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A counterexample to the weak density of smooth maps between
manifolds in Sobolev spaces

Fabrice BETHUEL * T

Abstract

The present paper presents a counterexample to the sequential weak density of smooth
maps between two manifolds M and N in the Sobolev space W1?(M,N), in the case p
is an integer. It has been shown (see e.g. [6]) that, if p < dim M is not an integer and
the [p]-th homotopy group 7, (N) of N is not trivial, [p] denoting the largest integer
less then p, then smooth maps are not sequentially weakly dense in W1P(M,N). On
the other hand, in the case p < dim M is an integer, examples have been provided where
smooth maps are actually sequentially weakly dense in W1?(M,N) with 7,(N) # 0,
although they are not dense for the strong convergence. This is the case for instance for
M = B™, the standard ball in R™, and N/ = SP the standard sphere of dimension p, for
which m,(N) = Z. The main result of this paper shows however that such a property
does not holds for arbitrary manifolds A" and integers p.

Our counterexample deals with the case p = 3, dim M > 4 and ' = S?, for which the
homotopy group m3(S?) = Z is related to the Hopf fibration. We construct explicitly a
map which is not weakly approximable in W3(M,S?) by maps in C*°(M,S?). One of
the central ingredients in our argument is related to issues in branched transportation and
irrigation theory in the case of the exponent is critical, which are possibly of independent
interest. As a byproduct of our method, we also address some questions concerning the
S3-lifting problem for S2-valued Sobolev maps.

1 Introduction

1.1 Setting and statements

Let M and A be two manifolds, with A isometrically embedded in some euclidean space R,
M having possibly a boundary. For given numbers 0 < s < oo and 1 < p < oo, we consider
the Sobolev space W*P(M,N) of maps between M and N defined by

WP (M, N) = {u € W¥P(M,RY), u(x) € N for almost every = € M}.

The study of these spaces is motivated in particular by various problems in physics, as liquid
crystal theory, Yang-Mills-Higgs or Ginzburg-Landau models, where singularities of topo-
logical nature appear, yielding maps which are hence not continuous but belong to suitable
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Sobolev spaces, built up in view of the corresponding variational frameworks. Starting with
the seminal works of Schoen and Uhlenbeck (]29]), this field of research has grown quite fast
in the last decades. A central issue is the approximation of maps in W*?(M, N') by smooth
maps (or maps with singularities of prescribed type) between M and /. Restricting ourselves
to the case s = 1, is as we will do actually in the rest of the paper, it is easily seen that, if
p > m = dim M then smooth maps are indeed dense in W1?(M, N), with no restriction on
the target manifold N, since they are already Holder continuous due to Sobolev embedding:
Standard arguments based on convolution by mollifiers and reprojections allow to conclude.
The result and the argument extend to the limiting case p = dim M. It turns out that, when
1 < p < dim M, the answer to the approximation problem is strongly related to the nature
of the [p]-th homotopy group 7, (N) of the target manifold N, where [p] denotes the largest
integer less or equal to p. Indeed, if 7, (N) # 0, then as we will recall below, one may con-
struct maps in WP (M, N') which cannot be approximated by smooth maps between M and
N for the strong topology (see [6]), whereas the condition 7, (N') = 0 yields approximability
be smooth maps when the domain has a simple topology, for instance a ball (see Sections I
to IV in [6]). When the domain M has a more complicated topology, it was shown in [16, 17]
that it might induce some other obstructions to the approximation problem, obstructions
which has actually been missed in [6].

Approximation by sequences of smooth maps at the level of the weak convergence is the
focus of the present paper. In order to avoid problems with the topology of M we restrict
ourselves first to the case M = B™, the standard unit ball of R™ and, motivated by the
above discussion, we assume that

1 <p<m and 7, (N) # 0. (1)

Indeed if one of the conditions in (1) is not met, then we already now that C°(B™, N) is
dense for the strong topology in W1P(B™, N), hence also sequentially weakly dense. As a
matter of fact, we may even restrict ourselves to the case p is an integer, since the following
observation made in [6] settles the case p is not:

Theorem 1. Assume that (1) holds and that p is not an integer. Then C*°(B™ ,N) is not
sequentially weakly dense in WHP(B™, N).

Sketch of the proof of Theorem 1. The proof relies on a dimension reduction argument together
with the fact that homotopy classes are preserved under weak convergence in W1P(S™~1 N)
for p > m — 1. First, since we assume in view of (1) that m,—1(N) # 0, there exists some
smooth map ¢ : S™! — A such that ¢ is not homotopic to a constant map and hence
cannot be extended continuously to the whole ball B™. Consider next the map Using defined
by

Using(z) = ¢ <g”|> , for z € B™\ {0}, 2)

|z

which is smooth, except at the origin. Introducing the p-Dirichlet energy E, defined by

E,(v,M) = / |VolPdz, for v: M — R,
M

'the argument in Section V [6], which is aimed to extend the case of a cube to an arbitrary manifolds being
erroneous.



we observe that
1
Ep(Using, B™) = / pm—l-p (Ep(gp,Sm_l)) dr < 400,
0

so that Usng belongs to WP(B™ N), provided 1 < p < m. Assume by contradiction
that there exist a sequence (uy)nen of maps in C*°(B™, ') converging weakly to Using in
WLP(B™ Rf). Then there exists 2 some radius 0 < 7 < 1 such that the restriction of (u,)nen
to the sphere S™~! of radius 7 and centered at 0 converges up to a subsequence to the
restriction of Using to ST~1 in WHP(S7~1). By compact Sobolev embedding the convergence
is uniform and hence Usng and u, restricted to Sﬂ%l are in the same homotopy class for
n large. This however is a contradiction, since u,, can be extended inside the sphere S~}
whereas the restriction of Using to S;”fl does not possess this property. This contradiction
establishes the theorem in the case considered.

When p = m — 1 is an integer, the previous arguments can not be extended, since weak
convergence in W1™~1(Sm~1) does not necessarily yield uniform convergence. As a matter
of fact, we have in this case:

Proposition 1. There exists a sequence of maps (Uy)nen in C°(B™,N) converging to Using
weakly in WH™1(B™ RY). Moreover, the sequence (Uy,)nen has the following properties:

o The sequence (Uy)nen converges uniformly on every compact set of B™ \ I, to Using,
where T, denotes the segment L, = [0,Pportn] where Pporen, denotes the north pole
Pnorth = (077071) e R™.

o We have the convergenve

(VU™ = [ VlUising|™ " + vH [0, Pooren] in the sense of measures on B™, where

(3)
V=" ([¢]) = nf{Ep_1(w),w € C' (™', N) homotopic to ¢} > 0.

Since this type of results is central in the whole discussion, we briefly sketch the argument.
The proof of Proposition 1 combines a dimension reduction argument similar to the one we
used for Theorem 1 together with the bubbling phenomenon occuring in dimension m — 1 for
which the E,,_1 energy is scale invariant. We discuss this property first.

The bubbling phenomenon. We recall first the scaling properties of the functional E,,. Consider
more generally an arbitrary integer ¢ € N, p > 0 and an arbitrary map v : B4 — N. The
scaling transformations yields the formula, for » > 0

E,(uy,B}) = r1TPE,(u, BY) where u,(x) = u(f) for x € B} = BY(0,r), (4)
r

In particular in the critical case where the exponent is equal to the dimension, i.e. when
we have p = q, then the energy is scale invariant, namely E,(u,,B;) = E,(u, B%). Choosing
small values for r, this invariance allows for concentration of ¢ — energy at isolated points for
weakly converging sequences.

2similar arguments, based an Fubini’s theorem combined with an averaging argument, will be detailed in
Section 5.



We next replace the domain BY by the sphere S of same dimension and consider now
regular maps from S% to N assuming that m4(N) is not trivial. Given ¢ € C*°(SU,N) we
denote by [¢] its homotopy class. Homotopy class are not preserved in W14 under weak
convergence as the next result shows.

Lemma 1. Let ¢ : S9 — N be a given smooth map. Then there exists a sequence of smooth
maps (¢n)nen from S to N such that such that the following holds

e ©, 1s homotopic to a constant map for any n € N

e p,(x) = @(x), for any n € N*, for any x € S4 \Bq+1(IP’north, (n + 1)_1) where Phorin
denotes the north pole Pyorn = (0,...,0,1)

o |Vin|®1— |Vo|T+146, in the sense of measures on S as n — 400, where we have set

Vg = Vo ([¢]) = inf{ Eq(w), w € C*(S9, N') homotopic to ¢} > 0. (5)

The idea of the proof of Lemma 1 is to glue a scaled copy of a minimizer or an almost
minimizer for (5) at the north pole Pportp.

Remark 1. There is also a kind of converse to Lemma 1. Indeed, given any sequence
(¥ )nen of smooth maps from S to A, there exists a subsequence still denoted (¢p,)nen;,
points ay, ..., as, positive numbers u1, ..., us and a positive measure w, such that

S
[Vin|® — |Ve|T+ Zﬂifsai + w, in the sense of measures on S9 as n — +oo, (6)
i=1
with > p; > vq. We consider next the minimal energy of weakly approximating sequences
namely the number T,(¢) given by

n—+400 n—-4o00

T, (p) = inf {lim inf Eq(wn), (Wn)nen s.t. [wy,] =0 and w, — <p} . (7)

We may write T,.(¢) = Eq(¢) +€x(¢). In view of Banach-Steinhaus theorem, we have €, (¢) >
0: The number €,(p) will be called the defect energy for approximating sequences. If the
sequence (¢, )nen fulfills the optimality condition

Eg_il_gg Eq(@bn) = Eq(‘P) + e ()

then, one may show that we have w, = 0 and ) u; = vq. Hence one deduces that the defect
energy is given by
ex(p) = v, (8)

a number which depends only on the homotopy class of ¢.

Sketch of the proof of Proposition 1. Proposition 1 is deduced from Lemma 1 for the choice
q =p =m — 1, constructing the sequence (Up,)nen as

T

Un(@) = ¢n () for % < |z < 1. (9)

|



and extend U, inside the small ball B(%) is a smooth way: This is possible since the map
(n is in the trivial homotopy class, and with an energetical cost tending to 0 and n goes
to +00. Since the energy of the map ¢, concentrates at the North Pole Pty in view of
Lemma 1, it follows from the construction (9) that the (m—1)-energy of the sequence (U, )nen
concentrates on the radial extension of the North Pole, that is the segment [0, Ppor¢n]-

After this digression, we come back to the general problem of sequential weak density of
smooth maps. In view of the previous discussion, the main problem to consider is the case

p is an integer, 1 < p < m and 7, (N) # 0. (10)

So far several results have been obtained, where sequentially weak density of smooth maps
between B™ and A have been established®. For instance, when N = SP for which 7,(N) = Z
we have:

Theorem 2 ([10, 5, 6]). Let p be an integer. Then given any manifold M, C*(M,SP) is
sequentially weakly dense in WYP(M,SP).

In a related direction, a positive answer was given in [15, 26] for (p—1)-connected manifolds
N and in [26] in the case p = 2, whatever manifold N/, similar results involving the H? energy
are given in [22]. The main result of this paper presents an obstruction to sequential weak
density of smooth maps when (10) holds and deals with the special case N' = S? and p = 3,
for which 73(S?) = Z. More precisely, the main result of this paper is the following:

Theorem 3. Given any manifold M of dimension larger or equal to 4, C*°(M,S?) is not
sequentially weakly dense in W13(M,S?).

As a matter of fact, the topology and the nature of the manifold M is of little importance
in the proof. We rely indeed on the construction of a counterexample in the special case
M = B*, imposing however an additional condition on the boundary 9B*.

Theorem 4. There exists a map U in W13(B*,S?) which is not the weak limit in W13(B* R3)
of smooth maps between B* and S?. Moreover the restriction of U to the boundary OB* = S3
18 a constant map.

As far as we are aware of, this is the first case where an obstruction to sequential weak density
of smooth maps between manifolds has been established when p is an integer. Theorem 3
also answers a question explicitly raised in [19, 20, 21].

Let us emphasize that the map U constructed in theorem 4 necessarily must have a infinite
number of singularities, and is hence very different from the example Using provided in (2).
Indeed, let us recall that, for m —1 < p < m, the set of maps with a finite number of isolated
singularities

RP(B™,N) = {u e WHP(B™ N), st uec C®°(B™\ A) for a finite set A}}. (11)

is not only dense in W1P(B™, N) for the strong topology, but, in the case p = m — 1, is also
contained in the sequential weak closure of smooth maps with values into A'. The proof of
this latest fact, given in [5, 6, 10] and which will be sketched in a moment, is actually inspired

3In several of these results, an additional boundary condition is imposed.



by a method introduced in the seminal work of Brezis, Coron and Lieb [11], and along the
same idea the singularity of Usne was removed using concentration of energy along lines
connecting the singularity to the boundary, or possibly to other singularities with opposite
topological charges. In view of (3), the energy of the constructed approximating maps are
controlled in the limit by a term which is of the order of the length of the connecting lines,
multiplied by a topological charge. This number, which corresponds to a defect energy, is
obviously bounded when the number of singularities is finite, yielding hence the mentioned
weak approximability of maps in R(B* N) = R3(B* N) by smooth maps. We may however
not a priori exclude the fact that, when approximating a map in W3(B* N) by maps with
a finite number of singularities, the defect energy grows when the number of singularities
grows. As a matter of fact, our strategy in the proof of Theorem 4 is to produce a map U for
which this phenomenon occurs.

As this stage, it is worthwhile to compare, when the exponent p is equal to 3, the results
obtained for the respective cases the target manifolds are S? or S3. In both cases the ho-
motopy groups are similar, since m3(N) = Z, for N' = S? or N = S3. However, we obtain,
provided dim M > 4, sequentially weak density of smooth maps in the case N' = S3 thanks
to Theorem 2, whereas in the case A/ = S?, we obtain exactly the opposite result, since there
are obstructions to weak density of smooth maps in view of Theorem 4. Hence ultimately,
not only the nature of the homotopy group matters, but also more subtle issues related to
the way its elements behave according to the Sobolev norms and the Es energy.

In the next subsection, we review with more details the constructions mentioned above and
emphasize its connection with optimal transportation theory.

1.2 Defect measures and optimal transportation of topological charges

As in Remark 1, but now in a higher dimension, given v € W3(B* N), we introduce the
defect energy e,(u) related to its weak approximability by smooth maps defined by

Ez(u) + ex(u) = inf {liminf Es(wn), (Wn)nen s-t. wy, € C°(BHN) and w,, — u} , (12)
n—+00 n—-+o0o

with the convention that e,(u) = 400 if u cannot be approximated weakly by smooth maps.
In this subsection, we specify the discussion to maps u with a finite number of singularities
and describe briefly how one may approximate maps in R(B*, ') weakly by smooth maps in
Wh3-norm and how this leads to upper bounds for the defect energy e,. As for identity (8)
in Remark 1, the numbers v, ; enter directly in these estimates and we describe first some
relevant properties of these numbers in the special cases m3(N) = Z, emphasizing thereafter
asymptotic properties in the cases N =83 or N = S2.

Infimum of energy in homotopy classes when w3(N) = Z. When 73(N') = Z, each homotopy
class in C°(S?, V) can be labelled by an integer which will be termed the topological charge
of the homotopy class or of its elements. Setting in this case, for d given in Z

Va(d) = vy, ([e]) with [g] = d,

We verify that v,.(—d) = v,,(d) and that concentrating bubbles of topological charge +1 at
|d| distinct points, we are led, for d € Z, to the upper bound

v (d) <|dv, (1) and more generally v, (kd) < kv, (d) for k € N. (13)



A natural question is therefore to determine whether this upper bound on v,,(d) is sharp or
not. It turns out that the answer to the previous question strongly depends on the nature of
the target manifold V.

Asymptotic behavior of v,,(d) as |d| — +oo when N'=S? and N' = S%.. When N = S the
topological charge is called the degree and denoted deg (¢). It can be proved (see Section 2)
that, for any ¢ : S? — S3, one has

| 1vettde = 8des (o)

so that, setting v3(d) = vgs(d) we are led to the identity
v3(d) = |S°[|d]. (14)

When N = S?, the topological charge is usually called the Hopf invariant and denoted in
this paper H(y). As we will recall in Section 2 (see (2.11)), one verifies easily that for any
map u : S? — S?, we have the lower bound

/ Vuldz > Cy|d|1,d = H(u), (15)
SS

so that va(d) > C,,|d|%7 where C,, > 0 is some universal constant, and where we have set
vo(d) = vg2(d). In [28], Riviere made the remarkable observation that the bound on the left
hand side is in fact optimal, that is, there exist a universal constant K,, > 0 such that, for
any d

vo(d) < K, |d|T with vo(d) = ve2(d), (16)

so that the function vg is actually sublinear on N and in other words, the minimal energy
necessary for creating a map of charge d is no longer proportional to |d|, but grows in fact
sublinearily as |d\%. This fact has in turn important consequences on the way to connect
optimally defect for maps from B* to S? having a finite number of singularities and the

definition of the corresponding defect measures?.

Removing singularities of maps in Ret(B*, N') when n3(N) = Z. Consider again an arbitrary
manifold with w3(N') = Z and a map v € Rt (B*, N), the subset of R(B* N) of maps which
are constant on the boundary 0B*, that is

Ret(BN) = {u € R(B*, N),u is constant on OB*}.

Given a singularity a of v, the homotopy class of the restriction of v to any small sphere
centered at a does not depend on the radius, provided the later is sufficiently small. We will
denote [a] this element in 75(N) and in the case w3(N) = Z, the number d labeling the
homotopy class [a] will be referred to as a the topological charge of the singularity a. For
sake of simplicity, we assume that that all singularities have either topological charges +1 or
—1°. We denote by Py,..., P, the singularities of charge +1 and Q1, ..., Q, the singularities
of charge —1: Since we assume that the map v is constant on the boundary, there is indeed

“in [19], the authors extend this discussion to several other targets.
This is not a true restriction, since the class of maps having this property is also strongly dense



an equal number of singularities of charge +1 and —1. In order to approximate weakly v by
smooth maps, we adapt the idea of the proof of Proposition 1. For ¢ = 1,...,r, we consider
bounded curves £; joining the singularities of opposite charges, for instance P; with @);, and
construct a sequence of smooth maps (¢, )nen such that

IVon|> = |Vol* + e as n — +oo where . = v, (1)H' L <,L_TJI,CZ-> , (17)
so that
Tim B () = Ea(0) + 1] with [p1] = v, (1) (Z%lwi)) . (18)
i=1

The measure W, represents a defect energy measure for the above convergence, and it follows
from the definition of €, that

ex(u) < il (19)

so that a good estimate for |u,| yields an estimate of the defect energy. Notice that the
formula for p, given in (18) depends not only on the position of the singularities but also on
the way we choose to connect them. In order to obtain general weak approximation results,
we choose therefore optimal connections of the singularities, with the hope that the upper
bound (19) can be turned into a related lower bound. It turns out that this program can be
completed in the case N' = S3.

Minimal connections for N' = S3. This notion has been introduced in the present context
in [11]. Consider as above v in R (B4 S?), with topological charges +1 and constant on
the boundary. In order to have the value of energy defect as small as possible, it is natural
to connect the singularities with straight segments and to choose the configuration with the
smallest total length. This leads to introduce the notion of length of a minimal connection
between the points {P;};cs and {Q;}ics given by

L{F~;},{Q:}) = inf {Z!Pi — Qq(p)|, for o € 6} : (20)

iceJ

where J = {1,...,r} and & denotes the set of permutations of J. In the language of optimal
transportation, this can be rephrased as the optimal transportation of the measure Z ) p, tO

the measure Z 6Q¢ with cost functional given by the distance function. Going back to (18)
we obtain hence

| = \S3| L(v) where L(v) = L({P;},{Q:}) since v, (1) = ]Sﬂ (21)

The important observation made in [11] (see also [1] for a different proof) is that the length
of a minimal connection can be related to the energy of the map as follows

Es(v) > [S°[L(v) = S’ LR} {Qi}), (22)
so that, in view of (19), the defect energy €, (v) is bounded by

ex(v) < Es(v). (23)



Using the fact that R (B*,S?) is dense in Wclt’p (B*,S?) where
WiPB,S%) = {v e R(B*,S%),s.t v is constant on dB*}

we deduce from (23) that maps in C°(B*, S?) are sequentially weakly dense in WP (B4, S3).
As a matter of fact, it can even be shown that e, = |u,| so that our previous construct is
optimal (see [7, 13, 14]). This means that given any sequence (v, )nen of maps in C° (B4, S?)
converging weakly to v one has

liminf E(v,) > F(v) = E3(v) + |S?|L(v), (24)
n—-+o0o
and as shown before, there are sequences for which equality holds. Morever, it can be proved
(see e.g [13]) that any sequence such that equality holds in (24) behaves according to (17).
Both functionals L and F, which is termed the relaxed energy of the problem (see [7]), are
continuous in the space W1’3(IB%4, S3), F being lower-semicontinuous for the weak convergence.

Remark 2. We have assumed that all singularities have only topological charges of values
+1: This is indeed not a restriction since the subset of Rci.(B*,S?) maps with topological
charges +1 is also dense. When N = S?, multiplicities do not really affect the property
of the functional L, it suffices to repeat each singularity in the collection according to its
multiplicity.

Removing singularities of maps in Rei (B, S?): Branched transportation. The approximation
scheme proposed in (17) is not optimal when the growth of v,, is sublinear, that means that
the defect energy €, might by much smaller then |u,| as constructed above. We illustrate
this on the case N = S2.

Given u in R (B*,S?) and assuming as before that all topological charges are equal to +1,
we approximate weakly u by smooth maps from B* to S? connecting again the positive charges
(P;)icy to the negative charges (Q;)ics. In contrast with the case N' = S3 however, straight
lines joining positive charges to negative charges may however not be the optimal solution.
Indeed, it may be energetically more favorable, in view of the subadditivity property (16),
that some parts of the connection carry a higher topological charge and we need therefore to
introduce branching points. Such a connection with branching points has been modeled by
Q. Xia in his pioneering work [30] with the notion of transport path. We adapt this notion
and term it in our setting branched connection, a notion depending only on the distribution
of the charges.

A branched connection associated to the distribution of points A = {P;, Q; }ic is given as
a directed graph G in B* with corresponding source points given by the distribution. It is is
represented by the following data:

e a finite vertex set V(G) C B4, such that the collection of source points belongs to V(G),
thet is A C V(G). There may also be other points, called branching points.

e A set E(G) of oriented segments joining the vertices, possibly with multiplicity d: For
€ € E(G), we denote by e~ and e™ the endpoints of e, so that € = [e~,eT], with
e et e V(Q).



For a € V(G), set E*(a,G) = {e € E(G),e* = a}. We impose for a € V(G) \ 99 the

Kirchhoff law
8 (E(a,G)) =4 (E"(a,G)) +1 if a € {Pi}icy

)
t(E™(a,G)) =4 (E"(a,G)) — 1 if a € {Qi}iey (25)
g ( _( )) ={ (E+(a G)) if a is a branching point,

In our context, the multiplicity or density d(€) of a segment represents the topological charge
carried through the segment € and relation (25) expresses a conservation of this charge at
the vertex points, with a source provided by the topological charges at the point singularities
{P;,Q;}. We denote by G({P;,Q;}ics) the set of all graphs having the previous properties
and introduce the quantity

Liranch({ Pi; Qities) = inf{Wa(G),G € G({P;, Qi}ies)},
where the functional Wy (G) is the weighted length of the graph connection defined by

WaG) = 3 va(d(@)H!(&) for G € G{P, Qiicy). (26)
e€E(Q)
As a matter of fact, we may notice at this point that the length of a minimal connection
L(P;, Q;) may be defined using the same framework as the infimum of the function W3(G)
defined according to the formula (26) with vo turned into vs3: However a optimal connection
will not require additional branching points.

The functional Lianch plays now a similar role for S? valued maps as did the length of a
minimal connection for S? valued maps: It yields the defect energy when approximating maps
in Rt (B, S?) by sequences of smooth maps between B* and S2. Indeed, let u € Rt (B*,S?)
an G be a graph in G(P;, Q;), where {P;, Q;};c; denotes the set of singularities of u. Using
concentration of maps along the segements composing G, with the corresponding multiplicity,
one may construct a sequence (¢, )nen of maps in O (B*, S?) converging weakly to u such
that

IVeon|® = |Vul® + pe as n — 400 where p, = H' L (éeg(c)\/g(d)é> ,

so that
lim Es3(pn) = E3(u) + |w] with [1] = W(G).

n—-+o0o
Choosing the graph G as a minimizer for Wo(G) we obtain || = Lyranch ({ P, Qi }ics) SO
that

€x(1) < Liranch ({ P> Qi Yiey)-

The reverse inequality is also valid. More precisely it has been proved in [19] that, if (¢, )nen
is a sequence of maps in C2°(B*, S?) such that ¢, — u in WH3(B*, S?), then

linlggf Es(¢n) > Es(u) + Lbranch ({ Pi; Qi }ie)- (27)
So that we finally have
6*(”) = Lbranch({Pi7 Qi}iEJ)7 Vu € Rct<B4a SQ)

The defect energy is hence again described by a quantity involving only the location of the
singularities and the sign of their topological charge. For further uses, we will use the notation

Lbranch(u) = Lbranch({Pia Qi}ie]) for u € Ret (]B47 SQ)
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1.3 How to produce counterexamples

We have seen in the case of S3-valued that that we may bound the defect energy of a map
in Rt (B4, S?) by the 3-energy of the map itself (see inequality (23)) and that this upper
bound, combined with the strong density of Re(B*,S?) directly leads to the weak density of
smooth maps. If an estimate similar to (23) would exist for S?.-valued maps, then the same
line of thoughts would yield weak approximability as well. Our next result states precisely
that there is no analog for (23) for S?-valued maps.

Proposition 2. Given any k € N*, there exists a map vy € Ret (B4, S?) such that
Eg(t‘lk) < Clk‘g (28)

and
Lbranch(nk) > 02 10g(k)k¢3, (29)

where C1 > 0 and Cy > 0 are universal constants.

Notice that inequality (29) shows that

L v
Liranch (vg) > C(log k) Es(vg), so that Lbranch (0k) — 400 as n — +o0.

Es(vg)

The functional Lpanch, which, as seen, corresponds also to the defect energy ¢, is therefore
not controled by the Dirichlet energy Es, in contrast to inequality (23) for A' = S3. This
property is the heart of the paper. Indeed, not only does it show that the argument for
S?-valued maps cannot be transposed, it also provides a way to construct counterexamples.
The map U in Theorem 4 is obtained gluing together a infinite countable number of copies
of scaled and translated versions of the maps v, for suitable choices of the integer k and the
scaling factors. We choose and tune these parameters in such a way the total sum of the
energies in finite, whereas the sum of the defect energies diverges.

Remark 3. The fact that the defect energy should grow at most linearly in terms of the
energy in order to obtain weak approximability as already been noticed in [18].

The next paragraphs present the main steps of the construction of the sequence (by)xken.

1.4 On the construction of v;

The construction of the maps v, faces two, in principle opposite, constraints:

e having the functional Lyancn(bg) as large as possible. Since this functional is related
to the configuration of singularities, this task requires to have a large number of sin-
gularities, and branched transportation teaches us that the best way to to increase the
functional is to have singularities well-separated (at least if they have the same sign)

e having an energy as small as possible. An intuitive idea suggest that increasing the
number of singularities will increases the energy.

11



As we will see at the end of the construction, the number of singularities of vy will be of
order of k%, consisting of two well-separated clouds of singularities of the same sign, whereas
the energy will be of order k®.

