
HAL Id: hal-01480147
https://hal.sorbonne-universite.fr/hal-01480147v2

Submitted on 25 Sep 2017 (v2), last revised 27 Sep 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Incremental elicitation of choquet capacities for
multicriteria choice, ranking and sorting problems

Nawal Benabbou, Patrice Perny, Paolo Viappiani

To cite this version:
Nawal Benabbou, Patrice Perny, Paolo Viappiani. Incremental elicitation of choquet capacities for
multicriteria choice, ranking and sorting problems. Artificial Intelligence, 2017, 246, pp.152-180.
�10.1016/j.artint.2017.02.001�. �hal-01480147v2�

https://hal.sorbonne-universite.fr/hal-01480147v2
https://hal.archives-ouvertes.fr

Incremental Elicitation of Choquet Capacities for
Multicriteria Choice, Ranking and Sorting ProblemsI

Nawal Benabbou, Patrice Perny∗, Paolo Viappiani

Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6
CNRS, UMR 7606, LIP6, F-75005, Paris, France

4 Place Jussieu, 75005 Paris, France

Abstract

This paper proposes incremental preference elicitation methods for multicri-
teria decision making with a Choquet integral. The Choquet integral is an eval-
uation function that performs a weighted aggregation of criterion values using
a capacity function assigning a weight to any coalition of criteria, thus enabling
positive and/or negative interactions among them and covering an important
range of possible decision behaviors. However, the specification of the capacity
involves many parameters which raises challenging questions, both in terms of
elicitation burden and guarantee on the quality of the final recommendation.

In this paper, we investigate the incremental elicitation of the capacity
through a sequence of preference queries (questions) selected one-by-one us-
ing a minimax regret strategy so as to progressively reduce the set of possible
capacities until the regret (the worst-case “loss” due to reasoning with only par-
tially specified capacities) is low enough. We propose a new approach designed
to efficiently compute minimax regret for the Choquet model and we show how
this approach can be used in different settings: 1) the problem of recommending
a single alternative, 2) the problem of ranking alternatives from best to worst,
and 3) sorting several alternatives into ordered categories. Numerical experi-
ments are provided to demonstrate the practical efficiency of our approach for
each of these situations.

Keywords: multicriteria decision making, Choquet integral, capacity,
incremental elicitation, minimax regret, choice, ranking, sorting.

IThis paper is an extension of work published at ECAI 2014 [1].
∗Principal Corresponding Author: Patrice Perny, Sorbonne Universités, UPMC, LIP6, 4

place Jussieu, 75252 PARIS CEDEX 05, France
Email addresses: nawal.benabbou@lip6.fr (Nawal Benabbou), patrice.perny@lip6.fr

(Patrice Perny), paolo.viappiani@lip6.fr (Paolo Viappiani)

Preprint submitted to Artificial Intelligence Journal January 6, 2017

1. Introduction

Preferences are pervasive in Artificial Intelligence. In particular, they are
used to specify goals or desiderable behaviors for autonomous agents, and to
provide automatic recommendations, adapted to the user, in decision-support
tools. In various decision contexts, the quality of alternatives is assessed with
respect to multiple criteria, possibly conflicting each other. An aggregation
function is often used to compare alternatives evaluated on multiple criteria
by synthesizing their performances into overall utility values. In this context,
there is a need of elicitation methods aiming at specifying preference parameters
modeling the relative importance of criteria for the Decision Maker (DM) and
possibly their interactions.

Aggregation functions must be sufficiently expressive to fit the DM’s prefer-
ences, allowing for instance the determinination of his/her preferred alternative.
The Choquet integral defines a family of non-linear aggregators that are really
appealing for preference modeling. Decision models based on Choquet integrals
have been initially introduced in the context of uncertainty with the Choquet
Expected Utility theory [2]. The Choquet integral is also used in the field
of decision-making under risk (probabilistic uncertainty), for example in the
Yaari’s model [3] or in the Rank Dependent Utility model proposed by Quiggin
[4], to overcome some descriptive limitations of Expected Utility. Choquet in-
tegrals are also very popular in the field of multicriteria decision making [5, 6]
because they enable to model different kinds of interactions between criteria
and include many aggregators as special cases (e.g. linear additive models, min,
max and any other order statitistics, leximin and leximax, OWA and WOWA
[7, 8]).

The Choquet integral has received much attention in the last decades and
is now widely used in practical decision making [9]. Its usefulness has been
established in various domains of artificial intelligence. For example, in ma-
chine learning, the use of Choquet integrals provides higher predictive capaci-
ties than linear models, while offering measures for quantifying the importance
of individual predictor variables and the interaction between groups of vari-
ables [10]. Moreover, in recommender systems [11], the advantage provided by
Choquet integrals is to allow positive and negative synergies between criteria,
with enhanced descriptive and prescriptive possibilities. Similarly, in multia-
gent decision making [12], the Choquet integral is used to aggregate individual
preferences using a possibly non-additive measure of the importance of agent
coalitions, which allows one to model various notions of social welfare. In infor-
mation fusion [13], the use of Choquet integrals allows one to model positive or
negative reinforcements among sets of observations. Finally, in multiobjective
state-space search [14], the use of Choquet integrals allows one to find compro-
mise solutions that could not be obtained using linear aggregators.

However, to compute overall utility values using a Choquet integral, decision
support systems need to be able to assess the model’s parameters according to
DM’s preferences. These parameters used to capture the value system of the

2

DM are characterized by a capacity function defining the weight attached to
every subset of criteria. Therefore, they are in exponential number relatively
to the number of criteria and their elicitation is a challenging issue. Most of
the works aiming at determining a suitable capacity for the Choquet integral
consider a static preference database as input, and focus on the determination
of capacity values that best fit the available preferences. For example, one can
minimize a quadratic error between Choquet values and target utility values
prescribed by the DM on a sample of reference alternatives. Alternatively, one
can impose some constraints on Choquet values to enforce the decision model to
be compatible with a partial or total order available on a subset of alternatives.
These approaches are illustrated in many papers see, e.g. [15, 16, 17, 18, 19, 20,
21] and [22] (Chapter 11), some of them being implemented in decision support
softwares such as TOMASO [23] and MYRIAD [24].

Departing from these standard approaches, we are proposing an incremental
elicitation process for the Choquet integral; in this process, informative prefer-
ence queries are selected one at the time in order to progressively reduce the
set of admissible capacities until a robust recommendation can be made. This
active learning process could be continued as long as some uncertainty remains
in the specification of the capacity but a complete determination of the model
is generally not necessary to make a decision. Moreover, it would require a pro-
hibitive amount of preference queries. Instead, we iterate queries until what we
know of the capacity is enough to formulate a recommendation (e.g. a choice,
ranking or sorting of the alternatives). The elicitation process is stopped when it
can be proved that further specifications of the model cannot seriously challenge
the current recommendation.

This approach relies on and extends previous works on the incremental elic-
itation of linear utility functions, going back to the ISMAUT method [25] and
more recently, strategies developed within the artificial intelligence community
for preference query selection using the minimax-regret criterion [26, 27, 28, 29].
Regret-based elicitation has been successfully demonstrated with real users in
a prototype for decision support (UTPref) and validated in a user study [30].
Adaptation of minimax regret elicitation strategies to Choquet models is not
obvious, as in general the number of constraints required to impose that the
parameters of the model are valid is exponential in the number of criteria. In
this paper, we propose efficient algorithms that avoid this issue by focusing on
specific (but intuitive) types of preference queries. Our approach can be used
for standard choice problems (where one single alternative is suggested to the
DM) but also for ranking and sorting problems. We now briefly review the main
differences between these three problem settings.

Choosing is the problem setting where one alternative has to be selected and
recommended to the DM. We thoroughly discuss the elicitation of Choquet ca-
pacities for choice problems in Section 3. In particular, we discuss computational
issues related to minimax regret optimization (Section 3.1, 3.2, 3.3), strategies
for generating relevant queries within an incremental elicitation process (Section
3.4) and evaluations with numerical tests (Section 3.5).

3

Ranking is the problem setting where different alternatives have to be ranked
from best to worst. We consider here a special case of ranking, constructed by
repeated choices. As we focus on this particular ranking model, we will discuss
it within Section 3 devoted to choice problems (see Section 3.6).

Sorting is the problem setting where alternatives need to be assigned to dif-
ferent categories ordered from best to worst. The categories are assumed to be
defined a-priori and the assignment of alternatives is based on an intrinsic eval-
uation. Sorting (also called multipartite ranking and instance ranking in [31])
is used, for instance, in order to assess financial credit demands or to assign
specific distinctions to individuals. In this paper, we consider sorting methods
with thresholds: one assumes that the utility scale is divided into intervals and
assignments are made by looking in which interval the utility scores fall (see
Section 4).

In this paper, we propose elicitation methods for each setting and evaluate,
with numeric simulations, their practical efficiency.

2. Background and notations

Let X be the set of alternatives (items, products, candidates. . .) that need
to be compared. Any alternative x ∈ X is evaluated with respect to a set of n
criteria denoted N = {1, . . . , n}, and is characterized by a performance vector
(x1, . . . , xn) where xi ∈ [0, 1] represents the utility of x with respect to criterion
i for all i ∈ N . We assume that the same utility scale is used for all components
so that xi and xj can be compared when i 6= j. Let us now recall the definitions
of Choquet capacities and discrete Choquet integrals. For simplicity, x will
indifferently denote the alternative or its performance vector.

2.1. Discrete Choquet integrals

For any alternative x ∈X, let (.) denote a permutation of {1, . . . , n} that
sorts the components of x by increasing order 1, i.e. x(i)≤x(i+1) for i ∈ [[1, n−1]].

Definition 1. The ith level set of x, denoted by X(i), is defined as X(i) =
{(i), . . . , (n)}.

Note that X(i+1)⊆X(i) for all i ∈ [[1, n− 1]] by definition.

Definition 2. A normalized Choquet capacity v is a real-valued set-function
defined on 2N such that:

• v(∅) = 0, v(N) = 1 (normalization constraints)

• v(A) ≤ v(B) for all A ⊆ B ⊆ N (monotonicity constraints)

1In case of ties among criteria, multiple permutations are possible to sort the components
in ascending order. However, the definitions given below are such that, no matter which
permutation is chosen, the result is the same.

4

where v(A) represents the weight attached to coalition A, for any A ⊆ N .
Note that the capacity value of the first level set of any alternative x is one (i.e.
v(X(1)) = v(N) = 1) due to normalization constraints; monotonicity constraints
can be rewritten as follows: v(A) ≤ v(A ∪ {i}) for all A ⊂ N and all i ∈ N\A.

Definition 3. The Choquet integral value of alternative x ∈ X is defined as:

Cv(x) =

n∑
i=1

[
x(i) − x(i−1)

]
v(X(i)) with x(0) = 0 (1)

Cv(x) represents the overall utility of alternative x. Therefore, alternative x is
as least as good as y whenever Cv(x) ≥ Cv(y).

Example 1. Consider a problem defined on 3 criteria, i.e. N = {1, 2, 3}, two
alternatives x = (0.7, 0.6, 1) and y = (0.8, 1, 0.6) and the following capacity v
defined on 2{1,2,3}:

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v 0 0.1 0.2 0.3 0.5 0.6 0.7 1

Alternatives x and y induce the following level sets:

• X(1) ={1, 2, 3}, X(2) ={1, 3} and X(3) ={3};

• Y(1) ={1, 2, 3}, Y(2) ={1, 2} and Y(3) ={2}.

The computation of the Choquet value of x and y according to capacity v gives:

Cv(x) = 0.6v({1, 2, 3}) + (0.7− 0.6)v({1, 3}) + (1− 0.7)v({3}) = 0.75

Cv(y) = 0.6v({1, 2, 3}) + (0.8− 0.6)v({1, 2}) + (1− 0.8)v({2}) = 0.74

Hence we have Cv(x)>Cv(y), meaning that x is strictly preferred to y.

In multicriteria decision-making, one needs to ensure that Cv(x) ≥ Cv(y)
whenever x weakly Pareto-dominates y (i.e. xi ≥ yi for all i ∈ N). This
property holds due to the monotonicity of v with respect to set inclusion, as can
be seen from the following equivalent formulation of the Choquet integral:

Cv(x) =

n∑
i=1

x(i)

[
v(X(i))− v(X(i+1))

]
with X(n+1) = ∅

Due to monotonicity, we have v(X(i)) − v(X(i+1)) ≥ 0 for all i ∈ {1, . . . , n}
which guarantees that Cv(x) cannot decrease as quantities xi increase. In many
papers on multicriteria optimization with a Choquet integral, the capacity is
assumed to be given [32, 33, 34, 35]. This assumes that preference elicitation
methods are available to determine the capacity that best fits DM’s preferences.
The aim of this paper is to introduce an incremental approach for the elicitation

5

of the capacity in the Choquet integral, following interactive elicitation schemes
proposed in [25, 28, 29] for simpler utility models.

In this approach, the elicitation task is seen as a game played with the DM.
At every step of the elicitation process, the system generates a preference query,
and then the DM reveals a piece of his/her actual preferences. The answer
provides new constraints on the set of admissible capacities thus reducing the
uncertainty attached to the capacity and therefore to the Choquet values. In this
process, both the problem of selecting the next query and the one of generating
a recommendation are seen as a decision problem under uncertainty, where the
uncertainty is due to the imperfect knowledge of preference parameters (here
the capacity). The selection of the query is made so that an effective regret
reduction is guaranteed whatever the answer is.

We recall now the standard background on incremental preference elicitation
based on the minimax regret criterion (Sections 2.2 and 2.3). This approach
is intended for choice problems in which a parameterized utility function fθ is
to be maximized, parameter θ being imprecisely known. Then, we will further
specify this approach for the Choquet integral in Section 3, first in the setting
of choice and then in the setting of ranking. Finally, we will propose in Section
4 an incremental elicitation method based on an alternative definition of regrets
better suited to sorting problems.

2.2. Choice based on the minimax regret criterion

The minimax regret is a decision criterion classically used for optimiza-
tion under uncertainty [36, 37]; it has been more recently advocated for use
in decision-making where the uncertainty is over utility values [29, 38]. Assume
that DM’s preferences can be modeled by a parameterized utility function fθ
where θ denotes the parameter of this aggregation function. In this setting,
alternative x ∈ X is preferred to alternative y ∈ X if and only if fθ(x) ≥ fθ(y).
We assume here that θ is not known precisely and can initially take any value
in an uncertainty set denoted Θ. Let P be the set gathering some pairs of
alternatives (a, b) such that a is preferred to b by the DM. Let ΘP be the sub-
set of Θ containing all parameters θ consistent with information P, i.e. such
that fθ(a) ≥ fθ(b) for all (a, b) ∈ P. The problem is now to determine the
most promising alternative under parameter uncertainty ΘP . To this end, the
minimax regret approach is based on the following definitions.

Definition 4. The pairwise max regret (PMR) of alternative x with respect to
the alternative y is defined as:

PMR(x, y,ΘP) = max
θ∈ΘP

{
fθ(y)− fθ(x)

}
In other words, the pairwise max regret of x with respect to y represents the
worst-case loss when recommending x instead of y. We can establish a link with
the notion of possible and necessary preferences used in other papers (see e.g.
[18]): remark that PMR(x, y,ΘP) < 0 means that x is necessarily better than

6

y whereas PMR(x, y,ΘP) > 0 means that y is possibly better than x. Finally
PMR(x, y,ΘP) = 0 means that x is necessarily as least as good as y.

Definition 5. The max regret (MR) of alternative x ∈ X is defined as:

MR(x,X,ΘP) = max
y∈X

PMR(x, y,ΘP)

The max regret of x is the worst-case loss when recommending x instead of one
of the adversary’s choices (i.e. any element of arg maxy∈X PMR(x, y,ΘP)).

Definition 6. The minimax regret (mMR) is defined as:

mMR(X,ΘP) = min
x∈X

MR(x,X,ΘP)

An optimal solution for the minimax regret criterion is an alternative that
achieves the minimax regret (i.e. any element of arg minx∈X MR(x,X,ΘP)).
Recommending such an alternative allows one to guarantee that the worst-case
loss is minimized.

