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Abstract

Lineage-selective expression of developmental genes is dependent on the interplay

between activating and repressive mechanisms. Gene activation is dependent on cell-spe-

cific transcription factors that recognize transcriptional enhancer sequences. Gene repres-

sion often depends on the recruitment of Polycomb group (PcG) proteins, although the

sequences that underlie the recruitment of PcG proteins, also known as Polycomb response

elements (PREs), remain poorly understood in vertebrates. While distal PREs have been

identified in mammals, a role for positive-acting enhancers in PcG-mediated repression has

not been described. Here we have used a highly efficient procedure based on lentiviral-

mediated transgenesis to carry out in vivo fine-mapping of, cis-regulatory sequences that

control lineage-specific activation of Neurog3, a master regulator of pancreatic endocrine

differentiation. Our findings reveal an enhancer region that is sufficient to drive correct spa-

cio-temporal expression of Neurog3 and demonstrate that this same region serves as a

PRE in alternative lineages where Neurog3 is inactive.

Introduction

Embryonic development involves the establishment of progressively divergent transcriptional

programs. This process relies on the dynamic activation of developmental regulatory genes,

which is largely determined through the interaction of lineage-specific transcriptional activa-

tors with cis-acting sequences located in enhancers [1,2].
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Strict spatiotemporal regulation is further determined by mechanisms that repress lineage-

specific regulatory genes. Polycomb group (PcG) proteins are thought to play a major role in

the repression of such genes [3–5]. PcG-dependent repression is mediated by two major com-

plexes known as PRC1 and PRC2 that act in an interdependent manner. PRC2 contains Ezh2

and Ezh1 in its non-canonical form, both of which catalyzes the trimethylation of Lysine 27 on

histone 3 (H3K27me3). This histone mark contributes to the recruitment of the PRC1 com-

plex, which promotes H2A ubiquitylation, interference with transcriptional machinery, and

chromatin compaction [4–8].

In contrast to the extensive knowledge of how DNA binding factors are recruited to specific

genomic regions to promote lineage-specific transcription, the recruitment of PcG complexes

remains poorly understood. In Drosophila, Polycomb response elements (PREs) are enriched in

specific DNA binding factor motifs, and can therefore often be predicted [9]. To demonstrate

an element functions as a PRE, it must be shown that it can autonomously recruit polycomb

proteins outside of its normal genomic environment, which has been done for several Drosoph-

ila PREs [9,10]. In vertebrates, our understanding of PREs is more limited, and so far no combi-

nation of DNA-binding motifs has been able to predict their existence. Recent studies, however,

have shown that PcG proteins primarily target GC-rich promoter regions, and suggest that a

high density of unmethylated CpGs may be sufficient to promote PcG recruitment and repres-

sion in the absence of activating signals [11–14]. Other work however suggests that CpG islands

are not required for the recruitment of PcG- proteins in the HoxD gene cluster in vivo [15]. In

addition to promoter associated PREs, distal PREs have been identified in the mammalian

genome, adding to the challenge of understanding what characterizes a PRE and how they con-

tribute to gene regulation [13,15–17]. Thus, current evidence implicates both CpG-rich pro-

moter-proximal regions and distal regions in the recruitment of PcG repressive complexes.

However, enhancer regions exerting a dual regulatory function of promoting transcription in

one lineage and ensuring PcG-mediated repression in another lineage, have not been shown.

In the current study we have examined the cis-regulatory mechanisms of Neurog3, which

encodes a transcription factor that is essential for the formation of all pancreatic endocrine lin-

eages, including insulin-producing β-cells [18–20]. Neurog3 is transiently activated in a sub-

population of cells of the ductal epithelium of the embryonic pancreas, and orchestrates a

lineage-committed progenitor program that leads to the differentiation of hormone-producing

cells [19–22]. Understanding the mechanisms that control Neurog3 activation is therefore criti-

cal for efforts to artificially program functional β-cells.

Previous work demonstrated that the 5.7 kb upstream sequence of human NEUROG3 can

drive a correct spatio-temporal expression pattern in transgenic mice [23], yet critical cis-ele-

ments within this sequence remain to be established. Several studies have revealed transcrip-

tion factors that interact with specific sequences in the Neurog3 5’ region [23–26], although the

in vivo function of such regulatory elements has not been examined.

So far, studies of the transcriptional mechanisms that underlie pancreas development

have largely focused on activating transcription factors and cis-regulatory elements [23–29].

Pancreatic cell differentiation, however, is also linked to dynamic changes in PcG-repressed

chromatin [30–32], although nothing is known about the sequence elements that direct the

repressive programs that are relevant for pancreatic endocrine differentiation.

Here we used an efficient lentiviral transgenesis strategy to dissect the function of Neurog3
cis-regulatory elements in vivo. Using this approach, we identify an enhancer region that is suffi-

cient to direct correct expression of the Neurog3 gene in embryonic pancreatic progenitors, and

in this enhancers we map discrete cis-elements that are recuired for its function. In addition, our

study shows that the same enhancer region acts as a PRE in alternate cellular lineages, thereby

illustrating how one genomic region can exert a dual function as an enhancer and as a PRE.

A Neurog3 enhancer region that functions as a PRE
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Results

An enhancer region that activates Neurog3 in endocrine progenitors

Sequence conservation and monomethylated Histone 3 Lysine 4 (H3K4me1) in the absence of

trimethylated H3K4 (H3K4me3) are known hallmarks of transcriptional enhancers [33]. To

identify sequences that regulate the expression of Neurog3 during development, we screened

the Neurog3 5’ region for evolutionary sequence conservation and H3K4me1-enrichment in

mouse pancreatic bud from embryonic day 13.5, when Neurog3 expression peaks. Conserva-

tion was particularly high in the region stretching from approximately -5kb to -3kb relative to

the transcription start site (TSS) (Fig 1A). This same region also showed H3K4me1 enrich-

ment in the absence of H3K4me3, to a similar extent as a well-known pancreatic enhancer of

the Pdx1 gene (Fig 1B) [34].

