular in p1 has multiplicity. In the case `c = 1
and M1 = 1, we deduce that G1,1 ∈ G0(Ω), so that setting T0 = G1,1, we obtain (A.21).
Otherwise, we proceed recursively.

Step 2: iterating the construction. We proceed as in step 1, but with G replaced
by G1. If M1 > 1, when invoke Corollary A.1 again to assert that there exists a thread
T̃1,2 ∈ Thread(p1,Ω) which is a subgraph of G1,1. We set G1,2 = G1,1 \ T1,2 so that we have

G1,1 = G1,2
?
gT1,1 and

Chg(pi, G1,2) = Chg(pi, G) for i = 2, . . . , `c and Chg(p1, G1) = Chg(p1, G)− 2,

If M1 = 2 and `c, then we are done, then we obtain (A.21) with T0 = G1,2. Otherwise, we pro-
ceed with G1,2 and construct iteratively the threads T̃1,3, . . . , T̃1,M1 , and then T̃2,1, . . . , T2,M2 ,
... T̃`c,1, . . . , T̃`c,M`c

. Setting T0 = G`c,M`c
we obtain formula (A.21).

Remark A.1. In (A.21), we may impose additionnally that Gthread has no loop.
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A.1.7 Prescribing charges and the Kirchhoff law

We are now in position to model connections of a given set to the boundary with possible
branching points . Consider a finite set A ⊂ Ω, with points possibly repeated with multiplicity
M(a) ∈ N?, so that ](A) =

∑
a∈A

M(a). We restrict our attention to graphsG ∈ G+(Ω) satisfying

the additional conditions

Vchg(G) = A and Chg(a,G) = M(a), ∀a ∈ A ∩ Ω. (A.23)

This is equivalent to Kirchhoff’s law{
]
(
E+(σ, G)

)
= ]

(
E−(σ, G)

)
+ M(a) for a ∈ A ∩ Ω ⊂ V (G)

]
(
E+(σ, G)

)
= ]

(
E−(σ, G)

)
for any σ ∈ V (G) ∩ Ω \A,

(A.24)

We introduce the class of graphs aimed to model connections of points in A to the boundary,
namely the set

G(A, ∂Ω) = {G ∈ G+(Ω) such that A ⊂ V (G) and (A.24) holds}. (A.25)

It follows that if G belongs to G(A, ∂Ω), then the points of A are the only ”source” points
of the graph inside Ω, with charge M(a), whereas all the other points have charge 0. The
simplest example G0 of an element in G(A, ∂Ω) when Ω is convex is provided by the graph
for which each element a in A is connected by a segment to an element of the boundary b
so that in this case V (G0) = ∪

a∈A
{a, b} and E(G) = ∪

a∈A
{[a, b]}. Notice that, going back to

(A.21), if G ∈ G(A, ∂Ω) then we have likewise

Gthread ≡
?
g

i∈{1,...,`c}

(
?
g

j∈{1,...,Mi}
Ti,j

)
∈ G(A, ∂Ω).

a1

a2

a3
a4

a5
a6

a7

a8

b1

b2

b3

1

2

3

4

Figure 20: Branched transport of the points ai.
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Remark A.2. In the definition above, we allowed points in A to be on the boundary ∂Ω:
This, perhaps unnatural aspect of the definition, is motivated by the fact that we will face
such a situation in Subsection A.4, and this convention simplifies somewhat the presentation.
However, one may verify that

G(A, ∂Ω) = G(A \ ∂Ω, ∂Ω). (A.26)

A.2 The functional and minimal branched connections to the boundary

Given 0 ≤ α ≤ 1, we consider the functional Wα defined on the set G(Ω)

Wα(G) =
∑

e∈E(G)

(d(e))αH1(e) for G ∈ G(Ω). (A.27)

and the non-negative quantity

Lα
brbd(A, ∂Ω) = inf {Wα(G), G ∈ G(A, ∂Ω)} , (A.28)

which we will term the branched connection of order α of the set A to the boundary ∂Ω.
Notice that the case α = 1 has already been introduced in [11] as minimal connection to the
boundary. Using, among other arguments, the fact that