To determine the best alternative according to the minimax regret criterion,
we have to compute PMR for all ordered pairs of distinct alternatives. However,
the computational effort can be significantly reduced by using standard pruning
rules for min aggregators, as shown in [39] (but of course, the number of PMR
computations remains quadratic in the worst-case). When fθ is a linear or piece-
wise linear utility function, then ΘP is defined by a number of linear constraints
approximately equal to the size of P. In that case, PMR-optimizations (and
therefore mMR) can be performed exactly quite efficiently by solving simple
linear programs. This approach is more tractable than probabilistic models of
utility that rely on Bayesian updates that are computationally expensive [27, 26].

2.3. Incremental elicitation for choice problems

Given a particular set of preference statements P, the worst-case loss ensured
by the minimax regret criterion might still be at an unacceptable level. By
considering additional preferences statements (inducing constraints on the set
of admissible parameters), this loss may be decreased. Indeed, we know that,
for any set of preference statements P ′ ⊇ P, we have ΘP′ ⊆ ΘP ; therefore, for
any x, y ∈ X, we have:

PMR(x, y,ΘP′) ≤ PMR(x, y,ΘP) (2)

MR(x,X,ΘP′) ≤ MR(x,X,ΘP) (3)

mMR(X,ΘP′) ≤ mMR(X,ΘP) (4)

Hence, the minimax regret cannot increase by adding new preference statements;
in practice, it often strictly decreases (see [39], pp. 194-202). Therefore, the
minimax regret criterion can be used within an incremental elicitation process
that progressively asks preference queries to the DM until the minimax regret
drops under a given tolerance threshold δ ≥ 0. At that time, recommending

7

any optimal alternative for the mMR criterion ensures that the loss incurred by
not choosing the true optimal alternative is bounded above by that threshold.

Different types of queries can be used when designing such an incremental
elicitation process. Comparison queries are relatively simple; they require the
DM to compare a pair of alternatives and state which one is preferred. Notice
however that some queries are more informative than others (e.g. the minimax
regret will not decrease when asking to compare an alternative with another that
Pareto-dominates the former). Thus, it is important to focus on relevant queries
so as to make a good recommendation without asking too many queries. A
notion of myopic value of information can be used [40] to evaluate the relevance
of a query. Let Q denote the set of all queries under consideration.

Definition 7. The worst-case minimax regret (WmMR) of a query q ∈ Q is:

WmMR(q,ΘP) = max
p∈Pq

mMR(X,ΘP∪{p})

where Pq denotes the set of all possible answers to the query q.

Hence the next query of the elicitation process should be chosen in:

arg min
q∈Q

WmMR(q,ΘP)

because any optimal solution for the WmMR criterion ensures the best reduction
of minimax regret in the answer’s worst-case scenario. Note that computing the
optimal query for WmMR can be computationally intensive when set Q under
consideration is too large. In that case, one may consider a very efficient query
selection strategy (though not optimal in general) called the Current Solution
Strategy (CSS) [29] consisting in asking the DM to compare, at each iteration
step, an optimal solution x∗ for the mMR criterion with its adversarial choice
y∗ (arbitrarily chosen in arg maxy∈X PMR(x∗, y,ΘP)). This elicitation scheme
has been successfully used in various contexts, see e.g. [29, 30, 41, 42, 43].

In this paper, we adopt an incremental elicitation procedure based on mini-
max regret in order to acquire the most relevant information about the Choquet
capacity representing the DM’s preferences (capacity v taking the role of pa-
rameter θ for the Choquet integral Cv). This is done with different, but related,
goals: recommending a single alternative, providing a ranking of alternatives
and sorting the alternatives by assigning them to predefined ordered categories.

3. Choice and ranking with a Choquet integral

In this section, we focus our discussion on the Choquet integral model; in
that case, ΘP is the set of all capacities v compatible with P. Any preference
statement of type “a is preferred to b” will be interpreted as a constraint of type
Cv(a) ≥ Cv(b) restricting the initial admissible set of capacities Θ, where Cv
is defined by Equation (1). It is important to note that, although Cv(a) is a
non-linear function of a for fixed v (e.g. Cv(a+ b) 6= Cv(a) +Cv(b) in general),

8

Cv(a) is linear in v for fixed a (since the permutation of {1, . . . , n} is also fixed).
Hence constraint Cv(a) ≥ Cv(b) is linear in v for any fixed pair (a, b) ∈ P. Thus,
any preference statement of type “a is preferred to b” will be translated as a
linear constraint bounding the set of admissible capacities. As a consequence,
the set ΘP of admissible capacities under information P is a convex polyhedron.

In the following subsections, we first address the computation of pairwise
max regrets PMR on this polyhedron with (Sections 3.1 et 3.2) or without (Sec-
tion 3.3) Linear Programming. Then, we provide an efficient query generation
strategy enabling the fast determination of the best alternative for the DM
(Section 3.4). Finally, we consider the problem of providing a ranking of all
alternatives (Section 3.6).

3.1. LP formulations of the PMR-optimization problem

Let v : 2N → R be a set-function and vA be the decision variable represent-
ing v(A) for any A ⊆ N . Using this notation, v will indifferently denote the
set-function or the vector composed of its values in any arbitrary order. Since
Choquet integrals are linear with respect to their capacity values, the computa-
tion of PMR(x, y,ΘP) for any alternatives x, y ∈ X can be performed by solving
the linear program denoted by LP1 below:

max
v

Cv(y)− Cv(x) (5)

s.t. v∅ = 0 (6)

(LP1) vN = 1 (7)

vA ≤ vA∪{i}, ∀A ⊂ N, ∀i ∈ N\A (8)

Cv(a) ≥ Cv(b), ∀(a, b) ∈ P (9)

Equations (6-8) ensure that v is a normalized capacity (see Definition 2) and
Equation (9) ensures that v is compatible with P. Thus, for Choquet integrals,
the computation of PMR involves exponentially many variables and monotonic-
ity constraints (8). Note however that, for 2-additive capacities2, the number
of such constraints that are actually needed is polynomial [19] in the number of
criteria. However, these subclasses correspond to specific attitudes that do not
necessarily match with the observed preferences. Hence, we investigate now the
general case without any prior restriction on the admissible set of capacities.

We now introduce a more compact linear programming formulation for the
problem modeled by LP1. For any two performance vectors x and y, let A(x,y)

be the set of all level sets of x and y (see Definition 1), i.e.

A(x,y) = {X(i), i∈N} ∪ {Y(i), i∈N}.

2A capacity v is said to be 2-additive on N when there exist n(n+1)/2 coefficients mB , B ⊆
N, |B| ≤ 2 such that v(A) =

∑
B⊆A:|B|≤2mB for all A ⊆ N .

9

Note that sets belonging to A(x,y) are the only ones that appear in the objective
function of PL1. As a consequence, the objective function involves at most 2n−1
variables. This specificity can be exploited to simplify the optimization prob-
lem associated to the computation of pairwise max regrets. In this paper, the
simplification is achieved by limiting the form of preference statements. More
precisely, let us consider queries involving the following two types of fictitious
alternatives:

• Binary alternatives of type 1A0, where 1A0 is an alternative with a top
performance on all criteria in A⊆N and a bottom one on all others. For
example, 1A0 = (1, 0, 1, 0, 0) when A = {1, 3} and n = 5.

• Constant utility profiles of type Λ = (λ, . . . , λ) ∈ [0, 1]n.

Note that, for any normalized capacity v and any set A ⊆ N , we have:

Cv(1A0) = v(A)

This is due to the fact that all “bottom” criteria precede all “top” criteria in the
permutation, and so the difference of performance between any two successive
criteria is equal to zero, except for the last “bottom” criterion and the first
“top” criterion, which is equal to one (refer to Definition 3). Moreover, for any
normalized capacity v and any Λ ∈ [0, 1]n, we have:

Cv(Λ) = Cv((λ, . . . , λ)) = λ

This can easily be explained by remarking that the difference of performances
between any two successive criteria is zero, except for that between the first
criterion and the auxiliary criterion x(0) = 0.

We now consider preference queries where the DM is asked to compare a
binary alternative with a constant utility profile:

• if 1A0 is preferred to Λ, then Equation (9) gives the simple constraint
vA ≥ λ, imposing a lower bound on v(A).

• if Λ is preferred to 1A0, then Equation (9) induces the constraint vA ≤ λ,
imposing an upper bound on v(A).

Consequently, Equation (9) can be replaced by boundary constraints over
decision variables; indeed, to ensure that the set-function v is compatible with
P, it is sufficient to update the boundaries of an interval [lA, uA] whenever a
preference involving 1A0 is inserted in P; note that l∅ = u∅ = 0, lN = uN = 1
due to the normalization constraint, and initially, we have [lA, uA] = [0, 1] for
all proper subsets A of N .

Moreover, since ΘP∪{(1A0,Λ)} is the set of all capacities v∈ΘP that satisfy
v(A) ≥ λ, and keeping in mind that all capacities are monotonic by definition,
we necessarily have v(B) ≥ λ for all B ⊇ A, that means:

ΘP∪{(1A0,Λ)} = ΘP∪{(1B0,Λ),B⊇A}

10

Similarly, since ΘP∪{(Λ,1A0)} is the set of all capacities v∈ΘP such that v(A)≤λ,
we necessarily have v(B) ≤ λ for all B ⊆ A, that means:

ΘP∪{(Λ,1A0)} = ΘP∪{(Λ,1B0),B⊆A}

Therefore, for any A ⊆ N , λ ∈ [lA, uA], we perform the following updates:

• if the preference (1A0,Λ) is inserted in P, meaning that 1A0 is preferred
to Λ, then we set lA = λ and lB = max{lB , λ} for all B ⊃ A;

• if the preference (Λ, 1A0) is inserted in P, meaning that Λ is preferred to
1A0, then we set uA = λ and uB = min{uB , λ} for all B ⊂ A.

It is important to note that restricting the interaction to comparison queries
involving a binary alternative 1A0 and a constant utility profile Λ is sufficient to
elicit all preferences of the DM. The constraints derived from the answers indeed
allow us to approximate the capacity values v(A), A ⊆ N , as close as we want.
Hence, the knowledge of v on every subset of criteria completely determines
the Choquet integral representing the DM’s preferences over the entire set of
alternatives. Note also that, by construction, we have lA ≤ lB and uA ≤ uB for
all A ⊂ B. Then, the following proposition holds:

Proposition 1. Consider intervals [lA, uA], A⊆N . Assume that lA≤ lB and
uA ≤ uB hold for all A ⊂ B ⊆ N . Then, for any A ⊂ 2N , the subnetwork of
monotonicity constraints vA≤vB, where A,B∈A and A ⊆ B, is globally con-
sistent [44], i.e. any partial instantiation of variables vA, A ∈A, which is locally
consistent (w.r.t. boundary and monotonicity constraints) can be extended to a
consistent instantiation of all variables vA, A⊆N .

Proof. Let A ⊂ 2N and let I be an instantiation of all variables in {vA : A ∈ A}
such that vA ∈ [lA, uA] for all A ∈ A and vA ≤ vB for all A,B ∈ A, A ⊂ B (i.e.
I is locally consistent). Consider the following complete extension of I:

∀A 6∈ A, vA = max{lA, max
A′∈A:A′⊂A

vA′} (10)

We assume that maxA′∈A:A′⊂A vA′ = −∞ when {A′ ∈ A : A′ ⊂ A} = ∅. We
want to show that this complete instantiation satisfies boundary and mono-
tonicity constraints.

Boundary constraints: we want to prove vA ∈ [lA, uA] for all A ⊆ N . If A ∈ A,
then boundary conditions follow directly from the hypothesis. If, instead, A 6∈
A, we necessarily have vA ≥ lA by definition (see Equation (10)). To derive
vA ≤ uA, recall that uA′ ≤ uA for all A′ ⊂ A. Then, we obtain:

vA = max{lA, max
A′∈A:A′⊂A

vA′} ≤ max{uA, max
A′∈A:A′⊂A

uA′} ≤ uA

Monotonicity constraints: we want to prove vA ≤ vB for all A ⊂ B ⊆ N . We
distinguish the four following cases:

11

• Case A ∈ A and B ∈ A: we can directly infer the result since instantiation
I is locally consistent.

• Case A ∈ A and B 6∈ A: in that case, we have A ∈ {B′ ∈ A : B′ ⊂ B}.
Therefore :

vA ≤ max
B′∈A:B′⊂B

vB′ ≤ max{lB , max
B′∈A:B′⊂B

vB′} = vB

• Case A 6∈ A and B ∈ A: Consider any A′ ⊂ A with A′ ∈ A (if it exists).
Since A ⊂ B, we have A′ ⊂ B and both A′ and B are elements of A;
hence, we necessarily have vA′ ≤ vB since I is locally consistent. We then
write the expression of vA according to Equation (10) and derive:

vA = max{lA, max
A′∈A:A′⊂A

vA′} ≤ max{lB , vB} = vB

• Case A 6∈ A and B 6∈ A: Since A ⊂ B, we have lA ≤ lB by hypothesis.
Moreover, we necessarily have {A′ ∈ A : A′ ⊂ A} ⊂ {B′ ∈ A : B′ ⊂ B}.
Therefore, using Equation (10), we have:

vA = max{lA, max
A′∈A:A′⊂A

vA′] ≤ max{lB , max
B′∈A:B′⊂B

vB′} = vB

Since sets belonging to A(x,y) are the only ones that appear in the objective
function of PL1, then by applying Proposition 1 to set A = A(x,y), we know
that PMR(x, y,ΘP) can be solved by considering only monotonicity constraints
involving variables vA, A ∈ A(x,y). Therefore, we can compute PMR(x, y,ΘP)
by solving the following simpler linear program:

max
vX(i)

,vY(i)
,i∈N

n∑
i=1

[
(y(i) − y(i−1))vY(i)

− (x(i) − x(i−1))vX(i)

]
s.t. vX(i+1)

≤ vX(i)
, ∀i ∈ [[1, n− 1]] (11)

vY(i+1)
≤ vY(i)

, ∀i ∈ [[1, n− 1]] (12)

(LP2) vX(i)
≤ vY(j)

, ∀i, j ∈ N s.t. X(i) ⊂ Y(j) (13)

vY(i)
≤ vX(j)

, ∀i, j ∈ N s.t. Y(i) ⊂ X(j) (14)

lX(i)
≤ vX(i)

≤ uX(i)
, ∀i ∈ N (15)

lY(i)
≤ vY(i)

≤ uY(i)
, ∀i ∈ N (16)

This linear program includes at most 2n − 1 variables (one per element of
A(x,y)) and only a quadratic number of monotonicity constraints.

12

3.2. A more compact formulation

In this subsection, we show that program LP2 can be further simplified
to obtain a linear programming formulation involving only a linear number of
monotonicity constraints. For any set of criteria A ∈ A(x,y), let ωA denote the
coefficient of the decision variable vA in the objective function of linear program
LP2. Then, the objective function can be written

∑
A∈A(x,y)

ωAvA where:

ωA = −(x(i) − x(i−1)) ≤ 0, if A = X(i) and A 6= Y(i) for some i ∈ N
ωA = y(i) − y(i−1) ≥ 0, if A 6= X(i) and A = Y(i) for some i ∈ N
ωA = y(i) − y(i−1) − (x(i) − x(i−1)), if A = X(i) and A = Y(i) for some i ∈ N

Note that we cannot have X(i) = Y(j) if i is different from j since these level sets
can only be equal if they have the same cardinality. Note also that all variables
vA, A ∈ A(x,y), such that ωA = 0 have no impact on the objective function of
program LP2. Therefore, using Proposition 1, these variables can be removed
from program LP2 leading to a simplified version of this program. However, to
simplify the presentation, we now assume that ωA 6= 0 for all A ∈ A(x,y)

3.
We want to prove that Equation (13) is not required to determine the opti-

mum of program LP2. Let LP′2 be the linear program obtained from program
LP2 by removing Equation (13). The following proposition gives us a necessary
condition for optimality (the proof is given in the Appendix):

Proposition 2. Let v be an optimal solution of program LP′2. For all A ∈ A(x,y)

such that ωA > 0, we have:

vA = min{uA, min
A′∈Pa(A)

vA′} (17)

where Pa(A) = {A′ ∈ A(x,y) : A′ ⊃ A and ωA′ < 0} is the set of all supersets
(parents) A′ of set A such that ωA′ < 0.