Based on these findings we first tested the ability of a fragment stretching from approxi-

mately -5.5 kb to -1.5 kb of the Neurog3 gene to drive expression of a reporter gene selectively

in Neurog3+ cells using standard transgenesis (S1 Fig). This 3.9kb element (construct A; Fig

1A) was able to reproduce selective expression of the LacZ reporter gene in all Neurog3+ cells,

namely the ventral hypothalamus, the ventral spinal cord, the duodenum and the pancreas,

with only minimal ectopic expression (S1A Fig). To assess if a similar result could be obtained

by a smaller fragment, we generated construct B, C and D (Fig 1A) and demonstrated that

only construct B (representing the 5 prime 2.2kb of construct A) consistently reproduced the

expression pattern of Neurog3 with the exception of expression in the ventral spinal cord (S1B

Fig). These results demonstrate that enhancer region B, hereafter referred to as the Neurog3
enhancer region, contains all the regulatory sequences to drive correct spatio-temporal expres-

sion of Neurog3 in the pancreas.

Recapitulation of Neurog3 enhancer activity using highly efficient

lentiviral-mediated transgenesis

Next we aimed to further dissect the Neurog3 enhancer region by generating deletions of puta-

tive regulatory elements. However, the efficiency of standard transgenesis is prohibitively low to

allow for a comprehensive screen of this nature. For example, in the abovementioned analysis,

263 embryos were collected, of which only 38 (14.5%) showed transgene integration and only 3

of them expressed LacZ in the pancreas at embryonic day 14.5. We thus tested lentiviral trans-

duction in fertilized eggs followed by embryo implantation in pseudopregnant mice as an alter-

native strategy to produce transgenic animals [35]. After initial transduction with a lentiviral

vector expressing GFP under the control of the Neurog3 enhancer region, we confirmed trans-

gene integration in 85 out of 94 (90.4%) embryos and transgene expression in 72 (76.6%)

embryos. In comparison, after pronuclear injection of the same Neurog3 enhancer region, only

3 out of 89 (3.4%) collected embryos expressed the transgene (Fig 1C). Taken together, the data

indicate that in our hands lentiviral transgenesis is at least 20-fold more efficient than standard

transgenesis (Fig 1C). In lentiviral transgenic embryos, selectivity of GFP expression in Neu-

rog3+ cells was similar to the results obtained through standard transgenesis (Fig 1D and 1E, S1

and S2 Figs). Having thus validated lentiviral transgenesis for the assessment of enhancer func-

tion, we set out to identify critical activating elements within the Neurog3 enhancer region.

A 50 bp cis-element is essential for Neurog3 enhancer activation in

pancreatic progenitors

As a first step to identify critical activating sequence elements within the Neurog3 enhancer

region, we searched for ~50 bp elements enriched in binding site sequence motifs for

A Neurog3 enhancer region that functions as a PRE
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pancreatic transcription factors. We identified 3 motif clusters of 50–65 bp length located ~

-4.9 to -3.3kb upstream of the Neurog3 TSS, which we refer to as candidate cis-elements 1, 2

and 3 (Fig 2A). We assessed if these elements were essential for Neurog3 expression by generat-

ing lentiviral-mediated transgenic animals with the Neurog3 enhancer region carrying deletions

for each of these 3 cis-elements. While loss of element 1 or 2 did not change the expression pat-

tern in any of the transgenic embryos (16 and 17 transgenics studied, respectively), loss of ele-

ment 3 led to a full abrogation of expression in 28 out of 30 transgenic embryos (Fig 2B and

2C). A critical role for this same element (previously described as ‘Cluster 1’ in human [23]) had

been suggested previously based on interactions with key pancreatic transcription factors,

although its in vivo function was not tested [23,26]. Taken together, these results uncover a dis-

tal 50 bp cis-element that is essential for activation of the Neurog3 enhancer in embryonic pan-

creatic endocrine progenitors.

Pdx1, Foxa2 and Hnf1b act on cis-element 3 to activate Neurog3

The analysis of transcription factor binding motifs together with previous work suggested that

the Neurog3 enhancer region exerts its activating effect through the binding of Pdx1, Foxa2

and Hnf1b to cis-element 3 [23,26] (Fig 2A). To address this hypothesis we first tested binding

of these factors to cis-element 3 using EMSA. Using nuclear extracts from pancreatic buds iso-

lated at E13.5 and specific antibodies we confirmed binding of Pdx1, Foxa2, and Hnf1b (Fig

3A). Next, we performed ChIP on E13.5 pancreatic bud chromatin. This experiment, while

technically challenging as<5% of the cells in pancreatic buds express Neurog3, suggested that

these three factors also bind to the cis-element 3 of the endogenous enhancer region in vivo
(Fig 3B).

To further address the activating role of this regulatory element we designed mutations that

selectively disrupt binding of Hnf1 (Mut3), or both Pdx1 and Hnf1 (Mut1) to the 5’ side of cis-

element 3, or else binding of both Pdx1 and Foxa2 to the 3’ side of cis-element 3 (Mut7) (S3

Fig, S1 Table and S2 Table). In lentiviral-mediated transgenic animals, all three mutations, and

most clearly Mut7, caused a reduction in the expression penetrance (number of Neurog3 cells

that show GFP) and cell-type specificity of expression (number of GFP cells that express Neu-

rog3, Fig 3C and 3D). Next, we combined Mut1 and Mut7 and found a further 33% reduction

in the combined mutant as compared to Mut7 alone for the number of Neurog3 cells that

express GFP (Fig 3C and 3D). These results suggest that Pdx1, Foxa2 and Hnf1b activate Neu-
rog3 through cis-element 3 in a partially redundant manner. Importantly, the data identifies

discrete nucleotides that are essential to for the ability of the Neurog3 enhancer to drive

expression in the embryonic pancreas in vivo.