Related to the energy constraint, the starting point of the construction is to step one
dimension below and consider maps from S* (or actually R® through compactification at
infinity, see details in subsection 2.1) to S? which are nearly optimal for the energy inequality
(16). Such maps have been construction in [28]. These maps from R? to S?, denoted SE_.
and termed in this paper k-spaghettons, carry a topological charge of order k%, with an energy
of order k3. For the definition of S’f)ag, we modify somewhat the original construction given
in [28], and recast it into a more general framework known as the Pontryagin construction
[27], see also [24] for a detailed presentation. In order to describe briefly Sk, let us mention
that these maps are constant outside 2k? closed thin tubes of section of order h = k!, of
length of order 1. The thin tubes are gathered in two distinct regular bundles which are
linked: This linking provided the non trivial topology.

The next step is to go to dimension 4: This is provided by a deformation denoted wad of

SEag on the strip A = R? x [0,50], which is such that:

pag (30)

the restriction of G¥_; to the slice R* x {0} is equal to S¥
its restriction to the slice R® x {50} is a constant function.

Such a deformation is of course not possible in the continuous class, since the maps on the
top and on the botton belong to different homotopy classes. In constrast, it is allowed in the
Sobolev class W13, with an energy of the same order than the energy restricted to the on
the bottom, that is the energy of the spaghetton Sf,ag. In particular, one is able to untie the
thin linked tubes thanks to crossings. We will term therefore this map Gﬁrd the Gordian cut

of order k. Each of the cuts creates a singularity of the map Ggrd.

Finally, the construction is completed deforming G’;rd into a map on B* with the desired
properties, a step which is more elementary than the previous ones.

We next go a little further in our description of the maps vy.

1.4.1 The Pontryagin construction and the k-spaghetton map.

The Pontryagin construction we present next provides a beautiful way to produce maps from
R™+¢ a map from R™ to S’ with non trivial topology. This construction, introduced first
in [27], relates to a framed smooth m-dimensional submanifold in R™+ a map from R
to Sf. By framed submanifold, we mean here that for each point a of the submanifold, we
are given an orthonormal basis ¢+ = (7 (a), Ta(a),. .., (a)) of the /-dimensional cotangent

hyperplane at the point a, which varies continuously with the point a.

We specify the Pontryagin construction to the case m = 1 and ¢ = 2, which is the situation
of interest for us. The framed manifold we consider is therefore a framed closed curve C in
R3, for which we are given a orthonormal basis of its orthogonal plane e*(-) = (7i(-), 72(")).
This frame in turn induces a natural orientation of the curve, choosing the vector 73(a) =
T1(a) x To(a) as a unit tangent vector to the curve at the point a, so that any framed curve is
oriented. Our next task is to map a small annular region around the curve to the sphere S%.

12



To that aim, we present first an preliminary ingredient which is the construction of a map
from a small disk onto the sphere S2.

Mapping a disk to the sphere. We consider in the plane R? the unit disk D = {(z1,22) €
R?, 22 4+ 23 < 1} and define a map y from the disk D onto the standard two-sphere S? by
setting, for (z1,z2) € R?,

x(z1,29) = (w1 f(r), w2 f(r), g(r)) with r = /23 + 23, 2 f2(r) + ¢*(r) = 1, (31)

where f and g are smooth given real functions on [0, 1] such that

£(0) = £(1) =0, 0 < rf(r) <1 for any r € [0,1]
— 1< g <1 and g decreases from g(0) =1 to g(1) = —1.

It follows from this definition what x maps one to one the interior of the disk D to the set
S?\ {Psoutn }, where Py,uip, denotes the south pole Pyoyen, = (0,0 — 1). Moreover the boundary
0D is mapped onto the south pole Py = (0,0, —1), whereas the origin 0 is mapped to
the North pole Py = (0,0,1). It is possible to choose the functions f and g so that £ is
”almost conformal”in some suitable sense which is not relevant for the rest of the discussion.
Given ¢ > 0 we then define the scaled function y, on R? by setting
T1 T2 .
Xo(T1,22) = X(?7 ?)7 for (w1, 22) € Dy, Xo(w1,72) = Pyoun otherwise,

so that we have the gradient estimate

IVXellzoom,) < Co™ ™. (32)

Mapping an annular neighborhood of C to S?. Let C be a framed curve in R3. For a € C, let
P be the plane orthogonal to 7,, and denote D (o) the disk in P~ centered at a of radius
0 > 0. We consider the tubular neighborhood T,(C) of C defined by

T,(€) = U D (o) (3

Notice that there exists some number g9 = go(C) > 0 depending only on C, such that, if
0 < o < go then all disk D (o) are mutually disjoint. In particular, for any = € T,(C), there
exists a unique point a € C, and a unique point (z1,x2) € D, such that = has the form
x=a+ x171(a) + 227 (a). (34)
For given 0 < o < gp, we construct a smooth map Pg"**[C, e1] : T,(C) — S? as follows: For
given x € T,(C) of the form (34) we set
POMR(C, et (x) = Xo(1, 22). (35)

Since PY"™?[C, ¢t is equal to Pyoyn on 0T, (C) we may extend this map to the whole of R3

setting
Pgntya[c? QLK‘T) = ]P)south for x € QQ(C) = R3 \ TQ(C)’

so that P9™?[C, ¢! is now a Lipschitz map from R? to S2. The map P{™?(C, ¢1] is called
the Pontryagin map related to the framed curve C of order p. Since Pgntya [C,et] is equal to
Psouth outside a bounded region and in view of (32), we have hence shown:

13



Lemma 2. If 0 < o < g9(C) then the map P‘;ntya[c, ¢t] belongs to Lip N C§(R3,S?), where
we have set
CO(R3,S?) = {u € C°(R3,S?) such that ‘ |lim u(x) exists}. (36)
T|—+00
Moreover, we have
[VPO"™2(C, et (z)| < Co™" for every z € R?, (37)

where C > 0 is some constant depending possibly on the curve C as well as on the choice of
frame et of the orthonormal plane.

The case of planar curves. All curves C that will enter through the Pontryagin construction
in our later definition of the spaghetton map S]f)ag will be planar or be an union of planar
curves. Moreover, they will lie in planes either parallel to the plane P » or to the plane P 3
where

P172 = (]R_’g)L = PLQ(O) where PLQ(S) = {(l‘l,I‘Q,l'g) € RS s.t xg3 = S},VS eR
P2,3 = (Rél)L = Pg’g(()) where P2’3(8) = {(.7}1,51}2,%'3) € R3 s.t. T = 8},V8 e R,

where we set €, = (1,0,0), €2 = (0,1,0) and €3 = (0,0,1). For such curves, we define
a reference framing as follows. We first choose the orientation of the curves: Curves in
Py 5 and P53 will be orientated trigonometrically, that is counter-clockwise according to the
orthonormal bases (€1, €2) and (€3, €3) of P 2 and P» 3 respectively. With this convention, we
will denote by 7ian(a) a unit tangent vector at the point a of the curve oriented accordingly.
Second, we choose the first orthonormal vector 7; as

(38)

71(a) = €3 for curves in P; 5 and
71(a) = €; for curves in P; 3.

Finally, we set 7(a) = Tian(a) X T1(a), so that T5(a) is a unit vector orthogonal to the vector
Ttan (@) included in the plane P; 5 or Ps 3 respectively, and exterior to the curve. We consider
the frame of the orthonormal plane given by

¢t(a) = (Fi(a), Ta(a)) for a € C. (39)

It has in particular the property that (7i(a),T2(a), Ttan(a)) is a direct orthonormal basis of
R3. In order to simplify a little notation, we will often use the notation

Pgntya[c] — Pzntya[c’ eL ]’

ref

in the case C is a planar curve in affine planes parallel to P; 9 or P 3 or a infinite union of
such curves.

Homotopy classes of Pontryagin maps. If C is a planar curve in Py o or P»3 framed with the
reference frame eéf defined above then it turns out that the homotopy class of Pgntya [C, efef]
is trivial. There are at least two simple ways to make not trivial homotopy classes emerge

from the Pontryagin construction:

e Twisting the frame of the orthogonal plane to the curve, a method which we will not
use in this paper.

14



Tau_2 Tau_2

Figure 1: The reference frame for a planar curve

e Considering planar curves as above which are linked.

The idea of the construction of the Spaghetton map relies on this latest idea.

On the construction of the k-spaghetton. The construction of the k-spaghetton maps involves
two sheaves of planar curves which will be denoted £F and £F respectivement. Each of the
sheaves contains exactly k? stadium shaped connected curves, included in k parallel planes,
each of the planes containing k such curves, which are concentric, so that the general idea is
that each of these sheaves consist of parallel ¢ planar curve. Our construction yields actually

k k
ek c U P12(gh) and ghd ¢ U Py 3(gh) where h = k1 (40)
q= q=

so that the distance between neighboring parallel planes is exacly h = k~!'. The curves in
each of these planes are deduced from the other by translation that is

{ 28N Pra(gh) = €N Pio(h) + (¢ — 1)hé; for g=1,... .k ()

it Py3(gh) = €9 N Pys(h) + (¢ — 1)hé; for ¢ =1,... k.

Finally, the curves in each sheaves are organized in a quite regular way. For instance the
intersection of £, with the plane Py 3 is given by a set of 2k? points organized in two two-
dimensional grids, namely

£ Pyz = {0} x ((B;(h)) U ((13,0) + B (h))) (42)

where the symbol EE%(h) represents the discrete sets of points located on the regular two
dimensional grid given, for kK € N* and h > 0 by

m2(h) = hB; = {hI, T € {1,...,k}?}
Similarily, we have, for P 3 = (R&)*

ehlnp gy = {(:Bl,(),mg), with (1, 23) € ((o, ~7)+ aéi(h)) U ((0,6) + Eaz(h))} .

Sparallel has to be taken here in an intuitive meaning and not in a rigorous mathematical sense
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Finally, the two sheaves do not intersect and each curve is linked to all curves of the other
sheaves, but with none of its own sheave. On each of the planar curves, we choose the
reference frame, set S¥ = £F U £51 and define the k-spaghetton map & as the Pontryagin
map related to S*

Gk: = sztya[sk, eL ]7 (43)

ref

where the parameter parameter g is choosen suitably of order h. Details are provided in
Section 3. We summarize some its main properties in the next proposition.

Proposition 3. The k-spaghetton S’f,ag is a smooth map from R3 to S? with the following
properties:

o S’f,ag(:n) = Psoutn of || > 17

. |VS’§,ag(x)\ < Cypgk, for any x € R3, where Cgypg > 0 is a universal constant.

e The Hopf invariant of Sf;ag 18 ]H(Slf,ag) = 2k4

o The 3-energy verifies the energy bound E3(S];ag) < Kspgk:3, where Kgpe > 0 15 a uni-
versal constant.

1.4.2 The Gordian cut

This construction represents the second step of the construction and yields now a map from
a subset A C R* — S2, where A is the strip of R* given by

A=R3x[0,50] = {x = (z,24), 2 € R? 0< x4 <50}.

The gordian cut Gﬁrd corresponds actually to a deformation of the k-spaghetton to a con-
stant map which belongs to the Sobolev class W13, the fourth coordinate standing for the
defomation coordinates, similar to the time variable in usual deformations. The map Gf,rd
belongs to the class of maps w : A — S? such that the following four conditions are met:

¢

w € R(A,S?) and Ez(w, A) = / IVw]? < oo
A

w(z,0) = S’;,ag

w(z,50) = Pyoutn for almost every x € R3
w(z, s) = Psoutn for every x € R3 such that |z| > 40 and 0 < s < 50.

(z,0) for almost every z € R? (44)

The second and third conditions in (44) have already been encountered in a slightly weaker
form in (30). They make sense in view of the trace theorem and the boundedness of the
energy stated in the first condition.

Proposition 4. There exists a map GE_, : A — S? verifying (44) such that GF

ord ord

k* topological singularities of charge +2 and such that

has ezxactly

E3(GFq) < Kaora K2, (45)

ord

k

where Kaorg > 0 is some universal constant. Let Asing denotes the set of singularities of

Gﬁrd. We have
Ak = B (h) x Ty, (B (h)) (46)

sing —
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where T is an affine one to one mapping from R? into itself which is given by

h
Ti(xs, xq) = (w3, —2x3 + x4) + M}, where My, = (0,7 — g) (47)

Introducing the sets of points on a uniform grid of dimension 4 given by
B ={1,...,k}* and B} (h) = hBE = {nI, T € {1,...,k}*}, (48)
we observe that a consequence of (46) is that
Aging = q)k‘ (Bﬂi(h)) with (Dk.(X) = (l’l,l’Q, -[I—k(:x?)a :E4)) for x = ($1,l’2,1’3,$4) € R4’ (49)

so that @, is an affine one to one mapping on R3. It follows that Af,ing a regular grid of
singularities: This observation is crucial, in particular in relation to the minimal branched

connection and the result described in Appendix A.

Although the detailed argument of the proof of Proposition 4 involves some technicalities,
The heuristic idea is rather simple: We consider x4 as a time variable, and push down along
the xs3-axis the sheaf £F- keeping however its shape essentially unchanged, whereas the
sheaf £¢ does not move. This process presents no major difficulty as long as the sheaf £+
does not encounter the sheaf £¥. When some fibers touch, we are no longer able to define
the corresponding Pontryagin map ngtya. To overcome this difficulty, we take advantage of
the fact that we are working in a Sobolev class were singularities are allowed: Using such
singularities, the fiber in contact are able to cross, that is the sheaf Sli is able to pass through
the fibers of £F. Each time fibers cross a singularities of topological charge 2 is created. These

singularities form a cloud of uniformly distributed points as stated in Proposition 4.

1.4.3 Construction of the sequences of map (vg)nen

The construction of the sequences of map (vy)ren described in Proposition 2 is then deduced
rather directly modifying the maps Gﬁrd constructed in Proposition 4 using some elementary
transformations as affine mappings or reflections, in such a way that we have v;, € C% (B*\
Eé’ing, S?), where the set X% of singularities of vy, is given by

sing
Shing = Bk (hscal) U Sym (B (hyea)) where hyea = % = ﬁ, (50)
and where %y, stands for the reflection symmetry through the hyperplane z4 = 0, i.e.
Sym (1, T2, 23, 24) = (21, 2, 23, —x4), for any (v1,22,23,24) € R%. (51)

The singumarities in B} (h) have Hopf invariant +2 whereas the singularities in Sy, (8} (h))
have Hopf invariant —2, the total charge being equal to 0. The energy estimate (28) for the
map v follows from the corresponding energy estimate for Gf‘;rd.
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1.4.4 Irrigability of a cloud of points

To complete the proof of Proposition 2, it remains to establish estimate (29) for the branched
transportation of the map vz, whose value involves only the location of singularities of vg.
The main property which we will use in the proof of (29) is expressed in property (50), which
shows that the singularities are located on a regular grid. It follows from (50) that

1
ﬁ Z ]H(a)éa — fd$ as k — +o0, where f =2 [R[O,a]4 - ]]-[O,a]3><[—a,0]] y (52)

aezsing

where a = 1/400. It turns out, in view of (52), that the behavior of the functional Ly anch as
k growths is related to the irrigation problem for the Lebesgue measure, a central question
in the theory of branched transportation. It has been proven in [12] (see also Devillanova’s
thesis or the general description in [4], in particular Chap 10) that the Lebesgue measure is
not irrigable for the critical exponent o, = %. This result can be interpretated directly as
the fact that the functional Lppanen growth more rapidly that the number of points at the
power a, hence more rapidly then k2. A lower bound for this divergence then directly yields
(29), completing hence the proof of Proposition 2. As a matter of fact, we will rely on a
precise lower bound of logarithmic form for this divergence which is established in a separate

Appendix at the end of this paper.

1.5 On the proof of the main theorems

Concerning Theorem 3, the proof consist in adding additional dimensions to the previous
constructing and is rather standard.

1.6 The lifting problem

As a by product of our method, in particular the construction of the spaghetton maps, we are
able to address some questions related to the lifting problem of S?-valued maps within the
Sobolev context. Such question have already been raised and partially solved in [8, 19, 20].
The main additional remark we wish to provide in the present paper is that the question is
not related in an essential way to topological singularities, since our counterexamples do not
have such singularities.

Recall that maps into S? and maps into S?* are connected through a projection map II :
S? — S? termed the Hopf map and which we describe briefly. To start with an intuitive
picture (but as we will see in a moment, this picture is not completely correct) the sphere S?
is very close, at least from the point of view of topology, to the group of rotations SO(3) of the
three dimensional space R3, the sphere S? may be in fact identified with its universal cover.
Any rotation R in SO(3) yields an element on S? considering the image by R of an arbitrary
fixed point of the sphere, for instance the North pole Pyon = (0,0,1), so that we obtain a
projection from SO(3) to S? considering the correspondance R — R(P). The construction
of the projection II from S® onto S? is in the same spirit, but requires to introduce some
preliminary objects.

Identifying S® with SU(2). Here SU(2) denotes the Lie group of two dimensional complex
unitary matrices of determinant one, i.e. SU(2) = {U € M(C), UU* = I and det(U) = 1}
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or

SU(2) = {(‘b‘ _ab> , a€C,beC with |a]® + |b]? = 1} ~ S3. (53)

The Lie algebra su(2) = {X € M3(C), X + X* = 0 and tr(X) = 0} of SU(2) consists
in traceless anti-hermitian matrices. A canonical basis of this 3-dimensional space, which is
actually orthonormal for the euclidean norm | X|? = det(X) is provided by the Pauli matrices

g0 o — 0 1 e (0
=\Vo =)0 2=\ =10) 2=Lio)

We identify the 2-sphere S? with the unit sphere of su(2) for the previous scalar product:

S?~ {X € su(2), | X[* =det(X) =1}

The Hopf map. The group SU(2) acts naturally on su(2) by conjugation: If g € SU(2), then
su(2) 3 X = Ady(X) =gXg ' € su(2) is an isometry of determinant 1.
Definition 1. The map I1: SU(2) ~ S? — S? C su(2) defined by
I(g) = Ady(01) = gorg™" for g € SU(2)
1s called the Hopf map.

Notice that II(g) = o if and only if g is of the form

exp it 0
g = exp(oit) = ( g exp —it)

with ¢ € [0,27]. More generally, if g and ¢’ are such that II(g) = II(¢’), then ¢’ = gexp o1t
for some ¢ € [0, 27, so that the fiber I~ ! (u) is diffeomorphic to the circle S* for every u € S2.
By the Hopf map, SU(2) appears hence as a fiber bundle with base space S? and fiber S*.
Moreover, this bundle is not trivial, but twisted since Ids2 does not admit a continuous lifting
® : S? — S3 such that Idgz = I1 o ®. Indeed, ® is homotopic to a constant, but not Ids:.

Projecting maps onto S%. Given any domain M and a map U : M — S3, we may associate
to this map the map u : M — S? obtained through to the composition with the map II,
that is setting w = Il o U. This construction works for a rather general class of maps, with
mild regularity assumptions, for instance measurability. In particular, since II is smooth, if
U belongs to W13(M,S?), then the same Sobolev regularity holds for u = I1o U and the
correspondence U +— u is smooth. This correspondence is of course not one to one. Indeed,
given any scalar function © : M — R, then we have

u=IToU=1IIo (Uexp(c10(-))).

Conversely, given two maps U; and Uy such that uw = Il o Uy = II o Uy then there exists a
map © : M — R such that Uy = Uy exp(010(:)). The map © is often referred to as the
gauge freedom.
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Lifting maps to S* as maps to S3. The lifting problem corresponds to invert the projection
II, which means that, given a map u from M to S? in a prescribed regularity class, one seeks
for a map U from M to S?, if possible in the same regularity class, such that u = IIo U. The
map U is then called a lifting of u. As seen in the previous paragraph, if a lifting exists, then
there is no-uniqueness, since if U is a solution, then the same holds for the map U exp(010),
where © is arbitrary scalar functions © : M — R in the appropriate regularity class.

If M is simply connected with ma(M) = {0}, it can be shown that the lifting problem has
always a solution in the continuous class, i.e. for any continuous maps u from M to S? there
exists a continuous lifting U from M to S? of u such that v = IIo U. As an example in the
case M = S3, the identity from S? into itself is a lifting of the Hopf map.

The fact that the lifting property holds in the continuous class allows to provide a one to
one correspondance between homotopy classes in C%(M,S3) and C%(M,S?). Indeed, two
maps u; and us from M to S? are homotopic if and only if their respective liftings U; and Uq
are in the same homotopy class. Specifying this property to the case M = S3, we obtain as
already mentioned an identification of 73(S?) and 73(S3). On the level of Sobolev regularity,
the picture is quite different. We will prove in this paper:

Theorem 5. Let M be a smooth compact manifold. For any 2 < p < m = dim M there exist
a map V in WHP(M,S?) such there exist no map V.€ WHP(M,S?) satisfying V = 1o V.
Moreover V belong to the strong closure of smooth maps in W1P(M,S?).

This results supplements earlier results obtained on this question in [8, 19]. It is proved
in [8] that, if 1 <p <2 < dimM, p > dimM > 3 or p > dim M = 2, then any map V in
WHP(M,S?) admits a lifting V in W1P(M,S?), whereas a map was produced there in the
cases 2 < p < 3 < dim M or p = 3 < dim M, which possesses no lifting in WP(M,S?). In
the later case, however, the example produced in [8] is not in the strong closure of smooth
maps, in contrast with the map constructed in Theorem 5. Notice that as a matter of fact,
Theorem 5 gives a negative answer to Open Question 4 in [8], and that the only case left
open is the case p = dim M = 2 corresponding to the Open Question 3 in [8].

1.7 Concluding remarks and open questions

As perhaps the previous presentation shows, the construction of our counterexample relies
on several specific properties of the Hopf invariant, a topological invariant which combines
in an appealing way various aspects of topology in the three dimensional space. Our proof
is built on the fact that the related branched transportation involves precisely the critical
exponent, yielding a divergence in some estimates which are crucial. An analog for this
exponent for more general target manifolds with infinite homotopy group m,(N') has been
provided and worked out in [21], based on more sophisticated notions in topology. It is
likely that this exponent plays an important role in issues related to weak density of smooth
maps. In the case the exponent provided in [21] is larger then the critical exponent of the
related branched transportation, as described above, one may reasonably conjecture that
there should exist some obstruction the sequential weak density of smooth maps. However
the effective constructions of such obstructions, perhaps similar to the ones proposed in this
work remain unclear. In particular the Pontryagin construction used here seems at first sight
somehow restricted to the case the target is a sphere.
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In another direction, let us also notice that most if not all results related to the weak
closure of smooth maps between manifolds for integer exponents deal with manifolds having
infinite homotopy group m,(N'). The case when 7,(N) is finite seems widely open and raises
interesting questions also on the level of the related notions of minimal connections. As a
first example, one may start again with M = S%, p = 4, for with we have 74(S?) = Z2. In
this case a nice description of the homotopy classes in terms of the Pontragyin construction
is also available.

This paper is organized as follows. In the next section, we recall some notion of topology
which are used in the course of paper. Section 3 is devoted to the construction of the k-
spaghetton map, whereas in Section 4, we construct the Gordian cut Gﬁrd, providing the
proof to Proposition 4, which is the central part of the paper. In Section 5, we provide the
proofs of the main results, relying also on some results provided in Appendix A, in particular

Theorem A.1, which, beside Proposition A.3, is the main result there.

Acknowledgements. The author wishes to thank the referees for their careful reading of
the first version of this paper, pointing out several mistakes and indicating several lines of
improvements.

2 Some topological background

We review in this section some basic properties of maps from S? into S? or S3.

2.1 Compactification at infinity of maps from R? into N

Whereas the emphasis was put in several places of the previous discussion on maps defined
on the 3-sphere S3, it turns out that it is sometimes easier to work on the space R? instead
of S?. Since our maps will have some limits at infinity or even are constant outside a large
ball, we are led to introduce the space

COR3 RY) = {u e CO(R? RY) st lim u exists}

|z|—00

and define accordingly the space CJ(R3, NV). The space CJ(R?, R?) may be put in one to one
correspondance with the space C°(S?, Re) thanks to the stereographic projection Stz which
is a smooth map from S? \ {Py,un} onto R? and is defined by

, , f o, x3,24) € RY st 21,
l4+x4 1+24 1424 or (1,22, U3, 24) S Zml

4
x1 x2 €3 )
i=1

Sta(x1, 2, x3,24) = (

For any map u € C°(S3, N) we may define u o Sty € CJ(R3,N) and conversely given any
map v in CJ(R3, ) the map v o Stz ' belongs to C°(S?, A). This allows to handle maps in
CY(R3, N') as maps in C°(S?, ) and yields a one to one correspondance of homotopy classes.
In particular, when N = S? or /' = S? we may define the degree in the first case or the Hopf
invariant in the second for maps in C§(R3,N).
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2.2 Degree theory

Degree theory yields a topological invariant which classifies homotopy class for maps from S3
to S3. For a smooth U from S? to S?, its analytical definition is given by

1 1
d = * = — det d 2.1
5V = 1 [ V() = gy [ det(VU) o (2.)

where w, stands for a standard volume form on S3 and U* stands for pullback. It turns
out that deg U is an integer which is a homotopy invariant, that is, two maps in C!(S?,S3%)
which are homotopic have same degrees and conversely, two maps with the same degree are
homotopic, leading as mentioned to a complete classification of homotopy classes. Notice
that the degree of the identity map of S* whose homotopy class is the generator of m3(S?) is
1. The area formula yields a more geometrical interpretation, namely

degu = Z sign(det(Vu)), (2.2)

a€u—1(20)

where 29 € S? is any regular point, so that u=!(z) is a finite set. Finally, an important
property, which is quite immediately deduced from (2.1) is the lower bound

Fy(U) = /S VUP > 53] |d] = 272|d| provided deg (U) = d. (2.3)

This bounds is optimal. Indeed, as a consequence of the scale invariance of the energy FE3 in
dimension 3, one may prove for any d € Z, gluing |d| copies of degree one maps that

v3(d) = inf { E3(u),u € WH3(S?,S?), deg (u) = d} = |S?||d| = 27%|d]. (2.4)

2.2.1 The Hopf invariant

We next turn to maps u from S? into S? which are assumed to have sufficient regularity.
Since in this case, there is a lifting U : S* — S3 such that u = I o U the degree theory for S
valued maps allows to classify also the homotopy classes of maps from S to S2. Set

H(u) = deg (U).

This number, is called the Hopf invariant of u and as seen before classifies homotopy classes
in CY(S3,S?). Notice that, since I = II o Idgs, the Hopf invariant of the Hopf map II is
H(II) = 1, so that its homotopy class [I1] is a generator of m3(S?).

Integral formulations. Let M be a simply connected manifold, U : M — SU(2) sufficiently
smooth and set v = IT o U. We construct a 1-form A with values into the Lie algebra su(2)
setting A = U~'dU. Conversely, given any sufficiently smooth su(2) valued 1-form A on
M, on object also called a connection, one may find a map U : M — SU(2) such that
A = U~1dU, provided the zero curvature equation for connections holds, that is provided

dA + = [A Al =0. (2.5)
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Decomposing A on the canonical basis of su(2) as A = Ayo1 + Ao + Azos, where Ay, Ay
and Az denote scalar 1-forms on M we are led to the relations

du = U[A, 0'1]U71 = A309 — As03,

so that the component As; and As of A are completely determined by the projected map
u = [ToU. On the other hand, A1 is not, a consequence of the gauge freedom mentioned before.
Indeed, for any sufficiently smooth function © : M — R, let Ug(x) = exp(©(x)o1)U(z), so
that u = II o Ug and U(f)ldU@ = U~'dU + (d®)o; = A + dOo1.The values of Ay and Az
are left unchanged by the gauge transformation, and A; is changed into AP = A; + dO. We
notice also the relations

{u*(wsz) = Ay N Az, Ut(w,,) = A1 A A A As,

(2.6)
|dU|? = |A1? + |[Aof* + | A3]? and |du|? = (|A2]* + |43]),

where w,, stands for the standard volume form on S2. The curvature equation (2.5) yields
the relation
2dA; = Ay N Ag = u*(w ), (27)

s2
so that dA; is also completely determined by the projected map u. Going back to (2.6) we
may write
UM (wy) = A1 Au(wgy)

Specifying the discussion to the case M = S3, the integral formula for the degree yields in
turn an integral formula for the Hopf invariant namely, for any map u : S? — S?, we have

1 .
H(u) = ) /S3 aNu(w,,), with do = u*(w,,), (2.8)

where actually « corresponds to the one form a = 2A(19, whatever choice of gauge ©.