This proposition enables us to derive the following result:

Proposition 3. Any optimal solution of LP′2 is optimal for LP2.

Proof. Let v be an optimal solution of program LP′2. We want to prove that
solution v necessarily satisfies Equation (13). Let i, j ∈ N be such that X(i) ⊂
Y(j). We want to show that vX(i)

≤ vY(j)
is necessarily satisfied. Proposition 2

can be applied to Y(j) since ωY(j)
> 0. Two cases may occur:

• Case vY(j)
= uY(j)

: in that case, since X(i) ⊂ Y(j), we have uX(i)
≤ uY(j)

.
Moreover, due to Equation (15), we have vX(i)

≤ uX(i)
. Therefore:

vX(i)
≤ uX(i)

≤ uY(j)
= vY(j)

3Otherwise, the results can be established using the same arguments on this simplified
version of program LP2 and restricting A(x,y) to sets A such that ωA 6= 0.

13

• Case vY(j)
= minA∈Pa(Y(j)) vA: if Pa(Y(j)) = ∅, then vY(j)

= uY(j)
and so

the result can be inferred just as in the first case. Otherwise, note that
we have Pa(Y(j)) ⊆ {A ∈ A(x,y) : ωA < 0} ⊆ {X(k), k ∈ N}. Therefore,
in that case, there exists k ∈ N such that vY(j)

= vX(k)
. Then, since

X(i) ⊂ Y(j) (by hypothesis) and Y(j) ⊂ X(k) (by definition of Pa(Y(j))),
we necessarily have X(i) ⊂ X(k). As a consequence, we have vX(i)

≤ vX(k)

due to Equation (11); hence, we have vX(i)
≤ vX(k)

= vY(j)
.

This proposition enables us to conclude that none of the constraints (13) are
required to find the optimum.

Note that some constraints given by Equation (14) are unnecessary since
they are redundant (they are implied by the other constraints). Indeed, if there
exist i, j ∈ N such that Y(i) ⊂X(j), then we also have Y(i) ⊂X(k) for all k ∈
{1, . . . , j−1} which creates redundant constraints with respect to Equation (11).
Thus, it is sufficient to impose vY(i)

≤ vX(j)
when Y(i) ⊂ X(j) and Y(i) 6⊆ X(j+1).

Moreover, we also have Y(l) ⊆ X(j) for all l ∈ {i + 1, . . . , n}, which creates a
redundancy with Equation (12). Finally, it is sufficient to impose:

vY(i)
≤ vX(j)

when Y(i) ⊂ X(j), Y(i) 6⊆ X(j+1) and Y(i−1) 6⊆ X(j)

This leads to the following simplified formulation:

max
vX(i)

,vY(i)
,i∈N

n∑
i=1

[
(y(i) − y(i−1))vY(i)

− (x(i) − x(i−1))vX(i)

]
s.t. vX(i+1)

≤ vX(i)
, ∀i ∈ [[1, n− 1]] (18)

vY(i+1)
≤ vY(i)

, ∀i ∈ [[1, n− 1]] (19)

(LP3) vY(i)
≤ vX(j)

, ∀i, j ∈ N, s.t.

 Y(i) ⊂ X(j)

Y(i) 6⊆ X(j+1)

Y(i−1) 6⊆ X(j)

(20)

lX(i)
≤ vX(i)

≤ uX(i)
, ∀i ∈ N (21)

lY(i)
≤ vY(i)

≤ uY(i)
, ∀i ∈ N (22)

Hence, we now use at most 2n − 1 variables (one per element of A(x,y)) linked
by at most 3(n− 1) monotonicity constraints.

Example 2. Consider a problem defined on 5 criteria (i.e. N = {1, 2, 3, 4, 5}),
and two alternatives x = (1, 0.8, 0.4, 0.5, 0.1) and y = (0.8, 1, 0.6, 0.2, 0.4). The

14

compact linear program associated with PMR(x, y,ΘP) computation is:

max
v

0.2(v{1,2,3,5}+v{1,2,3}+v{2}−v{1})+0.1(vN−v{1,2}−v{1,2,4})−0.3v{1,2,3,4}

s.t. v{1}≤v{1,2}≤v{1,2,4}≤v{1,2,3,4}≤vN (23)

v{2}≤v{1,2}≤v{1,2,3}≤v{1,2,3,5}≤vN (24)

v{1,2,3}≤v{1,2,3,4} (25)

l{1}≤v{1}≤u{1}, l{1,2}≤v{1,2}≤u{1,2}, l{1,2,4}≤v{1,2,4}≤u{1,2,4}
l{1,2,3,4}≤v{1,2,3,4}≤u{1,2,3,4}, lN ≤vN ≤uN , l{2}≤v{2}≤u{2}
l{1,2,3}≤v{1,2,3}≤u{1,2,3}, l{1,2,3,5}≤v{1,2,3,5}≤u{1,2,3,5}

where the constraints in (23) are those given by Equation (18), the constraints in
(24) correspond to Equation (19) and the constraint in (25) is given by Equation
(20); the other constraints correspond to Equations (21-22). Thus, there are
only nine monotonicity constraints.

3.3. Efficient optimization of the compact formulation

Although a state-of-the-art solver easily solves any instance of linear program
LP3, the computation of minimax regret may require a quadratic number of calls
to LP3. To speed up computations of minimax regrets, we present now a faster
solution method for LP3 without resorting to linear programming.

Let G = (V, E) be the directed graph that represents the binary constraints
of program LP3. More precisely, G is defined as follows:

• V = {X(i), i ∈ N}∪{Y(i), i ∈ N} is composed of all sets A ⊆ N associated
to decision variables vA in LP3.

• E is the set of arcs (A,B) such that constraint vA ≥ vB appears in LP3.

Within this graph, the arcs corresponding to Equations (18-19) form two
paths characterized by the following lists of nodes: Px = (X(1), . . . , X(n)) and
Py = (Y(1), . . . , Y(n)). Let A− (resp. A+) be the subsequence of Px (resp. Py)
composed of all nodes A such that ωA < 0 (resp. ωA > 0) where ωA is the
coefficient of vA in the objective function. By definition, sequences A− and A+

include together all the nodes in V and have no common node; in the sequel,
variables attached to nodes in A− (resp. A+) will be referred to as negative
variables (resp. positive variables) since they have a negative (resp. positive)
impact on the objective function.

Note that, by definition of level sets, we necessarily have A+
i ⊃ A+

i+1 for all

i ∈ {1, . . . , |A+| − 1} and A−i ⊃ A−i+1 for all i ∈ {1, . . . , |A−| − 1}, where A+
i

(resp. A−i) denote the ith node in sequence A+ (resp. A−). Note also that,
for all i ∈ {1, . . . , |A−|}, there exists at most one arc of type (A−i , A

+
j) in the

constraint graph (see Equation (20)). An example of constraint graph G with
sequences A+ and A− is given below, based on Example 2:

15

Example 2 (continued). In this example, we have N = {1, 2, 3, 4, 5}, x =
(1, 0.8, 0.4, 0.5, 0.1) and y = (0.8, 1, 0.6, 0.2, 0.4). The graph G is depicted on
Figure 1 (left part). Within this graph, Px = (N, {1, 2, 3, 4}, {1, 2, 4}, {1, 2}, {1})
and Py = (N, {1, 2, 3, 5}, {1, 2, 3}, {1, 2}, {2}). Hence the relevant sequences are
A− = ({1, 2, 3, 4}, {1, 2, 4}, {1, 2}, {1}) and A+ = (N, {1, 2, 3, 5}, {1, 2, 3}, {2})
also depicted on Figure 1 (right part).

N0.1

{1, 2, 3, 4}−0.3 {1, 2, 3, 5}0.2

{1, 2, 4}−0.1 {1, 2, 3}0.2

{1, 2}−0.1

{1}−0.2 {2}0.2

(a) Constraint graph associated with the
problem; the dashed (resp. dotted) arcs
represent path Px (resp. Py); value ωA is
given at the left side of each node A.

NA+
1

{1, 2, 3, 4}A−1 {1, 2, 3, 5}A+
2

{1, 2, 4}A−2 {1, 2, 3}A+
3

{1, 2}A−3

{1}A−4 {2}A+
4

(b) Sequences A− and A+ associated with
the problem; successive elements of se-
quence A− (resp. A+) are linked by
dashed (resp. dotted) arcs.

Figure 1: The constraint graph and the sequences A+ and A− associated to Example 2.

Since sequence A+ (resp. A−) includes all sets A such that variable vA has a
positive (resp. negative) impact on the objective unction, we want to maximize
(resp. minimize) the variable vA for all A ∈ A+ (resp. for all A ∈ A−) so as to
maximize the objective function. Thus, if there exists no arc of type (A−i , A

+
j)

in E , then the optimum of program LP3 can be easily obtained; it is indeed
sufficient to set vA to its lower bound lA for all A ∈ A− and vA to its upper
bound uA for all A ∈ A+. Otherwise, for all arcs of type (A−i , A

+
j) in E , we need

to decide whether to set variable vA−i
to its lower bound lA−i

(at the expense of

constraining variable vA+
j

) or to assign vA−i
to an higher value. Moreover, for

all k ∈ {j + 1, . . . , |A+|}, we implicitly impose vA−i
≥ vA+

k
since A+

k ⊂ A+
j (by

definition of sequence A+). As a consequence, we need to decide whether to
assign variable vA−i

to its lower bound lA−i
or to set this variable to an higher

value in order to preserve the variables in {vDi
m
, 1 ≤ m ≤ |Di|}, where Di is the

subsequence of A+ composed of all descendants of node A−i in the graph and
Di
m denotes the mth element in sequence Di.

16

In order to make this decision, we need first to check whether we should
set vA−i

to the upper bound of its first positive descendant Di
1 or at a lower

value. We are in the former case when the sum of the values |ωA|, for all sets
A ∈ A−, A ⊃ Di

1, is strictly smaller than ωDi
1
. In this case, vA−i

is set to the

upper bound of Di
1 to protect vDi

1
which better contributes to the objective

function. Otherwise, the test must be iterated on the second descendant Di
2

and so on; if the test fails for all descendants of node A−i , variable vA−i
is

set to its lower bound. This principle is implemented in Algorithm 1. Before
establishing the validity of Algorithm 1, let us remark that it has a quadratic
time complexity since |A−| ≤ n and |Di| ≤ |A+| ≤ n.

Algorithm 1: Iterative optimization of PMR

Input: Two alternatives x, y ∈ X
Output: instantiation of variables vA, A ∈ A(x,y)

1 Construction of A− and A+ from the constraint graph
2 for A ∈ A+ do vA ← uA
3 for i = 1 . . . |A−| do
4 vA−i

← lA−i
5 j ← 1
6 ω+ ← 0
7 ω− ← 0
8 while j ≤ |Di| and vDi

j
> lA−i

do

9 ω+ ← ω+ + ωDi
j

10 ω− ← ω− +
∑
k∈{i,...,|A−|}:Dk

1=Di
j
ωA−k

11 if ω+ + ω− > 0 then
12 vA−i

← vDi
j

13 break

14 end
15 j ← j + 1

16 end
17 for j = 1 . . . |Di| do vDi

j
← min{vDi

j
, vA−i

}
18 end
19 return v

The following proposition will be used to prove the correctness of Algorithm
1 (the proof is given in the Appendix).

Proposition 4. At the end of any step i of the ‘for’ loop, we have:

∀A ∈ A+, vA = min{uA, min
A′∈Pai(A)

vA′}

where Pai(A) = {A−k , 1 ≤ k ≤ i : A ⊂ A−k } is the set of all supersets (parents)
A′ of set A such that ωA′ < 0 and A′ ⊇ A−i .

17

Proposition 5. Algorithm 1 returns a solution such that Equation (17) is sat-
isfied for all A ∈ A+.

Proof. The result directly follows from Proposition 4 (with i = |A−|) since
Pa|A−|(A) = Pa(A) by definition.

Thus, Equation (17) actually gives us an operational way to set positive
variables, when negative variables are set first. The following proposition shows
the correctness of our algorithm (the proof is given in the Appendix):

Proposition 6. Algorithm 1 returns an optimal solution of program LP3.

For the sake of illustration, we present the execution of Algorithm 1 on the
two alternatives considered in Example 2.

Example 2 (continued). Recall that, in Example 2, we have N = {1, 2, 3, 4, 5},
x = (1, 0.8, 0.4, 0.5, 0.1) and y = (0.8, 1, 0.6, 0.2, 0.4). Let us assume that, at
a given step of the elicitation procedure, the corresponding intervals [lA, uA],
A ∈ A(x,y), are given here below:

v{1} v{1,2} v{1,2,4} v{1,2,3,4} v{2} v{1,2,3} v{1,2,3,5} vN
[0, 0.5] [0.2, 0.7] [0.3, 0.9] [0.6, 1] [0.1, 0.4] [0.4, 0.8] [0.5, 0.9] [1, 1]

We show how Algorithm 1 computes PMR(x, y,ΘP). The algorithm starts with
the execution of line 1 where the structure depicted on Figure 1 is built. Then,
according to line 2, we set vA = uA for all A ∈ A+: vN = 1, v{1,2,3,5} = 0.9,
v{1,2,3} = 0.8 and v{2} = 0.4.
At line 3, we start the execution of the first iteration of the outer for loop, exam-
ining A−1 = {1, 2, 3, 4}; its positive descendants are given by D1 = ({1, 2, 3}, {2}).
When executing line 4, we set v{1,2,3,4} to its minimum feasible value, i.e.
v{1,2,3,4} = l{1,2,3,4} = 0.6. Then, we enter the while loop (line 8):

• During the first iteration step of the while loop, we consider the descendant
D1

1 = {1, 2, 3}. Since v{1,2,3} = 0.8 > 0.6 = l{1,2,3,4}, we compute ω+ =
ω{1,2,3} = 0.2 and ω− = ω{1,2,3,4} = −0.3. This iteration step stops since
the condition ω+ + ω− > 0 does not hold.

• Then, we consider the descendant D1
2 = {2}. Since v{2} = 0.4 ≤ 0.6 =

l{1,2,3,4}, the second part of the condition of the while loop (line 8) is not
satisfied (the while loop immediately stops).

We perform the following updates (line 17): v{1,2,3} = min{v{1,2,3}, v{1,2,3,4}} =
min{0.8, 0.6} = 0.6 and v{2} = min{v{2}, v{1,2,3,4}} = min{0.4, 0.6} = 0.4.

In the second iteration step of the outer for loop, we inspect the node A−2 =
{1, 2, 4} with only one positive descendant: D2 = ({2}). We initially set v{1,2,4}
to its minimum feasible value (line 4), i.e. v{1,2,4} = l{1,2,4} = 0.3.

18

• We consider the descendant D2
1 = {2}. Since v{2} = 0.4 > 0.3 = l{1,2,4},

we compute ω+ = ω{2} = 0.2 and ω− = ω{1,2,4} + ω{1,2} = −0.2. As a
consequence, the condition in line 11 is not verified at this step. Then, the
while loop stops since |D2| = 1.

We perform the following update: v{2}=min{v{2}, v{1,2,4}}=min{0.4, 0.3}=0.3.

At the third iteration step, we inspect the node A−3 = {1, 2} whose descendants
are given by D3 = ({2}). At line 4, we set v{1,2} to its minimum feasible value,
i.e. v{1,2} = l{1,2} = 0.2.

• We consider the descendant D3
1 = {2}. Since v{2} = 0.3 > 0.2 = l{1,2}, we

compute ω+ = ω{2} = 0.2 and ω− = ω{1,2} = −0.1. Here, ω+ + ω− > 0
holds, and so we need to update the value of v{1,2} as follows: v{1,2} =
v{2} = 0.3. Finally, the while loop stops due to the “break” command.

