
HAL Id: hal-01480131
https://hal.sorbonne-universite.fr/hal-01480131

Submitted on 1 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Theoretical and Numerical Analysis of Void Coalescence
in Porous Ductile Solids under Arbitrary Loadings

M.E. Torki, C. Tekog̃lu, Jean-Baptiste Leblond, A.A. Benzerga

To cite this version:
M.E. Torki, C. Tekog̃lu, Jean-Baptiste Leblond, A.A. Benzerga. Theoretical and Numerical Analysis
of Void Coalescence in Porous Ductile Solids under Arbitrary Loadings. International Journal of
Plasticity, 2017, 91, pp.160-181. �10.1016/j.ijplas.2017.02.011�. �hal-01480131�

https://hal.sorbonne-universite.fr/hal-01480131
https://hal.archives-ouvertes.fr


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Theoretical and Numerical Analysis of Void Coalescence in
Porous Ductile Solids under Arbitrary Loadings

M. E. Torki1, C. Tekog̃lu2, J.-B. Leblond3, A. A. Benzerga1,4

1 Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA
2 Department of Mechanical Engineering, TOBB University of Economics and Technology,
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Abstract
Micromechanics-based constitutive relations are developed to model plasticity in solids with rel-

atively high levels of porosity. They are especially appropriate to model void coalescence in ductile
materials. The model is obtained by limit analysis of a cylindrical cell containing a coaxial void of finite
height with plastic flow confined to the ligaments, and loaded under combined tension and shear. Pre-
viously obtained analytical estimates were not upper-bound preserving when shear was present and, in
addition, were assessed against numerical results obtained for different cell geometries. Here, a rigorous
upper-bound model is developed and its predictions are consistently compared with finite-element based
estimates of limit loads on the same cylindrical unit cell exploiting quasi-periodic boundary conditions.
The numerical results are used to guide a heuristic modification of the model in order to capture the
behavior for extremely flat or extremely elongated voids.

Key Words: Ductile fracture; Low triaxiality; Internal necking; Internal shearing; Homogenization;
Upper-bound.

1 Introduction

Void coalescence is known to be the last elementary stage of ductile failure (Pineau et al., 2016). That is, as
soon as the first few largest voids approach each other within a fraction (∼0.3–0.5) of the intervoid distance,
yet long before they link up, the stress carrying capacity abruptly drops, and this upheaval continues to
failure at the material point level (Koplik and Needleman, 1988, Benzerga, 2002). This sudden change is
associated with strain concentration in the intervoid ligament (a form of micro-scale strain localization).
Prior to this, void deformation occurs by diffuse plasticity, the distorsion being due to void enlargement,
change of shape, rotation or all (Benzerga and Leblond, 2010, Benzerga et al., 2016). Ultimate failure of
a test piece can thus occur if plastic flow successively localizes in intervoid ligaments thereby leading to
macroscopic ductile crack growth. This mechanism prevails unless failure occurs by some plastic instability
at the scale of many-void populations.

As a precursor to void coalescence, the process of micro-scale strain concentration should thus be mod-
eled for predicting ductile fracture. This involves developing constitutive relations for voided solids in a
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“coalescence state”, to be further defined below. When put together with available models for voided solids
in “pre-coalescence states”, e.g., (Gurson, 1977) the transition between the two states will correspond to the
abrupt change in deformation mechanism.

It is noted that the developed constitutive relations are relevant to describe the plastic response of ma-
terials with relatively high levels of porosity, as for example considered by Fritzen et al. (2012). However,
the resulting models are different from pre-coalescence, Gurson-like models, because of fundamental differ-
ences in the boundary conditions assumed in developing the said constitutive relations. What is of particular
importance is that the porosity levels of interest can be quite low by comparison with those prevailing in
engineered porous materials. Typical figures would be on the order of 0.01, perhaps even smaller.

It is also emphasized that this type of models is different from those where void coalescence is viewed
as an instability that can be predicted in terms of the pre-coalescence constitutive relations, e.g. (Danas and
Ponte Castañeda, 2012); also see Benzerga et al. (2016). The fundamental premise of the line of models to
be developed here is that the pre-coalescence constitutive relations cease to be valid at the critical point, and
thus provide no basis for predicting localization; as explained by Rice (1976), “An alternative hypothesis
would be that some essentially new physical deformation mechanism comes into play, abruptly, and rapidly
degrades the strength of the material. In such cases the pre-localization constitutive relations cannot be
continued analytically at the critical point, and they provide no basis for prediction of localization.”

Internal necking of the intervoid ligaments, as the most prevalent mechanism for void coalescence
(Pineau et al., 2016), has been inferred from the pioneering computational work of Koplik and Needle-
man (1988), approximately modeled by Thomason (1985), Benzerga et al. (1999), Pardoen and Hutchinson
(2000), Gologanu et al. (2001) and Benzerga (2002), and recently tackled on more rigorous grounds by
Benzerga and Leblond (2014) and Morin et al. (2015). A “coalescence state” is defined in this context as
any state after a neck has initiated in the intervoid ligaments, with the deformation mode shifting to purely
uniaxial, and elastic unloading taking place outside of these ligaments.

The void coalescence models listed above strictly apply to predominately tensile loadings even if ap-
proximate extensions have been attempted so as to incorporate more general loadings (Benzerga, 2002,
Benzerga et al., 2004). In recent years, there has been revived interest in ductile fracture under combined
tension and shear e.g. (Barsoum and Faleskog, 2007a, Dunand and Mohr, 2011). More generally, one needs
to consider not only the normal stress acting on the localization plane but also the shear stress. When avail-
able and fully developed, such models can be utilized to analyze ductile fracture under more general loading
schemes, as investigated in some recent works using micromechanical cell analyses (Leblond and Mottet,
2008, Barsoum and Faleskog, 2011, Scheyvaerts et al., 2011, Tvergaard, 2012, Nielsen et al., 2012, Dunand
and Mohr, 2014, Tekog̃lu, 2014, Liu et al., 2016). The motivation in accounting for a shear component in the
remote loading is two-fold. First, it is of interest to quantify how the internal necking condition is affected
by the shear stress. Second, if loading is shear-dominated a seamless transition from internal necking to
“internal shearing” may occur, that is with all shear deformation taken up within the intervoid ligament.

Any constitutive relations for a porous material involve dilatant plasticity, at least for associative plastic
flow as envisaged here. The chief concern of this paper is to develop such relations for a porous material
in which voids are in a state of incipient coalescence (by internal necking or shearing) and consider the
effects of normal as well as shear stresses. It is assumed that the presence of a remote shear stress would
not change the basic mechanism of strain concentration. There have been quite a few modeling efforts in
this direction. Leblond and Mottet (2008) and later Tekog̃lu et al. (2012) developed such equations using
a “sandwich model” whereby the void is smeared out in the central layer of the sandwich. Later, Torki
et al. (2015) developed a closed-form solution to the problem of void coalescence under combined tension
and shear by considering explicit expressions of the velocity field around the void. Recently, Keralavarma
and Chockalingam (2016) extended the analysis of Benzerga and Leblond (2014) to plastically anisotropic
matrices by considering a sub-family of velocity fields introduced by Morin et al. (2015). Their analysis also
accounted for combined tension and shear loadings. However, the limit analysis procedures in both Torki
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et al. (2015) and Keralavarma and Chockalingam (2016) involved “uncontrolled” approximations which did
not preserve the upper-bound character of the approach; see Benzerga and Leblond (2010) for background.
In addition, Torki et al. (2015) offered some comparisons of their model predictions with the finite element
results of Tekog̃lu et al. (2012). The model was derived on the basis of a cylindrical cell containing a
cylindrical void whereas the calculations in Tekog̃lu et al. (2012) were for a tetragonal cell with a spheroidal
void. Notable discrepancies were observed between the finite element results and the model predictions.