Fig 1. Mapping a Neurog3 enhancer region through highly efficient lentiviral transgenesis. A.

Schematic representation of the screened Neurog3 locus. Orange bars depict regions A-D that were selected

for characterization through standard transgenesis. PCR amplicons that were used for ChIP analysis (in B)

are shown in blue. The conservation track represents conservation over 17 vertebrate species. B. ChIP

revealed H3K4me1 without H3K4me3 enrichment in E13.5 pancreatic buds in putative Neurog3 enhancer

regions (n = 1; note that the H3K4me3 signal results from Neurog3+ cells which represent <5% of the

pancreatic bud). Pdx1 Area 4 is shown as a positive control as it represents a known enhancer. C. Lentiviral

integration increases the efficiency of transgenesis and transgene expression compared with standard

pronuclear injections. D, E. Expression of GFP under the control of the Neurog3 enhancer region B in lentiviral

transgenics. Native GFP in a whole mount follows the trunk of E14.5 pancreas (D) and coincides with

endogenous Neurog3 in (E, panel I-III), whereas no overlap is seen with Amylase (red; panel V) and only rare

overlap is seen with Insulin and Glucagon (panel IV). Occasional GFP-positive Neurog3-negative cells were

found at E14.5, most of which belonged to the endocrine lineage (panel III, IV). Scale bars are 75 μm (D) and

50μm (E).

doi:10.1371/journal.pone.0171508.g001

A Neurog3 enhancer region that functions as a PRE
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Fig 2. An essential activating cis-element within the Neurog3 enhancer region. A. Three elements in the Neurog3 enhancer displayed clustered binding

motifs for known pancreatic transcription factors. Black lines above sequence indicate 4 bp core of transcription factor motif. B. Deletion of cis-element 3

(Del3; but not 1 or 2) from the Neurog3 enhancer region leads to a near complete loss of expression. The panels show GFP (green) and Neurog3 (red) in an

E14.5 transgenic for the wild-type Neurog3 enhancer region (panel I-III) and a transgenic for the Neurog3 enhancer region with activating cis-element 3

deleted (panel IV-VI). C. Quantification of percentage of Neurog3 cells that are GFP positive (black bars) and the percentage of GFP cells that are Neurog3

positive (grey bars; not present for Del3 because in 7 out of 8 embryo’s no GFP cells were detected. Quantification was done on 8 embryos for each genotype

in which slides amounting to at least 1000 Neurog3 cells were counted ([*] P = 5.3 x 10−9, Student’s t-test with Bonferroni correction). Scale bars: I-VI = 50 μm.

doi:10.1371/journal.pone.0171508.g002

A Neurog3 enhancer region that functions as a PRE
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Fig 3. Identification of cis-regulatory mutations that disrupt activation of Neurog3 in pancreatic progenitors. A. Binding of Hnf1b, Pdx1 and Foxa2 to

cis-element 3 of the Neurog3 enhancer using EMSAs with nuclear extracts from E13.5 pancreatic buds. The 5’ part of the cis-element 3 sequence binds

A Neurog3 enhancer region that functions as a PRE
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The Neurog3 enhancer represses transcription in alternate lineages

Next, we assessed whether the Neurog3 enhancer region, in addition to its ability to selectively

drive expression in endocrine progenitors, could also contribute to transcriptional repression

in non-expressing lineages. We therefore isolated transgenic mouse embryonic liver progeni-

tors from E13.5 transgenic embryos that carried GFP under the control of the minimal pro-

moter with or without the Neurog3 enhancer region and studied GFP expression. As expected,

GFP was not detectable by fluorescence microscopy in both groups. However, low levels of

transcript were detectable by qPCR, and they were 5-fold lower in transgenics that carried the

Neurog3 enhancer region than in trangenics that integrated the backbone vector containing

only the minimal promoter and GFP (Fig 4, see Fig 5B for a schematic representation of the

two constructs). Similar results were obtained in transgenic mouse embryonic fibroblasts in

the presence of the Neurog3 enhancer region (Fig 4). This effect did not result from differences

in the number of integration events of the two constructs (S4 Fig). These results fit the notion

that in addition to its ability to drive expression in endocrine progenitors, the Neurog3 en-

hancer region can exert transcriptional repression in alternative developmental lineages.

The Neurog3 enhancer region functions as a PRE in vivo

Next, we investigated whether the Neurog3 enhancer region induces transcriptional repression

in alternative cellular lineages by functioning as a PRE. To address this, we first analyzed

H3K27me3 enrichment in cell types that do not express Neurog3 including Pdx1 positive

purified E10.5 pancreatic progenitor and adult islets that represent developmental stages that

precede and follow Neurog3 expression, respectively. We observed H3K27me3 within and

around the endogenous enhancer region in virtually all cell types analyzed [30] (S5 Fig). More-

over, we performed ChIP for the PcG subunits Ezh2 and Ring1b in ES cells and found these to

be enriched in and around the Neurog3 enhancer region (Fig 5A). It is known that PcG-medi-

ated repression preferentially occurs among CpG-island containing genes, and recently it was

proposed that CpG islands themselves play a role in recruiting PcG proteins [12,13]. Consis-

tent with this notion, the Neurog3 enhancer region contains several putative CpG-rich areas

(Fig 5A). These findings suggested that this enhancer region might act as a PRE, although the

same results could arise if other sequences that are adjacent to the Neurog3 enhancer region

are responsible for recruiting PcG subunits to the enhancer region. We thus tested if trans-

genes that carried the Neurog3 enhancer region are capable of recruiting PcG subunits Ezh2

and Ring1b and can establish H3K27me3-enriched chromatin in liver from E13.5 embryos.