Choosing a good gauge. Recall that at this stage da = dA%9 is completely determined by
(2.7). To remove the gauge freedom we may supplement this condition imposing another one
in order to obtain an elliptic system. Hence are led a impose a condition on d*«, for instance

d*a =0, and hence oo = d* P, (2.9)

where ® is some two form verifying d® = 0. In view of (2.7), (2.9) and the definition
A = dd* + d*d of the Laplacian, we have the identity

Ags® = u*(w,, ). (2.10)

Hence & is determined up to some additive constant form.

Energy estimates and the Hopf invariant. By standard elliptic theory, we obtain the estimates
lallzsssy < CIV®L3ss) < ClIVullZses (2.11)

so that, going back to formula (2.8), we deduce that H(u) < C||Vu||3 and hence, as mentioned
the lower bound (15) is readily an immediat consequence of the integral formula for the Hopf
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invariant. The fact that this lower bound is optimal is proved [28] and stated here as (16)(see
also [3] for related ideas). It is far more subtle and relies on the identity

H(w o u) = (degw)?H(u). (2.12)

for any w : S? — S%. Since this fact is somewhat central in our later arguments, we briefly
indicate how (2.12) may lead to the lower bound (16). A first elementary observation is that,
given any integer £ € Z one may construct a smooth map wy, : S> — S? such that

deg (w) = £ and [Vey| sy < CV/]7], (2.13)

the idea being to glue together |¢| copies of degree +1 maps scaled down to cover disks of
radii of order 4/|¢|. Set uy = wy o II. It follows from (2.12) and (2.13) that

]H(UK) = 52 and |VUg|Loo(g2) < C\/ |€|

so that , ,
Ez(ue) < Cl¢|2 < CH(ue)|4,

yielding hence the proof of (16), at least when the hopf invariant d = ¢2 is a square. The
spaghetton map which we will construct later corresponds actually to a modification of the
map uy and enjoys essentially the same properties, as it will be seen at the light of the next
paragraph.

2.3 Linking numbers for preimages and the Pontryagin construction

Properties of the preimages of regular points yield another, very appealing, geometrical in-
terpretation of the Hopf invariant which is parallel to (2.2) for the degree. Given a smooth
map u: R? — §? in CJ(R3,S?) and a regular point M of S?, its preimage Ly = u= (M) is a
smooth bounded curve in S3. The curve Lj; inherits also from the original map u a normal
framing and hence an orientation. Indeed, consider an arbitrary point a € Ly, that is such
that u(a) = M. Since M is supposed to be a regular point, the differential Du(a) induces
an isomorphism of the normal plane P(a) = (R7jan(a))’ onto the tangent space Ty (S?). If
(W/l,M, WZM) is an orthonormal basis of Th;(S?) such that (Wi, ézM, OM) is a direct
orthonormal basis of R?, then its image f- by the inverse T' = (Du(a)|p(q)) " is a frame of
P(a) which is however not necessarily orthonormal. We define a framing on L, choosing
the first vector 71(a) of the frame as

—
T(Win)

na) = ————
@ T(Wim)|
and then 75(a) as the unique unit vector orthogonal to 7i(a) such that ¢} = (7i(a), Ta(a))
has the same orientation as f*. A first remarkable observation (see [27] and [24], chapter XI,
section 3) is that (L, ¢;) completely determines the homotopy class of u: Indeed, if o > 0
is sufficiently small, then

H(u) = H (Pgmya[LM, eﬂ) .

u
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A second important property is that the linking number m(Lyy,, Las,) of the preimages of
any two regular points M; and M, on S? is independent of the choice of the two points and
is equal to the Hopf invariant, that is

m(Lag,, Lag,) = H(u). (2.14)

Recall that the linking number of two oriented curves C; and Co in R3 is given by the Gauss

integral formula
a1 — a —
m(Cy,C2) d das. 2.15
1,C2) = jil jli T — P 0 X das (2.15)

Notice in particular that the linking number is always an integer, that it is symmetric, i.e.
m(Cl,C2> = m(Cg,Cl), (2.16)

that its sign changes when the orientation of one of the curves is reversed and that m(Cq,C;) =
0 if the two curves are not linked. Moreover, in case of several connected components, we
have the rule

m(Cl,l U CLQ,CQ) = m(CLl,Cg) + m(CLg, Ca). (2.17)

In practice, as we will do, the linking number of two given curves can be computed as the
half sum of the signed crossing number of a projection on a two dimensional plane.

Remark 2.1. Chapter IX of [24] offers a good general background to the topics in this section
and their extensions. The book [25] offers a more elementary and intuitive presentation.

2.4 The Hopf invariant of an elementary spaghetto

We go back to the Pontryagin construction and consider here the case the curve C is planar
and connected. We may assume without loss of generally that C is included in the plane P o.
We assume moreover that it is framed with the reference frame e . In that case, the map

PY"?[C] will be called an elementary spaghetto. We first observe:

Lemma 2.1. If0 < o < go(C) then H(P™?(C,ek,]) = 0.

Proof. The most direct proof is to use formula (2.14) and to consider the linking number of
preimages of any two regular points. As a matter of fact, for the Pontryagin construction,
all points are regular points, except the south pole Pgoutn whose preimage is the boundary of
T,(C), so that we may consider as regular points the North pole Ppon and the point M on
the equator given by M = (1,0,0). We have

L, ,..) =C whereas Ly =C + gil(O)gé’g,

where the function g is defined in (33). It follows that the two curves are parallel and hence
not linked so that in particular

north) ’

The conclusion then follows directly from (2.14). O
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Remark 2.2. An alternate, perhaps more direct and more illuminating though also longer
proof would be to construct exzplicitely a continuous deformation with values into S? of
P‘;“tya[c, e.] to a constant map. The main step in this construction is to show that there
exists a continuous map ® from the exterior domain R? \ C to the circle S such that

(5517562)

s—— forany a € C and 0 < z7 + 23 < ¢°. (2.18)
] + x5

O (a+ x171(a) + 272(a)) =

Assume for the moment that ® is constructed and let us define the deformation. We set

F(x,t) = ((1 — t)t(?f <t(5)(1 — t)> d(z), g (t(j)(l — t))) for z € R® and t € [0, 1],

where the functions f and g have been defined in (31) and where the function t is defined as

t(z) = (/2% + 23 for any z = a + 217 (a) + 2272 (a) with a € C and 0 < 25 + 23 < ¢?,
t(x) = p otherwise.

It follows from the properties of f and g that F is continuous from R?® x [0,1] to S?, that
F(-,t) belongs to C%(R3,S?) for any t € [0, 1] and that

F(-,0) = Pzntya[c, efef] whereas F(-,1) = Pyortn,
yielding hence the desired deformation. The construction of the map ® is obtained adapting
the Biot and Savart formula, as done for instance in [2].

Remark 2.3. A first possible way to obtain not trivial homotopy classes through the Pon-
tryagin constructing with planar curves, is to twist the frame. Consider a map v : C —
SO(2) ~ S!, and consider the twisted frame

ey =(eer) = (VO (7)), 1 ()(R())),

where, for a € C, the map v(a) is considered as a rotation of the plane (7ian(a))t. Since C
is topologically equivalent to a circle, one may define a winding number of v and prove, for
instance using the crossing numbers, that

H <Pg“tya [C, eﬂ) = deg (7).

In some places, we will denote, for given d € Z, by eévist:d a framing which corresponds to
a planer curves whose reference framing is twisted by a degree d map. As an exercise, the
reader may construct a deformation showing that if C; and Co are two planar curves which
do not intersect and which are not linked then we may merge them into a single curve with
a frame twisted by the sum of the twists so that

H (Pgmya [(Cla ethist:dl) U (Ca, €thist:d2)D = di + ds. (2.19)
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2.5 The Hopf invariant of two linked spaghetti

Another simple way to obtain non trivial homotopy classes is to consider two linked planar
curves, yielding what is often called a Hopf link. Consider therefore two planar curves without
self-intersection, a curve C; included in the plane P;2 of equation 23 = 0 and a curve Co
included in the plane P 3 of equation x; = 0. To fixe ideas, on may take for C; and Cy the
circles

C1 = {(z1,29,0) € R® z} + 23 = 1} and Cy = {(0, 22, 23) € R?, (22 + 1)* +2° = 1}

so that the center of C; is the origin, the center of Cy is the point Og = (0, —1,0), both circles
having radius 1. We choose for both circles the reference frames eﬁ;f defined before and the
corresponding orientation. They are obviously linked, and using the crossing numbers, we
verify easily that

m(Cl,Cg) =1.
We then set
C =C1UCs.
Lemma 2.2. We have, for sufficiently small o > 0, HPO™?[C, eL,]) = 2.

ref

Proof. We argue as in the proof of Lemma 2.1 an consider the pre-images Lp,_,, = C = C1UCa
and Ly = Cj UC) of the North pole and the point M = (1,0,0) of the equator respectively,
where we have set C] = C; 4+ g7 1(0)083 and Cj = Co + ¢~ 1(0)0&;. It follows that

m(L]pnorth, L) =m(C1 U Co, Ci U Cé) (2.20)
=m(C1,C1) + m(C1,C5) + m(Ca, C1) + m(Ca, C3). '
Since the curves C; and C] are parallel and hence not linked m(Cy,C1) = 0 and likewise
m(Ce,Ch) = 0. On the other hand m(Cy,Ch) = m(C{,C2) = m(C1,C2) = 1 so that we obtain
m(Lp Lys) = 2. Invoking (2.14) the conclusion follows. O

north ?

3 Linked k-spaghetton map

We provide in this section a precise definition of the spaghetton map Sf)ag, which has already

been described more vaguely in the introduction. The general idea is to extend the construc-
tion performed in Subsection 2.5 when each planar curve is replaced by a sheaf of such curves
which are parallel. The spaghetton is then obtained by the Pontryagin construction with the
corresponding reference frame.

As mentioned in the introduction, each of the curves with which we will perform the
Pontragyin construction is stadium shaped. Let us recall that a stadium is a closed curve
whose interior consists of the interior of a rectangle, with two parallel ends capped off with
semidisks. Given an integer k € N*, the total number of curves will be k2 in each of the two
sheaves £F and €% of our construction. Each of the sheaves of £¢ and £% is composed of
parallel segments on the straight part on the stadium in the direction of € and €, respectively,
and nearly parallel on the round parts.
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X_2 axis

(0,6)

(-12,0)

............................................................

X_1 axis

(0,-6)

Figure 2: The reference stadium ILg

3.1 The sheaf £F of the k? stadium shaped curves 2;?761

We describe here the curves Qé?’q, j,q=1,...,k composing the sheave £¢. These curves are
modeled on a standard stadium Ly C R?, centered at the origin O = (0, 0) we present first.

Construction of the reference stadium Lg in the plane R?. Working in this paragraph on the
plane R?, we consider first two straight segments DEI) and Dg parallel to €; = (1,0) each of
length 12, given by

D{ = [~6,6] x {—6} and D3 = [-6,6] x {6}.

We complete these two parallel segments as a stadium Lo contained in the plane R? adding
two half circles so that

Lo =D{UDEUSyT(Of)USy™ (0F) € R?,

where S;*(OJ ) and Sé’_(Oa ) are two half circles of radius r = 6 in the plane R? of centers
Of = ((6,0) and Oy = (—6,0) respectively, where we have set, for given 7 > 0 and A =
(al, ag) (S ]R2

S (4) =
51 (4) =

{(z1,22) € R?, (21 — a1)® + (z2 —a2)* =%, 21 > a1}
{(z1,22) € R?, (x1 — a1)2 + (zg — a,g)2 =22 < ai}.
Notice that

Lo C [~12,12] x [6,6].

Construction of concentric stadia ]Lfo. Given k € N*, we construct a family of concentric
stadia which are deduce from the reference stadium by homothety as

h(k — ¢
Mb—<r+((3)>Lmﬁx€—anwhWMmh—kl.

It follows from this definition that LZO = Ly and that the domains of R? bounded by the

curves ]Lifo are decreasing as ¢ increases. Moreover one may verify that
b

dmt@@mLZLO::hﬁmE:OP“,k—L
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We set i
LF= ULk,
=1 40

Notice that the straight segments in L]Zo are all parallel to €1, of lengths varying between 12
and 14, that

(eélnjg,o) N([=6,6] x R) = [<6,6] x {7+ ht,0=1,...,k}U{7T—ht,0=1,...,k}] (3.1)

and that, for any £ =0,...,k ]LZO C [—14,14] x [7,7].

X, axis

(07-h) 3
Lzo =1L

. (14-2h0)
X; axis

(-14+2h)

(0,-7+h) L3
20

Figure 3: The 3 stadia IL?O, {=1,2,3 and the reference stadium ILg

Construction of the stadia Lﬁq. For ¢ =1,...,k we consider the k parallel planes P; o(hk) :
Identitying these planes with R?, we construct in each of them the lines ]L?} q corresponding

to the stadia L?,o setting for j =0,...,k
Lﬁq = L?,O +qheéz forqg=1,... k.

Notice that curves which distinct set of indices do not intersect. We finally consider the union
of the k? curves IL;‘? q obtained before, each contained in planes orthogonal to €5 = (0,0, 1),

yielding the sheave 7

k
LF= U llL,jq C [—14,14] x [-7,7] x [0,1]
J,9=

Construction of the curves 2?7(1 and of £F. They are deduced from qu and L* by a simple
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Figure 4: The set L3 and the three planes Py o(h), P12(2h) and Py 2(3h) = Py (1) containing
each three connected curves of the sheave LL3.

translation in the direction of €. We set, for j =1,....kandg=1,...,k

gk =LF, +78 and £ =" + 76,

so that i
E_ k
£ = jL,quj’q C [—14,14] x [h,14] x [0,1]

Property (42) presented in the introduction then follows from (3.1) and the above construc-
tions (see in particular figure 6).
The mutual distant between the individual spaghetti is bounded below by

. 1 . )
dist (L], £y ) > h = for (,0) # (7', ¢)- (3:2)

Moreover, going back to (33) we may observe also that, at least for large k we have

L

k
P
00(L£%) > 3%

(3.3)

At this stage, the total linking number of £* is still equal to zero. In order to produce
topology, we need to to define a second sheaf.

3.2 The sheaf £F+

We first construct as above a sheave L+ deduced from the sheave L* as

L5 = {($17w2,$3) ER’ s.t. (w2, 23,11) € Lk}'
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Figure 5: The set L3%, k = 3 and the three hyperplanes Ps3(h), P23(2h) and Py 3(3h) with
h=1/3.

Alternatively, we may define L*1 as the image of L* by the rotations 9y of R® which sends
€1 onto €y, €y onto €3 and €3 onto €. We have

k
LAt — O LMY where

bg=t (3.4)
Lﬁ’;‘ = RO(Lllzqurl,i) = {(1‘1,1’2,33‘3) € R3s.t. (z2,23,71) € le;karl,i} ,

so that, for ¢ = 1, ..., k, the connected curves ]Li’qL are included in the plane P, 3(ih). Notice
an important difference in the way we label the curves Lf’qL with the way we label the curves

Lg:j: The domain included in the plane P 3(ih) bounded by the curves Lﬁj are increasing

with ¢, for fixed i. As a matter of fact, we may also write

h
Lt = (1 + 6£> (]Lé n ihél) , for £=0,...,k where L = Ro(Lo). (3.5)

We notice
LR+ < ([0,1] x [~14,14] x [-7,7]) (3.6)

And that L*+ is composed of segments in the direction & in its central part, of lengths
between 12 and 14. More precisely, we have

L*L N (R x [-6,6] x R) = Al x [6,6] x [(hI; — {7}) U (hl} + {6 — h})],

where we have set I, = {1,...,k}.
The set £F is deduced from the set L* by a translation in the direction of €. We set

ghl — 1kl 38, and Sz’;‘ :]Lf,’;‘ —3é& fori,qg=1,... k.
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Inclusion (3.6) then yields

{gm c [0,1] x [~17,11] x [~7,7] (3.7)

2R N (R x [<2,2] X R) = hl, x [—2,2] x [(hl; — {7} U Rl + {6 — h})].

Remark 3.1. The labeling (3.4) and (3.5) of the curves 2?’;‘ which is different from the
labeling of the curves 2? 4 s motivated by the fact that

k, L + g
Lro MR x [=2,2] x RT = {ih} x [-2,2] x {6 + ¢h} (3.8)
so that that the g index labels the upper straight part of the fibers with increasing height x3.

3.3 First properties of the sheaves £¢ and £+

(0,14) i X, axis
K

(0,13+h)

—"h |h

(0,11)

=

(03)

X, axis

(0,0)

(1,0
€

s 0 e 134

Figure 6: The set S® seen from above. The intersection of the orthogonal projection onto Pio

1
of £31 with £3 is the grid EB%(g).
Notice first (see figure 6 and 7) that the intersection of two sheaves £F and €5+ is empty

and that moreover
dist(gF, ght) = 2. (3.9)

- kL . : . .
Since each of the curves 2;‘? , and £, are planar curves which are either included in affine

planes parallel to Py 5 or to P 3 we may frame them with the reference frames efef which have
been defined in Subsection 2.3. This yields, as we have already seen, a natural orientation
of the curves. For instance, the curves 25-‘3 ; are oriented counter-clokwise with respect to the

frame (€1, €2) and similarily the curves Sf’qL are oriented counter-clokwise with respect to
the frame (€3, €3).
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l ‘ 1 the vector-field X,
L 3,1

L3

((5, 11, 0)

X3 axis

Figure 7: The set S® seen from the €, direction. The intersection of the orthogonal projection
1 -

onto Py o of &3 with £ is the grid Eﬂg(g) The vector filed Xo pushes £3+ onto £3 until

they meet.

Concerning topology, each curve 2?07 jo 18 linked to the k2 curves Si’;‘ with linking number

1 and each curve 2?0’;) is linked with the k? curves Ef“' ; with linking number 1. Hence, we
obtain for the total linking number:

Lemma 3.1. We have m(&F, 1) = k* for any k € N.

Proof. We have

m(gk, ght) = <u£§q, j}j) sz( b ) = kim (20,21,

3.4
3q 3.4
and the conclusion follows from the identities (2.16) and (2.17). O

Finally, as mentioned in the introduction, we consider the one-dimensional set
Sk = gky gkt (3.10)

It follows from (3.3) and (3.9) that

1
00(SF) > 57 and Sk c B(17). (3.11)
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Figure 8: The sets £F and £ are linked

3.4 The k-spaghetton map S’;ag and its properties

Choosing g = 107300(S*) we define the k-spaghetton map &y, as

S];ag - sztya[sk’ Crof]- (3.12)

Some of its most relevant properties have been summarized in Proposition 3 in the introduc-
tion, which we prove next.

Proof of Proposition 8. The first assertion concerning the support of S’I‘;ag follows from the

inclusion given in (3.11), whereas the second, the bound on the gradient, is an immediate
consequence of (32). Since all fibers have the same shape, which does not depend on k, the
constant Cgp,e involved in the gradient estimate does not depend on £ either. Turning to the
third assertion, the computation of ]H(S’;;ag) follows the same lines as the proof of Lemma
2.2, considering the pre-images
Lp, =S¥ =2Fught and Ly = (€5 + g7(0)0x63) U (€5 + g71(0)0x€1)
of the North pole Pyt and the point M = (1,0,0) of the equator respectively. Arguing as
in (2.20), we obtain

m(Lp,,.» Lar) = m(Lp U LH, €5 4+ g71(0)083) U (£5F + g71(0)061)

= om(gk, gbt) = 2k*,

north’

where the last identity follows from Lemma 3.1. For the estimate on the energy in the
statement of Proposition 3, we observe that, since the support of |VS]l§ag| is included in the
ball B(17) independently of k, it suffices to integrate the uniform bound of the gradient,
which is of order k£ to obtain the result for the 3-energy. In particulat, we may choose the
constant as Kgpe = 173C§pg.

O
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4 Untying the spaghetton map S the gordian cut G

The proof of Proposition 4 is somewhat technical, its completion will be given at the end of
this Section. The heuristic idea is however rather simple: we push down along the z3-axis the
sheaf £ keeping however its shape essentially unchanged, whereas the sheaf £ does not
move. This presents no major difficulty, pushing along a constant vector-field as long as the
sheaf £¥ does not encounter the sheaf £¥. When the two sheafs touch, we take advantage
of the fact that we are working in a Sobolev class were singularities are allowed: Using such
singularities, the sheaf £% is enabled to follow his way down and to pass through the fibers
of £F, creating on the way point singularities. These singularities form a cloud of uniformly
distributed points, at least in the center of the cloud.

In order to provide a sound mathematical meaning to the previous construction, in partic-
ular the crossing of fibers, we single out a a few elementary tools which are used extensively
in the proof of Proposition 4 and gather them in a Sobolev deformation toolbozx.

4.1 Sobolev deformation and surgery toolbox
4.1.1 Gluing maps

This is the most elementary operation. Assume first that we are given two subdomains 2y
and Qs of a domain Qg of R? such that Q; N Qs = 0 and let v; and vs be two functions with
values into S? such that v1(z) = Pyoun for 2 € Qg \ Q1 and ve(z) = Pyoun for = € Qg \ Q.
Then we define the function v V, v2 on g by

{ v1 V, v2(x) = vi(x) for z € Oy, v1 V, va(x) = vo(z) for x € Qo (4.1)

v1 V, v2(x) = Pgouen for x € Qo \ (21 U Q),
an alternative and even simpler definition being
v1 V, v2(x) = vi(x) + va(z) — Psoutn  for any z € R3.
In the case both v; and ve have bounded E3 energy, then the same holds for v; V, v with
Es(v1 V4 v2) = Es(v1) 4+ E3(v2). (4.2)

A related situation is encountered in the case Qo = Qg \ €1, when both v; and vy have
bounded Ej energy. If the domains are sufficiently smooth, then one may define thanks to
the trace Theorem the restrictions v;,, for i=1,2 and if

vi(z) = va(z) for z € 00 C 9Ny = 0N U I

then we may define again v; V, v2 according to (4.1) and relation (4.2) still holds. Given two
disjoint oriented compact framed curves in R3, we have, provided p > 0 is sufficiently small

Pgntya[(Cl, eL) U (Ca, el)} = Pgntya[cl, eL] V, Pgmya[Cg, el].
so that in particular
k k
k E oL kLl 1
Spag = <'\/3 1P22tya[[,j,q, eref]> V, <'\/31P22tya[£i’q ,eref]>
Ja= iq=

Finally, we refer to similar gluing in R*, replacing the symbol V, by the symbol V,.
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4.1.2 Deformations of the domain

Definitions. We consider deformations of maps generated by deformations of the domain
R? induced by the integration of a vector field. Given a smooth vector field X on R3, we
consider the flow ® generated by the vector field X defined by

d —
%CID(-,t) = X[®(-,t)] with ®(-,0) = Idgs, (4.3)
so that, for each fixed time ¢ > 0 the map ®(-,¢) : R® — R? is a diffeomorphism of R3. We
denote by ®~1(- ¢) its inverse at time ¢, so that ®~!(-,;¢) = ®(-, —t). The deformation of the
domain gives rise also to corresponding deformations of general functions: To each function
v defined on R? and given ¢ > 0, we may relate a function v;(-) defined by

v(z) =v (@7 (z,t)) for x € R®.

The curve t — v; is now a continuous deformation of the initial function v, since vg = v. We
will also consider the transportation of subsets of R? by the flow ®. We set accordingly for
a subset A CR3 and ¢t >0

B(A,t) ={z c R} & ! (x,t) € A}. (4.4)
Notice that, if C is a framed closed curve of R?, then in general

(Pgntya [c, eﬁef} )t () # PO [cp(c, ), erief] (z) for z € R® and ¢ > 0, (4.5)
where the frame has been transported accordingly. However equality holds in case X isa
constant function, since in that case ®(C,t) is a translate of C. This observation leads us to
introduce a variant of the Pontryagin construction for non-constant vector fields.

Vertical vector fields. We implement the previous construction with a very specific choice
of vector fields X. Since our aim is to push the sheave £ down according to x3-direction
we restrict ourselves to vector fields X of the form

—

X (21,22, 23) = —((21, 22, x3) €3, (4.6)

where ¢ : R? — R is a given non-negative function on R3. The related flow ® can then be
integrated as

O(x1,x2,23,t) = (z1, 22, ¥(21, 22, 23,1)) where ¥ solves the ODE with respect ¢

d (4.7)
%‘Il(xlvl?a x37t) = _C_:(xla'%?a \I/(.’L'l,.’L'Q,LUg,t),t)-
It follows directly from (4.3) that
0P .
\a’ < [ X oo sy = € poo (m3)- (4.8)

Differentating (4.3) with respect to the variable z;, we are led to a relation of the form

0
\a[lvg@\Q]\ < C|IVaGsllpe re) VP, (4.9)
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where C' > 0 is some universal constant. Integrating (4.9), we obtain the exponential bound
IV, @°(-, 1) < Cexp (C||V,C| oo reyt) for t > 0. (4.10)

In the case ¢ does not depend on x3, the integration of the vector field X given by (4.6) is
straightforward and yields ®(z1, x2,x3,t) = (v1, 22, x3 — ((x1, T2)1).

We introduce a deformation operator P, which relates to an arbitrary map v : R? — R¢
and ¢ > 0 the map Py (v)(t) defined on R? by the formula, for (z1,22,23) € R® and t € R

Pe(v)(t)(z1, 22, 23) = v(<1>_1(x1,$2,m3,t)) = v(P(x1, 2, 23, —1)). (4.11)

In some places, we will use the simpler notation v;(-) = P¢(v)(t)(-), when this is not ambigu-
ous. In the special case the function ¢ does not depend on z3, we have vy = v(z+((x1, x2)t €3).
As a direct consequence of the chain rule and estimates (4.8) and (4.10), we obtain:

Lemma 4.1. Assume that v and ¢ are differentiable. Then we have for x € R? and t > 0

0

5 W)@ < OV, oo sy 1€l o )

[V, Pe(0)(t) ()| < CIIV,0| oo sy exp (CIVC]| oo rs)t)
where C' > 0 is some universal constant.

Two kinds of vertical fields. We will be even more specific and describe next the two
different kinds of vertical vector fields which are used in the construction of the Gordian cut.

Constant vertical fields. We consider here the vector field X, related by (4.6) to the constant
function ¢, =1
Co(l'l,l'g,xg,) =1, V($1,$2,$3) S R3. (4.12)

Since |V(,| = 0, we obtain, if ®g is the flow related to Xo, Do(x1, 2, 23,1) = (21,22, 3 — t)
so that
\8@0\ < 1 and ]V3<I>0(-,t)] < C(),

where Cy is some constant. In this case, the map P, (v)(t) has a simple form, since
Py (0)(t)(2) = (@1, w2, 23 + ), Vo = (21,29, 23) € R”.

It follows from Lemma 4.1 or computing directly using the chain rule that, for any ¢ > 0

12
ot

where Ky is some absolute constant.