Wα(G) ≤Wα(Gthread)

with equality if and only if T0 in (A.21) is empty, it can be proved, as in [30]:

Lemma A.5. The infimum in (A.28) is achieved by some graph G
α

opt ∈ G(A, ∂Ω). Moreover

G
α

opt has no loops and we may therefore write

G
α

opt = G =
?
g
a∈A

(
?
g

j∈{1,...,M(a)}
Ta,j

)
with Ta,j ∈ Thread(a,Ω). (A.29)

Moreover, we have d(e) ≤ ](A) for any e ∈ E(G
α

opt).

We notice that, as a straightforward consequence of follow, we have

Lα
brbd(A, ∂Ω) = Lα

brbd(A \ ∂Ω, ∂Ω). (A.30)

We next show, similar to results in [30, 31, 4]:

Lemma A.6. The graph G
α

opt possesses the single path property.

Proof. We argue by contradiction and assume that there exists some vertex σ0 ∈ V (G) and
two distinct vertices σ1 and σ2 in V (G) such that [σ0,σi] ∈ E(G) for i = 1, 2. In view of the
decomposition (A.29) we may find then two charges a1 and a2 in A such that, for i = 1, 2, the
segment [σ0,σi] belongs to E(Ti) where Ti is a thread of the form Tai,ji appearing in (A.29).
In the case the two threads have no vertex in common past the vertex σ0, we may write them
under the form

Ti = Grp(Bi) = Grp(B0,i)
?
gGrp(B1,i) (A.31)
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where B0,i = {ai, . . . ,σ0} and B1,i = {σ0,σi, bi,2, . . . , bi,`i}, with bi,`i ∈ ∂Ω, the vertex σ0

being the only common point of the sets B1,1 and B1,2. In the case the two threads have a
common vertex bcom past σ0 we write

Ti = Grp(Bi) = Grp(B0,i)
?
gGrp(B1,i)

?
gGrp(B2,i) (A.32)

where B0,i is as above and B1,i = {σ0,σi, bi,2, . . . , bi,`i = bcom}. In order to obtain a contra-
diction, we compare the energy of the graph G with the energy of two comparison graphs G̃1

and G̃2, which we construct next, and which corresponds, roughly speaking, to an interchange
of the threads T1 and T2. We first consider the modified threads

T̃1 = Grp(B0,1)
?
gGrp(B1,2)

?
gGrp(B2,1) and T̃2 = Grp(B0,2)

?
gGrp(B1,1)

?
gGrp(B2,2).

We then define
G̃1 = (G \ T1)

?
gT̃1 and G̃2 = (G \ T2)

?
gT̃2.

One verifies that, for i = 1, 2, G̃i ∈ G(A, ∂Ω). For i = 1, 2 and j = 0, . . . , `i − 1 we set
ei,j ≡ [bi,j , bi,j+1] where bi,0 = σ0 and bi,1 = σi, for i = 1, 2. We observe that{

d(e1,j , G̃1) = d1,j − 1 for j = 1, . . . , `1 and d(e2,j , G̃2) = d2,j + 1 for j = 1, . . . , `2

d(e1,j , G̃1) = di,j + 1 for j = 1, . . . , `1 and d(e1,j , G̃2) = d2,j − 1 for j = 1, . . . , `2,

where we have set di,j = d(ei,j , G). All other segments have the same density as for G. It
follows :

Wα(G̃1)−Wα(G) =

`1−1∑
j=0

[
(d1,j + 1)α − dα1,j

]
|e1,j |+

`2−1∑
j=0

[
(d2,j − 1)α − dα2,j

]
|e2,j | ≥ 0

Wα(G̃2)−Wα(G) =

`1−1∑
j=0

[
(d1,j − 1)α − dα1,j

]
|e1,j |+

`2−1∑
j=0

[
(d2,j + 1)α − dα2,j

]
|e2,j | ≥ 0.

Adding these inequalities we obtain

2∑
i=1

`i−1∑
j=0

[
(di,j + 1)α + (di,j − 1)α − 2dαi,j

]
≥ 0.