These discrepancies could be attributed a priori to three possible causes: (i) the choice of trial velocity
fields in the analytical approach; (ii) the uncontrolled approximation made in the analytical approach; (iii)
the difference between the geometries of the elementary cells considered in the analytical and numerical
approaches. The aim of the present paper is to examine possible causes (ii) and (iii). To this end we develop
an improved model preserving the rigorous upper-bound character and carry out cell model calculations
using exactly the same cell geometry as that considered in the analytical model.

The paper is organized as follows. Section 2 is devoted to the derivation of the upper-bound model, with
details deferred to Appendices A and B. Section 3 presents the principle of the finite element calculations
that use the same cylindrical cell, with details about boundary conditions gathered in Appendix C. Finally,
Section 4 reports our results, showing comparisons between the upper-bound and approximate models as
well as between the new model and unit cell calculations.

2 Analytical Model

2.1 GEOMETRY AND LOADING

(a) (b)

Figure 1: (a) Geometry of a cylindrical cell under combined tension and shear. (b) Cell parameters.

As in (Torki et al., 2015), the elementary volume Ω is a cylindrical cell of height 2H and radius L containing
a coaxial cylindrical void ω of height 2h and radius R, Fig. 1. Use is made of both a local cylindrical basis
(er, eθ, ez) and a global Cartesian one (e1, e2, e3). The displacement boundary conditions imposed on the
unit cell lead to a macroscopic stress state with a predominant axial stress, Σ33 > Σ11 , Σ33 > Σ22, as well
as shear stresses, Σ12 and Σ31. With no loss of generality, the base vector e1 is taken parallel to the applied
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shear force. While not space filling, the analyzed geometry stands as a reasonable approximation of a unit
cell in a periodic medium.

To represent “coalescence states” the cell is further divided into a central porous layer that defines the
ligament domain, Ωlig, and fully dense regions above and below it. The interfaces between these two regions
and the ligament are denoted Stop and Sbot (Fig. 1a) and their union Sint. The height of the ligament domain
is set by the void height 2h; see Torki et al. (2015) for background. This geometry is uniquely determined
by the independent dimensionless parameters identified in the first row of equation (1), respectively termed
the void aspect ratio, the ligament parameter, and the cell aspect ratio.

W =
h

R
, χ =

R

L
, λ =

H

L

fb ≡
ω

Ωlig
= χ2

c ≡
Ωlig

Ω
=

h

H
=
Wχ

λ

f ≡ ω

Ω
= cfb

(1)

For convenience, Eq. (1) also introduces other auxiliary parameters which will be used in the derivations: fb

is the porosity within the ligament band, c is the volume fraction of the band, and f is the overall porosity.

2.2 STRUCTURE OF CONSTITUTIVE RELATIONS

To mimic coalescence states, the regions above and below Ωlig are modeled as rigid (Fig. 1b). In actual
evolution problems using the cell model (Koplik and Needleman, 1988, Barsoum and Faleskog, 2007b,
Dunand and Mohr, 2014), these regions would correspond to elastically unloaded ones. The mechanism of
void growth abruptly changes due to the unloading that occurs above and below the cavity. Hence, plastic
flow is assumed to be confined to the ligament and obey the von Mises yield criterion with the associated
flow rule:

φ(σ) = σ2
eq − σ̄2 = 0 σeq ≡

√
3

2
σ′ijσ

′
ij

dij =
3

2

deq

σ̄
σ′ij deq ≡

√
2

3
dijdij

(2)

where σ′ is the stress deviator, and σeq and deq denote the von Mises equivalent stress and equivalent strain
rate, respectively. Also, σ̄ is the yield stress in simple tension.

The fundamental inequality of limit analysis gives rise to a variational definition of the effective yield
criterion of a porous material as follows:

∀D, Σ : D ≤ Π(D), Π(D) = inf
v∈K(D)

〈 sup
σ∗∈C

σ∗ij dij 〉Ω; (3)

if the velocity field is discontinuous across an interface S then a surface term must be added to Π(D) as

1

Ω

∫
S

sup
σ∗∈C

t∗i JviK dS (4)

In (3) Σ and D denote the effective stress and strain rate tensors, defined as volume averages of their
microscopic counterparts σ and d, and Π(D) is the effective plastic dissipation. Also, 〈·〉Ω stands for
averaging over Ω, K(D) is the set of kinematically admissible velocity fields v compatible with D, inf and
sup, respectively, represent the infimum and supremum over a set, and C is the microscopic reversibility
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domain, the boundary of which is the yield surface of the matrix, here given by (2)1. In (4) t∗ denotes the
traction acting on the interface and JvK the velocity jump across it.

Thus, stress states that lie within the effective reversibility domain, here denoted C , are given by (3),
possibly augmented by (4), and the effective yield surface is the boundary of that domain, ∂C . The reader
is referred to Benzerga and Leblond (2010) and Torki et al. (2015) for further details. When the effective
dissipation function is differentiable the yield surface is smooth. In such cases, the yield surface is defined
by the parametric equation:

Σij =
∂Π

∂Dij
(D) (5)

where D is no longer arbitrary as in (3)1 but represents the rate of deformation corresponding to Σ through
the macroscopic flow rule.

2.3 TRIAL VELOCITY FIELDS

For general loadings, the exact velocity fields that minimize the integrals in (3)2 cannot be obtained analyt-
ically. Nevertheless, use of trial ones leads to an upper bound to the yield surface (Benzerga and Leblond,
2010). Here, the trial velocity fields are taken from Torki et al. (2015) and are briefly recalled for complete-
ness. On account of the existing rigid zones above and below the central void, the unit cell considered cannot
deform along the x1 and x2 directions nor can it shear in the x1–x2 plane, i.e., D11 = D22 = D12 = 0.
In addition, the velocity jump across Sint, if any, must be purely tangential. Thus, the velocity ought to be
consistent with the following constraints:

vr(L, θ, z)er + vθ(L, θ, z)eθ = 2z
c D31e1 (−h ≤ z ≤ h; 0 ≤ θ ≤ 2π)

vz(r, θ,±h) = ±D33H (0 ≤ r ≤ L; 0 ≤ θ ≤ 2π)

JvK.n = 0 ∀x ∈ Sint

(6)

where D31 and D33 are the prescribed shear and axial strain rates, and n is the normal vector to the inter-
face. Condition (6)1 is supplemented by a constant velocity in the rigid zones (h ≤ |z| ≤ H). Boundary
conditions (6) stand as an appproximation of periodic boundary conditions and are consistent with the coa-
lescence states defined above as in cell model studies (Koplik and Needleman, 1988, Barsoum and Faleskog,
2007b, Dunand and Mohr, 2014). It should be noted that owing to the presence of rigid zones in the cell, the
velocity field cannot be consistent with uniform strain-rate boundary conditions (of the Hill–Mandel kind).