We perform the following update: v{2}= min{v{2}, v{1,2}}=min{0.3, 0.3}=0.3.

At the fourth iteration step, we have A−4 = {1}, D4 = (). We set v{1} to its
minimum feasible value, i.e. v{1} = l{1} = 0. Then, this iteration step stops
since D4 is empty.

Finally, the algorithm returns the following instantiation:

v{1} v{1,2} v{1,2,4} v{1,2,3,4} v{2} v{1,2,3} v{1,2,3,5} vN
0 0.3 0.3 0.6 0.3 0.6 0.9 1

3.4. A query generation strategy for Choquet capacity elicitation

In the previous subsections, we have shown that, assuming that preference
statements are of types (1A0,Λ) or (Λ, 1A0), we are able to efficiently compute
minimax regret values. We introduce now a query generation strategy deter-
mining the most informative query involving a binary alternative and a constant
profile. Our query generation strategy uses the WmMR criterion presented in
Definition 7. Since at each iteration step the DM is asked to compare a binary
alternative 1A0 to a constant profile Λ = (λ, . . . , λ), an optimal query for this
criterion is defined by a pair (A ⊆ N,λ ∈ [lA, uA]) that reduces the minimax
regret in the worst-case as much as possible. More precisely, to find such a pair,
for all sets A ⊆ N , we have to determine the following value:

λA = arg min
λ∈[lA,uA]

WmMR((A, λ),ΘP)

= arg min
λ∈[lA,uA]

max
{

mMR(X,ΘP∪{(1A0,Λ)}), mMR(X,ΘP∪{(Λ,1A0)})
}

and then, we arbitrary select a set A∗ in arg minA⊆N WmMR((A, λA),ΘP);
thus, the pair (A∗, λA∗) defines an optimal query for the WmMR criterion.

Given a set A ⊆ N , determining λA amounts to minimizing over λ ∈ [lA, uA]
the maximum between:

19

• mMR(X,ΘP∪{(1A0,Λ)}) which is a weakly decreasing function of λ, and

• mMR(X,ΘP∪{(Λ,1A0)}) which is a weakly increasing function of λ.

Similarly to what is observed for utility functions over consequences [28], these
two functions necessarily intersect since they have the same maximum, i.e.
mMR(X,ΘP). This intersection gives the value of λA and can easily be com-
puted by a standard bisection algorithm. An example of this phenomenon is
pictured on Figure 2.

mMR(X,ΘP)

lA uA
|| |

λA

mMR(X,ΘP∪(Λ,1A0))
mMR(X,ΘP∪(1A0,Λ))

Figure 2: Determination of threshold λA.

It may happen that the WmMR value of the optimal query is equal to
mMR(X,ΘP), which means that the optimal question will not necessarily induce
a regret reduction. In such cases, we propose to choose a set A ⊆ N that
minimizes the expected value of minimax regret over the two possible answers
with an uniform distribution hypothesis over [lA, uA], setting λ = (lA + uA)/2.

Note that the determination of the next query implies to select A∗ within
the 2n−2 possible proper subsets of N , a number which increases significantly
with the number of criteria. To make this query generation step more efficient,
as a heuristic we propose to focus on sets directly involved in the computation
of PMR(x∗, y∗,ΘP), where x∗ is an optimal alternative for the mMR criterion
knowing P, and y∗ is one of its adversary’s choices. These sets are those in

A(x∗,y∗) = {X∗(i), i ∈ N} ∪ {Y
∗
(i), i ∈ N}

where X∗(i) and Y ∗(i) respectively denote the ith level set of x∗ and y∗. Thus, the
heuristic will further constrain parameters inducing the current minimax regret.
According to this heuristic, at most 2n − 1 sets are investigated (the elements
of A(x∗,y∗)) instead of exactly 2n − 2.

Let us remark that this incremental elicitation procedure enforces both the
consistency of the set P of preference statements collected so far, and the con-
sistency of the induced constraints defining ΘP , under the assumption that
preferences are representable by a Choquet integral. Hence ΘP cannot become

20

empty at some step of the elicitation process. This important feature can be
explained as follows: let [lA, uA] be the range of admissible values for v(A) at
a given step of the elicitation procedure (resulting from P). At this stage, for
any λ ∈ [lA, uA], both statements (1A0, (λ, . . . , λ)) and ((λ, . . . , λ), 1A0) are
compatible with the known part of preferences. Asking the DM to compare
the binary alternative 1A0 to the constant utility profile Λ = (λ, . . . , λ) cannot
generate any contradiction because the answer will induce one of the two con-
straints “v(A) ≤ λ” or “v(A) ≥ λ”. Such constraints will contribute to further
reduce the interval [lA, uA] into [λ, uA] or [lA, λ], depending on the answer, but
the interval remains non-empty in both cases.

3.5. Numerical tests involving choice problems

The first numerical tests aim to evaluate the efficiency of the incremental
elicitation procedure presented in Section 3.4 in terms of number of queries
needed to make a decision. Recall that each generated query involves two ficti-
tious alternatives carefully chosen: one binary alternative of type 1A0, A ⊆ N ,
and one constant utility profile of type Λ = (λ, . . . , λ), λ ∈ [lA, uA]. Hence, as a
baseline for comparison, we consider the query generation strategy that consists
in choosing, at each iteration step of the elicitation procedure, both set A ⊆ N
and λ ∈ [lA, uA] at random.

Starting from an empty set of preferences statements, simulated DMs answer
to queries according to randomly generated Choquet integrals. At each iteration
step of the elicitation procedures, we compute both the minimax regret and
the real regret, the latter being the actual loss of utility associated with the
choice of the minimax regret optimal alternative instead of the true preferred
alternative (the utility is measured by the hidden Choquet integral modeling the
DM’s preferences). These regrets are expressed on a normalized scale assigning
value 1 to the initial minimax regret (computed before collecting any preference
information) and value 0 when the true preferred alternative is detected.

Figure 3 shows the results obtained by averaging over 100 runs for instances
with 10 criteria and 1000 alternatives; performance vectors of alternatives are
generated by randomly picking Pareto-optimal solutions in a multiobjective
knapsack problem so as to obtain alternatives which are uncomparable using
Pareto-dominance and require additional preference information from the DM.

First, we can see that the minimax regret reduces much more quickly with
our query strategy than with the random generation strategy. For instance,
after about 20 queries on average, the minimax regret is under 10% of the
initial regret with our strategy while remaining above 70% percent with the
random generation strategy. The same observation applies to the real regret.
Note also that the real regret is much smaller than the minimax regret (a fact
that has already been observed in regret-based elicitation in other contexts [28,
40, 29]). After about 8 queries on average, the real regret observed when using
our eliciation procedure is under 10% of the initial regret (while the minimax
regret is still around 30%).

21

Figure 3: Comparison with the random generation strategy (n = 10, 1000 alternatives).

The next experiments aim at evaluating the efficiency of our query generation
strategy in terms of regret reduction. To this end, it is compared with the
standard elicitation method named Current Solution Strategy (CSS) [29] which
is based on the comparison of two actual alternatives in the dataset (see Section
2.3). Results obtained by averaging over 100 runs are given in Figure 4.

Figure 4: Comparison with the Current Solution Strategy (n = 5, 150 alternatives).

22

We can see that our elicitation procedure provides performance very similar
to the CSS in terms of regret reduction. For instance, after about 20 queries,
both elicitation procedures recommend an alternative with a max regret under
10 percent of the initial regret on average. The real advantage of our approach
will appear when looking at the computation times. We compare now compu-
tation times of mMR calculations within the following elicitation methods:

• M1: queries are generated according to the CSS. Pairwise max regrets are
computed by solving LP1 (Section 3.1) using an LP-solver.

• M2: queries are generated according to our elicitation procedure presented
in Section 3.4. The optimization of pairwise max regrets is performed by
solving LP3 (see Section 3.2) using an LP-solver.

• M3: queries are here also generated according to our elicitation procedure
presented in Section 3.4, but Algorithm 1 presented in Section 3.3 is used
to solve LP3 (instead of using a LP-solver).

In our experiments, we use the Gurobi4 solver, called from the main program
written in Java (using the Gurobi-Java interface). In order to evaluate how the
available preference information impacts on computation times, we report the
results obtained after respectively 0, 10 and 20 iteration steps of the elicitation
procedures. Computation times are obtained by averaging over 50 runs.

Table 1: Computation times of minimax regret computations (in seconds).

n size step M1 M2 M3

5 150 0 4.473 3.846 0.005
5 150 10 4.833 2.594 0.001
5 150 20 4.805 2.820 0.001
5 1000 0 35.944 32.161 0.007
5 1000 10 25.471 24.129 0.004
5 1000 20 26.792 24.131 0.003

10 150 0 26.357 3.864 0.002
10 150 10 9.504 2.586 0.001
10 150 20 12.901 2.087 0.001
10 1000 0 276.067 57.795 0.014
10 1000 10 140.062 38.721 0.008
10 1000 20 218.528 34.499 0.007

In Table 1, we can see that computation times with M1 drastically increase
with not only the number of alternatives, which directly impacts on the number

4http://www.gurobi.com/.

23

of pairwise max regret optimizations, but with the number of criteria due to the
exponential number of monotonicity constraints in LP1 formulation.

As expected, we can see that M2 is faster than M1 overall. Moreover, the
number of criteria has much more impact on the computation time for the latter
method as it deals with an exponential number of monotonicity constraints
(where LP3 has only a linear number of them).

Interestingly enough, M3 is significantly faster than M1 and M2 (about five
orders of magnitude) and its computations times seem to be very weakly im-
pacted by the number of alternatives and the number of criteria. In fact, M3

generates fifty queries in a few minutes for 1000 alternatives, while M1 requires
about six hours for a number of alternatives lower by an order of magnitude.

In conclusion, by restricting queries to the comparison of binary alternatives
with constant profiles (rather than comparing real alternatives, as in the CSS),
we obtain a drastically faster incremental elicitation procedure for Choquet
integrals while preserving the efficiency of the elicitation process in terms of
number of queries needed to make a decision.

3.6. Ranking by iterated choices

Ranking is a topic that has received considerable attention (from the commu-
nity of machine learning [45, 46, 47], as well from psychological choice modeling
[48], management science and decision aid communities [49, 50, 51, 52, 53, 54]).
It is a much more complex issue than choosing a single alternative; it requires
to be able to compare all pairs of alternatives instead of just identifying the
best one. Although adapting an incremental elicitation scheme based on min-
imax regret computations to the case of ranking seems theoretically possible,
minimax-regret optimizations would probably require prohibitive computation
times. There are indeed factorially many possible orders on a given finite set
of elements and computing explicitly pairwise regrets for all pairs of possible
rankings does not seem feasible.

For this reason, we address here the problem of ranking as one of repeated
choice, assuming that the DM first chooses the first alternative, then the second,
and so forth. This is a very natural decision process and iteration can be
interrupted at any step k if only the top k elements are of interest. When
using iterated choices, constructing a ranking appears as a kind of extension of
the choice problem and the tools developed for choosing may be used.

As in the choice problem, we reason with a partially specified capacity used in
the Choquet integral. In this framework, an alternative x is necessarily at least
as good as an alternative y when Cv(x) ≥ Cv(y) for all admissible capacities
v ∈ ΘP , that is when PMR(x, y,ΘP) < 0. In order to save queries, we might
assume that x is preferred to y when PMR(x, y,ΘP) ≤ δ where δ ≥ 0 is a (small)
tolerance threshold. We will first generate preference queries and use minimax
regret computations to determine a top alternative with a max regret lower
than threshold δ. Then, this alternative is deleted and the selection process is
iterated on the remaining set of alternatives with the same tolerance threshold.

24

The selected alternative in this second stage will be the second best alternative
in the ranking and so forth (see Algorithm 2).

Algorithm 2: Interactive ranking by iterated choices

Input: X: set of alternatives
Output: L: list representing the whole ranking

1 L← ()
2 Z ← X
3 while Z 6= ∅ do
4 while mMR(Z,ΘP) > δ do
5 Ask a preference query to the DM and insert the answer in P
6 Update ΘP accordingly

7 end
8 Select z∗ in arg minz∈Z MR(z, Z,ΘP)
9 Append(L, z∗)

10 Remove z∗ from Z

11 end
12 return L

This interactive ranking algorithm satisfying the following nice property:

Proposition 7. For any pair of alternatives x and y such that x is ranked
before y in the final ranking, we have PMR(x, y,ΘP) ≤ δ where P is the set of
all preference statements collected to construct the whole ranking.

Proof. Let P ′ be the set of preference statements collected until the insertion of
x in the ranking. Since y is ranked below x, we know that PMR(x, y,ΘP′) ≤ δ.
Moreover, since P ′ ⊆ P, then we have ΘP′ ⊇ ΘP and (refer to Equation (2))
therefore PMR(x, y,ΘP) ≤ PMR(x, y,ΘP′) ≤ δ.

This property allows us to give a guarantee of the quality of the ranking
obtained with our procedure; threshold δ represents the worst-case loss (in terms
of utility) that we may incur by choosing x instead of any other alternative y
that has a lower position in the ranking. In particular, if δ = 0, then the true
ranking (sorting the alternatives from the best to the worst according to their
Choquet value Cv) has been identified with certainty.

Since the ranking is obtained by a sequence of choice problems, we can use at
each step the same elicitation strategy presented in Section 3.4 for the Choquet
integral. Moreover, at any step of the ranking procedure, we start from the
set of preference statements collected so far to determine the next preferred
element. This obviously saves a lot of preference queries as will be seen in the
next paragraph dedicated to numerical tests.

Numerical tests. We now present some experimental results about our incre-
mental ranking method. It consists in iteratively selecting the best alternative

25

and then removing it from the dataset of alternatives; the incremental elicita-
tion procedure presented in Section 3.4 is used to determine the best alternative
at each iteration step. We want to estimate the amount of additional preference
information that is needed to rank all alternatives (instead of just determing the
best one). Hence, we ran tests with different tolerance thresholds δ (0.05, 0.1
and 0.15) so as to study its impact on the number of queries. Figure 5 shows the
results obtained by averaging over 50 runs for instances with 1000 alternatives
and 5 criteria; performance vectors are generated as described in Section 3.5.

Figure 5: Performance (in terms of number of queries) of the interactive ranking algorithm
(n = 5, 1000 alternatives).

As expected, we can see that the number of queries reduces as the value of δ
increases (since the requirement on the performance guarantee is weakened); for
instance, the number of queries needed to obtain the complete ranking is halved
when the performance threshold increases from 5% to 15% of the initial regret.
Moreover, we observe that completing the ranking after the determination of
the top alternative can be achieved at a reasonable marginal cost (no more than
two times the cost of determining the best alternative). Most of preference
queries appears during the first iteration (when the first item in the ranking is
identified); in fact, we empirically observed that the number of alternatives has
a relatively low impact on the number of queries required for completion. In
fact, the marginal amount of preference queries which are necessary to find the
next element decreases as the rank of the selected alternative increases.

26

4. Sorting methods with thresholds on Choquet values

Sorting problems require to assign alternatives to categories. When assessing
a utility score fθ(x) for each alternative x ∈ X, it is natural to sort alterna-
tives with respect to their score by considering thresholds. This is a standard
approach in multricriteria decision-making [55, 56, 57, 58]. This is also typical
in binary classification problems where algorithms compute a numerical value
and then assign alternatives to categories by checking if the value exceeds a
given threshold. When considering ordered categories, the machine learning
community uses the term multipartite ranking [59, 60, 61] or instance ranking
[31].

Assume that the utility scale is divided into q intervals [α`, α`−1], where
α0 ≥ . . . ≥ αq. Assignments are made by looking in which interval the utility
scores fall. More precisely, the method proposed in this section consists in
assigning alternative x ∈ X to category K` if fθ(x) ∈ [α`, α`−1]. In the case
that fθ(x) is exactly the value of threshold α`, we consider that the DM is
indifferent between assigning x to category K` or K`+1 (the two assignments
are equally valid). This view of sorting is somewhat natural; it can be seen
as a “discretization” of utility into categories for situations where we want to
provide an informative summary about the utilities of the alternatives.