Peo (V) () oo rs) + 1V P (V) (8)l| oo (r3) < Kol V0] poo (ms).- (4.13)

Remark 4.1. In the course of the proof of Proposition 4, we will be led to transport the
Pontryagin maps of the fibers Ef”j. We have, for t > 0 and = € R3

P, (P‘Z)ntya[ﬂ,ﬁ’j], el (t)(x) = pony? [)Ziﬁ’qL — 1683, ¢¢] () and hence

9 Kl Bl
| = PS5 — 183, eegl oo (me) + |V, PO (€] — 83, eiegl oo (m3) < Cllowk-

ot @ 1,9 1,9
where C(f)low is some universal constant
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The vector field X{g Let k € N* and set h = k~'. We consider the numbers x4 defined by
x5 ="0h for 0=1,...k, sothat 0<zl=h<... <zhk=1

The definition of these numbers is motivated by the fact that the collection of segments
[—6,6] x {x5}, £=1,...,k correspond to the straight segments, in the spaghetton construc-
tion, of the sheave £F which lie below £¥1 (see figure 6). We construct a vector field X{“
related by (4.6) to a push function C{“ depending only on the last two variables, that is

(21, 20, 23) = (F (22, 3), ¥(21, 72, 73) € R?, (4.14)

so that we might possibly restrict ourselves to the plane P 3, which actually depends only
on the second variable x2 in the region x3 > 0, and such that

1 k h h
Ch (29, 23) = 1 for z9 € Kgl[xg - g,xg + g] and for z3 > 0,
k koo Do o R
(i (z2,23) =1 for o & U [z5 — —, x5 + —] and x3 > 0,
=4 A (4.15)

(F(xa,23) = 1 for w3 < _g

1
Ly =

C1 (x2,23) <1 for z3 > 0.
It follows from the above conditions that

CH(x) =1 except possibly if 2 € O, =R x [0,1 + %] X [—g, +00). (4.16)

To construct the function Cf, we proceed as follows: We choose C{“ of the form

CFlan,@s) = 1 F(a)gaas) with f*(c2) ZgQ( (w2-28)). @17

where g2 : R — R denotes a given smooth non-negative function on R such that

1 3 11

4 4] g2(8) = = for s€[—<,2,0<ga(s) < % otherwise, (4.18)

g2(s) =0for s e R\ [—

and where the function g3 : R — R denotes a smooth non-negative function such that
0<g3<1and

1
g3(s) =1 for s > 0 and g3(s) =0 for s < —5 (4.19)

Notice that, in view of (4.18), we have

B

| >

k h
Zgg( <s—m2)) :OforseR\Zgl[xg—Z,xg—i—

So that the conclusion (4.15) follows. The definition (4.17) yields the estimate

[Gilloo < € and V(i < Ck.
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for some universal constant C' > 0 and we have therefore
exp (s va{fuLw(Rg)) < K, for s € [0, h],

where K > 0 is some universal constant. Hence, it follows from Lemma 4.1 that for any
x € R3 and any s € [0, ], we have

0

5P ()(8)(@)] + [V Peg (0) () (@) < Ka| Vo] oo o), (4.20)

where K; > K¢ > 0 is some universal constant. In view of the simple form (4.6)-(4.17) of the
vector field X f , its integration reduced to the integration of the scalar differential equation
in (4.7) which can be solved by separation of variables. Going back to (4.7) and writing
(21,29, 23,5) = U¥(x2,23,5) for our specific choice (4.15) of vector-field we verify that the
function \Iflf is given as the solution of the integral equation

/gﬁ3 du
T =S

Wk (2a,23,8) 1 — T (22)g3(u)

It follows from this formula that Wy (z9, x3) < x3, and that

Uk (29, 23,5) = 13 — [s - sf]f(@)} provided 0 < s < x3. (4.21)

Transportation of curves by the flow of X{“ We next take a look at the fate of a curve when
transported by the flow (IDIf of the vector field X{“ . Of special interest is the fate of the fibers
of the sheave £¥1. In view of statement (4.16), all part of the fibers which are not in Oy, are
transported downwards along the direction €3 with constant speed 1. Since the restrictions of
the fibers of £F- to O}, are segments parallel to &, let us first consider the line D = M +Ré&s,
where M = (my,0,mg3) is given, with ms > 0. Thanks to (4.7) and (4.21), we obtain, for
0<s<mg3

(D, s) = {(m1, 29, m3 — [s - Sf’f(l'g)} )) for zo € R}. (4.22)

Hence, if my = 0 and restricting ourselves to the plane P 3, the curve <I>’f(D, s) corresponds
to the graph of the function zo — mg — [s — sfi(z2)] (see figure 9). In the course of the
proof of Proposition 4 we will use formula (4.22) for the special choice m3 > s = h, so that

(D, h) = {(m1, x2,m3 — [h - hf]f(:ng)])) for zo € R}.

and hence

h k h h
¥ (my, 22, m3, h) = (M1, 22,m3 — —) for 20 € U [2h — =, 220 + 2)]
4 =1 8 8
h h

(4.23)
k
¥ (my, 2, m3, h) = (M1, T2, m3 — h) for x5 € R\egl[acé - g,x2€+ g)]

Transportation of translates of stadia Sij by the flow of )?f’ As mentioned, the vector field
)?f will be used to transport verticale translates of the stadia Ef”j, so that, for arbitrary
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Figure 9: The deformation of a line parallel to the xo axis by the flow generated by X{“, k=14
at time h.

i,gq=1,...,k, and ¢ > 0, we consider the curve Sf”qL — ¢ €3 and its deformation Defﬂﬁj(c, s)
by the flow ®%, given by, for s € [0, A]
Deti (e, 5) = Dh (Ll — ¢ &3, 5) (4.24)

We will only be interested in the case 0 < ¢ < 6+gh. The shape of these curves is represented
in figure 10. An analytical description is provided by the decomposition in the plane P 3(ih)

k, L ,— — s 0
Der &5 (¢, 8) = Sgygn (Aiy (€, 8)) USg, (Af (c,8) UGIP (e, s) UDS (e, 9), (4.25)

where A;q(c, s) = (ih,—3+qh, —c—sh), Ai_’q(c, s) = (ih,94+ qh, —c—sh), where D!?,Cq’t denotes
the segment at the bottom of Defﬂﬁ’j(c, s) parallel to €z, that is

bot _ — +
{Di,q (c,s) = [B;,(c,8), B (c,s)] where
_ L ) o
Bi,q(c7 s) = (ih,—3 + gh,—6 — gh — ¢ — s)) and Bi,q(c? s) = (ih,9 4 qh,—6 — gh — c — 5)),

and where the set Gg;p(c, s) has the form of a graph in the plane P» 3(h), namely
Gt.j)p(c, s) = {(ih, 22,6+ qh —c— {5 - sf]f(xg)D ,x2 € [-3+¢qh,9+ qh]} . (4.26)

Remark 4.2. The set DefﬂibL(c, s) may be considered as a perturbation of the set ,Sf”qj‘ —
(c 4 s)€3 in view of the relation
~ . h
Defﬁﬁ’qj‘(c, s)+ (c+s)€3\ 2?7’;‘ C {(zh, x2,6 + gh + Sf]f(xg)> ,xp € (0,14 Z]}
We have hence
Defﬂf”j(c, s) C [Ef(f —(c+ 3)63] UVie,s), (4.27)
where V(c, s) denotes the parallelipedic region

o h h 3h
Vies) = —(e+ 88 + [, 1+ 512 x [0, 5
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Figure 10: The deformation of the curve 22’(; by the flow ®F, k = 4 at time h.

4.1.3 A variant of the Pontryagin construction

Whereas deformations of the domain act both on curves and functions, we have seen in
(4.5) that it does not ”commute” in general with the Pontryagin construction, that is the
Pontryagin map of a deformed curve is not in general the deformation of the initial Pontryagin
map. Concerning the curves which are of interest for us, namely the curves Def,ﬂij (c,s),
we taylor a specific variant of the Pontryagin construction for our later use. Given ¢ > 0,
i,q=1,...,k,0 < ¢ <6+ qgh and s > 0, our variant f’gntya[DefE,ﬁ’qL(c, s)] : R3 — S? will
by different from the Pontryagin map only in a neighborhood of the top part Gz)qp(c, s). We
introduce therefore the set

Ump(c, s,0) = U D%?)(g, a)

7
e aGGE:’;’(c,s)

where, for a = (a1, az,a3) € R?, ]D)i?)(g, a) denotes the disk in the plane Pj 3(az) of radius p
centered at a, namely

D7 5(0,a) = {(21, a2, 3) € R, (31 — a1)® + (w2 — a2)® < 0*} C Py 3(a2).

We then define the variant f’gntya[Defﬁi’qL (¢, 8), eX¢] of the Pontryagin map in the following
way: We set

pontya k,L ontya, k,L o
PO Do L7 (¢, 8)](x) = PP [Der L7 (¢, 8)] () for & UyP(c, s, o) (4.28)
Otherwise, if z € ]D)ig(g, a) for some a = (a1, a2,a3) € Gszp(c, s), we set

PO DL (¢, 5)] (21, a2, 73) = X (21 — a1, 73 — ag) . (4.29)
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where y, is defined in (31) and (32). In other words, in the construction of P§"* [Defﬁﬁ’;(c, s)],
we replace the plane orthogonal to the curve by the plane parallel to P1,37 on the part

GE:{p(c, s). We are going to rely on the following

Lemma 4.2. We have, provided Defﬂﬁ’qj‘(c, s) C R? x Rt

Py DLy ()] = P (P2 — s, eier).

Sketch of the proof The proof follows from the observation that
®1(DF 5(0, a), 5) = Df 5(0, P (a, 5))

a consequence of the fact that C{“ depens only on the variable x2 in the region considered and
the fact that we consider only disks in planes orthogonal to €.

Concerning gradient estimates, we have:

Lemma 4.3. We have, for some constant Caer > 0 and for any ¢ € RT and s € [0, h]
0
IV3Det &7 (c, 5)| + \%Defsﬁj(c, $)| < Caetk,
One may deduce these estimates from (4.20) or might be proven directly.

4.1.4 Cubic extensions

Whereas the previous construction works for quite general classes of maps and are hence not
specific to the Sobolev framework, the extension method presented here induces singularities
and hence is specially appropriate in the Sobolev setting.

The cube Q(a) and its boundary. We consider the co-norm on R* given by

X[oo = sup |z1] for x = (z1, 22,73, 74) € R*

i=1,...,
and the corresponding oo-sphere Q?* of radius r > 0 defined by

Q? = Q*(0) where more generally Q*(a) = {x € R*,|z — a|,, < r} for a € R?,

so that actually Q# corresponds the hypercube Q* = [—r,7]*. Given a 4-dimensional hyper-
cube Q}(a), its boundary dQ?(a) is the union of 8 distinct three-dimensional cubes Q?,’i(r, a)
of size r defined, for a = (a1, a2,as3,a4) and p=1,...,4 by
Qi’i(r, a) = {x = (v1,x2,23,14) € R*, T, =a,=*r, st;p |x; — ai| <7} (4.30)
i#p

The sets Qg’i(r, a) are therefore included in a 3-dimensional hyperplane of R* orthogonal to
the vecteur €,. We have

0QA(a) = pél (Q3+(r,2) UQ (1)) .

"these two planes coincide if g'(22) = 0.
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Construction of the estension operator. Given a map v : dQ}(a) — RY defined on the
boundary dQ¢(a) of a cube Q?(a) we consider its cubic-radial extension €xt, ,(v) defined on
the full cube Q*(a) for v: 0Q*(a) — Rf by

Exctra(v)(x) = v (a S

|x — aloo

) for x € Q*(a), (4.31)

so that @xt, a(v) = v on the boundary dQ;(a). If v is Lipschitz, so is Ext,.a(v), except near
a, where a singularity is created. However, if the map v has finite energy E3 on the three-
dimensional set Q7 (a), then the same assertion holds for its extension €xt, »(v) on the cube
Q%*(a) with the estimate

E; (Extra(v), Qr(a)) < Kext 7E3(v, 0Q0(a)), (4.32)

where Koyt denotes some universal constant.

4.1.5 Creating Hopf singularities through the crossing of lines

We analyze next a situation which accounts for the creation of singularities in the construction
of the Gordian cut Ggrd. We restrict ourselves to cubes of radius » = h/2. The singularities
are created applying the extension operator to maps YT? defined on the boundary of cubes

Th . GQi/Q(a) — S?, where a = (a1, az,a3,a4) = (a,a4) € R*, h > 0. (4.33)

and which we are going to define next, using the Pontryagin construction or the variant that
we have seen before. These construction are build on relevant curves on each of the faces
,?;’i(h/Q, a). We focus first on the top and bottom faces

h
Q17 (h/2,2) = Qi ja(a) x {aa £ 5}

and start the description working in the reference cube Qi/Q(a) = {(z1,72,23) € R3, |7;—a;| <
h/2,i=1,2,3, where a = (a1, az,a3) € R? is defined 8 in (4.33).
Some relevant curves in Qi/z(a), a = (a1, az2,a3). We consider the two segments of Q‘zﬂ(a)
given by

Don(a) ={lar —h/2,a1 + h/2] x {(az,a3)} and

Dih(a) ={a1} X [ag — h/2,a3 + h/2] x {ag — 3h/8}
so that the two segments are parallel to €; and € respectively, have hence orthogonal direc-
tions, each of them joining opposite faces of the cube: Dg j(a) C Py 3(a3) and D], C Py 3(a1).
We consider also the smooth curve C| , (a) given as the following graph in the plane P 3(a1)

Z2

1 p(a) = {<a1,x2,a3 + [h — hgs ( h”))] @9 € [ag — h/2, a3 + h/Q}} , (4.34)

where the function gs is defined in (4.18). This definition is consistent with (4.22) and (4.26):
Indeed Dy ,(a) on one hand and C7 ; (a) and DT , (a) on the other are aimed to model suitable

8As a general rule roman bold characters as a correspond to points in R* whereas symbols as a refer to
points in R?
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subsets of fibers Sf j and Defﬁi’;‘ respectively, as we will discuss later in Remark 4.3 below.

Notice that DT, (a) and C ,(a) both belong to the plane P, 3(a1) and intersect along two
segments parallel to €2, namely we have

DIh(a)ﬂCLh(a) ={a1} x([ag — h/2,a9 + h/4) U [ag + h/4,a2 + h/2]) x {as —3h/8} (4.35)

In particular, their respective intersection with a suitably small neighborhood of the boundary
coincide, see Figure 12.

Remark 4.3. Relating C| ,(a), DT, (a) and Do p(a) to £ and Defﬁibl. As mentioned, the
sets DT, (a), C| ; (a) and Dy (a) are designed to represent suitable subsets of fibers Sf, ; and

Defo,’qL. In the proof of Proposition 4, we will be led to consider points of the form
a=a;jq=h(i,j,q), for some integers i,j,q =1,...,k, (4.36)
which belong to the cube [0, 1]3. We verify that
Qi ja(aiig) N L8 = QF jy(aijg) N £F, = Donlaisg) (4.37)

and that L ,
Der&i, (¢, h) N Qp o(aijg) = Co (aijq)

():ﬁj —(c+h) é3) N Qh2(aijg) =D n(a),

provided we have the condition involving only the numbers ¢, p and q but not on the numbers
i and j

(4.38)

3h
c:5+§+(p+k—q—1)h. (4.39)

S?-valued maps on Q2/2 (a). Let o = 1073h be given. We relate to the previously constructed

curves S?-valued maps through the Pontryagin construction or its variant. In order to have
orientations consistent with the constructions in subsection 4.2 in particular the framings
on the sheaves, we choose on Dy, the framing ¢j = (€3, —82), whereas on DT, (a) we set

¢g = (€1, —63). We first consider the map Y,., defined on Q3(a) by
Y = PO Dy (a), )] v, PER[CT  (a)]. (4.40)

The notation P§"* [CT ] which appears in (4.40) refers to the variant of the Pontragyin con-
struction defined in Paragraph 4.1.3, for which the plane orthogonal to the curve is replaced
by a plane parallel ? to Py 3. More explicitely, it is defined on Qz /2(a) by

- _ To—a
B on o) = xo (o1, o= 0= a2 )| )
where x, is defined in (31) and (32). We define on Q?};/Q(a) another map v as

yhet = POWR[(Dy 4 (a), )] V, POYHDT (a), o)), (4.41)

9the corresponding framing would correspond then to the framing on D7 , that is (€1, —€3)
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€3

a=(a,a,,as)

€

Figure 11: The curve C| ,(a) and the segment Do p(a). These curves yield by Pontryagin’s

construction and its variant the map y" on Q57 (h/2,a).

An important consequence of the definitions (4.41) and (4.40) as well as of (4.35) is that
v (2) =y H () for z € 6Q:;’L/2(a), (4.42)
Setting in analogy with (4.30), for p = 1,2,3

Dg’i(r, a) = {z = (v1,22,23) €R x), = ap £, Sip |zi — ai| <7},
i#p

so that 8Q2/2(a) = UQZ*(r, a), we notice that
YiF (@) = yP 7 (2) = Pyourn for « € Q31 (h/2,a)
Vit (@) = Y1 (@) = xolar, —as + % for 7 € 2% (h/2, a) (4.43)
Vit (@) = Vi (2) = Xo (w3 — a3), — (w2 — a2)) for z € Q7*(h/2,a)

We notice also the symmetry properties on the boundary, for p =1,2,3
73*(:3) = 73’—(9[;) = 72*(:5 T he,) = 73* (x F hep) for z € Q%’i(h/l a). (4.44)

S2-valued maps on 8Qi/2(a). Let a = (a,a4) = (a1, a2,as3,as). We take advantage of (4.42)
and (4.43) to define on 9Q; /Q(a) an S? valued map YT? whose restriction to the top face of

the boundary is yZ’JF and whose restriction to the botton face is yZ’_. We define it as follows:

h h
Th(z, a4 + 5) =y (2), for x € Q;Q’L/Q(a) ie. x = (z,a4 + 5) e Q3 (h/2,a)

h h _
Th(z, a4 — 5) =y (2),2 € Q?L/Z(a) ie. x=(z,a4 — 5) € Q¥ (h/2,a) and  (4.45)

h h
Y (z,24) =y (2) =y~ () for z € 8(Q2/2(a)) and x4 € [ag — 50t 5]
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€

Figure 12: The segment DI (@) and the segment Do ,(a). These curves yield by Pontryagin’s

construction and its variant the map Y on Q31 (h/2,a).

It follows from (4.42) that YI is a Lipschitz S*-valued map on 9Qj /Q(a) which has the
topology of S?. As a matter of fact, the map Y7 can be constructed through the Pontragyin
construction and its variant!” related to a curve £ we describe next.

The map T’; and the Pontryagin construction. The map Tg can be defined usinf Pontryagin
constructions for a curve we define next. Consider the square

B(a) = a+ [~h/2,h/2] x {(0,0)} x [=h/2,h/2] C Q} 5(a) C R,

It is included in the two-dimensional subspace P 4(az,asz) of R* given by the equations
x9 = az and x3 = a3. Set Lo(a) = 9B(a), so that Lo(a) is composed of four segments of
length h, two of then parallel to €, the two others to €;. The vertices MLi(a), Ms{(a) are

given by
h h h h
Mi(a) =a+ (=5:0,0,%5) and Mi(a)=a+ (+5:0,0,45),

so that
Lo(a) = [M; (a), M{ (a)] U [M[ (a), Mg (a)] U [M[ (a), M;"(a)] U [M (a), Mg (a)] .

Notice that [Mf(a),Mg(a)] = Dg(a) x {as = 2} and that the two other segments are

10in the sense that P°™? is replaced by P°"%¥® in some parts
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parallel to €;. Ones verifies that Lo(a) C 0(Q} /2 (a)) since

a) x {as + h/2} € Q31 (h/2,a),
Fopot = Dop(a) x {as — h/2} € Q77 (h/2,2)
For, = [My (a), M (a)] € Q7 (h/2,a) and
For = [Mg(a), M7 (a)] € Q37 (h/2,a).

FO,top = DO h

h(
(

(4.46)

We consider another curve, the curve £ (a), which is included in the hyperspace x; = ay,
defined by

h h
Li(a)=C] (a) x {as — 5} U Dih(a) x {aq + 5} UF|1UF] 9,

where F'| 1 and F'| 5 denote the segments parallel to €, given by

h 3h h h h 3h h h
5,@3——}x[a4——,a4+—] and F| 9 = {al,a2+5,a3—§}x[a4——,a4+—].

Fii= —
1,1 {aba? ] 2 2 2 2

We verify that £, (a) is a connected closed curve in G(Qim(a)) since Dih(a) x {aq + h/
2} € Q7F(h/2,a), €L ,(a) x {as — h/2} C Q77 (h/2,a) Fiy C Q) (h/2,a) and Fi C
Q5% (h/2,a) and that it does not intersect £, (a). We set L(a) = Lo(a) U £ (a). One may
then verify that .

Ty =Py [L(a), e5]

where the frame eg corresponds to the frame defined in (4.40).

Remark 4.4. First Properties of the map Tg. In connection with Remark 4.3 we notice
that, for a point a of the form a = (a; 4, as4) where a; ;4 is of the form given by (4.36), we
have

n k,L o h h
Th(x) = ponwva | gk (L5, — ces), erlef} (x) for x € 0Q3(aijq) % [as — 5 + 5], (4.47)

provided the numbers ¢, p and ¢ satisfy relation (4.39). Since

0™ (ai5) * las — a1+ 5] = 90 p((a15),a2) \ (237 (h/2,2) U QY™ (h/2,2)

It follows from (4.47) and (4.45) that
Th(x) = Ponwa | gk y (gt — ces), efef} (x) for x € 8Qi/2(a) \ Q37 (h/2,a) (4.48)

provided there exists some number p € {1,...,k} such that (4.39) holds, i.e. ¢ =5+ 3h/8 +
(p + k — q¢ — 1)h. Notice that the r.h.s of (4.47) does no longer depend on i,j,q. As a
consequence we have the periodicity property

h h
Tz, s) = TZJF,LQ(:L‘, s)if x € D?’i(h/la),é =1,2 and s € [ag — 5 + 5] (4.49)

Topological Properties of the map Y. We first have:
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Lemma 4.4. The two curves Lo(a) and L (a) are linked in GQi/z(a) and
m(Lo(a), £ (a)) = 1. (4.50)

Proof. To establish (4.50), we deform the two curves in a continuous way so to obtain a
simpler geometry. We may assume without loss of generally that a = 0 and that A = 1 and
set Lo = L(0) and L, = £, (0). We introduce the three-dimensional sphere for the co-norm

1
Sg’iub = {x = (21,0, x3,74) s.t. [X|oo = 2} ={x¢€ OQi‘/z(O) x9 = 0} as well as
Sg:(iub’J“ = $g:(fb N{z3 > 0} and $§’:(fb’_ = $§ﬁ_llb N{xz3 <0},
so that we have Ly(0) C $g’j_ub’+ and

L 0,0,-1 45y s

3 1 . 1
L) ﬁ$§:<iub,+ = {(0,0, §’_§)} and £, m$giub, — {(0,0,—= .

8 2
We first deform the curve L staying inside $§:Tb’+ C $g’z‘fb C 0Q] /2 (0) and in such a way
that, throughout the deformation, the deformed line has the shape of a rectangle, which, at
the end of the deformation, lies inside the face Q' (1/2,0) C R3 x {—1/2}. For 0 <t <1,
denoting M;=(t) and Mﬁt(t) the vertices of above mentioned the rectangle, we set

1 1 1 1
5,0,0, —-) and Mg (t) = Mg (0) = (5,0,0, —-=),

M (t) = Mg (0) = (- ; ;

so that these vertices are not moved. For the two other vertices, we set, for 0 < ¢ < 1/2

1 1 1 1
M (t) = M;(0) + té; = (—5,0,15, 5) and Mg (t) = Mg (0) + t&3 = (i,O,t, 5),
whereas for 1/2 <t <1, we set
. . 1, 3} 1 3
M (t) = M{ (0) + 26— (2t —1)€y = (—5,0, 3'5 2t) and
. . 1, .1 13
Mg (t) = M;(0) + 58— (2t —1)&4 = (5,0, 35" 2t).

The functions ¢ — Mf(t) and ¢t — Mf(t) are hence continuous on [0,1], with values in
8Qi‘/2(0). We define, for 0 < ¢ <1 the curve

Lo(t) = Fotop(t) U Fopot (t) U Fo(t) U Fyr(1),

where we set Fyoy(t) = [M (), My ()] = Fopot(0) € Q37 (1/2,0), Frop(t) = [M;F (£), M;F (1)),
F(t) = [My (t), Mi" (t)] and Fr(t) = [Mg (t), Mg (t)]. We verify that Fi,,(t) € Q57(1/2,0)
for ¢t € [0,1/2], Fiop(t) € Q37(1/2,0), for t € [1/2,1], FL(t) € Qy (1/2,0) and Fyg(t) €
Qi’+(l/2,0) for t € [0,1]. It follows that ¢ — Lo(t) is a continuous deformation of Ly and
that for ¢ € [0, 1], we have

Lo(t) C 55 € 0Q1 5(0) N {z3 > 0} and Lo(t) N Ly = 0. (4.52)
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Hence, we have

m(Lo(t), L) =m(Ly, L) =m(Lo(1),L,),Vt €]0,1]. (4.53)
At time ¢ = 1, we observe that the points M (1) = (—3,0,3,—3) and M (1) = (3,0, 3, -1)

belong to Q5 (1/2,0)N{zs = 0}, so that all the points M:E(1) and M (1) belong to Qv (1/
2,0) N {z2 = 0}. Hence the rectangle Lo(1) satisfies

_1 1 1
Lo(1) c Q¥ (5:0)N{z2 =0} C R? x {=3) N {22 =0} = P13(0) x {~3}. (4.54)
L(0)
M) i 7L Mo
e, . Mff(l/Z) %“ Mg /2
Lo(1/2) =
M (©) Y Mﬁ(t)

Lo(1)

Figure 13: The deformation of the curve Lo at timest =0,1/2 and t = 1.

We perform a similar deformation on the curve £, in particular the three segments which
do not lie in 9%~ (3,0). We set

1 3 1 1 3 1

The two other points composing the segments are moved as follows: For 0 < ¢ < 1/2, we set
1 3 t1 1 1
Nt (t)=(0,—=,—= dNJr —,0,t, =
L() (0’ 27 8 4 2)3’ () (0’2707 72)’
1 1 11 1 1 11
so that Nf(i):(o,—i, 2 2) and N+(2) (0, )5 Ty 5) For 1/2 <t <1, we set
n 41 5 13
N{(t) = Ny (5)—(2t—1)e4 (—7,0,5,5 2t) and
1 1 13
Ni(t)=Ng(z)— (2t —1)8& = ((5,0,=,- — 2t
R() R(Q) ( )64 ((2707272 )7
so that 1 1 1 {1 1
NF(1)=(0,—=,—=,—=) and N (1) = (0, =, — =, —=). 4.
L( ) (07 27 27 2) an R( ) (0727 27 2) ( 55)
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All the points N (1), Nif(1) hence belong the face 937 (1/2,0) € R? x {~1/2}. We finally
consider the curve £ (t) defined, for 0 <t <1 by

£1() = [N (0), Ny (6] U [N (0), N (9] U [N (1), N (] U, (0) {5
the deformation t — £ (¢) is a deformation of £, (0) = £ such that, for 0 < ¢ < 1, we have
L1(t) C Sy CaQ];5(0) N {xs < 0} and L1 (t) N Lo(1) = 0.
We notice that, for ¢ = 1, we have
£0() € (5,000 {mr = 0} RS x {~ 2} 1 {1 = 0} = Pos(0) x {5}, (456)

By continuity of the linking number, we have m (L£o(1), £, (1)) = m (Lo(1), L1 (t)) =m (Lo(1), L, (0)) =
m(Lo(1),L,), for all t € [0,1]. Combining with (4.53) we deduce that

m (Lo, L£1) =m (Lo(1),L1(1)). (4.57)

Q3(0)X{-1/z)\

h\2

€3

Py 3 (OX(1/2)

€

P13(0)X{-1\2}
a=(0,0,0, -1/2)

Figure 14: The linking of the curves Lo(1) and L (1)

We may now take advantage, in view of (4.54) and (4.56), that the two curves are planar
curves in the three dimensional affine space R® x {1/2}, included in planes which are not
parallel, see Figure 14. Using the methof of crossing numbers, we may then show that

m (Lo(1), L1 (1)) = 1.
Combining this identity with identity (4.57), we deduce the desired result. O

Lemma 4.5. We have H(T?) = 2.
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Proof. The proof follows immediately from Lemma 2.2 and identity (4.50). O

Energy estimates. Concerning the E3 energy of T we verify that
IV, Th < cnt

where C > 0 is some constant. By integration on the boundary 8Qi /2 (a), whose measure is

of order h3, we deduce therefore that
Es (Tfi,f)Qi/g(a)) <, (4.58)

where C' > 0 is some constant. Finally, we consider the extension @j,, of T’; to the cube
be /Q(a) given by

(%) = Extyyza (Th(x)) for x € Q5 (a). (4.59)

Notice that @, 5 is Lipschitz on the cube Q2 (a) except at the origin, where, in view of Lemma
4.5 it possesses a point singularity of Hopf invariant equal to 2. Invoking scaling identities
(in the spirit of (4.32))and (4.58), we obtain the energy identity

E3(@h,a) = Kpoxh, for any h > 0, (4.60)

where K}« is a universal constant.