By concavity of the density function φ(d) = dα, we have however for d ≤ 1

(d+ 1)α + (d− 1)α − 2dα < 0

so that we have reached a contradiction which establishes the announced result.

Remark A.3. Using simple comparison arguments, one may easily prove that if A and B
are disjoint finite subsets of Ω then

Lα
brbd(A ∪B, ∂Ω) ≤ Lα

brbd(A, ∂Ω) + Lα
brbd(B, ∂Ω) (A.33)

and if 0 < α′ ≤ α on Ω ⊂ Ω′ then we have

Lα
brbd(A, ∂Ω) ≤ Lα′branch(A, ∂Ω) and Lα

brbd(A, ∂Ω) ≤ Lα
brbd(A, ∂Ω′). (A.34)
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Remark A.4. In our further analysis, we will be led to consider the case Ω is a polytope,
Ω̄ = Ω1 ∪Ω2, where Ω1 ∩Ω2 = ∅, Ω1 and Ω2 being polytopes. Given a graph G ∈ G+(Ω), one
verifies that

Wα(G) = Wα(G1) +Wα(G2), where Gp = G Ωp for p = 1, 2. (A.35)

Assume next that G ∈ G(A,Ω), where A ⊂ Ω is a finite set. We have, for p = 1, 2

Gp ∈ G(Ap,Ωp) so that Wα(Gp) ≥ Lα
brbd(Ap, ∂Ωp) where Gp = G Ωp. (A.36)

In the next subsection, we will be mainly concerned with the asymptotic behavior of
Lα

brbd(A, ∂Ω) as the number of elements in A tends to +∞, specially in the case they are
equi-distributed. Our methods rely on various decomposition, as presented next.

A.3 Decomposing the domain and the graphs

We discuss here issues related to partitions of the domain Ω, assuming it is a polytope. We
consider the case where the set Ω is decomposed as a finite union

Ω̄ = ∪
p∈P

Ω̄p, where the sets Ωp are disjoint polytopes i.e. Ωp ∩ Ω′p = ∅ for p 6= p′. (A.37)

Given a finite subset A of Ω which does not intersect the boundaries ∂Ωp, we have the lower
bound

Lα
brbd(A, ∂Ω) ≥

∑
p∈P

Lα
brbd(Ap, ∂Ωp) where Ap = Ω̄p ∩A. (A.38)

Indeed, if G is a graph in G(A, ∂Ω), then the restriction Gp to the subset Ωp belongs to
G(Ap, ∂Ωp). On the other hand, we have

Wα(G) =
∑
p∈P

Wα(Gp),

from which the conclusion (A.38) is deduced. We assume next that P = {1, 2}, that is
Ω̄ = Ω1 ∪ Ω2, where Ω1 ∩ Ω2 = ∅, Ω1 and Ω2 being polytopes. Our next result, is an
improvement of (A.38) for this case.

Proposition A.3. Assume that P = {1, 2}. Then, we have the lower bound

Lα
brbd(A, ∂Ω) ≥ Lα

brbd(A1, ∂Ω1) + Lα
brbd(A2, ∂Ω2) + κα

](A1)

](A)
(Nel)

αdist (Ω1, ∂Ω), (A.39)

where κα > 0 is some constant depending only on α and where Nel = ](A) denotes the number
of elements in A.

The previous result is obviously only of interest in the case dist (Ω1, ∂Ω) 6= 0, that is when
Ω̄1 ⊂ Ω. The proof involves concavity properties, in particular the next elementary result.

Lemma A.7. Let 0 < α ≤ 1, a ≥ 1 and b ≥ 1 be two given numbers. There exists some
universal constant κα > 0 depending only on α such that

(a+ b)α ≥ aα + κα inf{bα, b aα−1}.
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Proof of Lemma A.7. We distinguish three cases.