We first examined embryonic liver cells from lentiviral transgenics that lacked the enhancer

region, and found that they did not exhibit H3K27me3 enrichment and were not bound by

PcG proteins at the transgenic locus (Fig 5C–5E). By contrast, in transgenic animals that inte-

grated the Neurog3 enhancer region, the exogenous transgene locus was bound by Ezh2 and

Ring1b and displayed H3K27me3 enrichment that stretched into the GFP coding region (Fig

5C–5E). To assess the role of cis-element 3 in the establishment of PcG-mediated repression

we performed ChIP for H3K27me3 in animals that were transgenic for the Neurog3 enhancer

region with a deletion of cis-element 3. The results demonstrated that the 50 bp cis-element

Hnf1b and Pdx1 while the 3’ part binds Pdx1 and Foxa2. B. ChIP for Hnf1b (n = 3), Pdx1 (n = 2) and Foxa2 (n = 3) in E13.5 pancreatic buds. Binding to the cis-

element 3 (Neurog3 CE3) was compared to control regions Des6 (locus in gene-desert) and Neurog3 -6K (Neurog3 5’ upstream region). Indicated P-values

were calculated with Students t-test. C. Lentiviral transgenesis using enhancers with indicated mutations, all of which disrupt specific transcription factor

binding sites (S3 Fig). Note how the strongest reduction of expression is found upon disruption of all identified binding sites within cis-element 3. D.

Quantification of percentage of Neurog3 cells that are GFP positive (black bars) and the percentage of GFP cells that are Neurog3 positive (grey bars).

Quantification was done on 8 embryos for each genotype in which at least 1000 Neurog3 cells were counted ([**] P<1.0 x 10−6, [*] P<0.02, Student’s t-test

with Bonferroni correction). Scale bars: C I-VI = 50 μm.

doi:10.1371/journal.pone.0171508.g003

A Neurog3 enhancer region that functions as a PRE

PLOS ONE | DOI:10.1371/journal.pone.0171508 February 22, 2017 8 / 21



was dispensable for the establishment of H3K27me3 enrichment (S6A Fig). Finally, we tested

whether the Neurog3 enhancer promotes PcG-mediated repression that extends into adult-

hood, and found that indeed H3K27me3 enrichment was present in pancreatic exocrine tissue

and skeletal muscle from adult transgenic mice (S6B and S6C Fig). Taken together, these data

demonstrate that the minimal Neurog3 enhancer region functions as a PRE in vivo.

Discussion

The exact manner in which discrete genomic sequences provide either activating or repressive

instructions to ensure lineage-specific gene transcription is still incompletely understood. Here

we applied an efficient lentiviral transgenic strategy to understand the cis-regulatory sequences

that underlie the initiation of the pancreatic endocrine differentiation program. Our data

revealed a distal Neurog3 enhancer region that serves as a platform through which activating

transcription factors direct Neurog3 expression in the pancreatic epithelium. This same

enhancer region simultaneously acts as a PRE in alternate developmental lineages. Thus, we

have identified a genomic region that functions as a lineage-specific enhancer and as a PRE.

A highly efficient transgenic approach to dissect cis-regulatory function

Understanding the cis-regulatory mechanisms that underlie organogenesis and differentiation

is a fundamental challenge for biomedical research. Current epigenomic assays theoretically

allow for high-throughput prediction of genomic regulatory elements. For example, active

enhancers can be predicted by the combinatorial presence of specific histone modifications,

nucleosome depletion, or transcription factor occupancy patterns [36–38]. Understanding the

function of such predicted elements requires experimental analysis in meaningful develop-

mental contexts. Existing technologies for this purpose, however, remain inefficient. Zebrafish

provide an efficient model system to test putative regulatory elements, but it remains unproven

that most mammalian cis-regulatory elements are appropriately recognized in this species. A

significant example of a divergent regulatory mechanism in zebrafish is that although they

develop an endocrine pancreas, the putative orthologue of Neurog3 is not expressed in endo-

crine progenitors [39]. Given their evolutionary proximity and extensive validation, mouse

transgenics remain a desirable model system to study mammalian cis-regulatory mechanisms

[37].

Fig 4. The Neurog3 enhancer region contributes to transcriptional repression in alternative lineages.

qRT-PCR analysis showed that in E13.5 liver progenitors and embryonic fibroblasts from transgenics carrying

the Neurog3 enhancer, GFP mRNA was significantly reduced. GFP transcript levels were normalized for Tbp

and compared to the construct that lacked the Neurog3 enhancer region ([*] (P<0.05, Student’s t-test).

doi:10.1371/journal.pone.0171508.g004

A Neurog3 enhancer region that functions as a PRE
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We have here used lentiviral mediated transgenesis to increase the throughput of mouse

transgenesis for the discovery and fine mapping of Neurog3 regulatory sequences. This

approach enhanced the efficiency of transgene expression by approximately 20-fold relative to

conventional transgenesis, without compromising the specificity of expression. The results

Fig 5. The minimal Neurog3 enhancer functions as a PRE in vivo. A. ChIP-oligonucleotide array analysis of the endogenous mouse Neurog3 locus in ES

cells. The graph shows significance of enrichments for H3K27me3 (red), Ring1b (blue), and Ezh2 (orange) in posterior probability ranging from 0 to 1. The

bottom panel shows a CpG content analysis for the same genomic coordinates. The average GC content in 400 bp sliding windows is shown in blue and the

CpG fold over expected is shown in grey. Green bars depict putative CpG islands. B. Schematic representation of amplicons used in ChIP-qPCR to

selectively study the integrated exogenous Neurog3 enhancer region or the control minimal promoter (note that only GFP can be used on both). C-E. ChIP-

qPCR analysis for Ezh2, Ring1b and H3K27me3 on the exogenous Neurog3 enhancer region in transgenic E13.5 liver (n = 2) ([*] P<0.01, Student’s t-test).

doi:10.1371/journal.pone.0171508.g005

A Neurog3 enhancer region that functions as a PRE
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suggest that mouse lentiviral transgenesis is a robust tool for discovery, fine-mapping, and

characterization of mammalian regulatory sequences, and can thus prove useful to elucidate

the role of cis-regulatory elements in development and disease.