4.1.6 Deforming topologically trivial maps to constant maps

We assume here that we are given a map w € Lip N W13(R3,S?) such that we have
w(z) = Pyoutn for z € R3 \ [-R, R]3, for some R > 0.

Hence, we may define a Hopf invariant of w. We have

Proposition 4.1. Let w and R > 0 be as above and assume that H(w) = 0. There exists a
map W € CONW13([—R, R]*,S?) such that the following holds:

o W(z,—R)=w(x) forx € [-R, R
e W(x,R) = Pyouin for v € [-R, R
o W(z,5) = Pyouin for x € ([—R, R)?) and s € [-R, R]
o E3(W,[-R, R]*) < 2Cexi RE3(v, [—R, RJ?).
Proof. We consider the continuous map @ from the boundary d([—R, R]*) to S? defined by
w(x,—R) = w(z) for € [-R, R]® and
{ W(x) = Psourn for x € d([=R, RI*) \ [-R, R]> x {-=R},

so that w is Lipschitz ans the homotopy class of w is trivial. There exists therefore a Lipschitz
map ¢ : [-R, R]* — S? such that

o(x) = w(x) for x € d([-R, R*).
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Since ¢ is Lipschitz, we have

.[1 :/
[-R,R

)

IV, 0|® < +00.
]4
Let 0 < p < R be such that pI; < Ceyt R2E3(v,[—R, R]?). We define W as

W) = (2= ) i bl 2

R
W = () it Il < .

so that W satisfies the three first condition in Proposition 4.1. For the energy extimate, we
observe that, by (4.32), we have

/| R IV, W|? < Cexs RE3(v, [ R, R]?).
X|oo 2P

On the other hand, by scaling we have

14 phi
Bs(W, [=p. pl') = 5 Bs(e, [-R, RI') = .
The conclusion follows combining the previous estimates. O

Remark 4.5. Related constructions can be found for instance in [10, 6].

4.2 Proof of Proposition 4

As mentioned in the introduction, the map G’érd, which is defined on the strip A = R3 x
[0,50] € R* to S?%, is a deformation of the spaghetton map to a constant map, the fourth
space variable x4 standing for a deformation or time parameter. The construction relies on
corresponding deformations of the fibers of the sheaves £ and £51, the value of Gf,rd being
then obtained thanks to the Pontryagin construction or its variant. The main part of the
construction consist in deformed Sl]“,ag to a map of trivial homotopy class. The guiding idea
consists in ”pushing down” along the xs-axis the set £F- while keeping the set £F fixed,
singularities being created when two fibers meet and cross. When the sheave £ has been
pushed down sufficiently, then the two sheaves are no longer linked, so that we obtain for the
corresponding three dimensional ”time” slices a map with trivial homotopy class. It remain
to deform the later to a constant map, a task handled thanks to Proposition 4.1 present in
subsection 4.1.6.

Concerning the main step, i.e. the deformation of the fibers, the main technical tools that
we are going to use have been presented in Section 4.1, namely

e Deformations of curves and functions using the vector-fields X and X K

e The extension operator as presented in subsection 4.1.5. It is used on small cubes of
size h near the crossing points of the fibers. It allows curves to cross while yielding
singularities for Gl;rd-
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Pushing down the sheave £%- in the direction &3, we see that it might meet £¥ in their
respective straight parts'!', in the region Q% = [0,1]3. As a matter of fact, the points R?
where the fibers cross are given by

koo by s o : 1
ai,j,q - (kv k_a ki) - (Zhvjhaqh) _h(17.77Q) for 7,4 = 17"'7kW1th h = k_a (461)

so that the set of crossing points in R? is given by
{aigatiga=t,..k = (hIx)* = Bi(h) C [0,1]°.

Given a time s > 0 will denote by Sg?,q(s) and Sf’ql(s) the deformations at time s of the

curves Sl?q and S?’(IL respectively, so that

kL k, L
gk (0) = g% and £777(0) = £/

i,q
As a matter of fact, the sheave £F will not be moves, so that we have throughout
Sﬁjq(s) = 2;?7(1 for every s > 0. (4.62)

The construction will be divided in several distinct steps, where we use one of the above
methods, i.e. either pushing down using fields X or X¥ or using extensions creating singu-
larities at the points a¥ Each step n corresponds to a specific time interval [Tﬁ_l, Tfl],

4,059
with T§ = 0,

5h
8 Y

3h
T]f:5+§andeLH:TfL—Fh:nh—FTh, forn € {1,...,4k — 2}, where 7, =5 —

1
with h = 7 80 that all intervals, except the first and the last one, have size h. In each step

k, we will construct the restriction of the map G(’ird to the corresponding strips in the R*
space, namely the strip A¥ given by
k 3 k 2
An =R" x [Tnthn]?
taking care that the construction yield the sam value on the intersections, that is on the time
slices R? x {T%}. In some strips, the map GX _, will have a finite number of point singularities:
These space-time singularities will have the form

h h
ko (k k k k k
Aijuar = (ai,j,q’T2r+$) = (aijq T2y + 5) = (aij,q: Th + 2" 2hr)

g) = (ih,jh,qh,5—g+2hr).

(4.63)
= (ih,jh,qh, TS, +

Remark 4.6. Throughout the proof, the main focus is on the region [0,1]? and its close
neighborhood. The restriction of the sheaves £F(s) = £F and £%1(s) as well as its translates
are segments parallel to €, and €, respectively, as shown in Figures 3 to 8. Thecurved parts of
the sheaves, which lie outside of this region are less relevant, except concerning the topological
properties.

" consisting of segments parallel to & and &z respectively
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Step 1: Pushing £¥1 downwards towards £F.
We define in this step Gﬁrd on A¥ = R? x [0, T4]: We move £51 along the constant vector
field Xy = —&; while keeping £ fixed throughout. For 0 < x4 < T’f the fibers SZ- , are hence

translated with constant speed. We have therefore, for i,q =1,...,k,
- 5h
Si’j(m) =R, (qu, 4) = LB — 485 for x4 € [0,TF] = (0,5 + g] (4.64)

We define the map GF_; on the strip A} = R3 x [0, T}] as

k
GOl‘d

(2,5) = | P, (P (L8(s)]) vy PE™(5]] (2)
(4.65)
= pore {(Ek’L — 5€3) U Ek} (z),Vz € R3.

Here and in the sequel, the frame will be the reference frame, so that we omit to mention it
in the operatot P°"2  Notice that G(’ﬁrd defined as above is smooth on the strip A¥, that

Gord( O) = Sf)ag( ) on Rgv (466)

h
that dist (LM — sé3, £F) > % for s € [0, T4] and that

5h

dist ((£F+ — Thes, £F) = = (4.67)
Turning to energy estimates, it follows from Remark 4.1 that
[VaPe, (PO (L (s) ()] < Cleth,
so that by integration on the set where G'grd is not constant, we are led to
/A If IVAGEq? < K ik?® with Ko = 240 (CO)° . (4.68)

In view of (4.67) we observe that the lowest fibers 12 of £5(TE), i.e. the curves Qk L(T’“)

for i = 1,...,k are at distance 5h/8 of the upper fibers of £, ie. the curves S ’ for
7=1,...,k, the nearest points being the points in the set

A ={a;p,i,j=1,...,k} =B (h) x {1} (4.69)
with sh Bk
k,L k,L
dlst(a”k,El 7)) = 3 =35 + 3 and a; j, € L7
Our next aim will be to continue to lower with the same speed "most” of the fibers of
L£F1 while keeping £F fixed, without meeting the curves £§7k, 7 = 1,...,k hence avoiding

the singularities. In view of the above discussion, we are led to introduce the subset L¥ of
£k (TF) corresponding to the union of fibers of Slg’l which are the closest to £F, that is, we
consider the sets . .
Bl L E,L k,L
L™ = Y Slz 7 and Ly (s) = iglgi’l (s) (4.70)

12according to the z3 coordinate

54



as well as there complements

Nit= U ghlandNy“(s)= U € (s) (4.71)
q€{2,...k} " q€{2,...k} ©
€{1,....k} ie{l,...,k}
_____________________ N3t Do ads " L
P 5
1I i N

> 7
= , i
! ~ H
3
e Lt i s )
L * a seh/2 Pl P
212 H 5+h 7 7 T Li N
[N N N S 2
: L1
2
, L b a,,, =h 21
L) e
e o g B )
Y e T e X, axis
s e Z
I N A a  =(1,1,1
L 222 “LL )
. 31
X axis * 0,0,0)

Figure 15: A zoom on the crossing area at time 0, k = 2.

Step 2: Avoiding the first crossings.

Defining Gf,rd on the strip A5. We define in this part Gﬁrd on the strip A5 = R3 x [T#, T4] =
R3 x [T}, TH + h]. We are going to invoke three different types of motions for the fibers:

e The fibers in L¥(T¥) are moved according to the vector-field X ¥ = —(1es3. In particular,
they are not going to reach the points a; ; in A’f.

e The fibers in N¥(T¥) = ¢k (T%) \ L¥(T%) are moved with constant speed according to

—

the vector field Xg = —€3. They hence will be translated down the €3 direction by a
lentgh equal to h at time T’Q“.

e The fibers in £F are not moved, as already mentioned.
We define hence'® the map Gf)rd on the strip A§ = R3 x [T¥%, T’g] as
Ghealw, TS +5) = P, (PE?INFH(TH)) () v, P, (PSP (L (TD)](5)

ord (4.72)
v, POk

13 As mentioned, we have omitted the frame, which is throughout reference frame, in the notation for P°2%?
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The reader may check that the three maps appearing in the definition (4.72) have, for any
s € [0, h] disjoint supports, so that the gluing procedure in (4.72) is well-defined. Recall that
we have

k,L k, L k,L -
Pg, (PY™* Ny (T1)](s) = P[P (N7 (TT)(s)] = Pg"* [Ny~ — (T} + 5)&] and
~ k
P, (PP LE(TY))(s) = P [DetL ™ (T¥, )] where Do L™ (T, ) = U Der L7y (TF, 5).
Going back to (4.72) we obtain hence
Ghra( T +5) = PP INTT — (T} 4 8)8] v, Po™[DeLy (TF, 8)] v, P2 [eh]. (4.73)
The shape of the fibers for s € [TF, T5]. We have already studied the effect of the flow ®¥

generated by the vector field X on the fibers in £¥ or there translates in Subsection 4.1.2.
In view of the results there, we may write, for s € [0, h], concerning the transported fibers

ST (TF + ) = of (e — Thes,s) =D efs’?#(T’C, s)

ST +5) = @ (L — Thes, s) = " — (T} + 5)83 for ¢ # 1. (4.74)
2’“ JTh+s)= g5 .

The shape of the curve Def£k7L(T ¥ s) is described in (4.25), see also Remark 4.2 and figures
9 and 10. Most of Defﬁk l(T’f ,s) corresponds to the the translate £ k — (T} + s)€3 except
the part stuck above the points a; j i, at a vertical distance of 3h/8 When s =h.

The energy on the strip Ak. It follows from the definition (4.72) of GF_; on the strip A} =
R3 x [T, T4] and the gradient estimate for Defo’ql provided in Lemma 4.3 that

|V,GE 4| < Caeek on A5,

ord

so that by integration on the support of G(’ird which is included in [—30,30]% restricted to
A¥. we are led to the estimate

/A V. Goral® < 607 hCorh? < Kaerh®. (4.75)
2

where the constant Kger = 6030def does not depend on h.

On the shape of the fibers at time T’g. At time Tg, all fibers of €51 have been translated
by—Th&; = — (71, + h)&3, except the files in LY(T%) which are rounded near the points a; ;
in order to avoid collision with the fibers ,8? 1> Which they would otherwise have crossed. This
situation is described in Figure 16. We have in view of the inclusion (4.27) of Remark 4.2

h h 3h 3h
k, Lk kL = n N9 _on on
£5+(T3) C <£ (Th+h)eg)U[2,1+2] x [1 8,1+ 8]. (4.76)
We pay n special attention to the first crossing region defined by Ocmss 1 defined by

h h

h h
cross,1 — [571+§]2X[1_*1+*CR37

o 31+ 5]
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since we already know that
Sk L(Tk) \ Ocross 1= (Sk -+ (Th + h)éi’») \ O(]:lross,l' (477)

We consider the points in Ak where fibers Would have collided if transported by the constant
vector fields 4 and the k? distinct cube Q (al a; j 1) so that

h
Ocrossl = ]L-i Q ( z]k) where Q ( zgk) - {$ € R3’ s.t |$ - a’?,j,k|oo < 5} (478)

The intersection of two given cubes in the above collection is either void or included in the
intersections of the boundaries. We have, in view of (4.73), for s € [0, h]

£f1l(T]f +s) = <I>lf(£ —Thés,s) = Defﬂﬁ’f(Tf, s) for x € Q?’%(ai,j,k).

Going back to Remark 4.3, we notice that (4.39) is fullfilled with ¢ = T’f, p=1and g =1,
so that (4.38) yields

ef*gk L(T ) N Qi/2(ai,j,k) = Cl,h(alﬁj,k): for ¢ € {17 sy k}
and hence by the definition of SZ’lJ‘(Té”), we have for any i,j € {1,...,k}

ST (TH) N QY (i) = C1 (a0 i)- (4.79)

The valued of Gﬁrd on the crossing regions (’)?ross,l at time T%. The value of G(’grd provided

by (4.73) matches the definition of the map ygzjk given in (4.40), that is we have, for i,j =
...k

Gk q(z,TE) = YZJR (z) for © = (x1,x2,23) for x € Q?’%(ai,j,k), (4.80)

yields the value of G¥ ; on Of}mss’l thanks to (4.78). This follows combing (4.37), (4.79)
together with (4.73) and the corresponding definition of the map we deduce the yZZ;k

Step 3: Allowing crossings of fibers thanks to singularities.

Aim and strategy. We define here the value of GE_; on the strip A§ = R® x [T%, T5 +h = T%].
Our aim, is to have at time T%

LhH(TE) = 28 — (7, + h)&s, (4.81)

ontya

and to define Gk +q accordingly using the operator P, Notice that this is already achieved
at time T% off the set (’)Cmbb | thanks to (4.77), so that we are not going to change the values
on this set, that is, we will set, for s € [0, h] and for z € R?\ O

cross,1

Ghea(w, TS + ) = Ghra(w, T§) = P (€8 — Thes) U 8, e | (@), (4.82)

Mas a matter of fact, we have {a; j 1} = Ef; N (SflL — (h+22)8&3), so that the collision would have occured

at time 7, + % is the vector-field would have been )?0 instead
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a1,1/,;///

L)
e
T
~3 (M)
........... Pes (Lh/2)

Figure 16: The curves Efll(Té”) and Sf’k at time T5, k = 3 as well as the set (9(’;08571 formed
of k? =9 cubes of edge h/2.

It remains hence to defined the value of Gﬁrd on the space-time crossing region

e o T, T5 + h = T%].

cross,1 = “cross,1 X [

This region can be divided in four-dimensional cubes, so that we have
k
h 4 ¢k
@cross,l = z]LilQ% (az‘,j,k,l)v (483)

where the points afi jqn are defined in (4.63). The intersection of two given cubes in the above
collection is either void or included in the intersections of the boundaries. We first fixe the
value of Gﬁrd on the boundary of each of the cubes as

Gﬁrd(x) = Tzqu 1(x) on 3(QZ§ (af,j,k,l))a
where the maps Y are defined in (4.45). We then extend it inside by cubic extension

Gha(X) =8, (%)= €xty, /o ak (Tak (X)) for x € Qi/Q(aﬁj,qJ)- (4.84)

A 5.q,1 4,5,q,1 4,5,q,1
It follows from this definition that the map G’;rd(x) is continuous on Qi /Q(aﬁj,q,l) \ {aﬁj,%l},

but singular at the point aﬁ jal At this stage, the map Glgrd is defined on the whole strip A’g
thanks to definitions (4.82) and (4.84). We show next that the two definitions are consistent
and that the map is continuous near the boundaries of the cubes.

Continuity properties of G’grd on @(’}ros&l. We consider the set A’f of k? space-time singularities

induced by definition (4.84) of G, on A%, namely

. Tk + Tk 3h
jaert = Bi(h) x {1} x {T§ 5} C A5, with T, = 2-—3 =7, + . (4.85)

k
Ak = U {a¥

ig=1" "
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We claim that:

The restriction of G¥_4 to ©" . | belongs to C°(O!, \ Ak §?). (4.86)

cross, cross,1

The only point to check is that the definition (4.84) yield the same value on the parts of the
boundary of cubes which meet, that is for 4, j,4, 5" in {1,...,k}

T (@)= rg?’jl,w(x) for z € 9Qy, 5(al;41) NOQs (@l 1 1), (4.87)
the intersection being not empty if and only if |i —i'| < 1 and |j — j'| < 1 This is direct
consequence of Remark 4.4 and specially identity (4.49) there, which yields for a € A%

Th(x) = Py (b - Thes) U eh, e | (@) on 0Q o(a). (4.88)

This yields (4.87), since the r.h.s of (4.88) does not depend on the choice of point a € A,
and establishes the claim (4.86).

Continuity properties of Gk 4 O AEUAL. Tt follows from (4. 88) again that the value given by
(4.84) coincides with POntya [(ght — Tk_' 3) U L% eine] on 90% 1 \R3 x {T5} and coincides
with the value of (4.82) and the definitions are consistent. Hence Gﬁrd is continuous near
a@cmss \R3x{Tk}. To complete the continuity properties, it remains to verify that definition
(4.84) and (4.114) are consistent and yield the same result: This is an immediat consequence
of the definition of the map Y%

We have hence established the GX_; belongs to CO(A5 U A%\ AK).
Energy of Gﬁrd on the strip A’§. In view of the decomposition (4.83) of O¢poss,1, We have

(Gorda crossl ZES (‘Eha 7Qh/2( 1,7,q,1 ))

4,j=1
k
=) Kbox h = EKpox h = Kpoxk.

ij=1

(4.89)

Next, we turn to the complement, i. e. the set A'§ \ Ocross,1- We first notice, that according

oGk
to formula (4.82) we have aT":d =0on A§ \ Ocross,1, SO that
k T8 kL k k
(Gorda A3 \ ®cross,1) = / E3(P(Z;ntya [(S = T26 ) 2 ref] Rg \ Ocross,l)
< hE3(Shag, R?) < hC3 Kk = Kpgk?.
and hence we are led to the estimate
/ |VG rd|3 < Kspgk + Kpoxk. (4.91)
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The value of GE_ at time T%. Combining (4.82) with (4.88), we deduce that for any z € R3,
we have the identity

ord ref

GE q(x, TE) = Pove [(skvi —TEG) U ek el ] ()

(4.92)
=Py [ehd - They, e | v, PO [2F 6k ().
We have also
ehh(Th) = ghd — Th&; and £F(T%) = ¢*. (4.93)

It corresponds hence to a downwards translation of the sheaf £51 | the absolute value of the
total linking number being decreased by k2.

—
€3 -
€
— N
e
! Ocross, 1

Figure 17: The shape of the fibers £5+(T%) at time T% for k = 2. The set of fibers L]f’L(Tlg)
have crossed the upper layer of fibers on £F.

As in Steps 2 and 3, we will next use alternatively and in an iterative way the two previous
construction : First pushing along the vector field X f to circumvent singularities, and then
crossing of the singularities using cubic extensions. However, the number of fibers which
cross increases in a first stage of the process. We first show how this works on step 4 and 5,
emphasing the few necessary adaptations, and then give the general scheme.

Step 4 : Avoiding the second crossings.

We define here G’;rd on the strip A¥ = R3 x [T%, T%]. Step 4 is similar to step 2, that is we
lower the fibers of £ (T%) = £ — TX&; by a length equal to h far from singularities and
circumventing the singularities ai-‘i jq Which are on the way. These singularities are now twice
as much as in Step 2, that is the 2k? elements of set of points

k
Al = W {aijk aijr-1}t = Bi(h) x {1,1 - h} D Ak (4.94)
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The main difference with Step 2 is that here we have two layers of fibers which are concerned
by bypassing the singularities. We replace therefore the sets Llf’L and N]f?L defined in (4.70)
and (4.71) respectively by the sets

kL k kL E,L
Ly (T) = 2 (’gi,l (T5) U Lis (Té))
k,L k, L = k,L
N5 (T5) = £%H(T5) \ Ly~ (T5) = (&% — T5&3) \ Ly~ (T%)

and define GE_; on the strip A} = R3 x [T%, T] in a way similar to (4.72), that is, for
s € [0, hl], we set

Ghoa(z, T + 5) = Po™@ [N’;’L(Tg —l—s)] v, ponya [L’;L(T’g —l—s)] v, POy [sﬂ . (4.95)

ord

where we have set
NE+(TE + 5) = NEH(TE) — s,
LA () + ) = DL (Th,5) = O (Derli (T4, ) U Derely (T, ) )
so that the maps involved in the definition (4.95) have disjoint supports. It follows in view

of definition (4.95) and invoking, as in Step 1, the gradient estimate for Defﬁf”; provided

in Lemma 4.3 that is |V4G(’§rd| < Cgetk on A%, so that we are led, by integration, to the
estimate

/ IVGoal® < Kaerk?®. (4.96)
Af

The shape of the fibers and the value of Gf‘;rd at time T{,f. At time Ti’, all fibers of £F have

been translated by—(7;, + 2h)&s, except the files in L5(T5) which have been rounded near
the points in Ao, in order to avoid collision with the fibers 2? i Or Sj w1 Which they would

otherwise have crossed. We introduce the second spatial crossing region Oélross,Z defined by

h h 3h h
Oélross,Q = [57 1+ 5]2 X [1 - ?7 1+ 5] ) O(}:Lross,l

and deduce from the inclusion (4.27) in Remark 4.2, arguing as in Step 3, that
‘Sk’l (TIZ) \ Ogross,2 = (‘QkA_ - (Th + 2h)63) \ O(I;Lross,Q‘ (497)
We decompose Of}mss’z into cubes of edge of size h centered at the collisions points in A% as

oh = U Q,(a
cross,2 acA h/2( )

where the cubes may possibly touch only on their boundaries. We have, in view of (4.95),
for any a € A, any s € [0,h], ¢ =1,2 and any i € {1,...,k}

LH(Th + 5) = OF (€] — Thes, s) = Der Ll (Th, 5) on Q?’% (a).
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Going back to Remark 4.3, we notice that (4.39) is fullfilled with ¢ = 73, +2h = T5, p =1 or
p=2and ¢ =1 or g = 2 respectively, so that (4.38) yields

{ Defgi’ll (Tlg, h) M Q%/Q(ai,j,k—l) 7h(ELi’jJﬁ_l) and

—c]
kL _
Der£75 (T5, 1) N Qo (ai k) = C1 (@i n),

B

and hence -
L (TN Q‘% (@i k1) = CL j(aijp—1)

(4.98)
k, L _

Lis (T§) N Q%(ai,y‘,k) =C plaijk)-
The value of G'grd provided by (4.95) matches the definition of the map yf;; . given in (4.40),
that is we have, for 4,5 = 1,...,k and a € A%

Ghea (. TH) = Vi~ (@) for & = (a1, 22.23) € Q) (a), (199

Step 5: crossing once more through singularities.

This step is parallel to Step 3, our aim being to define the value of G’grd on the strip
AE = R3 x [Tk, Tk + h = T¥], so that at time T¥, we have £H+(TF) = &bt — (7, 4 2h)é3,
defining G, accordingly using the operator P9"®. This is already achieved at time T off
the set (’)Z}ross’? thanks to (4.77), so that we are not going to change the values on this set. We
defined next the value of Gﬁrd on the space-time crossing region © Ocross,2 X [T’j, T’g]
which can be divided in four-dimensional cubes of size h

h —
cross,2

k
h k k
Ocross,2 = Y (Qi (aij o) U Qi (az‘,j,k—1,2)> = U in (a), (4.100)
i,j= 2 2 acAk 2
where
k koo k k k : k T + T
Ag = Z.Juzl{ai,j,k,Qaai,j,k—1,2} = Aj X {Tg/z}a with Tg 5 = O

the points aﬁ jqr being defined in (4.63), the intersection of two given cubes in the above
collection being either void or included in the intersections of the boundaries. We fix the

value of Gﬁrd on the boundary of each of the cubes as

GELq(x) = Th(x) on 9(Q} (a)) for x € 5Qf‘l/2(a),a e Ak,

where the maps Y1 are defined in (4.45). We then extend it inside by cubic extension

Gfgrd(x) = @pa(x) = Qfxth/g,a (Ta(x)) for x € Qﬁ/z(a),a = A’;. (4.101)
It follows that G¥ _; is continuous on Q} /z(a) \ {a}, a € A%, but singular at the point a. The

map GF _, is now defined on the whole strip A¥ thanks to definitions (4.82) and (4.101). As
in Step 3, one may show that the definitions are consistent and that the restriction of Gf,rd

to A¥ U A% is a map in CO(A5 U AF\ AL S?), each of the singularities in A5 having Hopf
invariant equal to +2.
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The value of G(’ird at time TE. We verify, as in Step 3, that
Gk ( Tk __ pontya k,L _ = k
ord (7, T5) = P} L (T —h+2h€s) ) ULY) (z) for x € R3. (4.102)

and that

ghh(Th) = €94 — (r, + 2h)8; and £5(TE) = £F.

Figure 18: The shape of the fibers £5+(TE) at time TE for k = 2. The set of fibers LS’L(T’g)
have crossed the upper layer of fibers on £F.

The energy of Gﬁrd on the strip A'g . In order to estimate the energy on the strip Alg we argue
as in Step 3. In view of (4.115), we have

Es(Ghra, Olhoss2) = 3 Bs (Ehar Qb 5(@) ) = 845 Kpox h = 26 Kpox h = 2Kk (4.103)

aGA’g

For the complement A%\ @é‘rossg we have

T
E3(Ghoq, AE\ O ) = / o Ey(Pye [(sk’l — T583) UL, eret | ,R? \ Ofros 2) (4.104)

2

< hEs3(Sk

bag R?) < hCqpek® = Kypgh®.

Hence, we are led to the estimate

/Ak |V4Glc€)rd’3 < I<Spgk2 + 2Iiboxk- (4.105)
5
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We proceed now iteratively using the same constructions (namely pushing along the flow
X f and then using cubic extensions) up to step 4k + 1, after which the fibers will be no longer
linked. As seen on the previous steps, we distinguish even and odd steps, in each of the two
classes the construction follows the same pattern. Each pair of even and odd steps will be
labelled by an integer ¢ running from 1 to 2k. Similar to (4.94), we are led to consider for
p € {1,...,¢} the sets of "collisions points” of the fibers:

G 08 b =@ x {L1—hy. 1= (p— 1)1}
=1 g p1 U k ’ Y P
k k _
= 8, (h) x Iy where Jy ={1,1—h,...,1— (p —1)h}

k
AP

(4.106)

so that A, contains pk? elements and A{f C A’g 1 if p < k—1. We also generalize the
definitions of Llf’L(s) and N’f’L(s) as follows:
k p
k’L e k’J_
Lo = 6 0 eh o)

. (4.107)

N.(s)FL — kL
p(8)7T =0 U L (),
so that Ly(s)" UN,(s)P+ = €h1(s) and Ly(s)k+ N Ny(s)k+ = 0.
We describe next more precisely the pattern of these steps, dividing the presentation into
two periods.