As utility function fθ is not known precisely, we need to define some measure
of regret for possible assignments. Hence, in this section, we first propose an
incremental elicitation approach for sorting problems with thresholds (Section
4.1), before addressing the associated regret-optimization problem (Section 4.2).
Then, we focus on difficulties encountered when fθ is a Choquet integral, pre-
senting optimization techniques based on linear programming or not (Section
4.3) and an efficient query generation strategy (Section 4.4). Finally, we present
evaluations with simulations (in Section 4.5).

4.1. An incremental elicitation approach for sorting with thresholds

When sorting with thresholds, categories are associated with intervals in
the utility scale, whose extreme are the thresholds. Assignment of alternatives
to categories is determined by which intervals enclose the alternatives’ utility
values. More precisely, given parameter θ, we will assign x to the category K`

such that fθ(x) ∈ [α`, α`−1].

For fixed θ, the actual regret (or loss) of assigning alternative x to a category
K` will then be 0 if fθ(x) lies between α` and α`−1. When the assignment is
made incorrectly, it is natural to assume that the regret will be higher for
categories delimited by thresholds that are further away from fθ(x). We further
assume that the regret will scale linearly with the displacement of fθ(x) from the
nearest of the two thresholds α`, α`−1 delimiting category K`. More precisely,
if fθ(x) ≥ α`−1, then we define the regret to be fθ(x) − α`−1; similarly, if
fθ(x) ≤ α`, then the regret is equal to α` − fθ(x). This is represented by the

27

following expression:

R(x,K`, θ) = max
{
fθ(x)− α`−1, α` − fθ(x), 0

}
Note that our formulation of regret R is consistent with the case in which fθ(x)
is exactly the value of one of the thresholds; for example, if fθ(x) = α` then we
have both R(x,K`, θ) = 0 and R(x,K`+1, θ) = 0.

In general, in our setting, parameter θ is not known precisely and we want
to be able to sort alternatives under utility uncertainty. Proceeding in a way
similar to the case of choice problems (see Section 2.2), we define the notion of
max regret (and subsequently minimax regret), as follows:

Definition 8. The max regret (MR) of x∈X with respect to category K` is:

MR(x,K`,ΘP) = max
θ∈ΘP

R(x,K`, θ)

= max
θ∈ΘP

max
{
fθ(x)− α`−1, α` − fθ(x), 0

}
.

MR(x,K`,ΘP) is the maximal possible utility gap between fθ(x) and the inter-
val [α`, α`−1] defining category K`.

We now define the notion of minimax regret and the MR-optimal category
associated to an alternative x ∈ X:

Definition 9. The minimax regret (mMR) of x ∈ X is:

mMR(x,ΘP) = min
`∈{1,...,q}

MR(x,K`,ΘP).

The decision rule is that of assigning x to the category that minimizes
MR(x,K`,ΘP); this category is called the MR-optimal category of x. The mMR
represents the maximal utility gap between fθ(x) and the interval defining the
mMR-optimal category.

In sorting problems, each alternative is associated with a minimax regret
value (mMR). Therefore, we have a vector of |X| minimax regret values (in-
stead of a single mMR value for choice problems); sorting can be viewed as
simultaneously solving several decision problems, one for each alternative that
we need to assign to one of the categories. We now need to define an aggregate
measure to evaluate the overall quality (with respect to regret values) of a com-
plete assignment. We adopt the notion of maximum minimax regret (MmMR),
defined as follows:

Definition 10.
MmMR(X,ΘP) = max

x∈X
mMR(x,ΘP)

Note that one could consider other criteria, for example the average of the
minimax regret values (allowing to compensate high regret values with lower

28

ones); here we focus on the maximum, as it is a choice consistent with the
pessimistic notion of max regret MR and it provides a performance guarantee
with respect to the worst-case.

In sorting problems, MmMR plays the role of measuring the current decision
quality (as mMR did in choice problems). For a given set of preferences, it might
be the case that the aggregate value MmMR is still too large according to the
DM. Therefore, we can conceive incremental elicitation strategies that, as in
choice problems, iteratively ask questions to the DM until the MmMR value
drops below a given tolerance threshold δ ≥ 0. Indeed, we have ΘP′ ⊆ ΘP
for any set of preference statements P ′ ⊇ P; then, for any x ∈ X and any
` ∈ {1, . . . , q}, we have:

MR(x,K`,ΘP′) ≤ MR(x,K`,ΘP)

mMR(x,ΘP′) ≤ mMR(x,ΘP)

MmMR(X,ΘP′) ≤ MmMR(X,ΘP)

and so, the maximum minimax regret cannot increase by adding new preference
statements; in the subsection devoted to numerical tests, we will see that, in
practice, it strictly decreases when queries are chosen in a reasoned way.

In order to evaluate the relevance of a query q, one can make use of a notion
of myopic value of information defined as follows:

Definition 11. The worst-case maximum minimax regret (WMmMR) of q is:

WMmMR(q,ΘP) = max
p∈Pq

MmMR(ΘP∪{p})

where Pq denotes the set of all possible answers to query q.

Then, the next query should be chosen in:

arg min
q∈Q

WMmMR(q,ΘP)

where Q denotes the set of all possible queries, because it ensures the best
reduction of maximum minimax regret (MmMR) in the answer’s worst-case
scenario. However, when the number of queries under consideration is too large,
the computation of the optimal query can be computationally intensive; hence,
we may want to consider heuristics of the WMmMR criterion.

To achieve this, one possibility is to ask the DM to compare well chosen al-
ternatives. Nevertheless, the optimal assignment (i.e. such that each alternative
is assigned to its MR-optimal category) does not directly suggest the choice of
the comparison query; the “semantics” of sorting problems is radically different
from that of choice problems (there is neither a notion of adversarial choice for
an individual alternative, nor for a complete assignment).

However, we can design strategies for generating queries in sorting problems
that are similar to the Current Solution Strategy in choice problems (see Section
2.3). We can ask the DM, at each iteration, to classify one alternative associated
to the highest minimax regret value mMR.

29

4.2. Determination of the optimal assignment

The computation of max regrets (and therefore minimax regret mMR) can
be efficiently performed by exploiting the following property of MR.

Proposition 8. For any alternative x ∈ X, it holds

MR(x,K`,ΘP) = max
{
f>x − α`−1, α` − f⊥x , 0

}
where f>x = max

θ∈ΘP
fθ(x) and f⊥x = min

θ∈ΘP
fθ(x).

Proof. For any solution x ∈ X:

MR(x,K`,ΘP) = max
θ∈ΘP

R(x,K`, θ)

= max
θ∈ΘP

max
{
fθ(x)− α`−1, α` − fθ(x), 0

}
= max

{
max
θ∈ΘP

{fθ(x)− α`−1}, max
θ∈ΘP

{α` − fθ(x)}, 0
}

= max
{

max
θ∈ΘP

{fθ(x)} − α`−1, α` − min
θ∈ΘP

{fθ(x)}, 0
}

= max
{
f>x − α`−1, α` − f⊥x , 0

}
.

This means that, in order to determine the MR-optimal category for x, it
is sufficient to compute maxθ∈ΘP fθ(x) and minθ∈ΘP fθ(x), and then compute
MR(x,K`,ΘP) according to Proposition 8 for each category K`, ` ∈ {1, . . . , q}.
Actually, the next property allows to simplify even more the optimization task.

Proposition 9. For any x ∈ X, the category K` such that

f>x + f⊥x
2

∈ [α`, α`−1]

is the MR-optimal category for x, where f>x = max
θ∈ΘP

fθ(x) and f⊥x = min
θ∈ΘP

fθ(x).

Proof. We want to prove that MR(x,K`,ΘP) ≤ MR(x,Kk,ΘP) holds for any
k ∈ {1, . . . , q}\{`}. First, we prove that MR(x,K`,ΘP) ≤ (f>x − f⊥x)/2 holds.

On the one hand, since (f>x + f⊥x)/2 ≤ α`−1 by definition of category K`,
we have f>x − α`−1 ≤ f>x − (f>x + f⊥x)/2 = (f>x − f⊥x)/2. On the other hand,
since we also have α` ≤ (f>x + f⊥x)/2 by definition of category K`, we have
α` − f⊥x ≤ (f>x + f⊥x)/2 − f⊥x = (f>x − f⊥x)/2. Hence, we can deduce that we
have MR(x,K`,ΘP) ≤ (f>x − f⊥x)/2 from Proposition 8.

Therefore, to prove that MR(x,K`,ΘP) ≤ MR(x,Kk,ΘP) holds for any
k ∈ {1, . . . , q}\{`}, it is sufficient to prove that MR(x,Kk,ΘP) ≥ (f>x − f⊥x)/2

30

holds for any k ∈ {1, . . . , q}\{`}. For any k > `, we have:

MR(x,Kk,ΘP) ≥ f>x − αk−1 by Proposition 8

= f>x − α` + α` − αk−1

≥ f>x − (f>x + f⊥x)/2 + α` − αk−1 by definition of K`

= (f>x − f⊥x)/2 + α` − αk−1

≥ (f>x − f⊥x)/2 since ` ≤ k − 1

For any k < `, we have:

MR(x,Kk,ΘP) ≥ αk − f⊥x by Proposition 8

= αk − α`−1 + α`−1 − f⊥x
≥ αk − α`−1 + (f>x + f⊥x)/2− f⊥x by definition of K`

= αk − α`−1 + (f>x − f⊥x)/2

≥ (f>x − f⊥x)/2 since `− 1 ≥ k

Hence, we have MR(x,Kk,ΘP) ≥ (f>x − f⊥x)/2 for any k ∈ {1, . . . , q}\{`}.
Therefore, category K` is the MR-optimal category for x.

In order to determine the MR-optimal category, thanks to Proposition 9, it
is sufficient to compute (f>x +f⊥x)/2 and then to identify the category K` whose
thresholds enclose this value. Note that if fθ is a linear function in θ, then any
preference of type “x ∈ K`”, denoted (x,K`), induces two linear constraints on
the parameter space: fθ(x) ≥ α` and fθ(x) ≤ α`−1. Similarly, any preference of
type “a is preferred to b” impose the linear constraint fθ(a) ≥ fθ(b). In that
case, set ΘP is described by linear constraints, and so the two optimization
problems f>x = maxθ∈ΘP fθ(x) and f⊥x = minθ∈ΘP fθ(x) can be formulated
as linear programs (and therefore solved very quickly for simple utility models
such as linear utilities; we will discuss the use of Choquet integrals in the next
section).

4.3. Application to Choquet integrals

In the following, we assume that the DM’s preferences can be modeled by
a Choquet integral; i.e. the aggregation of criteria is performed by computing
the Choquet integral with a capacity v:

fθ(x) := Cv(x)

where the uncertain capacity function v takes the role of θ and the space of
parameters ΘP consists in the set of all normalized capacities compatible with
the observed preferences P.

In Section 4.1, we introduced the notion of maximum minimax regret for
sorting problems, that represents an overall aggregate score to assess the quality

31

of an assignment. According to Proposition 9 (see Section 4.2), in order to
compute the maximum minimax regret MmMR, one needs to compute f>x and
f⊥x for each alternative x ∈ X. The optimization of f>x for Choquet integrals
can be performed by solving the following linear program:

max
v

Cv(x) (26)

s.t. v∅ = 0 (27)

(LP4) vN = 1 (28)

vA ≤ vA∪{i}, ∀A ⊂ N, ∀i ∈ N\A (29)

Cv(a) ≥ Cv(b), ∀(a, b) ∈ P (30)

α` ≤ Cv(a) ≤ α`−1, ∀(a,K`) ∈ P (31)

Similarly, the optimization of f⊥x for Choquet integrals can performed by solving
linear program LP4 where the objective function has to be minimized. Note that
Equations (27-29) ensure that v is a normalized capacity and Equations (30-31)
ensure that v is compatible with P. We remark that the number of variables
and constraints in LP4 are exponential in the number of criteria, due to the
monotonicity constraints. Nevertheless, we can again obtain a more compact
formulation by considering preference queries involving binary alternatives of
type 1A0, with A ⊆ N , and constant utility profiles of type Λ = (λ, . . . , λ).

In linear program LP4 allowing to compute f>x and f⊥x for a given x, we
notice that the set of variables involved in the objective function is the set Ax
of all level sets of x, i.e.

Ax = {X(i), i∈N}.
Therefore, in a way analogous to what we have done in Section 3.1, we are
able to reformulate this linear program in a way that the numbers of variables
and monotonicity constraints are drastically reduced. More precisely, we have
seen that if we restrict ourself to preference queries that ask to compare a binary
alternative with a constant utility profile, then preference constraints (Equations
(30-31)) can be replaced by boundary constraints of type

lA ≤ vA ≤ uA

for all subsets of criteria A ⊆ N , where lA ≤ lB and uA ≤ uB for all A ⊂ B ⊆ N .
Using Proposition 1 with A = Ax, from the linear program we can remove
all monotonicity constraints involving a variable vA that is not present in the
objective function of Equation (26) (i.e. vA 6∈ Ax), as they play no role in the
optimization; we then obtain a more compact formulation with only n variables
and n− 1 constraints given here below:

max
vX(i)

,i∈N

n∑
i=1

(x(i) − x(i−1))vY(i)

(LP5) s.t. vX(i+1)
≤ vX(i)

, ∀i ∈ [[1, n− 1]] (32)

lX(i)
≤ vX(i)

≤ uX(i)
, ∀i ∈ N

32

We now show that this compact formulation can be optimized without using
a LP-solver by exploiting their specific structure. This allows to compute f>x
and f⊥x in a more efficient way.

Proposition 10. The solution vA = uA for all A ∈ Ax is the optimal solution
of the max version of LP5. The solution vA = lA for all A ∈ Ax is the optimal
solution of the min version of LP5.

Proof. We will only explicitely prove the first point as the proof of the second
is very similar. For all A ∈ Ax, let wA denote the coefficient of decision variable
vA in linear program LP5; the objective function is then equal to

∑
A∈Ax

wAvA.
Recall that wA = x(i) − x(i−1) ≥ 0 for all A ∈ Ax = {X(i), i ∈ N} by definition
of Choquet integrals. Since wA ≥ 0 and vA ∈ [lA, uA] for all A ∈ Ax, the value∑
A∈Ax

wAuA is an upper bound of the optimal solution of the max version of
LP5. Now, we want to prove that vA = uA holds for all A ∈ Ax is a feasible
solution of LP5, i.e. we want to prove that all monotonicity constraints (32)
are satisfied by this solution. Note that these constraints are satisfied if and
only if we have uX(i+1)

≤ uX(i)
for all i ∈ [[1, n − 1]]. Therefore, since we know

that uA ≤ uB holds for all A ⊆ B ⊆ N by construction of all intervals [lA, uA],
A ⊆ N , the latter condition is true and establishes the result.

As a consequence, linear program LP5 can be solved without using a LP-
solver. More precisely, to solve the maximization (resp. minimization) prob-
lem, it is enough to consider the instantiation where vA = uA for all A ⊆ N
(resp. vA = lA for all A ⊆ N), and to calculate the Choquet integral of x (i.e.∑
A∈Ax

wAvA).