Details aside, the simplest trial velocity field that fulfills (6) along with the incompressibility condition
(tr d = div v = 0) is given by (in the ligaments only):

v(x) =

(
A

r
−Br

2

)
er +Bzez +

2z

c
D31e1 (7)

where c is defined in (1)3, and parameters A and B are determined by boundary conditions as follows:

A =
D33L

2

2c
, B =

D33

c

The corresponding components of the microscopic rate of deformation tensor d were reported in Torki et al.
(2015). Because of its relative simplicity, velocity field (7) is not continuous across Sint.
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2.4 EFFECTIVE DISSIPATION

Following Torki et al. (2015) an upper bound of the effective dissipation may be expressed as:

Π = Πvol + Πsurf (8)

with 
Πvol = c(1− χ2)〈σ̄deq〉Ωlig−ω

Πsurf =
1

Ω

∫
Sint

σ̄√
3

∣∣JvtK
∣∣ dS (9)

where the surface term Πsurf emerges as a result of the discontinuity of tangential velocity JvtK and is thus
a direct consequence of (4). The calculation of Πsurf was carried out by Benzerga and Leblond (2014) to
yield:

Πsurf = |D33|Σsurf , Σsurf(χ,W ) =
σ̄

3
√

3

χ3 − 3χ+ 2

χW
(10)

It is in the calculation of the volumetric term Πvol that the present work differs from Torki et al. (2015).
Indeed, to simplify their treatment Torki et al. made an approximation in evaluating (9)1 which did not
preserve the upper-bound character. Here, careful treatment of this term is developed. In accordance with
the calculations reported by Torki et al. (2015), the expression of deq as stated in (2) reads

d2
eq =

D2
33

3c2

(
3 +

L4

r4

)
+

4D2
31

3c2
(11)

Then the volumetric portion of the effective dissipation Πvol of (9)1 becomes:

Πvol ≡ Πvol(D33, D31) = (1− χ2)
σ̄√
3

〈√
D2

33

(
3 +

L4

r4

)
+ 4D2

31

〉
Ωlig−ω

(12)

where the parameter c has canceled out. The following approximation was exploited in Torki et al. (2015)
to reach a simplified volumetric average in (12):

Πvol ≈ (1− χ2)
σ̄√
3

√√√√√〈D2
33

√(
3 +

L4

r4

)〉2

Ωlig−ω

+ 4D2
31 (13)

However, this approximation, which was initially introduced by Tekog̃lu et al. (2012), destroys the rigorous
upper-bound character, and therefore warrants some assessment against numerical estimates.

Unlike in (Torki et al., 2015, Tekog̃lu et al., 2012), no approximation is introduced herein. Introducing
the change of variable (D33, D31)→ (D33, D̄) with

D̄2 = 3D2
33 + 4D2

31, (14)

with the constraint D̄D33 ≥ 0, Πvol can be written more concisely as

Πvol ≡ Π∗vol(D33, D̄) =
2σ̄√
3L2

∫ L

R

√(
D33

L2

r2

)2

+ D̄2 r dr (15)
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which can be evaluated conveniently using the change of variable u ≡ L2/r2:

Πvol =
σ̄|D̄|√

3

∫ 1/χ2

1

√
1 + ζ2u2

du

u2
, ζ ≡ D33

|D̄|
(16)

(Note that |ζ| ≤ 1/
√

3). The above integral emerges in various related problems, beginning with the Gurson
model as revisited by Benzerga and Leblond (2010) and its extensions, for example Benzerga and Besson
(2001)1. Thus, combining the volume term in (16) with the surface term in (10) one finally obtains:

Π =
σ̄|D̄|√

3

[
ζ sinh−1(ζu)−

√
1

u2
+ ζ2

]1/χ2

1

+ |D33|Σsurf (17)

with Σsurf given by (10)2. The dissipation function in (17) is not differentiable, just like the corresponding
estimate from Torki et al. (2015), see their equation (32). However, unlike the estimate in (Torki et al.,
2015), the above equation provides a strict upper bound to the plastic dissipation.

2.5 UPPER-BOUND CRITERION

Using the fundamental inequality of limit analysis (3) it can be shown that the upper-bound effective yield
surface associated with (17) contains singular parts and regular ones with no vertices. The general procedure
for determining the various regions in stress space follows that of Torki et al. (2015).

First, since the dissipation function Π depends only onD33 andD31 the effective yield condition accord-
ing to (3) or (5) will not depend on Σ11, Σ22 and Σ12. Indeed by the normality flow rule2 Dij = Λ̇∂Φ/∂Σij

where Φ is the sought effective yield function and Λ̇ ≥ 0 the plastic multiplier; thus, the coalescence con-
ditions D11 = D22 = D12 = 0 entail independence of the yield condition vis-a-vis the above-mentioned
stress components.

Next, to obtain the singular parts one ought to resort to the primitive definition of the reversibility domain
C in (3). The reasoning for doing so is intricate (see Appendix A) and is based on a graphical method. The
result, however, is quite simple. Indeed, the yield locus is defined by:

|Σ31| = (1− χ2)τ̄ ; |Σ33| ≤ Σsurf (18)

where τ̄ = σ̄/
√

3 is the shear yield strength of the matrix. This equation means that for the indicated range
of normal stresses Σ33, the effective yield function is independent of the normal stress and the shear yield
stress is obtained by a simple rule of mixture between the yield stresses in the matrix and the void, since χ2

is exactly the porosity in the band. In what follows, we shall denote T = (1− χ2)τ̄ .
On the other hand, the regular parts require a totally different treatment, which is streamlined in Ap-

pendix B. The technical part involves eliminating parameter ζ defined by (16)2 to obtain an explicit expres-
sion of the effective yield function, which is given by equation (B-13).

The equations of the upper-bound model are recapitulated herein for ease of reference:

Φ(Σ;χ,W ) =



B2

τ̄2
+ 2fb cosh

(
|Σ33| − Σsurf

τ̄
−
√

3
B2 − Σ2

31

τ̄2

)
− (1 + f2

b) for |Σ33| ≥ Σsurf

Σ2
31

T 2
− 1 for |Σ33| ≤ Σsurf

(19)
1In equation (49) of Benzerga and Besson (2001) the term σ1/b

2 appears as a typo and should be replaced with hσ1Dm. Also,
the bound of the integral should read ξ/f . The same typos slipped in equation (6.11) of Benzerga and Leblond (2010).

2Having assumed normality at the microscopic scale, equation (2), macroscopic normality is a rigorous consequence of the
combination of effective properties and limit-analysis (Benzerga and Leblond, 2010).
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where τ̄ = σ̄/
√

3 is the shear yield strength, fb = χ2 is the porosity within the plastically-deformable band,
and

Σsurf(χ,W ) =
χ3 − 3χ+ 2

3χW
τ̄

T = (1− χ2)τ̄

B2

τ̄2
=

5

3
+ χ4 − 2

3

√
4 + 12χ4 − 3

Σ2
31

τ̄2

(20)

In general, the shear stress can be resolved into two components so that Σ2
31 should be replaced with Σ2

31 +
Σ2

32 everywhere in the above expressions.
By way of comparison, the equations of the approximate (not bound-preserving) criterion derived by

Torki et al. (2015) are:

Φ(Σ;χ,W ) =



(
|Σ33| − Σsurf

Σvol

)2

+
Σ2

31 + Σ2
32

T 2
− 1 for |Σ33| ≥ Σsurf

Σ2
31 + Σ2

32

T 2
− 1 for |Σ33| ≤ Σsurf

(21)

where

Σvol(χ) =

(
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2

)
τ̄ (22)

In both models (upper-bound and approximate) the yield surface is smooth, i.e., the transition between
the two parts is vertex-free; see Appendix A. Also, note that the effective yield stress in shear is much
smaller than that predicted by a Gurson-like model given that χ2 ≡ fb > f .

3 Cell-Model Calculations

Previously, Torki et al. (2015) presented comparisons between their approximate model and the microme-
chanical calculations of Tekog̃lu et al. (2012), which were carried out for tetragonal cells containing spheroidal
voids. In order to assess the predictive capabilities of the upper-bound model, calculations have now been
carried out for the very same unit cell used in the development of the model, Fig. 1. Thereupon, a special
small-strain finite element framework is employed which is intended to be the numerical equivalent of the
theory of limit analysis; see also Madou and Leblond (2013). A classical consequence of limit-analysis is
that elastic strain rates vanish when the limit load is reached. Therefore, the elastic moduli disappear from
the equations and may be chosen arbitrarily, and in turn plasticity imposes an incompressible velocity field
on the material. In this study, in order to mimic such a velocity field, a high value of Poisson’s ratio is
enforced (ν = 0.49). Thus the matrix material is modeled as nearly isochoric-elastic ideal-plastic. Also,
the yield strength to Young’s modulus ratio is taken to be σ̄/E = 0.0002. All calculations were carried out
using ABAQUS (Version 6.12) with the option of geometric nonlinearity switched off.