Step 6 to Step 2k + 1.

Assume that at step 20+ 1, for £ € {1,...,k — 1}, the map Gﬁrd has been constructed on
R3 x [0, T’Q‘Cﬁ_l] and satisfies for x4 = T§£+1 we have

Gﬁrd(x17 T2, X3, T12€€+1) = szy‘er [(Qk’L —(mh+ 4 h)ég) U ﬁk] (x1,x2,23). (4.108)
This is indeed the case for £ = 1 and £ = 2, as seen in Step 3 and Step 5. We have hence
ebl(Th, ) = £ — (7 + €h)&5 and £F(Th,, ) = £*.

In particular, the lowest fiber (according to the x3 variable) in £%+(T%,. ), that it the set

L]f’J‘(Té:KH) has crossed the £ upper fibers of £¥, that is the fibers Sfiq with ¢ € {k—(+1,k}.
We have moreover

5h
8 )
L]f’J‘(TSEH) being above £;?7k7£, according to the x3 coordinate. Moreover, all fibers in
L,(T%, +1) have crossed at least one fiber of £F whereas none in Ny (T%, +1) has done it. At

step 2¢ + 3, we wish to have

. k,L
dist(Ly (T5,), 28 _y) =

eh Tk, ) = £ — (7, + (€ + 1) h)&3 and £F(Th,, ) = £*, (4.109)

For this purpose, we proceed exactly as seen in the previous steps.

Defining Gﬁrd on the strip A]§£+2' At step 2¢ 4+ 2, we construct the map Gﬁrd on the
strip A§£+2 = R3 x [T§£+17T§£+2] lowering the fibers of Ek’L(TSEH) by a length equal to
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h circumventing the singularities a € A}, ; which are on the way. Similar to (4.73) and (4.95)
we are led to define GE_; on the strip A%, 4o for s € [0, h] by the formula

kL ~ kL
Ghra(, Thpyy +5) = Py [NF (6, +9)] vy Pooe [LE4 (T + )] v, POeh,
(4.110)
where we have set

Ny (TS +5) = Np™ — (7 + Ch + 5)8

kL ok kL ok _F kL ok
L£+1(T2€+1 + 8) = DefL£+1(T2Z+1’ S) = igl ,Def'gi,q (T2£+17 5))
It follows from the definition (4.110) of G, on the strip A%, , = R? x [T§£+1v T§€+2] that
GF 4 is Lipschitz on A]§€+2 and that |V,GE 4| < Cyerk on AIQCHQ, so that by integration on
the support of G’;rd we have

/k |V4G(I§rd|3 < Kdeka- (4111)

A2€+2

The value of Gﬁrd at time T’QCHQ. At time T’Q‘CH_Q, all fibers of €51 have been translated
by—(7h + ({4 1)h)&s, except the files in L}, (T%) which are rounded near the points in Agy,
in order to avoid collision with the fibers 2;?711
crossing region of order ¢ + 1 defined by

h

h 1 h
Oc}:Lross,Z—I—l = [57 1+ 5]2 X [1 - (E + §)h7 1+ 5] ) O(}:Lross,ﬂ

for g = k,...,k —£. We introduce the spatial

and deduce from the inclusion (4.27) of Remark 4.2 and arguing as in Step 3, that

k,L mk h k,L = h
£ (T2€+2) \ Ocrossl—f—l = (2 - (Th + (f + 1)h)e3> \ Ocross,é-‘,—l' (4112)
We decompose (’)é‘rOSS ¢41 into cubes of edge of size h centered at the points in Aéf 1 as
or = U Q,(a
cross,/+1 GGAEJA h/2( )

where the cubes may possibly touch only on their boundaries. We have, in view of (4.95),
for anyaEAi?JrQ, any s € [0,h],¢q=1,...,0+1and any i € {1,...,k}
Sy (Thop +5) = DE(E — (7 + £+ 9)85, 5) = Do (T4, 5) on Qi ().

1,9

Given g € {1, + 1} and going back to Remark 4.3, we notice that (4.39) is fullfilled for
¢c=1p+ (£L+1)h, and p = ¢, so that (4.38) yields

kL mk 3 -
DerLi g (Top1,h) N Qg ja(ijk—e-14q) = CL (805 k—t-14q)-

Hence, we have

')
N
e

=
ﬁ?r‘
+
N

D)

i)

o> W

<ai,j,k7671+q) = Cl,h(ai,j,kf£71+q> (4.113)
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It follows that the value of GE_; provided by (4.110) satisfies for i,j = 1,...,k and a € A’gﬂ

Gf,rd(x,Tgm_Q) = yg’_(az) for x € Q?’%(a), (4.114)

Defining G'grd on A]§£+3. This step, Step 2¢ + 3, is parallel to Step 3 and 5. We consider the
space-time crossing region @:}rOSS 041 = Ocross,i+1 X [Tée JFQ,T’Sz 3] which can be decomposed
as

k k
e’ = U U Qi@ = U Qt 4.115
cross,f+1 ij=1 g=k—t Q% (az,j,q,£+1) aEA];_HQ% (a)7 ( )
where i i
Af = U U {ay =Aj T!
i1 = 2y (e} = Al < ATy g ) (4.116)

=2 (h) x J§q x {T’gz%}.
We fix the value of Gf)rd on the boundary of each of the cubes as
Gra(%) = Ta(x) on 9(Q (a)) for x € 9Q}, p(a), a € Af 4,
2

and extend it inside by cubic extension

Gﬁrd(x) = @pa(x) = Extr/2a (Ta(x)) for x € Qi/Q(a), ac AIZH. (4.117)
It follows G% , is continuous on Q} /Q(a) \ {a}, a € A} 1, but singular at the point a. The

map GE_, is now defined on the whole strip A%, 4o thanks to definitions (4.110) and (4.117).

As in Step 3, one may show that the definitions are consistent and that the restriction of Gﬁrd

to A§e+1 U Agew is a map in CO(Ang U A]§£+2 \A§+1, 2), each of the (¢ + 1)k? singularities

in Af 1 having Hopf invariant equal to +2.

The value of Gﬁrd at time T12€€+3' We verify, as in Step 3, that (4.109) holds and that

GE g, Thy ) = PO [(5'@ — (mh (£ + 1)}@,)) U Lk] (z) for z € R3.  (4.118)
The energy of thgrd on the strip AIQCZH. Arguing as in Step 3 and Step 5, we have

E3(Ggrda @cross,Z—H) = Z E3 (@h,aa Q%/Q(a)) = ﬁ(Alerl)Kbox h

k
achy

= Kpoxk?(£ + 1) h = E*Kpox b = Kpox (£ + 1)k
The energy on the complement is computed as in Step 3 and Step 5, we that we finally obtain
/ . IV, GE 4P < Kepek? + (£ 4 1)Kpoik. (4.119)
2043

The construction described above can go on as long as the fibers in L’f have to cross some
layers of fibers in £F: Consequently, the process stops at step 2k + 1, when L’f is now able to
move down freely, since it it no longer linked to £F. In order to complete the untying of the
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Spaghetton map, and to ” set free” the remaining fibers, we show next how to adapt slightly
the description, in particular the definition (4.107).

Step 2k + 2 to Step 4k — 1.

The constructions follows the same patterns, the only difference being that at each addi-
tional pair of steps fibers are now leaving the crossing region, inducing modifications in the
description of the labels and indices for the various sets which have been introduced before.
In particular, the index ¢ runs from now from here from ¢ = k + 1 to 2k — 1.

As before, we assume that we are given some ¢ € {k, ..., 2k — 2} and we assume that G*
has been constructed on [0, Tgé-i-l]’ and satisfies at time T§£+1 the identity (4.110): This is for
instance the case for £ = k, as seen before. The corresponding formulae for £5+(2¢ + 1) are
hence also valid, so that the highest (according to the a3 coordinate) fibers in £F(2¢ + 1),
that is the fibers Sf,’,j‘(% +1),i=1,...,k are now squeezed between the fibers 2;?7%_@ and
8?7%_”1, Jj=1,..., k. Our aim, in Steps 2{ + 2 and 2¢ + 3 will be to construct Gﬁrd on the
strips A§€+2 and A’§£+3 in such a way that identity (4.110) holds with ¢ replaced by ¢ + 1.
This yields hence an iterative construction of Ggrd.

The constructions in Steps 2¢ 42 and 2¢ + 3 are essentially the same as in the construction

for Steps 2 to 2¢ + 1, except that we need to modify a number of definitions. Firstly, we
extend the definition of the sets Aﬁ given in (4.106) for values of p > k setting

k {—k
A= 0 U {af Y =82(h) x {h,2h,....(p — k)h
P ij=1 q:l{ 1,j,q} k( ) { (p ) } (4120)
= B} (h) x I where J¥ = h{1,...,p — k} for p > k.

Likewise, we extend the definition of the sets Ly(s)®® and Ny (s)*1 accordingly, for values
of p >k:andsZT’§k+2

kook k&
L, (s)t — koL N, (s)f+ = kL 4.121
p(s) 2 i (s) and Ny (s) = q:LﬁJH S (), ( )

so that Ly(s)®+ U Ny(s)k+ = gbL(s) and Ly(s)*L N Np(s)*L = (. Finally, we define the
spatial crossing region Ocross¢ and the space-time crossing region Ocrogs¢ as

h h h h
h 2 h
cross,d — [5’ 1+ 5] X [57 (2k -+ 1)(5)] - Ocross,(-i—l

h _mh k k
@cross,é - Ocross,é X [T2€+27 T2£+3]'

O

Step 20 + 2: defining GE_ 4 on Agpys = R3 x [T§£+17Tl2€£+2]' We define GE_, again by
formula (4.110), where the definitions of the various sets have been changed according to

(4.121). It follows from the definition (4.110) of G% ; is Lipschitz on A, ., and that, as
before, |V,GE 4] < Caetk on A§£+27 so that by integration on the support of G¥_; we have

ord

the estimate (4.111) remains valid. We observe also that at time T§e+2 identities (4.112) and
(4.114) remain valid.

Step 20 + 3: defining Gﬁrd on A§£+3 =R3 x [T§£+2v T§€+3]' We define again Gﬁrd by cubic
extension by formula (4.117). One verifies that this definition of Gﬁrd yields a map whose
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restriction to A5, ,UAL, . o isin CO(AL, ,UAL, .\ A}, |, S?), where A}, | is defined in (4.116).
Each singularity having Hopf invariant +2. Arguing as before, we obtain the energy estimate

/ ) IV, GEL4P < Kepek? + (2k — ) Kpoxk. (4.122)

A2£+2

At time T’2€€+3, we notice that identity (4.110) holds with ¢ replaced by ¢ + 1, so that the
iteration is complete.

The map Glgrd at time Tfjk_l. The iteration is stopped when £ = 2k — 1, hence at step 4k — 1,
that is at time T%, _; = 75, + (4k — 1)h. Then, all fibers of £¥+(T%, ) have left the crossing
region and the two sheafs Qk’L(Tﬁfk 41) and £k are not longer linked since

5h
S (Thpy) = €55 = (m + 2k = 1)h)&s = &4 — (my +2 — h)és C R x [-1, ]
whereas Sk((Tfij) = ¢F € R? x [h,1]. It follows, in view of (4.118) that
1 (Gl Thhn)) =0 and [ [VaGhaC.Th ) <Kyl (4123)

and that the map Gord( 4l<:—1) is constant, equal to Pgou, on R3\ [—20, 20]3.

K=6
L%, axis Tos
Tsp Tos2 Tispn T T Tassa Tis Taspa
Py ' J / !/ \
1=kh @ O T )
i
5h : ' ‘ . ‘ . .
an | o o O o @ ®
3h L] ] L L L L
2h | ® e ® L ® L
X * O O @G
ih ~ x
S T U S R S N N N S S N S T T A W W R T W S
4?:::=.,=:::__,, > S K
: 2h ~ % N N
0,T,) Too2 Tss X axis (time) Tz Tary2

Figure 19: The singularitie A% for k = 6 projected on the (&3,8,) plane, that is Y5,

sing sing

Step 4k: deforming to a constant map.
In this last step, we define the map Gk +q and the strip A4]f1 = [T]Zk—l’ T’ik] = T]Zk—1+40]' We
deform that that purpose the map G Ord( ]Zk71> which is Lipschitz and has trivial homotopy
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class to a constant map in Lipschitz way invoking Proposition 4.1 with R = 20, take as map
w = w* the restriction of Gord( T’Zk_l) to the cube [—20,20]3: This yields aLipschitz map
W = WF defined on [—20, 20]* satisfying the four properties listed in Proposition 4.1. We set

G g(z, Th | +5) = W¥*(z, s — 20) for z € R and s € [0, 40]. (4.124)
It follows that G 4 18 Lipschitz on A*F | continuous near R? x T Zk ; and such that
GE 4(z,5) = Pyouen on (R3\ [-20,20]) x [Th,_,, TH]JUR? x {T%, 1. (4.125)
The fourth property in Proposition 4.1 yields the energy estimate

E3(G0rd7 A4k) < 4OCeXtE3(Gord< Tik—l? Rg)

(4.126)
< 40C et Kpgh®.

Finally, we notice that T% = T%, | +40 = T} + (4k —1)h+40 = 5+ 3h/8+4 — h+40 < 50,
so that we set

GELa(x) = Py, for © € Af =R x [Th, Th., = 50], (4.127)

This definition yields a continuous map on a open neighborhood of Aik 41

Proof of Proposition 4 completed.

First properties of Gord Proof of Property (44). So far, we have constructed the map GOrd
on each of the strips Ak, for n = 1,...,4k + 1 by formulae (4.66), (4.74), (4.82), (4.84),
(4.95), (4.101), (4.110), (4.117), (4.124) and (4.127). We notice that the definitions coincide
on the intersections R? x {T*} and are Lipschitz in an open neighborhood of these time slices.
Moreover, for each n, the restriction of the map Gk +q to Ak belongs to W 3(Ak S?) with
only a finite number of point singularities. Hence, we have defined the map Gkrd on the

ak ,
union A = pLilA’; =R3 x [0,50] in such a way that GF_; :

a finite number of singularities. As a result of the definitions (4.66), (4.74), (4.82), (4.84),
(4.95), (4.101), (4.110), (4.117), (4.124) and (4.127) we notice that G _;(z,0) = Sf)ag( ) for
r € R3 and

A — S? is Lipschitz, having only

GF 4(%) = Pyouen for x = (z,z4) with |z| > 30 or z4 = 50.
This established property (44).

Energy estimate. Adding the energy estimates (4.68), (4.75), (4.91), (4.96), (4.105), (4.111),
(4.119), (4.122) and (4.126), we are led to the estimate

k

>

(=1

E3(GEg,A) < KOk + 26K gerk? + Kpoxk+

ord>

2k—1

> (k-0

l=k+1

+ 2k K gpgh? + Kpoxk + 40C ext Kspgh®.

Since ZE = M and Z (2k—10) = Rk~ 1), we obtain
l=k+1

E3(GE g, A) < (Ko + 2Kae + 2Kpg + Kpox + 40CextKipg ) #* = Kgorak®.
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This establishes (45).

Properties of the singularities of Gf,rd. The singularities of Glgrd are those already described
on each the strips A’;E 41, since the map is continuous near there intersections. Set

2k—1 2k—1
Ay = = A} = B (h) x ~ I % {T§e+3/2} CA
k—1
=B (h) x Y&, with Y& = 51 I5 x {2¢h + 6,} € [0,1] x [0,50],

where we have set &, = 7, +h/2 = 5— h/8. It follows from our discussion that G¥_; € CO(A\
A S?), each singularity having Hopf invariant equal to +2. The set YX is represented

sing? sing

in Figure 19 for £k = 6. We show next, as the figure shows, that the points in Y’;ng are the
vertices of a grid modelled on a parallelogram. We turn next to the proof of (47).

Proof of (47). We decompose YE_as YE = y""P g y"down where

sing sing sing sing

k k k k
YW —p 0 U {5,200 4(0,6,)=h U U (9200 =k)} + (0,7 = h/8) and

S (=1 j=k—t+1 (=1 j=k—¢
kd 21 2kt
Ysingwrl :hf 1 g {.77 ( k)}TL(O??*h/S)

For the first set, we introduce the new indices ¢ and j’ such that j = 7' and £ — k = j/' — ¢
so that
YR = @), (helu1 0" g’}) and Y5 = @ <hé,u1 /u Yy g/}>

which yields the desired result (47) and completes the proof of Proposition 4.

5 Proof of the main results

5.1 Proof of Proposition 2
5.1.1 Constructing the sequence (by)ken

The maps vy are directly deduced from the maps G’grd performing some elementary trans-
formations. Our main aim will be to transform the set of singularities given by (49), which
are the nodes of a distorted grid into the nodes of a four dimensional orthonormal regular
grid.

Transforming singularities into an orthonormal regular grid: The map ék . The map Gord
is only defined on the strip A defined in (44). Given an integer k € N*, we ﬁrst extend the
map Gﬁrd to the whole space R? x R setting

Gﬁrd(x’s) = Psoutn for = € R? and s > 30, (5.1)
Ghra(z,5) = S’f,ag(:c) for x € R® and s < 0. '
It follows from this definition that

Gk (%) = Pyouen for x € R*\V where V = {(z,5) € R* xR s.t. |z| < 40 and s < 50}. (5.2)

ord\X

70



In view of the results in Proposition 4 and Proposition 3, we have the energy estimate, for
any a > 0
E3(Gi€)rd7 3 X [—G,O]) < (KGOrd + aKspg) k3- (53)

We introduce the map GF_ defined on R? x Rt by

Gora(x) = Gora © Pi(x) = Gra (P4(x)) for x € R? x [0, +00).

ord

It follows from property (47) that éf‘;rd € CO(R*\ B} (h),S?) that is the set of singularities
of Gﬁrd is EE%(h), each of the k* singularities having Hopf invariant equal to +2. We claim
that

éﬁr X) = Pyoutn for |x| > 400 and
{ a(x) wn for [x| > (5.4)

E3(GELq,R? x [0, +00)) < 5V5 (Kgora + 131K pg) k7.

ord>

Indeed, consider the set
Qi = OL(R? x RT) = {(21, x2, w3, —2x3 + 24 + 7 — h/8) with z4 > 0}
and the intersection Q; N V. If y € Qp NV, then it is of the form
y = (x1,29,23, — 203 + x4 + 7 — g) with x4 > 0, |z;| <40, fori=1,2,3
and —2$3+$4+7—g§50.
Hence we deduce that 0 < x4 < 51 4+ 223 < 51 + 2 x 40 = 131, so that

Q. NV C BY(131).

The inverse q),;l of @y, can be computed explicitely as
h
O, 1 (x) = (z1, 72, 73,223 + 24) + (0, =7 + g), for x = (x1, x2, 3, T4)

so that @, '(B*(131)) C B*(3 x 131+ 7) = B*(400), and hence @, (22, NV) C B*(400), which
establishes the the first assertion of the claim (5.4). For the second assertion in (5.4), we
have, by the chain rule

IV, Géra()* < 5V, Gra (4 (%)%,

ord ord

which yields the second assertions thanks to change of variables.

Ezxtending éﬁrd by symmetry. The extend the map é'grd by symmetry to the whole on R?,
setting _ _

Gk 4(z,5) = GE_4(z,—s) for z € R® and 5 < 0. (5.5)
It follows from this construction and the trace theorem that this extension in in W-? (R4, S%)

N N loc
and in CO(R*\ A* 2), where the set A% is given by

sing’ sing

Aling = Bi(h) U Sgym (B,(1)) |

sing

where $4ym corresponds to the symmetry defined in (51). It follws from (5.4) that on

GE (%) = Pyouen for |x| > 400 and
{ od( ) south | |— (5.6)

E3(GE 4, RY) < 10v/5 (Kgord + 131Kgpg) k7.

ord>
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Rescaling é’;rd. We now are in position to define the map v as
vp(x) = GE_4(400x) for x € R*.
It follows then from (5.6) and scaling laws that

0k (%) = Psoutn for [x| > 1 and

1 (5.7)
Es(vg, RY) < N (Kord + 131Kgpg) k2.
Moreover o), € CO(R*\ Sging, S?) where Sging is described in (50). In order to prove (29), we
will rely on some additional notion related to branched transportation which are exposed in
Appendix A, in particular the branched connection to the boundary £, ;, with the exponent
« equal to the critical exponent in dimension 4, namely oy = %. As a direct is a direct
consequence of Proposition A.1 of the Appendix, we have:

Proposition 5.1. We have the lower bound, for some universal constant C' > 0

1

400] ) > Ck3 logk, for any k € N*.

Sgﬁbd (EEli (hscal) ) 5( [0

5.1.2 Proof of Proposition 2 completed

The only part of proposition 2 which has to be established is (29). For that purpose, we
invoke the relationship between the functionals £, . and £ ;| presented in Lemma A.11,
choosing P = {1} and Q; = [0,1/400]*. Since all singularities in B} (hsca) have the same
charge equal to 42, the conclusion applies showing that

£ (08) = 5, (B (), 0,000, 155]")) = CF log 6

where we have used the result of Proposition 5.1 for the last inequality. On the other hand,
combining (16) and (15) with the respective definitions (26) and (A.61) of Liyanch and £72
respectively, we are led, for general singularities (P;, Q;) to the inequality

Lbranch(By Q]) > C Sg;lanch(P”“ Qj)v (59)

where C, > 0 is the constant introduced in (15). Inequality (29) then follows, combining
(5.8) and (5.9). The proof of Proposition 2 is hence complete.

branch

5.2 Proof of Theorem 4
5.2.1 Sequences of radii and multiplicities
The following elementary observation will be used in our proof:

Lemma 5.1. There exists a sequence of radii (vi)icn and a sequence of integers (k;)ien such
that the following pmperties are satisfied

Zt‘ = Ztlk?’ < +o00 and Zq kP log (ki) = 400 (5.10)
ieN ieN ieN

We may assume furthermore that
3tip1 > . (5.11)
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Proof. Consider first the sequences (%;);en and (k;)ien given for i € N\ {0,1} by

T = 14(101gi)2 and k; =1, so that
=1 =1
Ztl = Z A (log)? < 400, Ztl k3 Z i(logi)? < 400, whereas
=X 1
Z T k3 log(k Z i{log) =400
We then choose arbitrary values for ¢ = 0 and ¢ = 1 and finally set t; = ct;, where the positive
constant ¢ is defined so that the first condition holds, that is satisfies ¢! = 8+ffi. O
i=0
5.2.2 Defining U gluing copies of the v;’s
We introduce the set of points {M; }icn in R* defined by
i
M; =4[ vj | & where & = (1,0,0,0), fori € N, (5.12)

§=0
so that the points M; are all on the segment joining the origin to the point

1 1
& = (=,0,...,0),

M, = 5

converging thanks to the first identity in (5.10), to the point M, as i — +o0o. We consider
the collection of disjoint balls (B;),y defined by

B; =B*(M;,v;) for i € N, so that dist(B;, By) > v+ if i #j,

The last assertion being a consequence of (5.11). We then define the map I on B*(1) as

M
U(x) = vy, <aj " 1) if z € By, Ux)=Pyun if z€B1)\ UNB (5.13)
i i€

We have in particular & = Py, on the boundary 0B(1). Likewise we define a sequence of
maps (U )ien setting for i € N

U(z)=U(z) if x € jgjij, U; = Pyoutn otherwise. (5.14)

Since the map vy belongs to Rt (B*, S?) for any k € N, it follows that for any i € N, the
map U; belongs to Rt (B* S?). Notice that the map ¢ has an infinite countable number
of singularities, whose only accumulation point is M,. We notice also that &/ = U; on any
compact subset K of B*\ {M,} provided i is choosen sufficiently large.
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Lemma 5.2. The map U belongs to WC1,3’3(B4,SZ). Moreover
U — U in WH3 (B, R3) strongly as i — +oo0. (5.15)

Proof. Tt follows from the definition (5.13), the scaling properties (4) of the energy Es and
inequality (28) of Proposition 2 that

s(U,BY) =) Es,B) = riEs(vy) < C1> ki < o0
ieN ieN ieN

and likewise for i € N, we have the estimate

+o0o +oo
Es (U — U, BY) = Z B3 () < Z tjkj?’ — 0 as j — +oo,

j=i+1 j=i+1
which establishes the assertions of the Lemma. ]
We turn to the description of the singular set Esmg = Zing 4+ U Zing of U;, where E}ng "

(resp. Zin _) denotes the set of singularities of positive (resp. negative) topological charges,

actually all equal to +2 (resp —2). We may write

i

tjh; i tjhy
Einng U (Eﬂm(400) + M> and Eing _ = jgo ($sym (EB”;‘400> + M;) . (5.16)

We have hence A
t,h.
M 22+ M| =
ing,— N <|:O¢ 400:| + J) (Da

so that arguing as in Proposition 5.1 and using the scaling properties of the branched trans-
portation functional, we derive that, for any j € N*, we have

hi14
£ (g ss D ([o, 206] + Mj>) > Ok logk;. (5.17)

5.2.3 Proof of theorem 4 completed

In order to prove Theorem 4 we will invoke a variant of (24), which applies to maps which
are not necessarily constant on the boundary.

A wariant of (24). If Q is a smooth domain in R*, w is a map in R(2,S?) and (¢n)nen- is
a sequence of maps in C* (), S?) such that ¢, — w in WH3(Q2) as n — +oo, then, we have
the lower bound

liminf E3(¢y,) > Es(w) + Lippa(w, 09). (5.18)

n—-4o0o

The functional Li,1,q appearing on the r.h.s of (5.18) is defined, for an arbitrary w € R(£, S?)
with £1 singularities as

Lprbd(w, 0Q) = inf{W2(G), G € G({Pi}tics+,{Q}jes-, 0N},
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where {P; };c;+ denotes set of +1 singularities of w, {Q; };cj- the set of negative singularities
and G({Pi}ies+,{Q;}jes—,00) represents the set of graphs satisfying conditions (A.1) and
(??) in the Appendix. Notice that, in view of (15) and (16), we have, similar to (5.9)

CoLiipa(Pi @) < Lirba (D, Q). (5.19)

Arguing by contradiction. We argue by contradiction and assume that there exist a sequence
(Vn)nen of maps in C°°(B*, S?) such that

vy, — U weakly in WHP(B* S?) as n — +oo0, (5.20)
so that in particular, by the Banach-Steinhaus Theorem

v = limsup E3 (v, BY) < +00. (5.21)

n——+o00

Weak convergence to U; on the sets €);. For given i € N*, we consider the domain

+o0
O = B4 \ B4(M*, Ql) where oy = 4 ( Z tj> +tiy1 — 0asi— oo,
j=i+1

so that, in particular B(M;,v;) C € if j < iand Q NB(M;, 1) = 0if j > i. Let v}, be the
restriction of vy, to the set €. It follows from (5.20) that

vl — U weakly in W3(Q,S?) as n — 400,

so that by (5.18) and (5.21) we have for any i € N*

v 2> lig_’i_nf Eg(v;L) > Es(U) + Lpba(w, 092)

i .
)
ng7+’ jylzingz_’

- (5.22)
> C,,Sg;lbd(zjngy_k, Zing,—7 691) = Clggfbd <jUIE]i 8QJ> .