Dissection of an enhancer that recapitulates pancreatic Neurog3

expression

We have identified a Neurog3 enhancer region that is sufficient to selectively drive expression

in Neurog3+ multipotent ductal epithelial cells, and have fine-mapped a critical cis-element in

this enhancer. Although our studies are the first to define this enhancer region and demon-

strate the critical role of a ~50bp cis-element in vivo, a critical role for this cis-element had

been proposed previously based on the fact that it was bound by key pancreatic regulators

[23,24,26]. Within this activating sequence we performed a mutation screen to further finemap

the critical bases. Notably, two of the mutations that inhibit Neurog3 activation were high-

affinity binding sites for Pdx1, a transcription factor previously shown to be a critical regulator

of Neurog3 activation and of the specification of pancreatic endocrine progenitors [26]. We

also identified a functionally important binding site for Hnf1b, which plausibly mediates the

role of this transcription factor in pancreatic endocrine specification [40]. Other cis-elements

and transcription factor binding sites were found to be functionally redundant, underscoring

the importance of functional assessment of such regulatory elements in vivo. These findings

can be exploited to address how Neurog3 becomes activated in the multipotent pancreatic epi-

thelium, and to efficiently target prospective pancreatic endocrine progenitors.

The Neurog3 enhancer region functions as a PRE in vivo

The demarcation of sharp lineage boundaries of gene expression is directed by cell specific

DNA-binding activators as well as by repressive mechanisms. Distal regulatory regions play a

pivotal role by providing binding sites for cell-specific transcriptional activators, whereas the

recruitment of repressive complexes to specific genomic sites is less understood.

Recently it was proposed that in mammals, unlike current knowledge based on studies in

Drosophila, the main factor determining the recruitment of PcG complexes is the presence of

non-methylated GC-rich elements [12,13]. This has supported a model in which GC-rich pro-

moter regions are repressed by default and become activated upon clearing of PcG repression

through local or distal binding of activating transcription factors [12,13,41,42]. Our experiments

have now revealed an enhancer region that not only activates its target gene in a lineage-selec-

tive manner, but also recruits PcG-mediated repression in non-expressing developmental line-

ages. While previous studies in mammals had shown PREs that do not overlap promoters

[13,15,17] and even presence of H3K27me3 at poised enhancers [43,44], the findings described

here are of interest in that they reveal that an enhancer can direct both lineage-specific tran-

scriptional activation and PcG-mediated repression. Deletion experiments, nevertheless, dem-

onstrated that the sequences required for activation were distinct from the sequences required

for PcG-mediated repression. Further studies should explore the prevalence of this developmen-

tal cis-regulatory mechanism in metazoan genomes.

Methods

Mouse models

All experiments were approved by the Institutional Animal Care Committee of the University

of Barcelona or by the Direction Départementale de Protection des Populations (DDPP) de

Paris, under accreditation number A75-13-19.
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Animals were sacrificed by cervical dislocation according to the recommended practices of

the French legislation.

DNA constructs for conventional transgenesis

A HindIII–HindIII fragment of the 5’flanking region of Neurog3 located between nucleotide

-5284 and -1428 relative to transcription start site was amplified by PCR using Phusion DNA

polymerase (Finnzyme) a high fidelity thermostable DNA polymerase and the following prim-

ers: -5284 sense AAGCTTTGTGTGGAAGGAand -1428 antisense AAGCTTCTAGTACGTTCTAA
CT. The amplification was performed on a lambda clone containing a 20kb fragment of the

Neurog3 mouse locus. The resulting PCR product was digested by HindIII and cloned into the

HindIII site of the pBGZ40 reporter plasmid upstream a human beta globin minimal promoter

linked to lacZ and a SV40 poly adenylation signal [45]. The resulting construct-A was entirely

sequenced to rule out undesired mutations and further digested by XhoI and XbaI prior to

pronuclear injection. A similar approach was used to generate constructs-B, -C and–D using

the following primers. Construct-B: -5284 sense and -3061 antisense AAGCTTGCTAGCATT

GCCTGGGGG. Construct-C: -3057 sense TTTACCCCCTCCCAACAGand -1428 antisense.

Construct-D -4916 AAGCTTCCAGCCATAAGGTTTATT and -3061 antisense.

DNA constructs for lentiviral transgenesis

The construct-B PCR fragment was cloned into the pENTR/D-TOPO vector (Invitrogen)

according to the manufacturer’s instructions to generate the 2.2 kb wild type enhancer entry

clone. A destination vector containing a Gateway recombination cassette rfa followed by the

pBGZ40 beta globin minimal promoter linked to eGFP was constructed in the pTRIP lentiviral

backbone using a similar strategy as described [46]. The 2.2 kb enhancer was inserted into the

lentiviral destination vector by in vitro gateway recombination using LR clonase II following

manufacturer’s instructions. Note that all lentiviral vectors containing cis element deletions or

specific point mutations were all cloned into the lentiviral destination vector using the same

gateway recombination procedure.