Inasmuch as the calculations are meant to validate the analytical model, it is emphasized that the same
cylindrical geometry of Fig. 1 is used to avoid any ambiguity in the comparisons. One difficulty in making
this choice is that strictly periodic boundary-conditions cannot be imposed on the cylindrical cell, since it
does not truly represent a unit cell in a periodic medium but only “mimics” such a cell. Instead, “quasi-
periodic” boundary conditions are prescribed drawing inspiration from rigorous periodicity. Consider one
half of the cell (Fig. 2) with symmetry conditions imposed on the meridian plane. Anywhere in a periodic
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x1 x2

x3

bc bc bc
bc
bc

Figure 2: One half of a cylindrical cell.

cell, the displacement u at field point x would write:

u(x) = (E + Ω).x + ũ(x) (23)

where E is the macroscopic strain tensor, Ω the (skew-symmetric) macroscopic rotation tensor and ũ a
periodic field. For any two points in periodic correspondence one would therefore have:

∆u = (E + Ω).∆x (24)

where ∆u is the difference in displacement between the points separated by the vector ∆x. For a cylindrical
cell equation (24) cannot be applied to pairs of points in periodic correspondence since such pairs do not
exist. We shall impose instead conditions similar to (24) to specific, carefully selected pairs of surface
points. It is in that sense that such conditions are termed “quasi-periodic”.

Specifically, the macroscopic strain enforced on the cell is represented by the tensor:

E = E11(e1 ⊗ e1 + e2 ⊗ e2) + E33e3 ⊗ e3 + E31(e1 ⊗ e3 + e3 ⊗ e1) (25)

or in matrix form

E =


E11 0 E31

0 E11 0

E31 0 E33


where

E11 = E22 ≡ ln

(
L

L0

)
≈ U1

L0

E33 ≡ ln

(
H

H0

)
≈ U3

H0

E31 ≡
Ut

2H0

(26)

Here, U1 denotes a prescribed displacement on the lateral surface (see Appendix C for details), whilst U3

and Ut are, respectively, the normal and tangential displacements prescribed on the top surface.
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On the other hand, the macroscopic rotation tensor must be of the form:

Ω = Ω31(e3 ⊗ e1 − e1 ⊗ e3) (27)

The simplest choice for Ω in (24) would be to take Ω = 0. However, this would entail a vertical displace-
ment on the lateral surface. To avoid this, one can choose Ω13 = −Ω31 = E31. For the cylindrical cell
considered, this choice will considerably simplify the formulation of multi-point constraint conditions.

In matrix form, the strictly periodic boundary conditions (24) now read:
∆u1

∆u2

∆u3

 =


E11 0 2E31

0 E11 0

0 0 E33




∆x1

∆x2

∆x3

 (28)

They are replaced by the following quasi-periodic conditions:

• On the top surface, ∆u = u(x1, x2, H)− u(x1, x2,−H) and ∆xT = {0, 0, 2H} so that:
∆u1 = 4E31H

∆u2 = 0

∆u3 = 2E33H

(29)

• On the plane Ox2x3,
u1(0, x2, x3) = 0 (30)

• On the lateral surface (x2
1 +x2

2 = L2, −H ≤ x3 ≤ H) multi-point constraints are imposed so that the
nodes lying on a semi-circle remain on a semi-circle of radius consistent with the prescribed value of
E11. Let uref be the displacement of some reference node on the semi-circle at some height x3, say
xT = {L, 0, x3} and ∆u = u(x1, x2, x3)− uref , then:

∆u1 = E11(x1 − L)

∆u2 = E11x2

∆u3 = 0

(31)

To simulate coalescence states whereby rigid zones preclude lateral straining we take E11 = 0, hence
U1 = 0. Under such circumstances, conditions (31) state that the circles move rigidly.

In theory, the quasi-periodic boundary conditions are most simply defined by (29)–(31). In practice,
however, it is of interest to employ only a quarter of the cell to further reduce the computation time. The
corresponding boundary conditions have been worked out by Tekog̃lu (2014) for an tetragonal cell and have
been adapted to the cylindrical cell as detailed in Appendix C. In a given calculation the displacements U3

and Ut are imposed and assigned values to cause plastic strains that are large enough compared with elastic
strains (see Tekog̃lu et al. (2012), Madou and Leblond (2013) for further details). The ratio between the
shear and normal stresses is governed by the Ut/U3 ratio.

For each choice of the pair (χ, W ) the critical stress values are, in principle, determined in a single-step
calculation. The time step needs to be large enough to ensure that the limit load is reached. In practice, this
is achieved within the first few increments (5 to 10) of the loading step. The absolute values of U3 and Ut

have no effect on the critical stress values.
The critical conditions on the stresses for attainment of the limit load are insensitive to the height H of

the cell, hence to λ. For this reason,H is adjusted so as to reduce computational cost. On the other hand, the
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height H must be large enough to guarantee the possible presence of rigid zones above and below the void3.
In most cases, the void fully fits into the unit cell when the cell aspect ratio λ is taken as unity. Yet, for some
(χ,W ) pairs, the void would protrude, and thus λ ought to take other values. Different λ ratios were thus
adopted for varying (χ,W ) pairs, as shown in Table 1. For each (χ,W ) pair, 18 different displacement ratios
were imposed, obeying the relation Ut/U3 = k/2, where k = 0, 2, 3, ..., 10, 20, 30, 40, 80, 120, 160, 200. A
larger Ut/U3 ratio induces a smaller ratio Σcoal

33 /Σcoal
31 of the stresses at coalescence and vice versa (note that

Σ31 = 0 for Ut/U3 = 0).

W χ λ

0.1 0.4 0.5
0.1 0.6 0.5
1.5 0.4 1.2
1.5 0.6 1.5
2.0 0.4 1.6
2.0 0.6 2.0
2.5 0.4 2.0
2.5 0.6 2.5
3.0 0.4 2.4
3.0 0.6 3.0

Table 1: W − χ values used in the cell model calculations having λ 6= 1.

Figure 3 shows two typical meshes, used for a void aspect ratio W = 0.5 and two values of the ligament
parameter χ = (0.4, 0.6). Each mesh consists of 20-node quadratic brick elements with reduced integration

(a) (b)

Figure 3: Typical meshes used for W = 0.5 and: (a) χ = 0.4, (b) χ = 0.6.

(C3D20R in the ABAQUS element library). A coarser mesh is utilized outside the ligament where the
behavior is quasi-rigid. Some calculations have been performed with both C3D8, as in (Tekog̃lu et al.,
2012), and C3D20R elements types. Differences were small, but C3D20R elements were found to provide
more accurate results with fewer elements.

3Also noteworthy is that the rigid zones above and below the void ought to be large enough to set grounds for localization to
occur in the x1 – x2 plane, referred to as “internal necking”, as assumed in the present work. If the void is very close to the top
(and bottom) surfaces of the unit cell, coalescence occurs in the x2 – x3 plane (primarily named as a “necklace-type” coalescence
by Benzerga (2000)), which is out of the scope of this investigation.
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Average stresses over the cell are defined as usual, Σij = (1/Ω)
∫

Ω−ω σij dV with Ω and ω denoting
the volumes of the cell and the void, respectively, as before. These average stresses are computed using the
discretized formula:

Σij =
N∑
n=1

M∑
m=1

(σij)
m
n v

m
n (32)

where N is the total number of elements, M the number of Gauss points per element (here M = 8), and
vmn = V m

n /Ω the volume fraction assigned to integration point m within element n. The components of
interest are Σ33 and Σ31, all others either are zero or do not affect the limit load in the coalescence regime.