Example 3. Consider a problem defined on 5 criteria and 5 categories delimited
by the following thresholds: α0 = 1, α1 = 0.9, α2 = 0.7, α3 = 0.4, α4 = 0.2
and α5 = 0. We want to determine the MR-optimal category of alternative
x = (1, 0.8, 0.4, 0.5, 0.1); intervals [lA, uA], A ∈ {X(i), i ∈ N}, are the same as

those in Example 2. The computation of f>x = maxv∈ΘP Cv(x) can be performed
by solving linear program LP5 given here below:

max
v

0.1vN + 0.3v{1,2,3,4} + 0.1v{1,2,4} + 0.3v{1,2} + 0.2v{1}

s.t. v{1}≤v{1,2}≤v{1,2,4}≤v{1,2,3,4}≤vN
0≤v{1}≤0.5, 0.2≤v{1,2}≤0.7, 0.3≤v{1,2,4}≤0.9,

0.6≤v{1,2,3,4}≤1, 1≤vN ≤1

We can compute f⊥x = minv∈ΘP Cv(x) by solving the min version of the latter
program. These optimizations can be performed without using a LP-solver since
the associated optimal solutions are given in Proposition 10. More precisely:

f>x = 0.1 uN + 0.3 u{1,2,3,4} + 0.1 u{1,2,4} + 0.3 u{1,2} + 0.2 u{1}

= 0.1× 1 + 0.3× 1 + 0.1× 0.9 + 0.3× 0.7 + 0.2× 0.5

= 0.8

33

f⊥x = 0.1 lN + 0.3 l{1,2,3,4} + 0.1 l{1,2,4} + 0.3 l{1,2} + 0.2 l{1}

= 0.1× 1 + 0.3× 0.6 + 0.1× 0.3 + 0.3× 0.2 + 0.2× 0

= 0.37

Since we have (f>x + f⊥x)/2 = 0.585 ∈ [α3, α2], category K3 is the MR-optimal
category of alternative x (see Figure 6 for illustration).

α5

0
|

K5
α4

0.2
|

K4
α3

0.4
|

K3
α2

0.7
|

K2
α1

0.9
|

K1
α0

1
×
f⊥x

×
f>x

×
f⊥x +f>x

2

Figure 6: A characteriztion of Example 3 showing the thresholds and the values f>x and f⊥x .

4.4. A query generation strategy for Choquet capacity elicitation

In the previous subsection, we have shown that the computation of MmMR
can be performed efficiently when P is a set of preference statements of types
(1A0,Λ) or (Λ, 1A0). Assuming that the DM is only asked to compare binary
alternatives to constant profiles, we now have to identify the pair (A, λ) that
yield the most informative query. To this end, we propose a query generation
strategy based on the WMmMR criterion presented in Definition 11. According
to this criterion, an optimal query is defined by a pair (A ⊆ N,λ ∈ [lA, uA]) that
minimizes the maximum minimax regret (MmMR) in the worst-case scenario
with respect to all possible answers. In other words, to determine this pair, for
all sets A ⊆ N we have to determine the following value:

λA = arg min
λ∈[lA,uA]

WMmMR((A, λ),ΘP)

= arg min
λ∈[lA,uA]

max
{

MmMR(X,ΘP∪{(1A0,Λ)}),MmMR(X,ΘP∪{(Λ,1A0)})
}

and then, we arbitrarily select A∗ in arg minA⊆N WMmMR((A, λA),ΘP); by
doing so, pair (A∗, λA∗) defines an optimal query for the WMmMR criterion.

In fact, for a given set A ⊆ N , the determination of the optimal value
λA can be easily performed using a bisection algorithm, applying similar ar-
guments to those of Section 3.4. The functions MmMR(X,ΘP∪{(1A0,Λ)}) and
MmMR(X,ΘP∪{(Λ,1A0)}) are indeed, respectively, weakly decreasing and weakly
increasing, while achieving the same maximum. Hence, in order to determine
the optimal pair (A∗, λA∗) at each iteration step of the elicitation procedure, we
need to use the bisection algorithm considering that A could be any of the 2n−2
proper subsets of N . However, the number of these sets grows exponentially as
the number of criteria increases. Therefore, as a heuristic, we propose to con-
sider only the subsets of N that are involved in the computation of mMR(x,ΘP),
where x is an alternative with the highest minimax regret mMR given the cur-
rent P (the alternative responsible of the current MmMR value). These sets

34

are the n level sets of x, i.e. Ax = {X(i), i ∈ N}. In this way, the heuristic will
further constrain the parameters involved in the computation of mMR(x,ΘP)
which may reduce the current MmMR value.

4.5. Numerical tests

The first experiments aim at evaluating the efficiency of the query generation
strategy presented in Section 4.4 and based on comparison queries. This strategy
is named CQ hereafter. We do not report computation times since we have
already seen that optimization with preference statements of types (1A0,Λ) or
(Λ, 1A0) is very efficient, due to the reduced number of monotonicity constraints.
This is even more striking witout making use of a LP-solver.

Recall that CQ relies on queries involving binary alternatives 1A0 and con-
stant utility profiles Λ = (λ, . . . , λ). Hence, for a baseline comparison, we con-
sider the random generation strategy where both A ⊆ N and λ ∈ [lA, uA] are
selected at random at each iteration step of the elicitation procedure. Starting
from an empty set of preference statements, simulated DMs answer queries ac-
cording to a randomly generated Choquet integral. At each iteration step, in
addition to the maximum minimax regret MmMR, we compute the maximum
real regret, that is the largest actual loss of utility associated with assigning an
alternative to its regret-optimal category instead of its true preferred category
(the utility is measured by a latent Choquet integral modeling the DM’s pref-
erences). As for choice problems, regrets are normalized to belong to the unit
interval. The results averaged over 100 runs are given in Figure 7 for datasets
with 1000 alternatives; performance vectors of alternatives are uniformly drawn
in [0, 1]n and categories are defined by dividing the utility scale [0, 1] uniformly.

Figure 7: Comparison with the random strategy (n = 5, 1000 alternatives, 10 categories).

35

In Figure 7, we can see that the maximum minimax regret MmMR reduces
much faster with CQ than with the random generation satrategy; the same
observation applies when considering the maximum real regret with the two
strategies. After about 30 queries on average, the maximum real regret observed
with CQ is under 20% of the initial regret while still being larger than 50%
with the random strategy. Note that the maximum real regret reduces less
drastically than the real regret in choice problems (see Figure 3). However, we
observe that the average of real regrets (averaged over all alternatives that need
to be classified) is below 10% after only 5 queries on average, meaning that most
alternatives are well assigned reasonably quickly.

Recall that CQ focuses on alternative x inducing the current MmMR value
by generating a preference query involving one of its level sets. Hence, we
propose an alternative query generation strategy (named AQ for assignment
queries) asking the DM which among all the categories suits most alternative
x; for this strategy, max regrets are performed by optimizing the general linear
programming formulations LP4 presented in Section 4.3 because the compact
formulation LP5 does not apply due to the type of questions used. Figure 8
compares strategy CQ with AQ (the results are averaged over 100 runs).

Figure 8: Comparison with the strategy asking the category of the alternative associated
with maximal minimax regret (n = 5, 150 alternatives, 10 categories).

In Figure 8, we can see here that strategy AQ is more informative than CQ
since both the maximum minimax regret and the maximum real regret reduce
more quickly. Note however that AQ only applies to small sorting problems
involving a few criteria (so that monotonicity constraints can be handled effi-
ciently) and a few hundred alternatives (due to the number of LP optimizations).
For larger problems, strategy CQ is more appropriate as it is computationally

36

much less demanding (due to the reduced number of monotonicity constraints)
while reducing regret reasonably fast.

5. Discussion and conclusions

In this paper, we discussed the problem of interactively eliciting the param-
eters of a Choquet integral in the context of multicriteria decision-making. We
presented how an interactive elicitation approach can be applied to the follow-
ing problems: recommending a single alternative to a decision maker (choice
problems), producing a ranking of top-k alternatives (ranking problems) and
assigning alternatives to a number of ordered categories (sorting problems). We
have adopted the minimax regret approach of Boutilier et. al. [29] allowing
robust recommendations under uncertainty with guarantees with respect to the
worst-case loss, and formalized ranking and sorting problems in terms of regret.

Using minimax regret in combination with a utility model based on a Cho-
quet integral poses a number of technical difficulties; these are related to the
number of parameters needed to characterize a Choquet capacity and the num-
ber of constraints required to characterize the space of admissible capacity func-
tions. We have shown that, assuming that preferences are stated in a particular
form (involving a binary alternative of type 1A0 and a constant utility profile of
type Λ = (λ, . . . , λ)), minimax regret optimizations can be performed efficiently
in various settings (choice, ranking, sorting): we presented both a linear pro-
gramming formulation and an even faster iterative algorithm maintaining lower
and upper bounds. We presented experimental results validating the practical
efficiency of our incremental approaches in terms of computation times, number
of queries and quality of decisions. Recall that we stop when it can be proved
that further specifications of the model cannot seriously challenge the current
recommendation. That is where we really save time with respect to approaches
that fully elicit the utility function, making elicitation feasible in practice. In
our opinion, this is the specificity and the contribution of incremental elicitation
for decision-making.

Our work differentiates from previous works on Choquet integrals in the
focus on incremental elicitation and on the ability to provide robust recommen-
dations using minimax regret without making any restrictive assumption on the
capacity. Notably, Ah-Pine et al. [62] assess a feasible capacity for a Choquet
integral given some preferential information that maximize the margin of the in-
duced constraints (in a fashion similar to SVM classifiers). However this kind of
“pointwise” estimation ignore the specificity of the available alternatives (while
regret-based approach can focus elicitation on the “useful” part of the utility).
Moreover, it does not directly provide a natural strategy for choosing the query
to ask within an incremental elicitation setting.

The problem of minimizing regrets to derive a robust recommendation with
a Choquet integral and an imprecise capacity has also been addressed in [63].
In this work, another approach to compute MR(x,X ,ΘP) is proposed, relying

37

on the fact that MR(x,X ,ΘP) = maxv∈Θ∗P
maxy∈X {Cv(y) − Cv(x)} and Θ∗P

is the (finite) set of extreme points in ΘP . However, the amount of extreme
points seems to be prohibitively large for enumeration methods. Hence, using
this approach within an incremental elicitation procedure seems unfeasible for
general capacities. This approach is however interesting for two-additive capac-
ities because, in this case, the size of Θ∗P is quadratic in the number of criteria.
The advantage of our approach, beside the fact that it is incremental, is that it
applies to any monotone capacity, without any prior restriction.

A first direct continuation of this work is to extend the elicitation procedure
for set recommendation, following the work on setwise minimax regret [40].
Indeed, while most emphasis of works in recommender systems and decision aid
is on providing a single recommendation, it is often appropriate to provide a set
of alternatives. The approach we have proposed in this paper extends naturally
to sets but is computationally more demanding.

A second direction concerns the development of new strategies to search for
highly informative queries. We are interested in the sequential evaluation of
the informative value of a query; note, however, that sequential optimization
of the value of a query will usually be prohibitive in most cases. Alternatively,
it will be interesting to test highly informative local search approaches like the
query-iteration strategy [64, 40] in our settings.

In this paper, we also addressed the problem of sorting using thresholds
on the overall utility scale. These thresholds are assumed to be defined in a
preliminary step with the DM, independently of the set of alternatives. For in-
stance one may want to construct an overall intrinsic evaluation scale using the
unit interval (e.g. for evaluating students, projects...) where 0.5 is the neutral
point separating good and bad alternatives; one may also want that excellent
alternatives receive at least 0.8 and that very bad alternatives receive at most
0.2. Using such thresholds, we have studied the set of capacities that are com-
patible with the assignment examples obtained from the DM and developed
an incremental elicitation method to progressively reduce this set. It would be
possible to learn or approximate thresholds in the same time as capacity values
which would possibly provide greater flexibility to describe an assignment (but
would prevent us to use thresholds prescribed by the DM). The variable thresh-
olds approach has been proposed for instance in [58] for linear aggregators and
could be adapted for Choquet integrals. This would however make thresholds
and capacities interdependent and both could be influenced by the learning set.
Moreover, in our approach, the fact that thresholds are known allows us to con-
siderably simplify the optimization of regrets (see Section 4.3), which speeds-up
computation and provides good interaction possibilities.

In the literature on multicriteria sorting, another prominent approach for
preference-based sorting has been proposed and widely used in the context of
multicriteria evaluation: sorting with reference profiles as proposed by Roy in
the Electre TRI method [65] and used in multiple variants see, e.g., [66, 67,
57, 68, 69]. In such methods, we are given multicriteria profiles describing

38

the “desiderata” (in terms of criteria) for each category; the alternatives are
compared to these profiles on each criterion to derive preference indices that are
then aggregated to establish the overall preference. Profiles act as multicriteria
boundaries of categories used to make preference-based assignements. Various
elicitation procedures have been proposed to assess some parameters in these
models (e.g., weight of criteria, reference profiles), see e.g., [66, 70, 71]. Recently,
the elicitation of Choquet capacities has been also studied in this context [72]
but the proposed approach is not incremental. The approach we are proposing
here for the incremental elicitation of capacities could easily be adapted to
multicriteria sorting models based on comparisons with reference profiles.

It is worth noting that the absence of any redundancy in preference queries
is a key aspect to obtain efficient questionnaires. We remind indeed that the
DM is asked to compare a pair of alternatives (x, y) only when both answers
“x preferred to y” and “y preferred to x” are consistent with the preferences
collected so far. Hence, we implicitly enforce consistency of stated preference
statements and inferred preferences. However, we do not check the internal
consistency of the DM during the elicitation process nor the adequacy of the
Choquet model to her preferences. Revisiting incremental approaches to manage
possible internal inconsistencies of the DM (noisy preferences) and to offer the
possibility to falsify the decision model (testing consistency of the observed
preferences w.r.t. the Choquet model) while keeping fast elicitation sequences
would be an interesting but challenging line for further research.

Finally, an interesting direction of research, departing from the regret-based
approach, would be incremental elicitation of Choquet capacities using a Bayesian
approach (following works on Bayesian utility elicitation [26, 73]), adopting a
less conservative criterion for selecting preference queries under uncertainty. It
would not provide the same guarantee on the robustness of decisions but could
possibly reduce the average number of preference queries in the elicitation pro-
cess by considering the expected value of information instead of performing a
worst case analysis.

6. Acknowledgments

We wish to thank the reviewers for their very detailed feedback and their
useful recommendations. This work has been supported by the French National
Research Agency through the Idex Sorbonne Universités under grant ANR-11-
IDEX-0004-02.

39

Appendix

Proof of Proposition 2. Let v∗ be an optimal solution of program LP′2. Assume
that v∗ do not satisfy Equation (17) for some A0 ∈ A(x,y) such that ωA0 > 0.
Let v̂ be the solution defined by:

• v̂A = v∗A for all A ∈ A(x,y) such that ωA < 0.

• v̂A = min{uA, min
A′∈Pa(A)

v̂A′} for all A ∈ A(x,y) such that ωA > 0.

Hence, solution v̂ satisfies Equation (17) for all A ∈ A(x,y) such that ωA > 0.
First, we want to prove that v̂ is also a feasible solution of program LP′2. To
do so, we just need to prove that Equations (11), (12), (14), (15) and (16) are
satisfied by v̂ :

• Equation (11): this equation is verified if v̂A ≤ v̂B for all A,B ∈ A(x,y)

such that A ⊂ B, ωA < 0 and ωB < 0. Let A,B ∈ A(x,y) be such that
A ⊂ B, ωA < 0 and ωB < 0. Since A ⊂ B and v∗ is a feasible solution, we
necessarily have v∗A ≤ v∗B due to Equation (11). Then, the result is simply
obtained by using the fact that we have v̂C = v∗C for all C ∈ A(x,y) such
that ωC < 0.

• Equation (12): this equation is satisfied if v̂A ≤ v̂B for all A,B ∈ A(x,y)

such that A ⊂ B, ωA > 0 and ωB > 0. Let A,B ∈ A(x,y) be such that
A ⊂ B, ωA > 0 and ωB > 0. Since A ⊂ B, we necessarily have uA ≤ uB
and Pa(B) ⊆ Pa(A). Therefore, using Equation (17), we obtain:

v̂A = min{uA, min
A′∈Pa(A)

v̂A′} ≤ min{uB , min
B′∈Pa(B)

v̂B′} = v̂B

• Equation (14): this equation is verified if v̂A ≤ v̂B for all A,B ∈ A(x,y)

such that A ⊂ B, ωA > 0 and ωB < 0. The result directly follows from
Equation (17) since B is an element of Pa(A).