Cis-element deletions and site directed mutagenesis

Deletions and point mutations were all performed on the pENTR 2.2 kb enhancer plasmid

using a PCR based mutagenesis system. Briefly, sense and antisense complementary primers

overlapping either deletion area or containing the point mutations were designed. Such muta-

tion containing primers were used for a first round of PCR with two external 5’ and 3’ primers

to generate two PCR products. The left product was obtained using the mutated primer anti-

sense along with the 5’ external primer and the right PCR product with the sense mutated

primer and the 3’ external primer. Both PCR products were generated using Phusion DNA

polymerase (Finnzyme) and no more than 25 PCR cycles. Both DNA fragments were purified

on Wyzard PCR cleanup columns (Promega) and 1ng of each resulting purification were used

as matrix for a second round of PCR using the 2 external primers. The resulting PCR products

contained the desired deletions or point mutations and were further digested with BstEII and

PstI for deletions of cis-element 1 and 2 or by SpeI and NcoI for all other deletions or point

mutations. The digested fragments were cloned into the pENTR 2.2 kb enhancer plasmid

digested with BstEII and PstI or SpeI and NcoI to replace a wild type cassette by a mutation

containing one. Note that the double mutation 1–7 was generated using mutation 1 as original

matrix with the PCR primers of mutation 7. The complete list of mutation primers and exter-

nal primer is presented in S2 Table. For constructs with deletions of cis-element 1, 2 or 3 the
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deleted fragments are located from nucleotide -4877 to -4812 (relative to transcription start

site), -4877 to -4812pb and -3336 to– 3287 respectively.

Conventional transgenesis

Transgenic embryos were generated by pronuclear injection into fertilized eggs from FVB/

NRj mouse strain (Elevage Janvier). The injected eggs were next re-implanted into F1 hybrids

(DBA/2 × C57Bl6) pseudo pregnant females. Most constructs were assayed in founder (F0)

transgenic embryos with the exception of construct-A for which 2 different mouse transgenic

lines have being generated.

Production of lentiviral vectors

Lentiviral vector stocks were produced as previously described [47]. The amount of p24 capsid

protein was quantified by the HIV-1 p24 ELISA antigen assay (Helvetica Health Care). All

transductions of fertilized eggs were performed using normalized titers relative to p24 capsid

protein quantification ranging between 50 to 60 ng of p24 per microliter of viral stock.

Lentiviral transgenesis

Transgenic embryos were generated by injection of lentiviral vectors into the perivitelline

space of fertilized eggs from RjOrl:SWISS mouse strain as described previously [48]. The

injected eggs were next re-implanted into F1 hybrids (DBA/2 × C57Bl6) pseudo pregnant

females. All constructs were assayed in founder (F0) transgenic embryos.

Genotyping of transgenic animals

Genomic DNA was extracted from either tail of adult mice or yolk sac of embryos using pro-

teinase K digestion followed by PCR amplification to detect LacZ or GFP transgenes with the

following primers. LacZ1: 5’ ACCCTGGCGTTACCCAACTTAATCG3’; LacZ2: 5’ ACAAACGG
CGGATTGACCGTAATGG3’; GFP sense: 5’ GACCACATGAAGCAGCACGACTTCT3’; GFP

antisense: 5’ TTCTGCTGGTAGTGGTCGGCGAGCT 3’.

Derivation of embryonic fibroblast culture from transgenic embryos

E14.5 transgenic embryos containing either the Neurog3 enhancer region or the minimal pro-

moter GFP construct were collected. For each collected transgenic embryo a separate fibroblast

culture was derived. Briefly, a small part of the skin of the embryo was collected under sterile

condition and placed in a 24 well culture plate under cover glass and culture at 37˚C under 5%

CO2 for 2 days in culture medium containing 10% FCS 1% essential amino acids (Invitrogen),

1% Penicillin and Streptomycin (Invitrogen) in DMEM 4.5 g/l D-glucose (Invotrogen). After 2

days, the skin explant was removed and the fibroblasts were passaged by Trypsin / EDTA treat-

ment in a 6 well plate. When confluence was observed cells were passaged into a 6 cm diameter

plate and next into a 10 cm diameter plate. Cells were amplified subsequently by passages at

confluence with a 1 to 5 dilution until frozen or used.

RNA extraction

Total RNA was extracted using RNeasy micro kit (Qiagen) followed by DNAase I treatment.

RNA integrity was verified with a 2100 Bioanalyzer (Agilent) and reverse transcribed using

Superscript 2 (invitrogen).
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Quantitative PCR analysis

Quantitative PCR of reverse-transcribed RNA, ChIP or gDNA samples was performed on a

7300 Realtime PCR System (Applied Biosystems) using the Power SYBR Green reagent

(Applied Biosystems). Quantities were determined using 2(-Delta Delta C(T)). A full list of primers

used is provided as S3 Table.

Tissue preparation for histological analysis

Transgenic embryos were collected at different stages. The date of reimplantation of the one

cell stage embryos in pseudo-pregnant females was considered as embryonic day 0.5 (E0.5).

Embryos were dissected and a tissue block containing the stomach; pancreas and duodenum

was removed and fixed by immersion in 4% PFA for 24 h. Tissues were cryoprotected by incu-

bation for 48 h in 15% sucrose prepared in PBS and next embedded in 15% sucrose, 7% gelatin

prepared in PBS then frozen in isopentane at -50˚C. 10 μm sections were performed using a

cryostat (Leica). Whole embryos were fixed in 4% PFA for 20 min and stained for lacZ reporter

activity as described and embedded in BSA-gelatin [49]. 300-μm sections were cut with a

Vibratome (Leica VT1000S) as described [50].