The contradiction. In view of (5.17), we may apply Lemma A.11 of the Appendix to the
sets Bl and assert that

i i i . chi 12
S5ty (julx’mg,+ Y E)ing,vagi) > e (Shg o [07 4105,] +M; ]))
=1

(5.23)

> Oiq k? logkj,
=1
where we have invoked (5.17) for the last inequality. Combining (5.22) and (5.23) we obtain
Ciotj k? logk; <, which contradicts property (5.10), and hence completes the proof of
lelzg)rem 4.
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5.3 Proof of Theorem 3

The main additional arguments leading for the proof of Theorem 3 are not specific to the
sphere S?, so that we may consider a general a compact manifolf A. We will invoke the
folllowing:

Proposition 5.2. Let mg € N*, and assume that there exists a map u in Wclt’p(BmO,/\/')
which is not the weak limit of smooth maps between B™ and N'. That given any integer
m > myg there exists a map v in Wclt’p(IB%m,/\/') which is not the weak limit of smooth maps
between B™ and N .

The proof relies on two constructions we present next.

5.3.1 Adding dimensions

Let m € N* and consider a map u : R™ — R’ such that u is constant equal to some value cg
outside the unit ball B”. We construct a map ]Igllfrl(u) from R™*+! — R’ constant equal to

co outside in the unit ball B™*! as follows. First, we consider the translated map u, defined
on R™ by
u,(z) =u(r — A) where A = (2,0,...,0),

so that u , is equal to co outside the ball B*(A) C B5*(0), in particular in the region {z; < 1}.
We then introduce the map 7™+ (u) defined for (z1,z2,. .., Tm, Tmi1) € R™T! by

Tm+1(u)(:v1,x2, ey Ty Tng1) = w, (2(21, 22), 3, T4,y - . ., Tpg1) With vz, 22) = \/3:% + x%

The map T™"!(u) possesses hence cylindrical symmetry around the m — 1 hypersurface
x1 = w3 = 0. Moreover, It follows from the properties of u that 7™ (u) is equal to cg
outside the ball B™"1(3) and actually also on in region {t(x1,z2) < 1}, that is on the set
B2 x R™~!. Since we wish to obtain maps which are constant outside the unit ball B™*1(1)
we normalize 7! (u) and consider the map I.;;"™ ! (u) given, for z € R™*! by

T (z) = T (u)(32), (5.24)
so that I.,;™ ! (u) equals ¢y outside B(1) and also
]Icylm+1(u)(:n) = ¢ for x e AT = IB%%/?) x R™1

5.3.2 Restrictions to lower dimensional hyperplanes
For 6 € R, we consider the m-dimensional hyperplane Py* of R+ defined by

Pyt = Vect {cos0 €1 + sinf €z, €3,..., €nt1}
and the half-hyperplane P," T defined by

Pyt = {v € Py, v.(cos 0 & +sin &) > 0}. (5.25)

Let 1 < p < 400 and consider a map v € WP (IBmH,]Rf). Its restriction to the intersection
of the half-hyperplane P;n T with the ball B™+1(1) is in view of the trace theorem a map
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in W' Py N B™HY). Tt yields a map T™(v) defined on the m-dimensional half-ball
B™t =B™ N {x; > 0} setting for (z1,...,xy) € B™T

Tro(v) (1, Tm) = v(z1 cosb,x1 sinb, xo,...,7m). (5.26)

Proposition 5.3. Let ¢g € R’ be given and let U be given in WEP(B™1 RY) such that
U =co on A" and let (Wy)nen be a sequence converging weakly to U in WP(B™ 1 RY).
Then, there exists a subsequence (w,,(n)) and a sequence of angles (0)nen converging to
some limit 60, such that

neN

il‘gfgn(Wg(n))(-) — T, (U) weakly in Wl’p(IB%m’Jr,RZ) as n — 400,

Proof. Since U is constant on the A™*! and since the sequence (wp)nen is bounded in
Whr(B™+! RY) we have by Banach-Steinhaus theorem, for some constant C' > 0 independent
of n

2w
C> / IV, |Pdx = / / VW, |P|xg| | dO with zgp = x - (cos 0€; + sin §€3)
Bm+1 0 Pyt nBmt!

1
> 1 (/ vanyp> dao.
2 Pén’+ﬂBm+1

We may hence invoke Fubini’s theorem to assert that given any n € N, there exists some
angle 6, € R such that
/ VWP < 20,
Pyt Bt

It follows that the sequence Ty (W) is bounded in WLP(B™ RY). By sequential weak

compactness, we may extract a subsequence (o(n))npen such that 6, = 6,(n) converges to
some limit 0, and such that ']I‘;’fe)(Wa(n)) converges some map v in W1HP(B™). Since by the

trace theorem we already now that the sequence converges to the map T"y U, the conclusion
follows. O

Notice that the two operators T7',) and ]Icylerl we have introduce above are related through
the identity

Typo ]IcylmH(v) = w, for any v with compact support in B™ and any 6 € R, (5.27)
where the map w is defined by w(z) = v(3z — A), for any z € B™+ =B™ N {z; > 0}.
5.4 Proof of Proposition 5.2
For m € N*, we define property P(m) as
P(m) : there exists u,, in Wi?(B™, N') which s not the weak limit of maps in C*°(B™, \).
We argue by induction and assume that P(m) holds. We claim that if 7P(m) holds, then

]Icylm+1(u) is not the weak limit in Wl’p(EmHaN) of maps in COO(BmHaN)' (5.28)
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In order to proof the claim (5.28), we argue by contradiction on assume that there exists
a sequence of maps (W, )nen in C®(B™ !, ) converging weakly to U = L.,i(u).We apply
Proposition 5.3 to the map U and the sequence (W,,),en so that, for some subsequence

Trlg, (Wom)) () = Tey, (U) = Tfp, © L™ (v) = u(3 - —A4)

weakly in W1P(B™+ R) as n — +oo, where we have invoked (5.27). It follow that the map
v =u(3-—A) is the weak limit of smooth maps between B™* and A. Since u(z) = v(%)
on B the same holds for u, but this contradicts our assumption and proves the claim (5.28)
by contradiction.

It follows from (5.28) that, if P(m) holds then P(m + 1) holds also, so that the proposition
is proved by induction.

5.4.1 Proof of Theorem 3 completed

In Theorem 3, we have constructed a map U in W (B*, S2) which is not the weak limit of
smooth maps. Applying Proposition 5.2 with my = 4and A" = S?), we deduce that for any
given integer m > 4 there exists a map V,, in Wéli(IB%m,SQ) which is not the weak limit of
maps in C*°(B™,S?). This provides the proof of Theorem 3 in the special case M = B™.,

We extend next the result to an arbitrary smooth manifold M of dimension m. For that
purpose, we choose an arbitrary point A on M and glue a suitably adapted copy of V,, at
the point A. More precisely, we consider for p > 0 the geodesic ball O,(A) centered at A. If
p is choosen sufficiently small, then there exist a diffeomorphism ® : O,(A) — B™ and we
may define a map W : M — S? setting

W(z) =V (®(z)) if x € Op(A), W(x) = Psoutn otherwise.

One may then verify that W belongs W13(M,S?) and cannot be approximated weakly by
maps in C*°(M,S?), which completes the proof.

6 The lifting problem

6.1 Lifting the k-spaghetton map

Let k € N* be given and consider on R? an arbitrary lifting Uj, of the spaghetton map S~

pag’
that is a map U* : R? — SU(2) ~ S? such that ITo U* = S';,ag. Although the relationship
between U* and S]f,ag has a genuine nonlocal nature, as suggestion by the relation (2.10), the
peculiar geometry of the spaghetton map allows to recover some locality. This is expressed

in the next lower bound.

Proposition 6.1. Let U¥ be any lipschitz lifting of the spaghetton map S¥ that is such

pag’
that Sf,ag =I1oU*. Then, we have, for every 1 < p < 400 and for some constant Cp, >0
depending only on p
/Ek IVUFP > C,k%P. (6.1)

The result is mainly a consequence of the following:
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Lemma 6.1. Let a € [0,1] and let Q C Py 2(a) N{zy > 0} be a smooth regular convex set
such that Q O [0,1] x [8,11] x {a} . We have

| 88l ()

If U* is as in Proposition 6.1 and C = 09, then we have

= 47k (6.2)

/ |V, U¥| > 27k?. (6.3)
C

Proof of Lemma 6.1. Each of the k? fibers Eﬁ’qj‘ intersect the half-plane R x [0, +oo[x{a}
at a unique point B;4(a) (see Figures 6 and 7). we notice that the points B;4(0) belong
to the square [0,1] x [9,11] x {0}, a little trigonometry shows that more generally B;,(a)
belongs to the rectangle [0,1] x [17/2,11] x {a}. Our assumption on 2 hence implies that
a neighborhood of the points B;4(a) belongs to . In view of the Pontryagin construction,
near each point M; j(a) , the restriction of the spaghetton map S’;ag to the plane Pj2(a)
maps a small neighborhood of M; ;(a) onto the sphere S? yielding a contribution equal to the

area S?, that is 47 to the integral in (6.1). Adding the contributions of the k% points, (6.2).

For the second assertion, we consider, as in subsection 2.2.1, the su(2) valued 1-form
AF = (UF)~1. qU* and its first component the real-valued 1-form A} = AF.oq, so that the
curvature equation (2.5) leads to the relation

A} = 2[Shag] (w.y). (6.4)

Integrating on €2 we deduce from (6.2) and (6.4) that ]/A’f = 27k?%. Since |V,UF| > |A¥|,
c

we conclusion (6.3) follows. O

Proof of Proposition 6.1. Let a € [0,1]. We choose as sets 2 the disks
D(r,a) = D*(r) x {0} + Ny(a) where Ny(a) = {(1/2,19/2} x {a}
so that for r > 2 we have D(r,a) D [0,1] x [8,11] x {a} and D(r,a) C R x [0, 4+o00[x{a} for

r < 8. We may hence apply (6.3) to the circles C(r,a) = 0D(r,a) for 2 < r < 8. Integrating
the obtain estimate with respect to the variable r, we are led to

/ |V, Uk|dz, day > 127k2 (6.5)
D(a,8)\D(a,2)

We set W = %J | (D(a,8) \ D(a,2)). Integrating (6.5) with respect to a, we are led to
a€|0,1

/ |V, Uk|dz > 127k,
w

which leads directly to (6.1) in the case p = 1. The general case is deduced using Holder’s
inequality. O
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Notice that, in view of Proposition 3, we have ]VS’E,ag\ < Cypgk so that, for any 1 <p <
400, we have

/2 ) [VSE el < Cpk?, (6.6)

which has to be compared with (6.1). The result in Lemma 6.1 carries over to some extend
to Sobolev maps.

Proposition 6.2. Let 2 < p < +oo and U* € W, ;P(R®,S%) be such that Sk,, = IIo U~.
Then (6.1) holds.

Proof. In the case p > 3 smooth maps are dense in VVli)f (R3,S3) and a standard approximation

result yields the result. In the case 2 < p < 3 smooth maps are no longer dense, but one may
prove that, since the spaghetton map is smooth, any WP lifting of the spaghetton map can
be approximated by smooth maps, yielding hence a similar proof. O

Remark 6.1. In contrast, the result of Lemma 6.2 is no longer true for 1 < p < 2. This
observation related to the fact that there are lifting Wlif(R?’,S?’) which are singular, for

instance on the fibers Qi-f ; and 2?}’; (see e.g. the corresponding results in [8]). Moreover, it
that case, it is difficult to give a meaning to (6.4).

6.2 Extension to higher dimensions

We add dimensions following the same scheme as in subsection 5.3.1. Since the spaghetton
map S’;,ag is constant outside the ball B(20) we renormalize it first so to obtain a constant
map outside the unit ball, introducing the map Sgag(-) = S’;,ag (20-), and then consider the
map
k5 _ 15 (Qk
Spag - ]Icyl(Spag))

which is a lipschitz map on R® which is constant outside the unit ball B3. More generally,
given m > 5, we define iteratively the map Slf)’:é on the ball B as

Skih(o) = TS5y 200) or X € B

with the convention S]f,’gg = S'Bag. In view of (6.6), we obtain the bound

/ IVSEmIP < CkP. (6.7)
]Bm

Lemma 6.2. Let 2 < p < +oo and Uy* € WLP(B™,SP) be such that Spag = Lo U*. Then
we have

/ IVUpP > opR. (6.8)

Proof. We establish inequality (6.8) arguing by induction on the dimension m. We first
observe that the lower bound (6.8) has already been established for m = 3 in Lemma 6.2
with the choice of constant C' = C), where C), refers to the constant in inequality (6.1).
We next assume by induction that inequality (6.8) has been established some integer m > 3
and we are going to show that it then holds also in dimension m + 1. For that purpose,
let U € WP (B™+1,S?) be an arbitrary lifting of the map Slf)’:éﬂ. For 6 € [0,27), we

loc
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consider the half-hyperplane Py defined in (5.25) and the map T, (U;"*1) defined on the
m-dimensional ball B™ thanks to (5.26). It follows from these definitions that
(o TZy(UR)) (z) = Shan(3z — A) for € B™F.

Hence, since by induction we assume that (6.8) holds in dimension m, we are led to the lower

bound mep
AR
PrtaBm(La,L) 3

[4

Integrating with respect to € on the interval (0, 27) we obtain

"7

so that the property (6.8) is established for the dimension m + 1 choosing the constant CpmJrl
as Ot =2r (3 )mH pCm O

6.3 Proof of Theorem 5

We first construct a map V = Vy in the special case M = B™, imposing moreover the addi-
tional condition Vy = Pyyuin on OB™.

6.3.1 Construction of V; on JB™.

Gluing copies of the Sp’ané ’s. We construct as in subsection 5.2.1 a sequence of radii (i )ien~
and a sequence of integers (ki p)ien such that the following properties are satisfied:
1
Zti’p 3’ Ztm pkp < 400 and Ztm b k2p +00. (6.9)
ieN ieN ieN
¢
In the case m —p > 1, a possible choice for these sequences is given, fori > 2, by t; = W
0g
 m—p—1 1 1
and ki = [t P }, where ¢ = 7272 In the case 0 < m — p < 1, we may choose
8 e i(logi)

_ 3 1
instead for i > 2, t; =1 m-r and k; = ir.

i
We define as above the set of points {M;}icy in B"™ by M; = 4 (Z’Q) €1 where €; =
j=0
(1,0,...,0), for i € N, so that these points converge to M, = %é’l as i — 400, and consider
the collection of disjoint balls (B;),cy defined by By = B™(M;, ;) for i € N. We then define

the map Vy on B™ as

Vo(z) = Sf)a”é (x - l) if z € B;, U(x)=Pyun if z € B1) \iéJNBi. (6.10)
1

so that Vo = Pyouen on the boundary 0B™. Invoking the scaling properties (4) of the p-energy,
we are led to

Vo, ZE Vo, B Ztm PE (Gk <CZtm pkp<+oo
ieN ieN ieN
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so that Vg belongs to W1P(B™,S?). Next assume that there exists a lifting Uy of Vy in
WhP(B™,S3) and consider its restriction U; to the ball B;. It follows from Lemma 6.2 and
the scaling properties of the energy that

E,(Ug, B;) > C;”tzn_pk?p and hence E,(Ug,B™) > C;"Ztim_pk?p = +0o0,
ieN

leading to a contradiction, which established the proof of the theorem in the special case
considered in this subsection.

6.3.2 Proof of Theorem 5 completed for a general manifold M

The argument is somewhat parallel to the argument in subsection 5.4.1. With the same
notation, we set
V=V (®(z)) if z € O,V = Pyoutn otherwise,

and we verify that the map V has the desired property.

Appendix: related notions on branched transportation

In this Appendix we recall and recast some aspects of branched transportation, an optimiza-
tion problem which is involved in a wide area of applications, including practical ones, for
instance leafs growth, or network design. We focus on questions directly related to our main
problem, trying to keep however this part completely self-contained.

Branched transportation appears when one seeks to optimize transportation costs when
the average cost decreases with density. Consider a finite set A of points belonging to the
closure of a bounded open domain € of R™: We wish to connect (or transport) them to the
boundary 9f). The total cost be to be minimized is the sum of the length of paths joining the
given points to the boundary multiplied by a density function ¢, depending on the density
representing the number of points using the same portion of paths. For minimizers, such
paths are unions of segments, but possibly with varying densities. The intuitive idea is that
it is cheaper to share the same path than to travel alone, so that high densities are selected
by the minimization process. This induces branching points, i.e. points where segments join
to induce higher multiplicity. The density function appearing in our context, as well as in
a large of part of the literature, is given by the power law ¢(d) = d*, with given parameter
0 < « < 1. Notice that ¢ is sublinear, (di + d2)® << df + d$ for large numbers. Our
aim is to describe the behavior of minimal branched transportation when the number of
points increases and ultimately goes to +00. A special emphasis is put on the critical case
& = &y, = 1—1/m. Our presentation closely follows [30, 31] and also the general presentation
in [4]: We perform however the necessary adaptation for connections to the boundary, which
have been less considered so far. As far as we are aware of, the main result of this Appendix,
presented in Theorem A.1, is new.
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A.1 Directed graphs connecting a finite set to the boundary
A.1.1 Directed graphs and charges

The theory of oriented graphs offers an appropriate framework to describe the object we have
in mind!'®. Such oriented graphs involve:

e Points. These points are of two kinds: The points in A we wish to connect to the
boundary, but also additional points, the branching points and points on the boundary.

e Oriented segments. They join the points above. Orientation is important, as well as
multiplicity which is a positive integer.

A general directed graphs G is defined by a finite set E(G) of oriented segments with
endpoints belonging to {: If e is a segment F(G), then we denote by e~ and e™ the endpoints
of e, e~ (resp e') denoting the entrance point (resp the exit point), so that e = [e~, e™] and
de = {e”,e"}. We assume that for any segment e in the additional condition that

if [e7,e"] € E(G) then [eT,e7] € E(G) (A1)

holds, i.e. if an oriented segment belongs to the graph, the segment with opposite direction
does not. Segments may be repeated with multiplicity. If e € E(G), we denote by d(e, G) € N*
its multiplicity'® and simply write d(e) is this is not a source of confusion. We denote by
G(Q) the set of graphs having the previous properties, namely

G(Q) = {graphs G such that (A.1) holds}.
We denote by V(G) be set of vertex of the graph, i.e.

V(G) = de = et Q.
() ee}g(G) °= eEE {e }C

Given a vertex o € V(G), we set
E*(0,G) ={e € E(G),eT =a} and E(0,G) = E*(0,G)UE~(0,Q),

so that E* (0, G) (resp E~ (0, G)) represents the sets of segments of the graph G having o as
entrance point (resp. as exit point) and E(o, G) the subset of segments having o as endpoint.

We set
1 (E5(0,G) = Y d(e)eN*
e€E*(0,G)
and introduce the notion of charge of a point o € V(G) as

Chg(0,G) = (E+((Y, G)) ti( (o, )) eZ. (A.2)
We consider the subsets Vo(G), Vong(G) and V4,q(G) of V(G) defined by

Varg(G) = {0 € V(@), Chy(0,G) # 0,0 € V(G) \ (o(G) UdQ)} (A.3)

f

(
V(@) = {0 € V(G), Chy(o,G) = 0}
):C
Vbd(G):{GEV( ) GE@Q}

15we might also invoke the theory of 1-dimensional integer currents, which is however more abstract
16This is of course an essential feature for branched transportation
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A point 0 € Vp(G) will be termed a pure branching point, a point in Vg, (G) a charged point
or simply a charge'”. The set of graphs with only positive charges plays a distinguished role
in the later analysis. We set

Gt (Q) = {G €G(Q), s.t. Che(o,G) >0 Vo € G} (A)
Go(2) ={G € G(Q), s.t. Chg(o,G) =0Vo € G}. '
In several places, we will invoke the fact that, if G € GT(Q), then
ET(0,G) # 0 for any o € V(G). (A.5)

Indeed, by definition E(o, G) contains at least one element, and since the charge is positive
there are at least as many elements in E*(0,G) as in E~(0,G).
A.1.2 Elementary operations on directed graphs

Gluing graphs. Let G1 and G2 be two graphs in G(2). We assume furthermore that
if e; € E(G1), ez € E(G2) then e; = e or e; N e contains at most one point. (A.6)

If condition (A.6) is not met one may add new points and divide some segments in two so that
the transformed graph satisfy the condition. Given a segment e, we denote —e the segment
with opposite orientation, i.e. if e = [e7,e™], then —e = [eT,e~|. We consider the following
subsets of E(G1) U E(G2)

Eo(G1,G2) ={e € Gy s.t. ,—e € Gy with d(e,G1) = d(—e, G2)}
ET(G1,Go) ={e € Gyst. —edGlU{ec Gyst. —eg Gy}
E*(G1,Ga) = {e € Gy s.t. —e € Gg with d(e, G1) > d(—e, G2)}
ET(G1,Gs) ={e € Gy s.t. —e € Gy with d(e,Ga) > d(—e,G1)}

We define the glued graph
G=G1YGy e Q(Q), (A7)

given by the set of its directed segments

E(G) = E(G1) U E(G2) \ Eo(G1,G2)

A8
:E+(G1,G2)UEi(Gl,GQ)UE:F(Gl,GQ). ( )
with multiplicities given by
d(e,G) = d(e,G1) +d(e,Gs) if e € ET(G1,G2)
d(e,G) = d(e,G1) — d(e,Go) if e € EX(Gy,Gy) (A.9)

d(e, @) = d(e,Gy) — d(e,Gy) if e € ET(G,Ga),

where we have used the convention, for i = 1,2, that d(e,G;) = 0 if e € G;. His vertex
set is then provided by the endpoints of the segments, so that V(G) C V(G1) UV (G2). The
inclusion might be strict in the general case. We have:

"Notice that a charged point may however also be a branching point

84



Proposition A.1. Let 0 € V(G). We have
Chg(O', G1Y GQ) = Chg(G, Gl) + Chg(O', Gg), (A.lO)

with the convention, for i = 1,2, that Chg(0,G;) =0 if o & G;. If G; € GT(Q) fori=1,2,
then we have

Vetg(G) = Vg (G1) U Vi (G). (A11)

The result is a direct consequence of (A.9). We reader may check also that the gluing
operation Y enjoies classical properties as commutativity and associativity. Finally we write

G =G1YGy (A.12)

in the case when, if a segment e belongs to F(G1), then the opposite segment does not belong
to Ga, so that no cancellations for segments occur in the gluing process. The set E(G) is in
that case the union E(G1) U E(G2), the multiplicities being sumed.

Subgraphs. Let G and G be two graphs in G(€2). We say that G is a subgraph of G if
E(G1) C E(G) and if the multiplicities satisfy the conditions

d(e,G1) < d(e,G) for e € E(G). (A.13)

If the two conditions above are satisfied, then we write G; € G. We introduce next the
complement Go of G; with respect to G. We define the set of oriented segments of G2 as

E(G2) = [E(G) \ E(G1)] U Ecomp(G1, G)
where Ecomp(G1,G) is defined as
Ecomp(G1,G) = {e € E(G1),d(e,G1) < d(e,G)},
and with multiplicities given by

d(e,Go) = d(e,G) if e € E(G) \ E(Gy)
{ d(e, G2) = d(e,G) — d(e, G1) if € € Eoomp(G1, G). (A.14)

Notice that there are no segments in G; and G2 with opposite orientations. It follows from
these definitions that

G = Gl\?Gg, so that we may write G2 = G \ G1.
We observe that, in view of Proposition A.1 , if G and G belong to G () and if furthermore
Chg(0,G1) < Chg(o,G), for any 0 € Vi (G) (A.15)

then Gy € GH(Q). If Gy and G are two graphs in G(2) such that G; € G and such that
condition (A.15) is satifies, then we write G € G.

Restrictions of graphs to subdomains. Let 1 C Q) be a subdomain of 2 and assume for the
sake of simplicity (and also for further applications) that both €, and € are polytopes. Let
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G a graph in G(€2). We define the restriction G of G to Q1 as the graph such that its set of
segments is given by B
E(Gl) = {6 NQy,e € E(G)}

Its set of vertices is then given by
V(G1) = (V(G)NQ) U U od(enQ .
( 1) ( ( ) 1) <e€E(3‘) (6 1))

We use the notation G; = GL_Q;. One may check that G; € G(£21) and also Gy € G(Q2); If
we assume moreover that G € GT(Q), then we have G € GT(Qy), but it does not belong, in
general to G (), since negative charges may be created on 9.

A.1.3 The single path property
The next property, termed the single path property, has been considered in [30, 31, 4].

Definition A.1. Let G € G(2). We say that G possesses the single path property, if for
any vertex 0 € V(G) N Q there is at most one segment e in E(G), possibly repeated with
multiplicity, such that o is the entrance point of e, that is ET(0,G) is a singleton or empty.

In other words, if G possesses the single path property, then there might be several segments
ending at the same vertex, but at most one starting from it. This property possibly models
some intuitive features, as for instance in river networks. We denote by Gg,(Q2) (resp. G, (Q2))
the set of all graphs in G(Q) (resp. G*(€2)) which possess the single path property. Notice
that if G € GT(Q), then E*(0,G) can not be empty for 0 € €, so that it is necessarily a
singleton.

A.1.4 Threads, loops and bridges

A heuristic image of the notion of thread we describe next, is provided by a a curve for with
one end in given by a point in A, reaching to the boundary 02, and constructed using only
segments in E(G). This suggest the following definition.

Definition A.2. A directed graph G is said to be a polygonal curve in ), in short a Pq-curve,
if and only if there exists an ordered collection B = (b1,...,bq) of ¢ not necessary distinct
points in Q such that G satisfies V(G) = B, relation (A.1) holds, and

E(G) = {[bi, biy1], with multiplicity 1,7 =1,...,q} and by € 0Q or by = b;. (A.16)
Since the Pg-curve G is completely determined by the orderet set B, we may set
G = Gp(B).

Notice that, even if in (A.16) each segment [b;, b;+1] appears with multiplicity one, the same
segment may appear possibly in a further part of the sequence, so that its final multiplicity
might be larger that one.

Definition A.3. Let G = Gp(B) be a Po-curve. We say that Gyp(B) is

e a loop if either by = by.
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e a bridge if by € 9 and by € ON).
o A thread emanating from a point p € 2 if p = by and by € OS2.

We denote by Thread(p, 2) the set of all threads emanating from p. We notice that

{ Veng (Grp(B) when Gy, (B) is a loop or a bridge

=0 (A.17)
Veng (Grp(B)) = {a} with Chg(a) =1 if Gip(B) is in Threaa(p; ). '

Notice that loops and bridges are elements in Go(€2). We denote by L,op(€2) the set of loops.
We say that a graph G has a loop if there exists a loop L such that L € G. In particular
a thread G = G;p(B) has a loop if there exists a subset formed of consecutive points in B
yielding a loop. Given a point p € {2 we denote by

-[I_hread (p, Q) - ﬁlread (P, Q)

the set of all threads without loops emanating from p. It follows a a quite straightforward
way from the definitions above that the segments of a thread in Thead(p, ©2) have exactly
multiplicity one and that, if a thread has the single path property, then it has not loops. One
may moreover verify:

Lemma A.1. Let 0 € Q and let T € Thread(0,Q). There exists a finite family (Lj)jcy of
loops such that

T = Tp\? (.?]Lj) with T}, € Thread (P, Q) (A.IS)
JE

Proof. We may write T' = G,p(B) where B denotes an ordered set B = {by = 0,ba,...,bq},
with by € 0. If all points in B are distinct, then 7" € Thyead(0,2) and there is nothing
to prove. Otherwise there are two points, say b;, and b;, with 1 < i; < i3 < bq which are
identical. Then we set Ly = Gyp{biy,...,0iy = biy} and Ty = Gyp{b1,. .., biy, bigs1, .-+ Dq}-
We verify that

T = Tﬂ*le with T} € Thread (P, ) and Ly is a loop.

If 71 has no loop, then we are done. Otherwise, we start the process again with T. It stops
in a finite number of iterations, since the number of points is finite. ]

A.1.5 Subthreads and subloops
Consider a graph G in G7(Q2) and an ordered set B = (b1, ..., bq) of elements of V(G).