• Equations (15) and (16) : we want to prove lA ≤ v̂A ≤ uA for all A ∈
A(x,y). Note that, for all A ∈ A(x,y) such that ωA < 0, we necessarily have
lA ≤ v̂A ≤ uA since v̂A = v∗A and v∗ is a feasible solution. Let A ∈ A(x,y)

be such that ωA > 0. By definition, we have v̂A ≤ uA (see Equation
(17)). Therefore, we just need to prove v̂A ≥ lA. Since lA′ ≥ lA for all
A′ ∈ Pa(A), we have:

v̂A = min{uA, min
A′∈Pa(A)

v̂A′} ≥ min{lA, min
A′∈Pa(A)

lA′} ≥ lA

Thus, v̂ is a feasible solution of program LP′2. Now, we want to prove that v̂ is
strictly better than v∗, i.e. we want to show that the following inequality holds:∑

A∈A(x,y)

ωAv̂A >
∑

A∈A(x,y)

ωAv
∗
A

40

Since v∗A = v̂A for all A ∈ A(x,y) such that ωA < 0, it is sufficient to prove
that v∗A ≤ v̂A for all A ∈ A(x,y) such that ωA > 0 and that v∗A < v̂A for some
A ∈ A(x,y) such that ωA > 0. Note that, since v∗ is a feasible solution, we
necessarily have v∗A ≤ uA (due to Equation (16)) and v∗A ≤ minA′∈Pa(A) v

∗
A′

(due to Equation (14)). Therefore:

v∗A ≤ min{uA, min
A′∈Pa(A)

v∗A′}

Then, since v∗A′ = v̂A′ for all A′ ∈ Pa(A), we obtain:

v∗A ≤ min{uA, min
A′∈Pa(A)

v∗A′} = min{uA, min
A′∈Pa(A)

v̂A′} = v̂A

Note that the first inequality is necessarily strict if solution v∗ do not satisfy
Equation (17). By hypothesis, there exists some set A ∈ A(x,y), ωA > 0, such
that v∗ do not verify Equation (17). Therefore, we conclude that v̂ is strictly
better than v∗, which contradicts the hypothesis: v∗ cannot be an optimal
solution of program LP′2. �

Proof of Proposition 4. Let us prove by induction that the following statement,
denoted by P (i), holds at the end of step i∈{0, . . . , |A−|}:

∀A ∈ A+, vA=min{uA, min
A′∈Pai(A)

vA′}

For step i = 0 (before entering the loop), statement P (i) obviously holds
since Pai(A) = ∅ and vA is initialized to uA for all A ∈ A+. Assume P (i − 1)
holds for some i ∈ {1, . . . , |A−| − 1}. We want to prove that P (i) is necessarily
true in that case. Let A ∈ A+. At the beginning of step i, we know that
vA = min{uA,minA′∈Pai−1(A) vA′} by induction hypothesis. Let us remark
that none of the variables vA′ , A

′ ∈ Pai−1(A), is modified during this step.
If A 6⊂ A−i , then variable vA is not modified during step i. Moreover, since
Pai(A) = Pai−1(A) in that case, we can directly infer the result. Assume now
that A ⊂ A−i . During step i, variable vA is modified as follows (see line 17):

vA = min{min{uA, min
A′∈Pai−1(A)

vA′}, vA−i }

= min{uA, min
A′∈Pai−1(A)∪{A−i }

vA′}

= min{uA, min
A′∈Pai(A)

vA′}

Thus, statement P (i) holds. Therefore, for all i ∈ {0, . . . , |A−|}, we have vA =
min{uA,minA′∈Pai(A) vA′} for all A ∈ A+. �

Proof of Proposition 6. Let us prove that Algorithm 1 constructs an optimal
solution of LP3. To do so, it is sufficient to prove by induction that the following
statement, denoted by P (i), holds at the end of any step i ∈ {0, . . . , |A−|} of
the ‘for’ loop:

41

“The instantiation of the variables in {vA−k , 1 ≤ k ≤ i} , denoted by Ii, can

be extended to an optimal solution of program LP3.”
If statement P (i) is true for i = |A−|, then it enables us to establish the

result: the instantiation of all negative variables (i.e. {vA : A ∈ A−}) can be
extended to an optimal instantiation, while the remaining variables, which are
those with a positive impact on the objective function (i.e. {vA : A ∈ A+}),
verify the necessary condition for optimality (due to Proposition 5).

For iteration step i = 0 (i.e. before entering the loop), statement P (i)
obviously holds since set {vA−k , 1 ≤ k ≤ i} is empty. Assume now that P (i− 1)

holds for some i ∈ {1, . . . , |A−|}. We want to prove that P (i) is true. Note that
none of the variables in {vA−k , 1 ≤ k ≤ i−1} is updated during step i. Moreover,

the instantiation Ii−1 can be extended to an optimal solution of program LP3

by induction hypothesis. Therefore, we just need to prove that variable vA−i
is instantiated in such a way that instantiation Ii can still be extended to an
optimal solution of LP3.

At iteration step i, a while loop is used to determine the value of vA−i
which

iterates over the positive descendants of node A−i in decreasing order of size.
Two cases may occur: either the value of vA−i

is fixed at line 12 or at line 4. To

simplifly the proof, we will only consider the first case, since the second one can
be proved using very similar arguments (we will come back to this point later).
Thus, we assume here that the while loop stops at some step j ∈ {1, . . . , |Di|}
due to the condition in line 11. In that case, we know that vA−i

is set to uij ,

where uij denotes the value of variable vDi
j

at the beginning of iteration step i

(see line 12). Note that we have:

uij = min{uDi
j
, min
A∈Pai−1(Di

j)
vA}

where Pai−1(Di
j) = {A−k , 1 ≤ k ≤ i − 1 : Di

j ⊂ A−k } (due to Proposition 4).

Therefore, uij actually represents the maximum feasible value of variable vDi
j

given the instantiation of the variables in {vA : A ∈ Pai−1(Di
j)}. Note that we

have {vA : A ∈ Pai−1(Di
j)} ⊆ {vA−k : 1 ≤ k ≤ i − 1}. As a consequence, since

instantiation Ii−1 can be extended to an optimal solution of program LP3 (by
induction hypothesis), we can impose vDi

j
≤ uij while still being able to find an

optimal solution of program LP3. Hence, we can find an optimal solution of
LP3 by solving the following problem:

max
u∈[l

Di
j
,ui

j]
f(u,A(x,y)) (33)

42

where f(u,A(x,y)) denotes the optimal solution of the following subproblem:

max
vA,A∈A(x,y)

∑
A∈A(x,y)

ωAvA (34)

s.t. vDi
j

= u

Equations (18− 22)

We now aim to show that that there exists an optimal solution of program LP3

that extends instantiation Ii−1 while verifying vA−i
= vDi

j
= uij . With this aim

in mind, we want to prove that f(u,A(x,y)) is maximized for u = uij .

Let us focus on the computation of f(u,A(x,y)) for some fixed u ∈ [lDi
j
, uij].

We define the following sets:

• S(Di
j) = {A ∈ A(x,y) : A ⊇ Di

j}: the supersets of Di
j restricted to those

in A(x,y). Each element of S(Di
j) is associated to a variable that is now

bounded below by u (due to the constraint vDi
j

= u).

• P (Di
j) = {A ∈ A(x,y) : A ⊂ Di

j}: the powerset of Di
j restricted to set

A(x,y). Each element of P (Di
j) corresponds to a variable that is now

bounded above by u (due to the constraint vDi
j

= u).

• I(Di
j) = {A ∈ A(x,y) : A 6⊇ Di

j , A 6⊂ Di
j}: the sets that are incomparable

to Di
j . Note that we necessarily have I(Di

j) ∩ A+ = ∅ since Di
j ∈ A+

and A+ is an embedded sequence. Therefore, we have I(Di
j) ⊆ A− which

means that ωA < 0 for all A ∈ I(Di
j); hence, the objective function of

problem (34) increases as variable vA decreases. We want to prove that
there exists an optimal solution of problem (34) such that vA ≤ max{lA, u}
for all A ∈ I(Di

j). Let A ∈ I(Di
j). Assume first that there exists no set

A′ ∈ A(x,y) such that A′ ⊂ A. In that case, Equations (18-22) do not
include any constraint of type vA′ ≤ vA. Therefore, since the objective
function increases as variable vA decreases, we know that there exists an
optimal solution such that vA = lA ≤ max{lA, uA}. Assume now that
there exists A′ ∈ A(x,y) such that A′ ⊂ A. First, we want to prove
that imposing vA ≤ max{lA, u} does not impact on variable vA′ . Two
cases may occur: either ωA′ > 0 or ωA′ < 0. Let A′ ∈ A(x,y) be such
that A′ ⊂ A and ωA′ > 0 (it it exists). Note that A′ ⊂ Di

j must hold,

as otherwise we would have Di
j ⊂ A and A ∈ I(Di

j) (which yields a

contradiction). As a consequence, we necessarily have A′ ∈ P (Di
j); hence,

vA′ is bounded above by u. Therefore, imposing vA ≤ max{lA, u} does
not impact on variable vA′ . Let A′ ∈ A(x,y) be such that A′ ⊂ A and
ωA′ < 0 (it it exists). If A′ ∈ P (Di

j), then vA′ is bounded above by u and
so imposing vA ≤ max{u, lA} does not impact on variable vA′ . Otherwise,
we necessarily have A′ ∈ I(Di

j) and so the result can be obtained by
iterating this complete reasoning on A′: vA′ ≤ max{lA′ , u} ≤ max{lA, u}.
Hence, we can impose vA ≤ max{u, lA} without impacting on variable

43

vA′ . As a consequence, since the objective function increases as variable
vA decreases, we know that there exists an optimal solution such that
vA ≤ max{lA, u}.

Thus, set A(x,y) can be decomposed into three disjoint sets S(Di
j), P (Di

j) and

I(Di
j) such that:

f(u,A(x,y)) = h(u, P (Di
j), I(Di

j)) + g(u, S(Di
j))

where h(u, P (Di
j), I(Di

j)) denotes the optimum of the following problem:

max
vA,A∈P (Di

j)∪I(Di
j)

∀A∈P (Di
j),vA≤u

∀A∈I(Di
j),vA≤max{lA,u}

∑
A∈P (Di

j)∪I(Di
j)

ωAvA

and g(u, S(Di
j)) denotes the optimal value of the following problem:

max
vA,A∈S(Di

j)

∀A∈S(Di
j),vA≥u

v
Di

j
=u

∑
A∈S(Di

j)

ωAvA

Equations (18-22) are here omitted to simplifly the presentation. Note that
these two subproblems have no variable in common; hence, Equations (18-22)
are actually restricted to the variables that are involved in the considered sub-
problem.

We can observe that h(u, P (Di
j), I(Di

j)) is an increasing function of u since
constraints of types “vA ≤ u” or “vA ≤ max{lA, u}” become less constraining
as u increases. Therefore, h(u, P (Di

j), I(Di
j)) is maximized for u = uij . As a

consequence, in order to prove that f(u,A(x,y)) is maximized for u = uij , it is

sufficient to show that g(u, S(Di
j)) is maximized for u = uij .

First, let us simplify the optimization problem. By induction hypothesis, all
variables in {vA−k : 1 ≤ k ≤ i − 1} have already been “correctly” instantiated.

Therefore, we can remove all these variables from the optimization and we just
have to enforce consistency of the next instantiations. Moreover, given the
instantiation of these variables, we can derive the optimal value of all variables
in {vA, A ∈ A+ : A 6⊂ A−i } from the necessary condition (17); hence, these
variables can also be removed from the optimization problem. We now want to
show that g(u, s(Di

j)) is maximized for u = uij where:

s(Di
j) = S(Di

j)\({A−k : 1 ≤ k ≤ i− 1} ∪ {A ∈ A+ : A 6⊂ A−i })

We first assume that u is a feasible value of all variables vA, A ∈ s(Di
j), i.e.

lA ≤ u ≤ uA for all A ∈ s(Di
j). On that assumption, we aim to prove that

there exists α > 0 such that g(u, s(Di
j)) = α×u. We decompose s(Di

j) into two

disjoints sets s(Di
j)

+ and s(Di
j)
− defined as follows:

44

• s(Di
j)

+ = A+ ∩ s(Di
j) = {Di

m : 1 ≤ m ≤ j}. This set is composed of the

j first positive descendants of node A−i .

• s(Di
j)
− = A−∩s(Di

j) = {A−k : i ≤ k ≤ K}, where K is the largest value k

such that i ≤ k ≤ |A−| and A−k ⊃ Di
j . This set is composed of all A ∈ A−

such that Di
j ⊂ A ⊆ A

−
i .

First, we want to prove that all variables in {vA : A ∈ s(Di
j)
−} can be removed

from the optimization problem. Note that, for all k ∈ {i, . . . ,K}, Dk
1 the first

positive descendant of A−k is necessarily included in s(Di
j)

+ since Di
j is positive

and Di
j ⊂ A−k ⊆ A−i . Therefore, we can decompose set s(Di

j)
− into j disjoint

sets s(Di
j)
−
1 , . . . , s(D

i
j)
−
j , defined as follows:

∀m ∈ {1, . . . , j}, s(Di
j)
−
m = {A−k , i ≤ k ≤ K : Dk

1 = Di
m}

Note that ωA < 0 for all A ∈ s(Di
j)
−
m, m ∈ {1, . . . , j}; therefore, g(u, s(Di

j))

increases as vA decreases. Moreover, by definition of set s(Di
j)
−
m, we have:

Di
m ⊂ A and 6 ∃A′ ∈ A+, Di

m ⊂ A′ ⊂ A

Therefore, due to the monotonicity constraints, vA = max{lA, vDi
m
} must hold

at the optimum point. Then, since vDi
m
≥ u (by definition of S(Di

j)) and
u ≥ lA (by hypothesis), we can conclude vA = vDi

m
at the optimum point. As

a consequence, variables vA, A ∈ s(Di
j)
−
m, can be substituted by vDi

m
in the

optimization problem. More precisely, g(u, s(Di
j)) can be computed by solving

the following problem:

max
vDi

m
,m∈{1,...,j}

∀m∈{1,...,j−1}:vDi
m
≥u

v
Di

j
=u

j∑
m=1

[(
ωDi

m
+

∑
A∈s(Di

j)−m

ωA

)
vDi

m

]
(35)

Note that this optimization problem only involves the positive variables vDi
m
,m ∈

{1, . . . , j}. We want to prove that there exists an optimal solution of this sub-
problem such that vDi

1
= . . . = vDi

j
. To do so, we first study the term associated

with vDi
1

in the objective function defined by Equation (35). Note that its co-

efficient is actually equal to ω+ + ω−, where ω+ and ω− are defined at the first
step of the while loop. Since the while loop stops at step j due to line 11, we
know that ω+ + ω− ≤ 0 at the first step (unless j = 1 of course). Therefore,
we know that the objective function defined by Equation (35) increases as vDi

1

decreases. Moreover, since vDi
1

must be larger than or equal to vDi
2

due to
Equation (19), then we know that there exists an optimal solution such that
vDi

1
= max{lDi

1
, vDi

2
}; then, since vDi

2
≥ u (by definition of g) and u ≥ lDi

1
(by

hypothesis), we can conclude vDi
1

= vDi
2
. Therefore, we can substitute vDi

1
by

45

vDi
2

in the problem, which leads to the following objective function:

(2∑
m=1

ωDi
m

+
∑

A∈s(Di
j)−1 ∪s(Di

j)−2

ωA

)
vDi

2
+

j∑
m=3

[
(ωDi

m
+
∑

A∈s(Di
j)−m

ωA)vDi
m

]
By iterating this reasoning, we can conclude that:

g(u, s(Di
j)) = max

v
Di

j
=u

{(∑
A∈s(Di

j)

ωA

)
vDi

j

}
= α× u

where α =
∑
A∈s(Di

j) ωA. This equality only holds under the assumption that

u ≥ lA for all A ∈ s(Di
j); otherwise, some values vA, A ∈ s(Di

j), have been au-
thorized to decrease below their minimal feasible value (to improve the objective
function), which only provides the following inequality: g(u, s(Di

j)) ≤ α × u.