Immunostaining

10μm cryosections were used for immunofluorescence staining as described previously [51].

The following primary antibodies were used: rabbit anti-insulin (1/1500 Euromedex Ref.

20056), rabbit anti-glucagon (1/1500 Euromedex Ref. 20076), rabbit anti-amylase (1/350

Sigma Ref. A8273) mouse anti-Neurog3 (1/1000 Beta Cell Biology Consortium Ref. AB2013)

and chicken anti-GFP (1/1000 Antibodies-Online GMBH Germany, Ref. ABIN 147441). The

corresponding secondary antibodies were used: Alexa 488 Goat anti Chicken (1/2000 Life

Technologies Ref. A11039) and Alexa 555 Goat anti Rabbit (1/1000 Life Technologies Ref.

A21428). Neurog3 detection was amplified as described by Zahn et al. 2004 [52]. TSA amplifi-

cation (Perkin Elmer TSA-Direct NEL702) was preformed prior to GFP staining. Beta-galacto-

sidase was detected by immuno-staining using rabbit anti-βGal (1/1000 Cappel Inc.) and

stained with the Vectastain DAB kit (Vector Inc.) as described [53].

ISH

Riboprobes were synthesized from various cDNAs inserted into pGEM-T Easy vector (Pro-

mega). After linearization of the plasmids, non-radioactively labeled riboprobes were synthe-

sized in the presence of 3.5 nmol of either digoxigenin (Dig)-11-UTP or fluorescein (Fluo)-

12-UTP (Roche) by using the riboprobe combination system Sp6/T7 (Promega). The LacZ

riboprobe spans the whole coding sequence. The Neurog3 and Insulin riboprobes were

described previously [50,54]. Hybridization experiments were performed essentially as

described previously on 10μm cryosections [55]. For double in situ staining probes were

detected with alkaline phosphatase-conjugated anti-Dig and anti-Fluo antibodies (Roche).

Colorimetric detection was achieved with 5-bromo-4-chloro-3-indolylphosphate (BCIP) and

either nitroblue tetrazolium (NBT; Promega) or 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phe-

nyltetrazolium chloride (INT; Roche). Dig- and Fluo-labeled riboprobes were applied together

to the slides. After detection of the Dig-labeled probe with NBT-BCIP, the anti-Dig antibody

was removed by washes with 0.1 M glycine (pH 2.2)-0.1% Tween before incubation with the

anti-Fluo antibody. No background signal was observed on slides hybridized with the sense

control probes and incubated with NBT-BCIP for at least as long as the corresponding anti-

sense probes.
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Quantification of Neurog3 and GFP expression in transgenic embryos

Transgenic embryos at E14.5 generated with all lentiviral constructs (wild type enhancer, dele-

tions of cis-element 1, 2 and 3 and point mutations 1, 3, 7 and 1–7) were analyzed. GFP + cells,

Neurog3 + cells and GFP/Neurog3 double + cells were counted on successive 10μm sections

located every 50 μm. A total number of at least 1000 Neurog3 positive cells were counted per

embryo. 8 transgenic embryos were thus analyzed for each transgenic construct.

Chromatin Immunoprecipitation (ChIP)

ChIPs were performed as described [30]. In short, mouse tissues or mouse ES cells (CGR8;

[56]) were fixed in 1% formaldehyde for 10 min after which nuclei were purified and sonicated

using Bioruptor (Diagenode) to a length of 200 to 1000 bp. Samples were precleared with pro-

tein A+G-Sepharose (1:1) and immunoprecipitated with rabbit anti-Ring1b [57], rabbit anti-

H3K27me3 (Upstate, 07–449), mouse anti-Ezh2 [58] overnight at 4˚C. Immune complexes

were collected by adsorption to protein A+G-Sepharose for 2 hr at 4˚C. Beads were washed

and immunocomplexes eluted prior to DNA purification with Qiaquick columns (Qiagen).

Precipitations on pancreatic buds were performed with at least 20 pancreatic buds per IP and

in the presence of 2.5 mg/mL BSA and 25 mg/mL tRNA. For tiling array experiments, ChIP

and input DNA were amplified as described previously using the Sigma GenomePlex WGA2

kit while adding dUTPs to a final concentration of 0.4 mM during the amplification reaction

to enable subsequent fragmentation [30]. We fragmented 6–7.5 μg DNA, labeled it using the

Affymetrix GeneChip WT Double-Stranded DNA terminal Labeling Kit, and hybridized to

GeneChip1 Mouse Promoter 1.0R Arrays.

EMSA

Single-stranded oligonucleotides (S1 Table) were annealed and labeled with [γ-32P]ATP (GE

healthcare Rediprime labeling kit). The labeled oligonucleotides were column-purified (GE

microspin G-50 columns). 32P-labeled oligonucleotides were incubated for 20 min at room

temperature with nuclear extracts in 20mM Hepes (pH 7.9), 90 mM KCl, 5 mM MgCl2, and

0.05% Nonidet P-40, 1mg/ml BSA, 5% Glycerol, 1mM DTT, 1mg/ml poly(dI-dC).poly(dI-dC)

and 0.1mM ZnCl. For supershifts, antibodies or preimmune serum was added to the reaction

and incubated for 20 min on ice before incubation with the labeled probe. Samples were elec-

trophoresed on a 5% acrylamide gel in 0.5 X TBE buffer and autoradiographed. For competi-

tion assays, the ratio of labelled probe to cold competitor was 1:100. The antibodies were

Rabbit anti-mouse IgG (Abcam; ab6709), goat anti-Pdx1 (abcam; ab47383), goat anti-Foxa2

(santa-cruz; SC-6554), goat anti-Hnf1b (santa-cruz; SC-7411) and rabbit anti-Hnf1a [59].