4 Results and Discussion

4.1 UPPER-BOUND VERSUS APPROXIMATE YIELD LOCI

Representative yield loci corresponding to the upper-bound criterion (19) are shown in Fig. 4 as solid lines
for several values of the (χ,W ) pair. The porosity in the band takes on values between fb = 0.0625 and

(a) (b)

(c) (d)

Figure 4: Effective yield loci in the Σ33–Σ31 plane – comparison between the upper-bound estimate and its approxi-
mate counterpart (as derived in Torki et al. (2015)) for several microstructural parameters (χ,W ).

12



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

0.36 for the extreme cases shown of χ = 0.25 and 0.6, respectively. Corresponding values of the total
porosity fall between f ≈ 0.004 and ≈ 0.2 depending on the void aspect ratio and taking λ = 1 where
appropriate. Previous work in the literature shows that for χ < 0.2, yield loci given by (19) are unlikely to
be physical, because strain concentration within the intervoid ligaments does not occur (Benzerga, 2002). In
such cases, Gurson-like potentials are more likely to prevail. The case χ = 0.25 is not shown in Figs.4a,b
because for flat voids and χ < 0.3 coalescence is unlikely (see Table 1 in (Benzerga, 2002)). In all, the
vertical straight parts represent the singular portions of the yield loci. Such parts are not physical, as they
follow from considering discontinuous trial velocity fields. They occupy an increasingly small portion as
χ increases so that the criterion resembles more and more an elliptic one in the space of normal and shear
stresses.

For comparison, the approximate yield loci of Torki et al. (2015) defined by (21) are also shown dashed
in Fig. 4. The singular parts are common to both models. The predictions differ only on the regular curved
parts. While the upper-bound preserving curve is invariably exterior to the elliptic approximation, the two
evaluations are always close to each other, especially for larger values of χ. The key observation, therefore,
is that the elliptic approximation is quite good over a wide range of internal parameters.

The fact that both models lead to very close predictions can be rationalized as follows. As mentioned
above, the two models share the same singular parts; in particular the end points (for Σ33 = Σsurf ) are
the same in the two models; also see Appendix B. Furthermore, the two criteria meet on the Σ33 axis, that
is in the absence of shear. (Although not obvious, this property is demonstrated in Appendix A; its basic
explanation lies in the fact that approximation (13) becomes exact for D31 = 0). In short, because both loci
must meet at the intersections as well as on the Σ33 axis, and because they are both convex, they must lie
quite close to each other.

4.2 COMPARISON WITH NUMERICAL RESULTS

Figure 5 depicts contours of equivalent plastic strain at the onset of localization obtained in the finite element
simulations, for two (χ,W ) pairs and various values of shear- to normal-strain ratios. The figure illustrates
that plastic deformation is diffuse in the plastically-deformable ligament, and it spreads over part of the
ligament (a–d) or its entirety (e,f). In the mathematical model, however, it has been presumed that the whole
ligament yields, which leads to an overestimation of the limit load. Hence, the analytical model preserves the
upper-bound character. Moreover, plastic strains are negligible in the region above the void for all tension-
shear combinations. This supports the underlying assumption of rigidity within the parts located above and
below the ligament in developing the model (see Fig. 1).

Figure 6 shows the comparison between the cell-model calculations (points) and the upper-bound yield
criterion (19) for various combinations of χ and W . Other numerical results were obtained but they are not
shown for brevity. It is thus verified that the yield locus predicted by the model is always exterior to that
determined numerically. In addition, the predicted locus is reasonably close to the exact one considering
the fact that the model does not involve any adjustable parameter. This is especially true for void aspect
ratios about unity or larger. However, differences may be noted in the some cases. For instance, in the limit
W → 0 of a penny-shape crack, the predicted coalescence stress in the absence of shear wrongly diverges,
although not shown in Fig. 6 The singular behavior of the model in this limit has been discussed previously.
The corresponding coalescence mechanism is arguably not by internal necking. In this case, modeling the
localization would require adopting a thickness of the localization band larger than that of the void, which
is nil in this case (Hure and Barrioz, 2016). Also, for small shear to normal stress ratios, differences are
larger for smaller values of χ. For large shear to normal stress ratios, differences are larger for larger values
of W , irrespective of χ. It is also worth noting that the predictions could hardly be improved in the pure
shear case with (W = 0.5, χ = 0.4) or the pure tension case with (W = 3, χ = 0.6) without using overly
sophisticated velocity fields.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Examples of equivalent plastic strain distributions on initial configurations at the onset of internal neck-
ing localization, for: (a,b) Ut/U3 = 0 (zero shear) and (χ,W ) = {(0.4, 0.5), (0.6, 3.0)} , (c,d) Ut/U3 = 5 (in-
termediate shear) and (χ,W ) = {(0.4, 0.5), (0.6, 3.0)} , (e,f) Ut/U3 = 20 (near-extremum shear) and (χ,W ) =
{(0.4, 0.5), (0.6, 3.0)}.
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Figure 6: Comparison between the upper bound model (solid lines), modified model (dashed) and numerical yield
loci (points) for void coalescence under combined tension and shear, for various values of microstructural parameters
W and χ. The modification (described in Section 4.3) is made to improve the results for very oblate (W −→ 0) and
very prolate (W −→∞) cavities.
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We emphasize that the presence of flat parts in the yield loci near the horizontal axis is a direct conse-
quence of considering discontinuous trial velocity fields in the limit-analysis. Hence, they are not physical.
This does not prevent the analytical and numerical criteria to be close to each other in this region. Note that
in the absence of shear the improved model of Morin et al. (2015), which was based on continuous velocity
fields, provides tighter upper bounds for several combinations of the internal parameters.

4.3 MODIFIED MODEL

The discrepancies with respect to numerical results motivate a heuristic modification of the original model.
The main discrepancies occur in two distinct cases, both of some practical importance: (i) very flat voids
under conditions of dominant tension; (ii) very elongated voids under conditions of dominant shear. Some
improvements have been proposed to remedy these aspects in the context of an approximate model (Torki
et al., 2015). The same is attempted here for the upper-bound model. Such a heuristic modification unavoid-
ably destroys the rigorous upper-bound character of the model. Again, however, the main implications of
this modification are only for extremely flat voids in tension and elongated voids in shear.

Following the procedure explained in Appendix D, the derived criterion is modified as follows:

Φ(Σ;χ,W ) =


B2

τ̄2
+ 2fb cosh

 |Σ33| − tΣsurf

τ̄
−

√
3
B2 −

(
Σ31/l

)2
τ̄2

− (1 + f2
b) for |Σ33| ≥ tΣsurf

(
Σ31

lT

)2

− 1 for |Σ33| ≤ tΣsurf

(33)
where

B2

τ̄2
=

5

3
+ χ4 − 2

3

√
4 + 12χ4 − 3

(
Σ31

lτ̄

)2

(34)

and t and l are parameters that can be adjusted on the basis of the cell model calculations of Section 3.
Formulae for these quantities, as functions of the internal parameters, are presented in Appendix D. The
basic idea is to employ a homographic function of W for t so as to eliminate the singular behavior in the
limit of penny-shaped cracks, and a corrective bilinear function for l to improve the prediction for shear
loading of elongated voids.

The example yield loci shown below are intended to compare the modified yield criterion with FEM
results, as well as assess its putative upper-bound character. Figure 6 illustrates this comparison for various
values of χ andW . The calibrated loci for Figs. 6c and 6d may be compared to Figs. 4c and 4d, respectively,
to assess the effect of large values of W on the maximum shear stress at coalescence. The largest difference
between the modified model and the numerical results is obtained for very flat voids (W = 0.1) but only
for χ = 0.4, Fig. 6a. The proposed heuristic correction performs much better for larger values of χ. More
elaborate choices for the correction functions are possible, albeit at the expense of simplicity.