Case 1: b ≤ a

2
. We rely on the Taylor expansion of the expression (1 + s)α for s in (0, 1]

which leads to the concavity estimate

(1 + s)α ≥ 1 + αs+
1

2
α(α− 1)s2 ≥ 1 +

1

2
αs(1 + (α− 1)s) ≥ 1 +

1

2
αs(1− s). (A.40)

We apply (A.40) with s =
b

a
≤ 1

2
, so that 1− s ≥ 1

2
, leading to the inequality

(a+ b)α ≥ aα(1 +
1

4
αs) ≥ aα +

1

4
αb aα−1. (A.41)

Case 2: 8a ≥ b ≥ 1

2
a. In this case, we obtain invoking (A.40) once more

(a+ b)α ≥ (
3

2
a)α ≥ (1 +

1

8
α)aα ≥ aα +

1

8
α

(
b

8

)α

≥ aα + α

(
1

8

)α+1

bα. (A.42)

Case 3: 8a ≤ b. In this case we write

(a+ b)α ≥ bα ≥ 1

8α
bα + (1− 1

8α
)bα ≥ aα + (1− 1

8α
)bα. (A.43)

We set κα = inf{α/4,α (1/8)α+1 , (1− 1/8α)}. Combining (A.41), (A.42) and (A.43) in the
three cases, we complete the proof of the lemma.

We use Lemma A.7 in the case we have the additional assumption

a+ b ≤ Nber, (A.44)

where Nber � 1 is some large number. It follows from (A.44) that bα ≥ b(Nber)
α−1 and

aα−1 ≥ (Nber)
α−1 so that in this case, (A.41) leads to the inequality

(a+ b)α ≥ aα + κα b(Nber)
α−1, (A.45)

and hence the right hand side of (A.45) behaves linearily with respect to b.

Proof of Proposition A.3. As mentioned, we may assume that Ω̄1 ⊂ Ω, since otherwise the
result (A.39) is a immediate consequence of (A.38). In this situation we have Ω2 = Ω\Ω̄1. Let
G

α

opt be an optimal graph for Lα
brbd(A, ∂Ω). We amuse for simplicity that all multiplicities in

A are equal to one. We proceed first with a spatial decomposition of this graph, introducing
the subgraphs Gp = G Ωp. Going back to Remark A.4, we have

Wα(G) = Wα(G1) +Wα(G2) ≥ Lα
brbd(A1, ∂Ω1) +Wα(G2). (A.46)

To estimate Wα(G2), we rely on the next Lemma:
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Lemma A.8. We have the improved lower bound for Wα(G2)

Wα(G2) ≥ Lα
brbd(A2, ∂Ω2) + κα

](A1)

](A)
(Nel)

αdist (Ω1, ∂Ω). (A.47)

where α > 0 is the constant provided by Lemma A.7.

Combining Lemma (A.8) with inequality (A.46), we obtain inequality (A.39) which com-
pletes the proof of Proposition A.3.

Proof of Lemma A.8. In view of Lemma A.5 we may decompose G
α

opt as in (A.29), so that

we may decompose the graph G2 as G2 = G2,1
?
gG2,2 with for q = 1, 2

G2,q =

(
g

a∈Aq

Ta

)
Ω2, where the threads Ta ∈ Thread(a,Ω) satisfy (A.6).

We notice that G2,2 ∈ G(A2,Ω2), so that

Wα(G2,2) ≥ Lα
brbd(A2, ∂Ω2), (A.48)

whereas G2,1 ∈ G0(Ω2). Given a segment e of the graph G2, we denote by d2,2(e) (resp.
d1,2(e)) its multiplicity according to the graph G2,1 (resp G2,2), with the convention that
d2,1(e) = 0 (resp. d2,2(e) = 0) if the segment does not belong to E(G2,1) (resp. E(G2,2)). It
follows from the last statement in Lemma A.5 that

d(E,G) = d(E,G2) = d2,2(e) + d2,1(e) ≤ Nel, (A.49)

and the definition of Wα leads to the identity

Wα(G2) = Wα(G2,2 gG1,2) =
∑

e∈E(G2)

(d2,2(e) + d2,1(e))αH1(e).

We split the remaining of the proof into three steps.