Statistical and integrated data analysis

For GeneChip ChIP experiments enrichment relative to input DNA was determined using

Cisgenome [60]. We applied a Hidden Markov Model as described [61].

CpG island analysis was done using CpGPlot in EMBOSS [62]. We scanned the Neurog3
region with a 400 bp sliding window in steps of one base to calculate GC content and the ratio

of observed CpGs and expected CpGs (CpG (obs/exp)) for each centred position. The cut-off

for CpG (obs/exp) and GC content was set to an average of 0.6 and 0.5 respectively in a set of

10 windows. Furthermore we required an island to be at least 100 bp in length.

Motif search was performed on the complete Neurog3 enhancer region using free access

version of Genomatix Matinspector with the default settings [63]. The obtained output was

manually searched for known pancreatic factors. For the selected sites the lowest Core
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similarity was 0.767 and the lowest matrix similarity was 0.744. These results were manually

curated based on more recent ChIP-seq based motifs where available.

All barplots are shown as means with error bars representing the SEM. Comparisons were

done as indicated with Student’s two-sample, two-sided t-test and Bonferroni corrections were

done for the number of comparisons.

Data access

Microarray data for ChIP experiments of Ezh2 in ES cells will be made publicly available

through ArrayExpress under accession number E-MTAB-1460 (reviewer password:

nxgEEa62). Other data sets have been described before [30,31].

Supporting information

S1 Fig. Regions A and B recapitulate the Neurog3 expression pattern in conventional

trangenics. A. LacZ expression under the control of enhancer region A (see Fig 1 for repre-

sentation of enhancer segments). In E11.5 embryos (panel I-IV), region A recapitulated the

previously reported pattern of expression of Neurog3 in the spinal cord (SC) that displays 2

stripes, the medial stripe (MS) and the ventral stripe (VS) (panel I), the ventral hypothalamus

(vHyp; panels II, III) and the pancreatic bud (PB; panel IV) with ectopic expression only in the

cephalic mesenchyme (CM; panel III) and the notochord (NC; panel III). In panel IV the

stomach (St) and the liver (L) are indicated. At E14.5 LacZ was observed in the pancreas (P;

panel V) and the duodenum (D; panel VI) B. LacZ expression in the E15.5 pancreas from

transgenics carrying enhancer region B. LacZ immunostaining show that LacZ (panel II) fol-

lows the expected distribution detected by double in situ hybridization of Neurog3 in the pan-

creatic epithelial tree (blue; panel I, adjacent section to II), whereas insulin (brown; panels I

and III) shows the expected distribution in more peripheral regions. Panel III shows and

enlargement of the inset in panel I. Panel IV shows an in situ hybridization co-staining for

LacZ (brown) and Neurog3 (blue) with an enlargement of the inset shown as panel V. Scale

bars: A I, II = 200μm, III = 400μm, IV-VI = 200μm, B I, II = 100μm, III- V = 25 μm

(TIF)

S2 Fig. E18.5 expression of GFP under the control of the Neurog3 enhancer region in lenti-

viral transgenics. Expression of GFP was analyzed in the pancreases of E18.5 transgenic

embryos. GFP expression (green) was compared to Neurog3 expression (red upper panel) and

also compared to Insulin (red left lower panel) and Glucagon (red right lower panel). GFP-

positive Neurog3-negative cells were in the endocrine lineage. This became more prevalent at

E18.5 compared to E14.5, presumably because of the different stability of GFP and Neurog3.

Scale bars: 50 μm.

(TIF)

S3 Fig. Disruption of TF binding sites by mutations in cis-element 3. The 5’ part of cis-ele-

ment 3 (5’WT) was screened with overlapping substitutions of 3 wild-type bases by G nucleo-

tides. The effect of these mutations on DNA binding affinities was assessed by incubating the

unlabeled mutant probes at 100-fold excess relative to the wild-type labeled sequence in Min6

nuclear extracts. Note that mutation 1 was found to disrupt both Pdx1 and Hnf1b binding,

while Mutation 3 selectively disrupted Hnf1b binding. For the 3’ part of cis-element 3 (3’WT)

two mutations were designed and tested in E13.5 pancreatic bud extracts. Both mutations

(mut7, mut8) were found to disrupt Pdx1 binding, and mut7 moderately affected Foxa2 bind-

ing.

(TIF)
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S4 Fig. qPCR analysis of transgenic copy numbers for the minimal promoter and the Neu-
rog3 enhancer region constructs. qPCR was performed on genomic DNA isolated from

embryonic tails using the GFP 3’UTR primer pair, and Cdx2 was used to normalize the data.

Each cross represents an animal. The horizontal lines represent the means. N.S., not signifi-

cant, Student’s t-test.

(TIF)

S5 Fig. The Neurog3 enhancer region shows H3K27me3 enrichment in all non-expressing

tissues analyzed. The graph shows the results of an oligonucleotide tiling array analysis of

ChIPs for H3K4me3 and H3K27me3 as reported [30]. Enrichment values for H3K4me3

(green) and H3K27me3 (red) are expressed as posterior probability values ranging from 0 to 1.

(TIF)

S6 Fig. PcG-mediated repression by the Neurog3 enhancer region is independent of cis-ele-

ment 3 and extends into adulthood. ChIP analysis of H3K27me3 in the exogenous Neurog3
enhancer region with or without cis-element 3 in E13.5 liver (A), adult acinar tissue (B), or

adult skeletal muscle (C).

(TIF)

S1 Table. EMSA double stranded oligonucleotide probe sequences.

(DOCX)

S2 Table. PCR oligonucleotide primer sequences used for cis-element deletions.

(DOC)

S3 Table. qPCR oligonucleotide primer sequences for reverse transcription and ChIP

experiments.

(DOCX)
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