5 Concluding Remarks

An upper-bound model of dilatant plasticity has been developed based on limit analysis of a cylindrical
elementary cell. The model consists of an effective yield criterion that is appropriate to the regime of void
coalescence in materials failing by ductile damage accumulation. Incidentally, the model is also applicable
to porous media with periodic distribution of pores, as in some cellular structures. In all applications, the
model would represent certain portions of the yield locus and should be supplemented with a model that
appropriately represents other portions where plasticity cannot be confined to intervoid ligaments. This
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results in a hybrid multi-surface approach (Benzerga et al., 2002). Alternatively, Morin et al. (2016) have
recently developed a unified upper-bound model that describes both void growth and coalescence in the
absence of shear. Their approach can be extended to account for shear effects.

In practice, the model can be used in two ways. If there is a finite set of localization planes, such as for
periodic or clustered void distributions, then the coalescence criterion (19) may be checked, as is, on as many
localization planes as dictated by the underlying void distribution. In this case, an anisotropic void growth
model must be used prior to coalescence, e.g. (Keralavarma and Benzerga, 2010, Madou and Leblond,
2012). In such a hybrid multi-surface approach, some approximations would be necessary to account for the
different elementary cells used prior to and after coalescence. To this end, the model should also be extended
to include evolution equations of the state variables, notably to describe void rotation under shear-dominated
loadings. Such work is underway and will be reported elsewhere. On the other hand, if the void distribution
is considered as random then an isotropic version of the model may be developed by probing all possible
angles in the orientation space (Leblond and Mottet, 2008). In this case, an isotropic void growth model,
such as Gurson’s, may be used prior to void coalescence.

The trial velocity fields used in the limit analysis are not as sophisticated as those recently considered
by Morin et al. (2015) or Keralavarma and Chockalingam (2016). However, they present the considerable
advantage of enabling an upper-bound result to be derived in closed form.

To further assess the model, cell-model calculations of a new type have been carried out using special
boundary conditions, termed quasi-periodic as they simulate rigorous periodicity. The availability of such
computational results made it possible to unequivocally validate the model as well as an earlier version that
did not preserve the upper-bound character. The major conclusions are as follows:

• The present findings remedy for the uncertainties associated with the model recently derived by Torki
et al. (2015) from two perspectives: (i) the mathematical approximation involved in the homogeniza-
tion procedure is relaxed, so that the new model now preserves the rigorous upper-bound character;
(ii) the numerical results used for validation of the model are carried out for a cell identical to that con-
sidered in its derivation. Although the new model is more complex than the previous one, it remains
fully explicit (the yield criterion is still expressed in explicit, not parametric form).

• Salient features of the new model include the following: (i) The planar (singular and non-physical)
parts apparent in the approximate effective yield locus of Torki et al. (2015) are identically retrieved in
the new model. The curved (regular) parts, however, are exterior to their approximate counterparts; (ii)
The transition between the two planar and curved zones is devoid of any corners; (iii) All parameters
defining the yield surface are functions of the microstructural variables χ (ligament parameter) and
W (void aspect ratio).

• The availability of the upper-bound solution allows to check that the approximation previously intro-
duced by Torki et al. (2015) did not introduce important errors.

• The discrepancies that were noted in the previous work between the approximate model and numerical
results cannot be attributed to the uncontrolled approximation used, nor to the difference between the
elementary cells used. Instead, the gap between analytical and numerical results can only follow from
the choice of trial velocity fields. The quality of the estimate derived with the velocity fields chosen
here may be improved using the kind of heuristic fit described in the paper.

• A heuristic modification to the model was proposed on the basis of the numerical results in order to
better predict the onset of coalescence in practical applications. The modifications are two-fold. First,
a correction is proposed in the limit of penny-shaped cracks, which reduces to the correction proposed
by Torki et al. (2015) in the absence of shear loading. Second, a correction is introduced in the case
of elongated voids under shear-dominated loading.
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Appendix A Singular parts of the yield surface

The primitive definition of the reversibility domain C in (3) writes:

Σ ∈ C ⇔ ∀D, Σ : D ≤ Π (A-1)

Considering (17) and the non-zero components of D, it may be recast as:

∀D33, D31, Σ33D33 + 2Σ31D31 ≤
σ̄|D̄|√

3

[
ζ sinh−1(ζu)−

√
1

u2
+ ζ2

]1/χ2

1

+ Σsurf |D33| (A-2)

with D̄ defined by (14) and ζ = D33/|D̄|. Focussing on non-negative values of D31 only, (A-2) is rewritten
as:

∀D33,∀D31 ≥ 0, −Π(D33, D31) ≤ Σ33D33 + 2Σ31D31 ≤ Π(D33, D31) (A-3)

where use has been made of (A-2) for the pair (−D33,−D31) and of the fact that Π is an even function.
Inequalities (A-3) are equivalent to some condition Φ(Σ33,Σ31) ≤ 0 where Φ is the sought yield function.
Since Π is positively homogeneous of degree 1, (A-3) may be written in terms of the ratio p = D33/D31 as:

∀p ∈ R, −g(p) ≤ f(p) ≤ g(p) (A-4)

where the functions f and g are defined on R by:

f(p) = Σ33p+ 2Σ31

g(p) ≡ Π(p, 1) = σ̄

√
3p2 + 4

3

 p√
3p2 + 4

sinh−1

(
pu√

3p2 + 4

)
−

√
1

u2
+

p2

3p2 + 4

1/χ2

1

+ Σsurf |p|

(A-5)
In writing (A-5) use has been made of the relationship:

p =
2ζ√

1− 3ζ2
(A-6)

The function g is convex, admits a minimum g(0) = 2T , its graph has an angular point at its minimum, and

admits straight asymptotes of slope±σ̄
[

1√
3

sinh−1
(
u√
3

)
−
√

1
u2

+ 1
3

]1/χ2

1

+sgn(D33)Σsurf for p→ ±∞;

see Fig. A-1a.
The yield surface is the boundary of the reversibility domain, now defined by (A-4). As such, the yield

locus is the envelope of the straight lines q = f(p) lying between the graphs of the functions q = −g(p)
and q = g(p) and meeting one of them at some point, Fig. A-1c. To construct this locus, we only consider
loadings with Σ31 ≥ 0 due to point symmetry about the origin, and implement a graphical solution as
follows.

Two cases are analyzed separately depending on the magnitude of the normal stress. Consider first the
case |Σ33| ≤ g′(0+) = Σsurf . As illustrated in Fig. A-1a, the slope of the straight line q = f(p) is smaller
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(a) (b)

(c) (d)

Figure A-1: Construction of the yield locus by a graphical method. (a) Illustration of inequalities (A-4)
for |Σ33| ≤ Σsurf ; (b) corresponding (singular) part of yield locus. (c) Illustration for |Σ33| ≥ Σsurf ; (d)
corresponding (regular) part of yield locus.

than that of the curve q = g(p) at the origin so that the two curves do not cross each other provided that
f(0) ≤ g(0), i.e. that Σ31 ≤ T . In this case, therefore, the yield condition is that Σ31 = T , which is
a constant (Fig. A-1b). The same condition holds for g′(0−) < Σ33 < 0 by considering the intersections
of lines q = f(p) having negative slopes with the appropriate branches of the representative curves of the
functions g(p) and −g(p).

Next, for |Σ33| ≥ Σsurf there must be a condition on the shear stress Σ31 in terms of Σ33 for the stress
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state to lie on the yield surface. Given Σ33, the value of Σ31 must be smaller than that which makes the line
q = f(p) tangent to the curve q = g(p) (Fig. A-1c). Only in this case would the condition f(p) ≤ g(p) be
ensured for every p. Finding the yield point (Σ33,Σ31) then amounts to determining the value of p for which
there is tangency. The derivation is quite involved and was illustrated by Torki et al. (2015) in the case of
the approximate dissipation g(p). It is emphasized that in this case the dissipation function is differentiable
and the procedure leads to a locus exactly given by (B-13). Fig. A-1d depicts the corresponding (regular)
curved portion of the yield locus. For completeness, the portion corresponding to negative slopes of the line
q = f(p) is shown dashed in the figure.