Step 1. We have the lower bound

Wα(G2) = Wα(G2,2 gG2,1) ≥Wα(G2,2) + κα (Nel)
α−1

∑
e∈Ẽ(G2)

d2,1(e)H1(e), (A.50)

Proof of (A.50). We invoke next inequality (A.45) of Lemma A.7 with Nber = Nel, a = d2,2(e)
and b = d2,1(e). Since (A.49) yields (A.44) in the case considered, we obtain

Wα(G2,2 g G1,2) ≥
∑

e∈E(G2)

(
d2,2(e)α + καd2,1(e) (Nel)

α−1
)
H1(e)

≥
∑

e∈E(G̃2)

d2,2(e)αH1(e) + κα (Nel)
α−1

∑
e∈Ẽ(G2)

d2,1(e)H1(e).
(A.51)

Since, by definition, we have Wα(G2,2) =
∑

e∈E(G̃2)

d2,2(e)αH1(e), we obtain (A.50).
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Step 2. We have the lower bound∑
e∈E(G2)

d2,1(e)H1(e) ≥ ](A1)dist(Ω1, ∂Ω). (A.52)

Proof of (A.52). We take advantage of the linearity of the l.h.s with respect to multiplicity.
Indeed, we notice that ∑

e∈E(G2)

d2,1(e)H1(e) =
∑
a∈A1

H1(Ca ∩ Ω2),

where Ca denotes the polygonal curve related to the thread Ta. Since any thread Ta, joins a
point in Ω1 to the boundary ∂Ω, we have

H1(Ca ∩ Ω2) ≥ dist(Ω1, ∂Ω),

so that the conclusion (A.52) follows combining the two previous relations.

Step 3. Proof of Lemma A.8 completed. Combining the lower-bound (A.50), (A.52) with
(A.48), we derive the lower bound (A.47), which completes the proof of Lemma A.8.

A.4 Estimates for minimal branched connections

An important observation made18 in Xia is:

Proposition A.4. Assume that α ∈ (αm, 1], where αm = 1 − 1
m . Then we have, for some

constant C(Ω,α) depending only on Ω and α,

Lα
brbd(A, ∂Ω) ≤ C(Ω,α) (](A))α , (A.53)

The proof is obvious for α = 1. Indeed in this case, one may obtain an upper bound for
L1

branch(A, ∂Ω) estimating W1(G0) where G0 is constructed as in subsection A.1 connecting
each point in A to its nearest point on the boundary. We obtain

W1(G0) ≤ diam(Ω) (](A)) ,

yielding the result in the case considered. In the case αm ≤ α < 1, estimate (A.53) yields
an improvement on the growth in terms of ]A. This is achieved in [30] replacing the ele-
mentary comparison graph G0 by graphs having branching points obtained through a dyadic
decomposition.

Remark A.5. The result of Proposition (A.4) is optimal in the sense that one may find
simple distributions of points for which the asymtotic behavior in of order (](A))α,

18Here we refer to Proposition 3.1 in [30]. Although the statement there is slightly different from ours, the
reader may easily adapt the proof.
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A.5 The case of a uniform grid

We next focus on behavior of Lα
brbd in the special case Ω is the m-dimensional unit cube that

is Ω = (0, 1)m and the points of A are located on an uniform grid. We consider therefore for
an integer k in N∗ the distance h = 1

k and the set of points

Ak
m ≡ �k

m(h) =
{
akI ≡ h I = h (i1, i2, . . . , im), for I ∈ {1, . . . , k}m

}
,

so that ](Ak
m) = km. Notice that Ak

m ∩ ∂ ((0, 1)m) 6= ∅ (see Remark A.2). We set

Λα
m(k) = Lα

brbd(Ak
m, ∂(0, 1)m) and Λm,α

norm(k) ≡ k−mαΛα
m(k)

and are interested in the asymptotic behavior of the quantities Λα
m(k) and Λ

m,α
norm(k) as k→

+∞. We observe first that it follows from Proposition A.4 that, if α < αm then, we have the
upper bound

Λα
m(k) ≤ Cαkmα i.e. Λm,α

norm(k) ≤ Cα, (A.54)

where the constant Cα > 0 does not depend on k. In the critical case α = αm, the upper
bound (A.54) no longer holds as our next result shows.