However, this equality is true for u = uij : we indeed have uij ≥ lA−i
due

to line 8 and lA−i
≥ lA for all A ∈ s(Di

j) since A−i ⊃ A. Moreover, since

the while loop stops at step j due to line 11, we know that α > 0 since
ω+ + ω− = α =

∑
A∈s(Di

j) ωA at step j. As a consequence, for all u 6= uij ,

we have:
g(u, s(Di

j)) ≤ α× u < α× uij = g(uij , s(D
i
j))

This shows that function g(u, s(Di
j)) is maximized for u = uij ; therefore, function

f(u,A(x,y)) is also maximized for u = uij . Thus, when vA−i
is set to uij (due to

the condition in line 11), there exists an optimal solution extending Ii−1 such
that vA−i

= vDi
1

= vDi
j

= uij , which means that P (i) holds in that case. When

vA−i
is set to lA−i

(due to line 4), two cases may occur:

• If Di = ∅ or vDi
1
≤ lA−i

, then no positive variable conflicts with vA−i
.

Moreover, since ωA−i
< 0, we know that the objective function strictly

increases as vA−i
decreases. Therefore, vA−i

must be set to its lower bound

lA−i
in that case.

• Otherwise, we can use the same arguments as those we used when vA−i
is set to uij (due to line 12). More precisely, a similar reasoning with
j = M establishes the result, where M is the largest value m such that
1 ≤ m ≤ |Di| and vDi

m
> lA−i

. The main difference is that we obtain a

decreasing function of u at the end (since all tests in line 11 fail) and so
variable vA−i

must be set to its lower bound lA−i
instead.

Therefore, P (i) holds in all cases. Hence, our algorithm is valid. �

References

[1] N. Benabbou, P. Perny, P. Viappiani, Incremental elicitation of Choquet
capacities for multicriteria decision making, in: Proceedings of ECAI’14,
2014, pp. 87–92.

46

[2] D. Schmeidler, Integral representation without additivity, Proceedings of
the American Mathematical Society 97 (2) (1986) 255–261.

[3] M. E. Yaari, The dual theory of choice under risk, Econometrica 55 (1987)
95–115.

[4] J. Quiggin, Generalized Expected Utility Theory, Kluwer Academic Pub-
lishers, 1989.

[5] M. Grabisch, The application of fuzzy integrals in multicriteria decision
making, European Journal of Operational Research 89 (3) (1996) 445–456.

[6] M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap, Aggregation Functions
(Encyclopedia of Mathematics and Its Applications), Cambridge University
Press, New York, NY, USA, 2009.

[7] V. Torra, The weighted OWA operator, International Journal of Intelligent
Systems 12 (1997) 153–166.

[8] R. Yager, On Ordered Weighted Averaging aggregation operators in multi-
criteria decision making, IEEE Transactions on Systems, Man and Cyber-
netics 18 (1998) 183–190.

[9] M. Grabisch, C. Labreuche, A decade of application of the Choquet and
Sugeno integrals in multi-criteria decision aid, Annals of Operations Re-
search 175 (1) (2010) 247–286.

[10] A. F. Tehrani, W. Cheng, K. Dembczynski, E. Hüllermeier, Learning mono-
tone nonlinear models using the choquet integral, Machine Learning 89 (1-
2) (2012) 183–211.

[11] G. Beliakov, T. Calvo, S. James, Aggregation functions for recommender
systems, in: Recommender Systems Handbook, 2015, pp. 777–808.

[12] J. Dubus, C. Gonzales, P. Perny, Choquet optimization using GAI net-
works for multiagent/multicriteria decision-making, in: Algorithmic De-
cision Theory, First International Conference, ADT 2009, Venice, Italy,
October 20-23, 2009. Proceedings, 2009, pp. 377–389.

[13] V. Torra, Y. Narukawa, Modeling decisions - information fusion and aggre-
gation operators, Springer, 2007.

[14] L. Galand, P. Perny, Search for choquet-optimal paths under uncertainty,
in: UAI 2007, Proceedings of the Twenty-Third Conference on Uncertainty
in Artificial Intelligence, Vancouver, BC, Canada, July 19-22, 2007, 2007,
pp. 125–132.

[15] M. Grabisch, H. Nguyen, E. Walker, Fundamentals of Uncertainty Cal-
culi, with Applications, Encyclopedia of Mathematics and its Applications,
Kluwer Academic Publishers, 1995.

47

[16] J.-L. Marichal, M. Roubens, Determination of weights of interacting criteria
from a reference set, European Journal of Operational Research 124 (3)
(2000) 641–650.

[17] P. Meyer, M. Roubens, On the use of the Choquet integral with fuzzy num-
bers in multiple criteria decision support, Fuzzy Sets and Systems 157 (7)
(2006) 927–938.

[18] S. Greco, V. Mousseau, R. Slowinski, Ordinal regression revisited: Multiple
criteria ranking using a set of additive value functions, European Journal
of Operational Research 191 (2) (2008) 416–436.

[19] A. F. Tehrani, W. Cheng, K. Dembczynski, E. Hüllermeier, Learning mono-
tone nonlinear models using the Choquet integral, Machine Learning 89 (1-
2) (2012) 183–211.

[20] E. Hüllermeier, A. Fallah Tehrani, Efficient learning of classifiers based on
the 2-additive Choquet integral, in: Computational Intelligence in Intel-
ligent Data Analysis Studies in Computational Intelligence Volume, Vol.
445, 2013, pp. 17–29.

[21] S. Greco, V. Mousseau, R. Slowinski, Robust ordinal regression for value
functions handling interacting criteria, European Journal of Operational
Research 239 (3) (2014) 711–730.

[22] M. Grabisch, J.-L. Marichal, R. Mesiar, E. Pap, Aggregation Functions,
Encyclopedia of Mathematics and its Applications, Cambridge University
Press, New-York, 2009.

[23] J.-L. Marichal, P. Meyer, M. Roubens, Sorting multi-attribute alternatives:
the TOMASO method, Computers & Operations Research 32 (2005) 861–
877.

[24] F. Huédé, M. Grabisch, C. Labreuche, P. Savéant, Integration and propaga-
tion of a multi-criteria decision making model in constraint programming,
Journal of Heuristics 12 (4-5) (2006) 329–346.

[25] C. C. W. III, A. P. Sage, S. Dozono, A model of multiattribute decision-
making and trade-off weight determination under uncertainty, IEEE Trans-
actions on Systems, Man, and Cybernetics 14 (2) (1984) 223–229.

[26] U. Chajewska, D. Koller, R. Parr, Making Rational Decisions Using Adap-
tive Utility Elicitation, in: Proceedings of AAAI’00, 2000, pp. 363–369.

[27] C. Boutilier, A POMDP Formulation of Preference Elicitation Problems,
in: Proceedings of AAAI’02, 2002, pp. 239–246.

[28] T. Wang, C. Boutilier, Incremental Utility Elicitation with the Minimax
Regret Decision Criterion, in: Proceedings of IJCAI’03, 2003, pp. 309–316.

48

[29] C. Boutilier, R. Patrascu, P. Poupart, D. Schuurmans, Constraint-based
Optimization and Utility Elicitation using the Minimax Decision Criterion,
Artifical Intelligence 170 (8–9) (2006) 686–713.

[30] D. Braziunas, C. Boutilier, Assessing regret-based preference elicitation
with the utpref recommendation system, in: Proceedings 11th ACM Con-
ference on Electronic Commerce (EC-2010), 2010, pp. 219–228.

[31] J. Fürnkranz, E. Hüllermeier, Preference learning: An introduction, in:
J. Fürnkranz, E. Hüllermeier (Eds.), Preference Learning, Springer Berlin
Heidelberg, 2011, pp. 1–17.

[32] L. Galand, P. Perny, O. Spanjaard, Choquet-based optimisation in multi-
objective shortest path and spanning tree problems, European Journal of
Operational Research 204 (2) (2010) 303–315.

[33] M. Timonin, Maximization of the Choquet integral over a convex set and its
application to resource allocation problems, Annals of Operations Research
196 (2012) 543–579.

[34] L. Galand, J. Lesca, P. Perny, Dominance rules for the Choquet integral in
multiobjective dynamic programming, in: Proceedings of IJCAI’13, 2013,
pp. 538–544.

[35] J. Lesca, M. Minoux, P. Perny, Compact versus noncompact LP formu-
lations for minimizing convex Choquet integrals, Discrete Applied Mathe-
matics 161 (1-2) (2013) 184–199.

[36] L. J. Savage, The Foundations of Statistics, Wiley, New York, 1954.

[37] P. Kouvelis, G. Yu, Robust Discrete Optimization and Its Applications,
Kluwer, Dordrecht, 1997.

[38] A. Salo, R. P. Hämäläinen, Preference ratios in multiattribute evaluation
(PRIME)–elicitation and decision procedures under incomplete informa-
tion, IEEE Trans. on Systems, Man and Cybernetics 31 (6) (2001) 533–545.

[39] D. Braziunas, Decision-theoretic elicitation of generalized additive utilities,
Ph.D. thesis, University of Toronto (2011).

[40] P. Viappiani, C. Boutilier, Regret-based optimal recommendation sets in
conversational recommender systems, in: Proceedings of the third ACM
conference on Recommender systems, ACM, 2009, pp. 101–108.

[41] T. Lu, C. Boutilier, Robust approximation and incremental elicitation in
voting protocols, in: Proceedings of IJCAI’11, 2011, pp. 287–293.

[42] J. Drummond, C. Boutilier, Elicitation and approximately stable matching
with partial preferences, in: Proceedings of IJCAI’13, 2013, pp. 97–105.

49

[43] N. Argyris, A. Morton, J. R. Figueira, CUT: A multicriteria approach for
concavifiable preferences, Operations Research 62 (3) (2014) 633–642.

[44] R. Dechter, From local to global consistency, Artificial intelligence 55 (1992)
87–107.

[45] W. W. Cohen, R. E. Schapire, Y. Singer, Learning to order things, Journal
of Artificial Intelligence Research 10 (1) (1999) 243–270.

[46] R. Herbrich, T. Graepel, K. Obermayer, Large Margin Rank Boundaries
for Ordinal Regression, MIT Press, 2000, Ch. 7, pp. 115–132.

[47] E. Hüllermeier, J. Fürnkranz, W. Cheng, K. Brinker, Label ranking by
learning pairwise preferences, Artificial Intelligence 172 (1617) (2008) 1897
– 1916.

[48] D. E. Critchlow, M. A. Fligner, J. S. Verducci, Probability models on rank-
ings, Journal of Mathematical Psychology 35 (3) (1991) 294 – 318.

[49] P. Fishburn, Utility theory for decision making, Publications in operations
research, Wiley, 1970.

[50] T. Saaty, The Analytic Hierarchy Process, Planning, Piority Setting, Re-
source Allocation, McGraw-Hill, New york, 1980.

[51] E. Jacquet-Lagrèze, Y. Siskos, Assessing a set of additive utility functions
for multicriteria decision making: the UTA method, European Journal of
Operational Research 10 (1982) 151–164.

[52] J.-P. Brans, P. Vincke, A preference ranking organisation method: (the
PROMETHEE method for multiple criteria decision-making), Management
science 31 (6) (1985) 647–656.

[53] R. L. Keeney, H. Raiffa, Decisions with multiple objectives: preferences
and value trade-offs, Cambridge university press, 1993.

[54] B. Roy, Multicriteria Methodology for Decision Analysis, Kluwer Academic
Publishers, 1996.

[55] E. Jacquet-Lagreze, An application of the UTA discriminant model for
the evaluation of R&D projects, in: Advances in Multicriteria Analysis,
Nonconvex Optimization and Its Applications, Springer US, 1995, pp. 203–
211.

[56] C. Zopounidis, M. Doumpos, A multicriteria decision aid methodology for
sorting decision problems: The case of financial distress, Computational
Economics 14 (3) (1999) 197–218.

[57] C. Zopounidis, M. Doumpos, Multicriteria classification and sorting meth-
ods: A literature review, European Journal of Operational Research 138 (2)
(2002) 229–246.

50

[58] S. Greco, V. Mousseau, R. Slowinski, Multiple criteria sorting with a set of
additive value functions, European Journal of Operational Research 207 (3)
(2010) 1455–1470.

[59] J. Fürnkranz, E. Hüllermeier, S. Vanderlooy, Binary decomposition meth-
ods for multipartite ranking, in: W. Buntine, M. Grobelnik, D. Mladeni,
J. Shawe-Taylor (Eds.), Machine Learning and Knowledge Discovery in
Databases, Vol. 5781 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2009, pp. 359–374.

[60] J. Quevedo, E. Montañés, O. Luaces, J. del Coz, Adapting decision DAGs
for multipartite ranking, in: J. Balczar, F. Bonchi, A. Gionis, M. Sebag
(Eds.), Machine Learning and Knowledge Discovery in Databases, Vol. 6323
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2010,
pp. 115–130.

[61] K. Uematsu, Y. Lee, Statistical optimality in multipartite ranking and or-
dinal regression, Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 37 (5) (2015) 1080–1094.

[62] J. Ah-Pine, B. Mayag, A. Rolland, Identification of a 2-additive bi-capacity
by using mathematical programming, in: Algorithmic Decision Theory,
Springer, 2013, pp. 15–29.

[63] M. Timonin, Robust optimization of the choquet integral, Fuzzy Sets and
Systems 213 (2013) 27–46.

[64] P. Viappiani, C. Boutilier, Recommendation sets and choice queries: There
is no exploration/exploitation tradeoff!, in: Proceedings of AAAI’11, 2011,
pp. 1571–1574.

[65] B. Roy, A multicriteria analysis for trichotomic segmentation problems, in:
Multiple Criteria Analysis, P. Nijkamp and J. Spronk (eds), Gaver, 1981,
pp. 245–257.

[66] V. Mousseau, R. Slowinski, Inferring an ELECTRE-TRI model from as-
signment examples, Journal of Global Optimization 12 (2) (1998) 157–174.

[67] P. Perny, Multicriteria filtering methods based onconcordance and non-
discordance principles, Annals of operations Research 80 (1998) 137–165.

[68] D. Bouyssou, T. Marchant, An axiomatic approach to noncompensatory
sorting methods in MCDM, I: The case of two categories, European Journal
of Operational Research 178 (1) (2007) 217 – 245.

[69] D. Bouyssou, T. Marchant, An axiomatic approach to noncompensatory
sorting methods in MCDM, II: More than two categories, European Journal
of Operational Research 178 (1) (2007) 246 – 276.

51

[70] V. Mousseau, R. Slowinski, P. Zielniewicz, A useroriented implementation
of the ELECTRE-TRI method integrating preference elicitation support,
Computers and Operations Research 27 (2000) 757–777.

[71] O. Sobrie, V. Mousseau, M. Pirlot, Learning a majority rule model from
large sets of assignment examples, in: Proceedings of ADT’13, 2013, pp.
336–350.

[72] O. Sobrie, V. Mousseau, M. Pirlot, Learning the parameters of a non com-
pensatory sorting model, in: Proceedings of ADT’15, 2015, pp. 153–170.

[73] P. Viappiani, C. Boutilier, Optimal Bayesian recommendation sets and
myopically optimal choice query sets, in: Advances in Neural Information
Processing Systems 23 (NIPS), 2010, pp. 2352–2360.

52

	Introduction
	Background and notations
	Discrete Choquet integrals
	Choice based on the minimax regret criterion
	Incremental elicitation for choice problems

	Choice and ranking with a Choquet integral
	LP formulations of the `39`42`"613A``45`47`"603APMR-optimization problem
	A more compact formulation
	Efficient optimization of the compact formulation
	A query generation strategy for Choquet capacity elicitation
	Numerical tests involving choice problems
	Ranking by iterated choices

	Sorting methods with thresholds on Choquet values
	An incremental elicitation approach for sorting with thresholds
	Determination of the optimal assignment
	Application to Choquet integrals
	A query generation strategy for Choquet capacity elicitation
	Numerical tests

	Discussion and conclusions
	Acknowledgments