Remark 1: In absence of shear Eq. (B-13), or equivalently Eq. (19)1, predicts a limit load equal to
Σsurf + Σvol, which is the same value as that obtained by Benzerga and Leblond (2014). Indeed, setting
Σ31 = 0 in (19)1 one gets:

B2

τ̄2
=

5

3
+ f2

b −
4

3

√
1 + 3f2

b =
1

3
(
√

1 + 3f2
b − 2)2 (A-7)

which, after plugging in the yield function gives:

cosh

(
|Σ33| − Σsurf

τ̄
−
√

3
B
τ̄

)
= C , C =

1 + f2
b − (B/τ̄)2

2fb
=

2
√

1 + 3f2
b − 1

3fb

hence C2 − 1 =
1

3

2−
√

1 + 3f2
b

fb


2

|Σ33| − Σsurf

τ̄
−
√

3
B
τ̄

= cosh−1 C = ln (C +
√
C2 − 1) = ln

1 +
√

1 + 3f2
b

3fb

=⇒ |Σ33|
τ̄

=
Σsurf

τ̄
+ 2−

√
1 + 3f2

b + ln
1 +

√
1 + 3f2

b

3fb
≡ Σsurf

τ̄
+

Σvol

τ̄

(A-8)

Remark 2: The upper-bound and approximate yield criteria given by Eqs (19) and (21), respectively,
give the same yield condition in the absence of shear. In other words the loci meet on the Σ33 axis. This
property follows from the fact that approximation (13) is exact for D31 = 0. Upon examination of the two
criteria, Eqs (19) and (21), this seems strikingly surprising. Nevertheless, it was shown above that (19) does
lead to Σ33 = Σsurf + Σvol when Σ31 = 0 although Σvol does not appear explicitly in (19). Obviously,
this result is easier to establish by starting from the expression of the total dissipation. Indeed, if one sets
D31 = 0 or equivalently ζ = 1/

√
3 in equation (17) then one gets:

Σ33 − Σsurf

σ̄
=

[
1√
3

sinh−1

(
u√
3

)
−
√

1

u2
+

1

3

]1/χ2

1

=
1√
3

[
2−

√
1 + 3χ4 + ln

1 +
√

1 + 3χ4

3χ2

]

=
Σvol

σ̄
(A-9)

where use has been made of the identity: sinh−1(x) = ln (x+
√
x2 + 1) and that the left-hand side of the

above equation is nothing but Π∗vol/D33 in the absence of shear.
Remark 3: The transition from the regular (curved) part to the singular (straight) part occurs without

any vertex as shown by Torki et al. (2015). A geometric proof of this property was provided by Morin et al.
(2016). So is the case because the first derivative of Φ with respect to Σ31 from Eq. (19)1 would become
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unbounded at Σ31 = T or, equivalently, its derivative with respect to Σ33 would vanish as follows. Letting
(|Σ33|, |Σ31|) = (Σsurf , T ) would give:

B2

τ̄2
=

5

3
+ f2

b −
2

3

√
4 + 12f2

b − 3(1− fb)2 = f2
b − 2fb + 1 = (1− fb)2

hence 3
B2 − Σ2

31

τ̄2
= (1− fb)2 − (1− fb)2 = 0 and

|Σ33| − Σsurf

τ̄
−
√

3
B2 − Σ2

31

τ̄2
= 0

=⇒ ∂Φ

∂Σ33
=

∂

∂Σ33

(
B2

τ̄2

)
+ 2fb

sgn(Σ33)

τ̄
sinh

(
|Σ33| − Σsurf

τ̄
−
√

3
B2 − Σ2

31

τ̄2

)
= 0

(A-10)

This demonstrates that the yield locus is devoid of any corners.

Appendix B Regular parts of the yield surface

On these, the dissipation function is differentiable so that equation (5) may be used. Since Π is posi-
tively homogeneous of degree 1, ∂Π/∂D is positively homogeneous of degree 0, i.e. (∂Π/∂D)(αD) =
(∂Π/∂D)(D), where α is an arbitrary positive real number. By way of consequence, ∂Π/∂D depends
only on the ratio D31/D33 of the two independent components of D. This ratio can then, in principle, be
eliminated between the two parametric equations of the yield locus; see Benzerga and Leblond (2010) for
generalities.

In practice, however, there arises the difficulty that the obtained expression (17) involves a different
ratio, ζ, of D33 to the composite strain-rate measure D̄. Hence, proceed as follows. From (5) and using the
variables (D33, D̄) in lieu of (D33, D31) obtain the nonzero stress components as:

Σ33 =
∂Π

∂D33
=
∂Π∗vol

∂D33
+
∂Π∗vol

∂D̄

∂D̄

∂D33
+ sgn(D33) Σsurf

Σ31 =
1

2

∂Π

∂D31
=

1

2

∂Π∗vol

∂D̄

∂D̄

∂D31

(B-1)

where the factor 1/2 in the second equation is due to the fact that D31 appears in fact twice in the actual
dissipation function, as D31 and D13. In (B-1) appear stress-like auxiliary variables A and B:

A ≡ ∂Π∗vol

∂D33
=

σ̄√
3

[
sinh−1(ζu)

]1/χ2

1

B ≡ ∂Π∗vol

∂D̄
= −sgn(D̄)

σ̄√
3

[√
1

u2
+ ζ2

]1/χ2

1

(B-2)

which have just been evaluated using the volume term of (17). Hence (B-1) may be rewritten as:

Σ33 = A+ 3 sgn(D̄)ζB + sgn(D33) Σsurf

Σ31 = sgn(D̄D31)
√

1− 3ζ2 B
(B-3)

Relations (B-3) represent parametric equations of the yield surface. Elimination of ζ leading to an
explicit relationship between stress components Σ33 and Σ31 is somewhat tedious. Its three main steps are
summarized below.
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First, the definitions of A and B are, in fact, a short-cut towards such an elimination process. Indeed,
expanding (B-2)1 and (B-2)2, taking the cosh of both sides of (B-2)1, then simplifying leads to:

χ2 cosh

(√
3
A
σ̄

)
=
√

1 + ζ2
√
χ4 + ζ2 − ζ2

√
3
|B|
σ̄

=
√

1 + ζ2 −
√
χ4 + ζ2

(B-4)

Taking the square in (B-4)2 then permits to eliminate ζ; the following relationship is then obtained in terms
of the auxiliary variables A and B:4(√

3
B
σ̄

)2

+ 2χ2 cosh

(√
3
A
σ̄

)
− (1 + χ4) = 0 (B-5)

Second, to obtain the explicit yield criterion, the quantities A and B need to be replaced with Σ33 and
Σ31 in (B-5). A useful intermediate result obtained from (B-4) is

1− χ2 cosh

(√
3
A
σ̄

)
= 1 + ζ2 −

√
1 + ζ2

√
χ4 + ζ2 =

√
3
|B|
σ̄

√
1 + ζ2 (B-6)

Taking the squares of (B-3)2 and (B-6), one gets(
Σ31

σ̄

)2

= 4

(
B
σ̄

)2

−

[
1− χ2 cosh

(√
3
A
σ̄

)]2

(B-7)

where ζ is no longer present. Using then equation (B-5) one obtains:(
Σ31

σ̄

)2

= 4

(
B
σ̄

)2

− 1

4

[
1− χ4 +

(√
3
B
σ̄

)2
]2

, (B-8)

which is a quadratic equation in (B/σ̄)2. Discarding the largest root by noting that (
√