Theorem A.1. There exists some constant Cm > 0 such that for all k ∈ N∗, we have the
lower bound

Λαm
m (k) ≥ Cmkmαm log k = Cmkm−1 log k,

that is
Λm,αm

norm (k) ≥ Cm log k.

Remark A.6. The fact that the quantity Λ
m,αm
norm (k) = k1−mΛαm

m (k) does not remain bounded
as k→ +∞ is related to and may also presumably be deduced from the fact that the Lebesgue
measure is not irrigible for the critical value α = αm, a result proved in [12] (see also [4]).

The proof of Theorem A.1 will rely on several preliminary results we present first, starting
with elementary scaling laws. Let q ∈ N∗ be given, and consider for k ∈ N the set

1

q
Ak
m = Aqk

m ∩ [0,
1

q
]m = �k

m(
h

q
) =

{
akI ≡

1

qk
I, I ∈ {1, . . . , k}m

}
,

so that 1
qAk

m contains km elements. The scaling law writes as

Lα
brbd

(
1

q
Ak
m, ∂

(
[0,

1

q
]m
))

= q−1Lα
brbd

(
Ak
m, ∂ ([0, 1]m)

)
= q−1Λα

m(k). (A.55)

The main ingredient in the proof of Theorem A.1 is a consequence of Proposition A.3:

Lemma A.9. Let q ∈ N∗ be given. There exists some constant Cα
q > 0 such that

Λm,α
norm(q k) ≥ qm(αm−α) Λm,α

norm(k) + Cα
q , for any k ∈ N∗.
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Proof. we consider the set Aqk
m and decompose the domain Ω = [0, 1]m as an union of cubes

QJ with J ≡ (j1, j2, . . . , jm) ∈ J ≡ {0, . . . , q− 1}m and

QJ =
1

q
J + (0,

1

q
)m =

1

q
(j1, j2, . . . , jm) + (0,

1

q
)m,

so that QJ ∩QJ′ 6= ∅ if J 6= J′ and [0, 1]m = ∪
J∈J

Q̄J. We set

AJ ≡ Aqk
m ∩QJ, so that Ap =

1

q
J +

1

q
Ak
m.

It follows from the scaling law (A.55) and translation invariance that

Lα
brbd(AJ, ∂QJ) = q−1Λα

m(k) for J ∈ J. (A.56)

We next single out a cube QJ0 which is far from the boundary. For that purpose, we consider

the integer q0 ≡
[q

2

]
, the multi-index J0 = (q0, q0, . . . , q0) and the sets

Ω1 = QJ0 and Ω2 = ∪
J∈J\{J0}

QJ so that dist(Ω1, ∂Ω) ≥ 1

4
for q ≥ 3.

Applying inequality (A.39) of Proposition A.53, we are led to

Λα
m(qk) = Lα

brbd(Aqk
m , ∂(0, 1)m) ≥Lα

brbd(AJ0 , ∂QJ0) + Lα
brbd(Ω2 ∩Aqk

m , ∂(0, 1)m)

+
1

4
καkmαqm(α−1).

(A.57)

We deduce from inequality (A.38) and (A.55) that

Lα
brbd(Ω2 ∩Aqk

m , ∂(0, 1)m) ≥
∑

J∈J\{J0}

Lα
brbd(AJ, ∂QJ) = [qm − 1] q−1Λα

m(k). (A.58)

Combining (A.57), (A.58) and (A.55) again for J = J0, we are led to the lower bound

Λα
m(qk) ≥ qm−1Λα

m(k) +
1

4
καkmαqm(α−1).

Multiplying both sides by (qk)−mα, we obtain the desired result with Cα
q = 1

4καq−1.

Lemma A.10. We have for any integer 1 ≤ k′ ≤ k

Λα
m(k′) ≤ k

k′
Λα
m(k) and hence Λm,α

norm(k′) ≤
(

k

k′

)mα+1

Λm,α
norm(k).