Definition A.4. The Pq-curve Gyp(B) is said to be a mazimal subcurve of G if Gyp(B) € G
and if b; € Q fori=1,...,bq—1 and

o cither by € 052 or
e cither there does not exist any point byy1 € V(G) such that Gyp(b1,. .., bq, bq+1) € G.
Our next result readily follows from the definition:

Lemma A.2. Let G € GH(Q) and 0 € V(G). There exists an ordered set B = (by,...,bq)
such that by = o and such that G,p(B) is a mazimal subcurve of G.
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Proof. We construct the maximal subcurve inductively. Since G € G7(Q), it follows from
(A.5) that E* (0, @) is not empty, hence there exists some point by € V(G) such that [0, be] €
E*(0,G) and therefore G,p{0,b2} € G. If by € IQ then B = {0, by} is maximal and be are
done. Otherwise, we notice as above that E(bg, G) is not empty so that there exists some
point b3 € V(G) such that [bs,b3] € E*(0,G) and therefore G,p{0,b2,b3} € G. If by € ON
then B = {0,bs,bs} is maximal and we are done. Otherwise we go on, until we reach the
boundary or have no more segments available to go on. O

Lemma A.3. Let G € GT(Q). A mazimal subcurve Gyp(B) of of G is either a thread
emanating from by or a maximal loop.

Proof. If by € 052, then G,,(B) is a thread emanating from o and the statement is proved.
We consider next the case when b, € Q and show that in this case G,p(B) is a loop. To that
aim, we claim first that there exist some index iy € {1,...,q — 1} such that

by = bi,.- (A.19)

Since G € GT(Q), it follows from (A.5) that the set E*(by, G) contains at least one seg-
ment, say [b1,bq+1], where bqr1 € V(G). if (A.19) were not true, then we would have
Grp(b1, ..., bq;bg+1) € G leading to a contradiction. It remains to show that

io=1. (A.20)

Assume by contradiction that (A.20) is not true and let k be the number of times the point b,
appears in the ordered set B. Since it is both an exit and an entrance point for the segments
in E(Gyp(B)) except for the segment [bq—1,by] for which it it only an exit point, we deduce
that

E+(biov Grp(B)) = E_(biov GYP<B)) -1

On the other hand, we deduce from (A.13) that
E_(bimGrp(B)) < E_((bioa G) < E+((biovG)'
so that B (b;,, Grp(B)) < ET((biy, G) — 1. Hence we may choose some point byt such that

Grp(b1,...,bq,bq+1) € G, which leads is a contradiction with the definition of maximal sub-
curves, so that (A.20) is established. This finally show that G,p(B) is a loop in the case
considered. O

Lemma A.4. Let B = (by,...,bq) such that Gyp(B) is a mazimal subcurve of G. If Chg(b1) >
0 then Gyp(B) is a thread emanating from b.

Proof. We have to show that G,,(B) is not a loop, that is by # b1. Assume by contradiction
that by = b;. Arguing as in the proof of Lemma A.3, we obtain

E+(bi07 Grp(B)) = E_(biov Grp(B)) and
E_(bioa GYP(B)) < E_((bimG) = E+((biovG) - Chg(o-v G)

so that B (b;,, Gip(B)) < ET((biy, G) — 1. Hence we may choose some point byt such that
Grp(b1, ..., bq; bg+1) € G, which leads to a contradiction. O

Combining Lemmas A.1, A.2, A.3 and A.4, we deduce:

Corollary A.1. Let 0 € Vo,oG. There exists a thread Ts € T(0,8) such that T €G.
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A.1.6 Decomposing graphs into threads and loops and bridges
Consider a graph G € G7(2). Since V(G) is a finite set, we may write

chhg(G) = {pb cee 7pgc}a

each point p; in the collection having multiplicity M; = Chg(p1,G) € N*. The following
result emphasizes the importance of threads in this context:

Proposition A.2. Let G € GT(Q). We may decompose the graph G as

*

* *
G = Y Y T ;) YT ith T; ; € Thread(Pi, 2 dTp e Q). A21
ie{1,...bc} (je{L,..,Mi} ’]) 0 Wi 7 read (Pi; §2) and Ty € Go(€) ( )

If moreover G € Q:g(ﬂ), that is if G posssesses the single path property, then decomposition
(A.21) is unique and, for any i € {1,...,4.}, we have

T;; =T, for j and j" in {1,...,M;}. (A.22)

Proof. We present first the construction of the subgraphs 77 ; and then proceed in an recur-
sive way.

Step 1: construction of 77 ;. Since the point p; has positive charge M; with respect to G,
we may apply Corollary A.1 and choose 171 = T),, so that define the graph

G1,1 =G\ T 1,and hence G = GLl\? Ty, with G1 € G7(Q).

the total charge of G; has now decreases by 1. More precisely, it follows from the rules (A.14)
and (A.17) for charges that for i = 2,...,¢., we have

Chg(pi, G171) = Chg(pi, G) for ¢ = 2, NN ,EC and Chg(pl, G171) = Chg(pl, G) - 1,

in case p1 € V(G1,1), which occurs in particular in p; has multiplicity. In the case ¢, = 1
and M; = 1, we deduce that G11 € Go(f2), so that setting Tp = G1,1, we obtain (A.21).
Otherwise, we proceed recursively.

Step 2: iterating the construction. We proceed as in step 1, but with G replaced
by Gi. If My > 1, when invoke Corollary A.1 again to assert that there exists a thread
T12 € Thread(p1,§2) which is a subgraph of G1 1. We set G12 = G1,1 \ T1,2 so that we have

G171 = GLQ“? T171 and
Chg(pi, G12) = Chy(p;, G) for i = 2,..., 4, and Chg(p1,G1) = Chy(p1,G) — 2,

If M1 = 2 and £, then we are done, then we obtain (A.21) with Ty = G1,2. Otherwise, we pro-
ceec} with Gl’? and construct iteratively the threads 77 3,...,T1 m,, and then T51,...,T5 Mms,,
o Toe 1y 5 Tog My, - Setting To = Gy, \p,, we obtain formula (A.21). O

Remark A.1. In (A.21), we may impose additionnally that Gipread has no loop.

89



A.1.7 Prescribing charges and the Kirchhoff law

We are now in position to model connections of a given set to the boundary with possible

branching points . Consider a finite set A C €2, with points possibly repeated with multiplicity

M(a) € N*, so that #(A) = > M(a). We restrict our attention to graphs G € GT () satisfying
acA

the additional conditions
Veng (G) = A and Chg(a,G) = M(a), Ya € ANKQ. (A.23)

This is equivalent to Kirchhoff’s law

{jj(E+(O',G)) =t(E (0,G)) + M(a) forac ANQCV(G) (A.24)

t(ET(0,G)) =4(E (0,G)) forany o€ V(G)NQ\ A,

We introduce the class of graphs aimed to model connections of points in A to the boundary,
namely the set

G(A,09) = {G € GT(Q) such that A C V(G) and (A.24) holds}. (A.25)

It follows that if G belongs to G(A,0f), then the points of A are the only ”source” points
of the graph inside 2, with charge M(a), whereas all the other points have charge 0. The
simplest example G of an element in G(A,0Q2) when (2 is convex is provided by the graph
for which each element a in A is connected by a segment to an element of the boundary b
so that in this case V(Gy) = agA{a, b} and E(G) = agA{[a, b]}. Notice that, going back to

(A.21), if G € G(A,09) then we have likewise

*

*
Y Y

Ghread = T%,j> S G(A, 89)

Figure 20: Branched transport of the points a;.
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Remark A.2. In the definition above, we allowed points in A to be on the boundary 0f2:
This, perhaps unnatural aspect of the definition, is motivated by the fact that we will face
such a situation in Subsection A.4, and this convention simplifies somewhat the presentation.
However, one may verify that

G(A,09) = G(A\ 99,09). (A.26)

A.2 The functional and minimal branched connections to the boundary

Given 0 < o < 1, we consider the functional Wy defined on the set G(€2)

Wo(G) = > (d(e))*H'(e) for G € G(Q). (A.27)
e€E(Q)

and the non-negative quantity
Lhibd(A4,09Q) =inf {Wy(G),G € G(A,00)}, (A.28)

which we will term the branched connection of order « of the set A to the boundary 0.
Notice that the case « = 1 has already been introduced in [11] as minimal connection to the
boundary. Using, among other arguments, the fact that

W(X(G) < W(X(Gthread)
with equality if and only if 7p in (A.21) is empty, it can be proved, as in [30]:

Lemma A.5. The infimum in (A.28) is achieved by some graph Ggpt € G(A,09). Moreover
Ggpt has no loops and we may therefore write

*

opt = G = agA <je{1,_,\fM(a)}Ta’j> with Ta,j € Thread(aa Q) (A.29)

G

Moreover, we have d(e) < §(A) for any e € E(Ggpt).
We notice that, as a straightforward consequence of follow, we have
Lhpa(A,00) = L5 1 q(A\ 09, 00). (A.30)
We next show, similar to results in [30, 31, 4]:

Lemma A.6. The graph Ggpt possesses the single path property.

Proof. We argue by contradiction and assume that there exists some vertex oy € V(G) and
two distinct vertices 07 and oy in V(G) such that 09, 0;] € E(G) for i = 1,2. In view of the
decomposition (A.29) we may find then two charges a; and ay in A such that, for i = 1,2, the
segment [0g, 0;] belongs to E(T;) where T; is a thread of the form Ty, ;, appearing in (A.29).
In the case the two threads have no vertex in common past the vertex oy, we may write them

under the form .
T; = Grp(Bi) = Grp(Bo,i) Y Grp(Bu,) (A.31)
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where BO,Z' = {ai, .. .,(70} and Bl,i = {GO, O'i,bi,g, ce 7b7;7£i}7 with bi,Zi € 01, the vertex og
being the only common point of the sets Bi; and By2. In the case the two threads have a
common vertex beom past oy we write

Ty = Gup(By) = Gup(Bo.1)Y Gup(B11)Y Gip(Ba,i) (A.32)

where By ; is as above and B ; = {00, 04,0;2,...,bi¢, = beom}. In order to obtain a contra-
diction, we compare the energy of the graph G with the energy of two comparison graphs G4
and G4, which we construct next, and which corresponds, roughly speaking, to an interchange
of the threads 77 and T5. We first consider the modified threads

Tl = Grp(BOJ)§Grp(B172)$Grp(Bg71) and TQ = Grp(BQQ)$Grp(Bl71)\?Grp(BQ72).

We then define . . . L
Gy = (G \ Tl) Y17 and Gy = (G\Tg) YTs.
One verifies that, for i = 1,2, G; € G(A,09Q). For i = 1,2 and j = 0,...,4; — 1 we set
eij = [bij,bij+1] where bjg = 0¢ and b; 1 = 0y, for i = 1,2. We observe that
d(eLj, él) = dl,j — 1 for j = 1, .o ,61 and d(ng,ég) = d2,j + 1 for j = 1, e ,EQ
d(eLj, Gl) = di,j +1forj=1,...,¢1 and d(elyj,ég) = ng —1forj=1,...,49,

where we have set d; ; = d(e; ;,G). All other segments have the same density as for G. It
follows :

l1—1 lo—1
Wa(Gr) = Wal(G) = Y [(dig+ 1) —df ] lerl + Y [(doj — 1) —d5 ;] e[ > 0
=0 =0
~ l1—1 lo—1
Wa(Ga) — Wi(G) = [(dl,j —-1)% - dfj] le1,;| + Z [(dz,j + 1) — dg,j] lea ;| > 0.
j=0 Jj=0

> oD (i + D)™ + (diy — D)™ = 2d35] > 0.

i=1 j=0
By concavity of the density function ¢(d) = d*, we have however for d < 1
(d+1)*4+(d—1)*=2d¥ <0
so that we have reached a contradiction which establishes the announced result. O

Remark A.3. Using simple comparison arguments, one may easily prove that if A and B
are disjoint finite subsets of ) then

Lliba(AU B,0Q) < £81,4(A, 0Q) + £F1,4(B,09Q) (A.33)
and if 0 < o < x on Q C Q' then we have

£"’f)(rbd(147 aQ) < Eg;anch(A7 89) and ’ggrbd(A’ 89) < Sgrbd(A> aQ/) (A34)
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Bemark A.4. In our further analysis, we will be led to consider the case €2 is a polytope,
Q = Q1 UQy, where Q1 N Qs = 0, Q1 and Qs being polytopes. Given a graph G € G (Q), one
verifies that

W(G) = Wy (G1) + Wi(G2), where G, = GLQ, for p =1,2. (A.35)
Assume next that G € G(A,Q), where A C Q is a finite set. We have, for p = 1,2
Gy € G(Ap, Q) so that We(Gp) > £514(Ap, 0Qp) where Gy = GL_Qy,. (A.36)

In the next subsection, we will be mainly concerned with the asymptotic behavior of

N ba(A,0Q) as the number of elements in A tends to 400, specially in the case they are

equi-distributed. Our methods rely on various decomposition, as presented next.

A.3 Decomposing the domain and the graphs

We discuss here issues related to partitions of the domain 2, assuming it is a polytope. We
consider the case where the set ) is decomposed as a finite union

Q= U Q,, where the sets Q, are disjoint polytopes i.e. Q, N Q =0 for p #p’.  (A.37)

Given a finite subset A of ) which does not intersect the boundaries 0§2,, we have the lower
bound
Lpa(A4,00) > > 8%14(Ay, 09,) where Ay = 0, N A, (A.38)
peP
Indeed, if G is a graph in G(A,0f2), then the restriction G, to the subset €2, belongs to
G(Ay, 09p). On the other hand, we have

Wo(G) = D> Wa(Gy),
peP

from which the conclusion (A.38) is deduced. We assume next that P = {1,2}, that is
Q = Q1 UQy, where Q1 N Qs = 0, Q7 and Qs being polytopes. Our next result, is an
improvement of (A.38) for this case.

Proposition A.3. Assume that P = {1,2}. Then, we have the lower bound

(A1)
8(A)

where ko > 0 is some constant depending only on « and where Noy = $(A) denotes the number
of elements in A.

Sgrbd(A, BQ) Z 'Sgrbd<A17 891) + 'Sgrbd<A27 an) + K(X (Nel)cxdiSt (Ql, 89), <A39)

The previous result is obviously only of interest in the case dist (€21, 9€2) # 0, that is when
Q1 C Q. The proof involves concavity properties, in particular the next elementary result.

Lemma A.7. Let 0 < « < 1, a > 1 and b > 1 be two given numbers. There exists some
universal constant Ky > 0 depending only on « such that

(a4 b)* > a* 4 ke inf{b*, ba™ 1},
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Proof of Lemma A.7. We distinguish three cases.

Case 1: b < 2 We rely on the Taylor expansion of the expression (1 + s)* for s in (0, 1]

which leads to the concavity estimate

1 1 1
(I+s5)*>14as+ ioc(oc —1)s? > 1+ 50(5(1 +(x—1)s) > 1+ 50(8(1 —s). (A.40)

We apply (A.40) with s =

Q|

1
< —,sothat 1 —s > > leading to the inequality

N | —

1 1
(a+b)*>a*(1+ Zocs) > a* + 2 aba*t, (A.41)

1
Case 2: 8a > b > 5a. In this case, we obtain invoking (A.40) once more

0.4 3 04 ]' [0 4 04 1 b * 04 1 0(+1 04
Case 3: 8a < b. In this case we write
x X 1 (04 1 X 0.4 1 X

We set ko = inf{a/4, x (1/8)" (1 —1/8%)}. Combining (A.41), (A.42) and (A.43) in the
three cases, we complete the proof of the lemma. O

We use Lemma A.7 in the case we have the additional assumption
a+ b < Nper, (A.44)

where Npe > 1 is some large number. It follows from (A.44) that b* > b(Npe,)* ! and
a* > (Nber)"‘_1 so that in this case, (A.41) leads to the inequality

(a4 b)* > a* 4 Ko b(Nper)* 1, (A.45)

and hence the right hand side of (A.45) behaves linearily with respect to b.

Proof of Proposition A.3. As mentioned, we may assume that Q C €, since otherwise the
result (A.39) is a immediate consequence of (A.38). In this situation we have Qy = Q\ ;. Let
Ggpt be an optimal graph for £5, (A, 0€). We amuse for simplicity that all multiplicities in
A are equal to one. We proceed first with a spatial decomposition of this graph, introducing
the subgraphs G, = G L_),. Going back to Remark A.4, we have

W(X(G) = Wa(Gl) + W(X(Gg) > Sgrbd(Ala 891) + W(X(GQ). (A.46)

To estimate Wy(G2), we rely on the next Lemma:
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Lemma A.8. We have the improved lower bound for Wy(G3)

1(A1)
£(A)

where & > 0 is the constant provided by Lemma A.7.

W(X(GQ) > Sgrbd(A% 092) + Kg (Nel)“dist (Ql, 8(2) (A.47)

Combining Lemma (A.8) with inequality (A.46), we obtain inequality (A.39) which com-
pletes the proof of Proposition A.3. O

Proof of Lemma A.8. In view of Lemma A.5 we may decompose Ggpt as in (A.29), so that

we may decompose the graph Gy as Gy = G271\*(G2,2 with for q = 1,2
Gag = < “C4 Ta) L_Qo, where the threads T}, € Thread(a, 2) satisfy (A.6).
ae q

We notice that G2 € G(Az, ), so that
Wa(G22) 2 Lhpa (A2, 0Q), (A.48)

whereas Ga1 € Go(€22). Given a segment e of the graph Go, we denote by dsa(e) (resp.
di2(e)) its multiplicity according to the graph Ga; (resp Ga232), with the convention that
da1(e) =0 (resp. da2(e) = 0) if the segment does not belong to E(Ga,1) (resp. E(Gay2)). It
follows from the last statement in Lemma A.5 that

d(E, G) = d(E, Gg) = dzyg(e) + dg’l(e) < N, (A49)
and the definition of W leads to the identity

W“(GQ) = W(X(Ggg Y Gl,g) = Z (d272(6) + d271(€))o‘7‘[1<6).
(G2)

We split the remaining of the proof into three steps.
Step 1. We have the lower bound

Wa(G2) = We(G22 Y Go21) > Wx(G2:2) + ke (Nep) Z da.i( (e), (A.50)
eEE(Gz)

Proof of (A.50). We invoke next inequality (A.45) of Lemma A.7 with Npe, = Nep, a = da2(e)
and b = da 1(e). Since (A.49) yields (A.44) in the case considered, we obtain

Wa(Gaa ¥ Gr2) = > (doa(€)* + kada(e) (Na)™ ) H (e)

e€E(G2) (A 51)
> Y daa(e) M (e) + ke Ne)* ™1 > dai(e)H! (o).
e€E(Gy) ecE(G2)

Since, by definition, we have Wy (G22) = Z dao(e “7—[ (e), we obtain (A.50).
e€E(G2)
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Step 2. We have the lower bound

> dai(e)H'(e) > #(Ar)dist(r,00). (A.52)

Proof of (A.52). We take advantage of the linearity of the l.h.s with respect to multiplicity.
Indeed, we notice that

> daa(e)H (e) = Y H'(CanN ),

e€E(G2) ac€Ay

where C, denotes the polygonal curve related to the thread T,. Since any thread T,, joins a
point in 2y to the boundary 0f2, we have

HY(Cu N Q) > dist(Qy,09),

so that the conclusion (A.52) follows combining the two previous relations.

Step 3. Proof of Lemma A.8 completed. Combining the lower-bound (A.50), (A.52) with
(A.48), we derive the lower bound (A.47), which completes the proof of Lemma A.8.
O

A.4 Estimates for minimal branched connections

An important observation made'® in Xia is:

1

Proposition A.4. Assume that « € (o, 1], where o, = 1 — - Then we have, for some

constant C(Q, o) depending only on  and «,
E’%rbd(Aa aQ) < C(Q7 ‘X) (ﬁ(A))(x ) (A53)

The proof is obvious for &« = 1. Indeed in this case, one may obtain an upper bound for
[,}laranch(A, 00) estimating W1(Gp) where Gy is constructed as in subsection A.1 connecting

each point in A to its nearest point on the boundary. We obtain
W1(Go) < diam(€2) (§(4)) ,

yielding the result in the case considered. In the case o, < « < 1, estimate (A.53) yields
an improvement on the growth in terms of §A. This is achieved in [30] replacing the ele-
mentary comparison graph G by graphs having branching points obtained through a dyadic
decomposition.

Remark A.5. The result of Proposition (A.4) is optimal in the sense that one may find
simple distributions of points for which the asymtotic behavior in of order (f(A))%,

8Here we refer to Proposition 3.1 in [30]. Although the statement there is slightly different from ours, the
reader may easily adapt the proof.
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A.5 The case of a uniform grid

We next focus on behavior of £7, ; in the special case (2 is the m-dimensional unit cube that
is © = (0,1)™ and the points of A are located on an uniform grid. We consider therefore for
an integer k in N* the distance h = % and the set of points

Ak =K (h) = {a{“ — hI=h(i1in,... im), for I € {1,...,k}m},

so that #(AX ) = k™. Notice that AX, N9 ((0,1)™) # 0 (see Remark A.2). We set

AS (k) = £8ba(Ag,, 0(0,1)™) and Afgh, (k) = k™A% (k)
and are interested in the asymptotic behavior of the quantities A%, (k) and Ajorm (k) as k —
+00. We observe first that it follows from Proposition A.4 that, if & < &, then, we have the
upper bound
AZ (k) < Ook™ ie. ATLE (k) < Cy, (A.54)

norm

where the constant C, > 0 does not depend on k. In the critical case x = «,,, the upper
bound (A.54) no longer holds as our next result shows.

Theorem A.1. There exists some constant C,, > 0 such that for all k € N*, we have the
lower bound

A%m (k) > Cpk™*m logk = C,, k™ ! logk,

that is
ATLEm (k) > Cyp, logk.

norm

Remark A.6. The fact that the quantity Aform’ (k) = k!=™A%" (k) does not remain bounded
as k — 400 is related to and may also presumably be deduced from the fact that the Lebesgue
measure is not irrigible for the critical value & = o, a result proved in [12] (see also [4]).

The proof of Theorem A.1 will rely on several preliminary results we present first, starting
with elementary scaling laws. Let q € N* be given, and consider for k € N the set

1 1 h 1
*Afn:A?)fm 077771:53%17 —{akEI,IG 17"‘7km}7
. o1 =B () = {af = L LTe (Ll

so that éAfﬁl contains k" elements. The scaling law writes as

7)) =0 (AR 0 (0.M) —a ARG (A5)

1
Llrbd (qAﬁm 0 <[0, 1

The main ingredient in the proof of Theorem A.1 is a consequence of Proposition A.3:

Lemma A.9. Let q € N* be given. There exists some constant C§ > 0 such that

/\m,cx (qk) Z qm(ocmfoc) /\m,oc (k) + Cgc7 for any k e N*

norm norm
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Proof. we consider the set A% and decompose the domain € = [0,1]™ as an union of cubes
Qg with J = (j1,J2,..-,Jm) €I ={0,...,q— 1} and
1 1 1 1
QJ:7J+ 0’,"":,]'17]'2’.“’]' +Oafma
0P = m) +(0,7)

so that QyNQy # 0 if J#J and [0,1]™ = JUNQJ. We set
€3

1 1
Ay = A% N Qg, sothat Ay = ~J + ~AF .
q q

It follows from the scaling law (A.55) and translation invariance that
L pa(A3,0Q5) = q 'A% (k) for T € 3. (A.56)

We next single out a cube Qg, which is far from the boundary. For that purpose, we consider

the integer qo = [g], the multi-index Jo = (qo, qo, .- -, qo) and the sets

1
Q1 =Qg,and Qo= U Qy so that dist(€2y,09Q) > — for q > 3.

Je{Jo}

W~ |

Applying inequality (A.39) of Proposition A.53, we are led to
/\%(qk) = Sgrbd(A?é(a 8(0, 1)m) 281f)crbd(flJm 8QJ0) + ’ggrbd(QQ N A?):» 6(07 1)m)

+ lKakm(xqm(txfl)‘ (A57)
4
We deduce from inequality (A.38) and (A.55) that
a2 NAR0(0,1)™) = Y Lhpa(A5,0Qs) = [0" — 1 a A (k). (A.58)

Je\{Jo}
Combining (A.57), (A.58) and (A.55) again for J = J¢, we are led to the lower bound
o m—1 A 1 mo,_ m(a—1)
A (aK) = QAL () + ek,
Multiplying both sides by (qk) "%, we obtain the desired result with C§ = iKo‘qfl. O

Lemma A.10. We have for any integer 1 <k’ <k

norm norm

k moc—l—l
AX (k) < y/\%(k) and hence AL (k') < <k’> ATEE (k).
Proof. consider the cube Q] = (0, l%)m C (0,1)™ and the set A’ = Ak N Q. Tt follows from
inequality (A.38) that
Sgrbd(Ala 8Qi{) < Sgrbd(Akm 8(07 1)m) = A%(k),

whereas the scaling property yields

k
alA,90)) = AL (K)
The conclusion follows combining the previous inequalities. O
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Proof of Theorem A.1 completed. In the special case &« = «,,, the exponent of q in the r.h.s
of the inequality of Lemma A.9 vanishes, so that we obtain

ATBEm (g k) > ATeem (k) + Cg‘m, for any integer q > 3.

norm norm

Iterating this lower bound, we obtain, for any any integer ¢ > 0, to the lower bound

A (gf) > CEm . (A.59)

norm

On the other hand, it follows from Lemma A.10 that for any qé <k< qf—i-l we have

At (k) > g™ Apsim(qf). (A.60)

norm norm

so that, combining with (A.59) we deduce that, for any k € N*, we obtain the inequality

log k
Apuam (k) > q "Cem | ——
norm ( ) —_ q q |:10gq:| Y

which leads immediately to the conclusion, fixing the value of q for instance q = 5. O

Remark A.7. For a < a,;, the same type of argument show that

Apol (k) = +o0 as k — +o0.

norm

A.6 Relating ’ggrbd and ’Qgranch

We introduce here the possibility of having points with negative charges, and consider as in
the introduction a collection of points (P;);c;+ in € with positive charge +1, a collection
of points (Nj)jc - in €2, with negative charge —1. We define the set G(P;, N;,2) of graph
satisfying

<i£+{N"}> N <jé§{Nj}) CV(G)cQ.

and with (A.23) replaced by a modified version including the possibility of having negative
charges. For 0 < o« <1 we set

L pa(Pi, Ni, 09) = inf {W(G),G € G ({Pi}ics+ {N;}jes— Q) } (A.61)
where the functional W (G) is the weighted length of the graph connection defined by

Wo(G)= > (de)*H'(e) for G € G ({Pi}ics, {Nitics, ).
e€E(Q)

Next assume that we are given a family (€)pep of disjoint domains in R™, that is satisfying
QN Qy =0 if p # p’. We assume moreover that

' Lj {N;} N Q, =0 and set A, = {P;}ies N Q. (A.62)
1eJ ™

Lemma A.11. If (A.62) is satisfied, then we have the inequality

opa (P Njy ) = > 8514 (Ap, 09y).
P

99



Proof. Let G be a graph in G ({P;};cj+, {Ni}icsj-, Q) and set G, = G N Q. Since there are
no negative charges in €2y, It turns out that Gy € G(2,, 0€y), so that

Wa(Gp) = Lpa(Ap, 08Yy).
On the other hand, we have Wy(G) > ZW(X(G,,) so that the conclusion follows. O
peP

Notice that, in the case @ = R™, then £§, ; (P;, Q;, R™) = 400, except in the case §(J ) =
#(J7), i.e. there are the same number of +1 charges as —1 charges. In that case, we may
choose J* = J~ = J and set

’ggranch ( P, Q’L) = £grbd (Piﬂ Qj7Rm)

which is in the case m = 4 and « = % = 0y, is related to functional Lyranen presented in the
Introduction.
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