3B/σ̄)2 ≤ (1−χ2)2 <
1 from (B-5), we retain the solution:(√

3
B
σ̄

)2

=
5

3
+ χ4 − 2

3

√
4 + 12χ4 − 3

(√
3

Σ31

σ̄

)2

(B-9)

where the
√

3 factors are introduced to evidence the yield stress in shear τ̄ ≡ σ̄/
√

3.
Third, to obtain A note that by (B-3)2,

(ζB)2 =
1

3
(B2 − Σ2

31) (B-10)

Hence (B-3)1 yields:

A = Σ33 − sgn(D33) Σsurf − sgn(ζBD̄)
√

3(B2 − Σ2
31) (B-11)

Now sgn(ζ) = sgn(D33) = sgn(D̄) by definition; hence sgn(ζBD̄) = sgn(B). Furthermore it follows
from (B-2)2 that sgn(B) = sgn(D̄) = sgn(D33). Finally sgn(D33) = sgn(Σ33) since all three terms in the
right-hand side of (B-3)1 have the sign of D̄ or D33. Hence (B-11) may be rewritten as

A = Σ33 − sgn(Σ33) Σsurf − sgn(Σ33)
√

3(B2 − Σ2
31)

= sgn(Σ33)
[
|Σ33| − Σsurf −

√
3(B2 − Σ2

31)
] (B-12)

4These steps are similar to those followed in a “modern” derivation of the Gurson model, e.g. Benzerga and Leblond (2010).
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Using (B-5), one thus gets the equation of the regular parts of the yield surface in the form:

Φ =

(√
3
B
σ̄

)2

+ 2χ2 cosh

√3

 |Σ33| − Σsurf

σ̄
−

√(√
3
B
σ̄

)2

−
(√

3
Σ31

σ̄

)2

− (1 + χ4) = 0

(B-13)
where the quantity B2 is related to Σ31 by (B-9).

In the limit χ → 1, Σ33 = Σ31 = 0; indeed A and B must be zero by (B-5); then Σ31 = 0 by
(B-9), so that by (B-12), Σ33 = sgn(Σ33) Σsurf = 0 by (10). Also, it can be checked that the points
(Σ31 = ±T ,Σ33 = ±Σsurf), which lie at the intersections of the straight singular parts and curved regular
parts, do satisfy criterion (B-13). Indeed, in such cases

√
3|B|/σ̄ =

√
3|Σ31|/σ̄ = 1− χ2.

Appendix C Quasi-Periodic Boundary Conditions on the Unit Cell

The boundary conditions imposed on a quarter of the unit cell are expounded here. The normal and tangential
displacements are the two independent degrees of freedom at each center-line. Fig. C-1 shows the various
surfaces and edges of the computational domain, together with an example mesh as well as the nomenclature
used.

Figure C-1: Finite element mesh for one quarter of an example unit cell with microstructural parameters given as
(χ,W ) = (0.25, 1.0), accompanied by the nomenclature used to define various surfaces and edges to which the
boundary conditions are imposed. The origin of the reference coordinate system stands at the void center in the
undeformed configuration.
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Edge-Top-Middle

u2(x1, 0, H) =
1

2
Ut,

u3(x1, 0, H) =
1

2
U3. (C-1)

Surface-Top-Left/Surface-Top-Right

u1(x1,−x2, H)− u1(x1, x2, H) = 0,

u2(x1,−x2, H) + u2(x1, x2, H) = Ut,

u3(x1,−x2, H) + u3(x1, x2, H) = U3. (C-2)

Edge-Top-Left/Edge-Top-Right

u1(x1,−
√
L2 − x2

1, H) = u1(x1,
√
L2 − x2

1, H) =
x1

2L
U1,

u2(x1,±
√
L2 − x2

1, H) =
1

2
(Ut ±

±
√
L2 − x2

1

L
U2),

u3(x1,±
√
L2 − x2

1, H) =
1

2
U3. (C-3)

Surface-Lateral-Left/Surface-Lateral-Right

u1(x1,−
√
L2 − x2

1, x3) = u1(x1,
√
L2 − x2

1, x3) =
x1

2L
U1,

u2(x1,−
√
L2 − x2

1, x3)− u2(x1,
√
L2 − x2

1, x3) = −
√
L2 − x2

1

L
U2,

u3(x1,−
√
L2 − x2

1, x3)− u3(x1,
√
L2 − x2

1, x3) = 0. (C-4)

Edge-Bottom-Left/Edge-Bottom-Right

u1(x1,−
√
L2 − x2

1, 0) = u1(x1,
√
L2 − x2

1, 0) =
x1

2L
U1,

u2(x1,±
√
L2 − x2

1, 0) = ±
√
L2 − x2

1

2L
U2,

u3(x1,±
√
L2 − x2

1, 0) = 0. (C-5)

Edge-Bottom-Middle

u2(x1, 0, 0) = 0,

u3(x1, 0, 0) = 0. (C-6)

Surface-Bottom-Left/Surface-Bottom-Right

u1(x1,−x2, 0)− u1(x1, x2, 0) = 0,

u2(x1,−x2, 0) + u2(x1, x2, 0) = 0,

u3(x1,−x2, 0) + u3(x1, x2, 0) = 0. (C-7)
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Edge-Back-Middle

u1(−L, 0, x3) = −1

2
U1. (C-8)

Surface-Front

u1(0, x2, x3) = 0. (C-9)

Appendix D Rationale for Heuristic Modification

Criterion (19)1 is modified as follows:

B2

bτ̄2
+ 2fb cosh

 |Σ33| − tΣsurf

τ̄
−

√
3
B2 −

(
Σ31/l

)2
τ̄2

− (1 + f2
b) = 0 (D-1)

where t, b and l are parameters. It is unlikely that constant parameters will fit all purposes. Therefore, t, b
and l are considered a priori functions of the internal parameters χ andW . The idea is to obtain the simplest
functions that reduce the error between the numerical results and model predictions shown in Fig. 6.

Firstly, parameters t and b are introduced in such a way that the same heuristic modification of Torki et al.
(2015) is arrived at. There it was shown that a constant value of b ∼ 1 is appropriate. Also, a homographic
function of W was necessary for t in order to remove the singular behavior for W → 0. This behavior
manifests in the absence of any shear. The criterion in this case reduces to:

Σ33

σ̄

∣∣∣
Σ31=0

= tΣsurf + bΣvol (D-2)

following the same procedure as for obtaining (A-8). The simplest choice for function t is:

t(χ,W ) =
(t0 + t1χ)W

1 + (t0 + t1χ)W
(D-3)

where t0 and t1 are parameters to be determined on the basis of the numerical results. In doing so, we
improve upon the proposal of Torki et al. (2015) by limiting the heuristic modification to the range χ ≥ 0.2
and taking t(χ,W ) = t(0.2,W ) for χ < 0.2 so that the exact limit Σ33 → ∞ is retained for χ → 0. The
choice of parameters t0 = −1.3, t1 = 20.6 and b = 1.0 proves quite good.

Secondly, parameter l aims at reducing the error in the case of prolate voids under shear-dominated
loadings. Indeed, the modified criterion (D-1) reduces to Σ31 = l(W,χ)T in pure shear. The fact that
l should depend on W is easily inferred from the computational results. The simplest possible form for
l(W,χ) is a bi-linear function (again for χ ≥ 0.2 only):

l(χ,W ) =
[
1 + (l1χ+ l0)W

]
T (D-4)

The results shown in Fig. 6 were obtained using the choice (l0, l1) = (0.035,−0.15).
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Highlights 

 

 

• Void coalescence by competing internal necking or shearing considered. 

 

• Analytical model developed based on homogenization and limit analysis theories. 

 

• Rigorous mathematical analysis conducted to obtain upper-bound yield criterion. 

 

• Cell model calculations performed using quasi-periodic boundary conditions. 

 

• Analytical and numerical yield loci compared. 
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