Proof. consider the cube Q′k = (0, k′

k )m ⊂ (0, 1)m and the set A′ = Ak
m ∩Q′k. It follows from

inequality (A.38) that

Lα
brbd(A′, ∂Q′k) ≤ Lα

brbd(Ak
m, ∂(0, 1)m) = Λα

m(k),

whereas the scaling property yields

Lα
brbd(A′, ∂Q′k) =

k

k′
Λα
m(k′).

The conclusion follows combining the previous inequalities.
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Proof of Theorem A.1 completed. In the special case α = αm, the exponent of q in the r.h.s
of the inequality of Lemma A.9 vanishes, so that we obtain

Λm,αm
norm (q k) ≥ Λm,αm

norm (k) + Cαm
q , for any integer q ≥ 3.

Iterating this lower bound, we obtain, for any any integer ` > 0, to the lower bound

Λm,αm
norm (q`) ≥ Cαm

q `. (A.59)

On the other hand, it follows from Lemma A.10 that for any q` ≤ k ≤ q`+1 we have

Λm,αm
norm (k) ≥ q−m Λm,αm

norm (q`). (A.60)

so that, combining with (A.59) we deduce that, for any k ∈ N∗, we obtain the inequality

Λm,αm
norm (k) ≥ q−mCαm

q

[
log k

log q

]
,

which leads immediately to the conclusion, fixing the value of q for instance q = 5.

Remark A.7. For α < αm the same type of argument show that

Λm,α
norm(k)→ +∞ as k→ +∞.

A.6 Relating Lα
brbd and Lα

branch

We introduce here the possibility of having points with negative charges, and consider as in
the introduction a collection of points (Pi)i∈J+ in Ω with positive charge +1, a collection
of points (Nj)j∈J− in Ω, with negative charge −1. We define the set G(Pi, Ni,Ω) of graph
satisfying (

∪
i∈J+
{Ni}

)
∪
(
∪

j∈J−
{Nj}

)
⊂ V (G) ⊂ Ω̄.

and with (A.23) replaced by a modified version including the possibility of having negative
charges. For 0 ≤ α ≤ 1 we set

Lα
brbd(Pi, Ni, ∂Ω) = inf

{
Wα(G), G ∈ G

(
{Pi}i∈J+ , {Nj}j∈J− ,Ω

)}
, (A.61)

where the functional Wα(G) is the weighted length of the graph connection defined by

Wα(G) =
∑

e∈E(G)

(d(e))αH1(e) for G ∈ G ({Pi}i∈J , {Ni}i∈J ,Ω) .

Next assume that we are given a family (Ωp)p∈P of disjoint domains in Rm, that is satisfying
Ωp ∩ Ωp′ = ∅ if p 6= p′. We assume moreover that

∪
i∈J−
{Ni} ∩ Ωp = ∅ and set Ap = {Pi}i∈J ∩ Ωp. (A.62)

Lemma A.11. If (A.62) is satisfied, then we have the inequality

Lα
brbd (Pi, Nj ,Ω) ≥

∑
p∈P

Lα
brbd(Ap, ∂Ωp).
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Proof. Let G be a graph in G ({Pi}i∈J+ , {Ni}i∈J− ,Ω) and set Gp = G ∩ Ωp. Since there are
no negative charges in Ωp, It turns out that Gp ∈ G(Ap, ∂Ωp), so that

Wα(Gp) ≥ Lα
brbd(Ap, ∂Ωp).

On the other hand, we have Wα(G) ≥
∑
p∈P

Wα(Gp) so that the conclusion follows.

Notice that, in the case Ω = Rm, then Lα
brbd (Pi, Qi,Rm) = +∞, except in the case ](J+) =

](J−), i.e. there are the same number of +1 charges as −1 charges. In that case, we may
choose J+ = J− ≡ J and set

Lα
branch ( Pi, Qi) = Lα

brbd (Pi, Qj ,Rm)

which is in the case m = 4 and α = 3
4 = α4, is related to functional Lbranch presented in the

Introduction.
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