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Introduction

We introduce a semi-discretization scheme and prove its convergence for stochastic scalar conservation laws (with multiple rough fluxes) of the form (1.1)

     du + N i=1 ∂ x i A i (x, u) • dz i t = 0 in R N × (0, T ), u(•, 0) = u 0 ∈ (L 1 ∩ L 2 )(R N ).
The precise assumptions on A, z are presented in the sections 2 and 3 below. To introduce the results here we assume that A ∈ C 2 (R N × R; R N ) and z is an α-Hölder geometric rough path; for example, z may be a d-dimensional (fractional) Brownian motion or z(t) = (t, . . . , t) in which case we are back in the classical deterministic setting -see Appendix A for some background on rough paths. For spatially homogeneous fluxes, the theory is simpler and z ∈ C([0, T ]; R N ) is enough. In what follows we may occasionally use the term "stochastic" even when z is a continuous or a rough path.

Stochastic scalar conservation laws of the type (1.1) arise in several applications. For example, (1.1) appears in the theory of mean field games developed by Lasry and Lions [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF], [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF], [START_REF] Lasry | Mean field games[END_REF]. We refer to Gess and Souganidis [START_REF] Gess | Scalar conservation laws with multiple rough fluxes[END_REF] and Cardaliaguet, Delarue, Lasry and Lions [START_REF] Cardaliaguet | The master equation and the convergence problem in mean field games[END_REF] for more details on the derivation of (1.1) in this case.

The semi-discretization scheme we consider here is based on first rewriting (1.1) in its kinetic form using the classical Maxwellian (1.2) χ(x, ξ, t) := χ(u(x, t), ξ) :=

     +1 for 0 ≤ ξ ≤ u(x, t),
-1 for u(x, t) ≤ ξ ≤ 0, 0 otherwise.

The theory of pathwise entropy solutions introduced by Lions, Perthame and Souganidis in [START_REF] Lions | Scalar conservation laws with rough (stochastic) fluxes[END_REF] and further developed by Lions, Perthame and Souganidis in [START_REF] Lions | Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case[END_REF] and Gess and Souganidis in [START_REF] Gess | Scalar conservation laws with multiple rough fluxes[END_REF] (see Appendix B for the precise definition and some results) asserts that there exists a non-negative, bounded measure m on R N × R × [0, T ] such that, in the sense of distributions,

(1.3) ∂ t χ + N i=1 a i (x, ξ)∂ x i χ • dz i + N i=1 ∂ x i A i (x, ξ)∂ ξ χ • dz i = ∂ ξ m,
where, for notational simplicity, we set

a i (x, ξ) := (∂ u A i )(x, ξ).
Given a partition 0 = t 0 < t 1 < • • • < t K = T of [0, T ] with mesh size ∆t := max k=0,...,K-1 |t k+1 -t k |, the approximation u ∆t of the pathwise entropy solution to (1.1) that we are considering here is based on the following splitting and fast relaxation scheme.

We first solve the linear "free-streaming" transport equation

(1.4) ∂ t f ∆t + N i=1 a i (x, ξ)∂ x i f ∆t • dz i + N i=1 ∂ x i A i (x, ξ)∂ ξ f ∆t • dz i = 0 on R N × R × [t k , t k+1 ),
and then introduce a fast relaxation step setting (see section 1 for the notation)

(1.5) u ∆t (x, t) := ˆf∆t (x, η, t-)dη and f ∆t (x, ξ, t k+1 ) := χ(u ∆t (x, t k+1 ), ξ);

for future reference we note that f ∆t is discontinuous at t k while u ∆t is not.

For the homogeneous stochastic scalar conservation law

du + N i=1 ∂ x i A i (u)
• dz i = 0 in R N × (0, T ), (1.6) we show the strong convergence of the approximations u ∆t to the pathwise entropy solution u and provide an estimate for the rate of convergence (see Theorem 2.1 below), that is, for u 0 ∈ (BV ∩ L ∞ ∩ L 1 )(R N ), we show that there exists C > 0 depending only on the data such that

(1.7) u(•, t) -u ∆t (•, t) L 1 ≤ C √ ∆z,
where ∆z is defined by

(1.8) ∆z := max k=0,...,K-1 sup t∈[t k ,t k+1 ] |z t -z t k |.
In the general inhomogeneous case, that is, for (1.1), no bounded variation estimates are known either for the solution u or for the approximations u ∆t . In addition, due to the spatial dependence, we cannot use averaging techniques. To circumvent these difficulties, we devise a new method of proof based on the concept of generalized kinetic solutions and new energy estimates (see Lemma 3.3 below). The result (see Theorem 3.1) is that, if

u 0 ∈ (L 1 ∩ L 2 )(R N ), then lim ∆t→0 u(•, t) -u ∆t (•, t) L 1 (R N ×[0,T ]) .
The semi-discretization scheme we introduce here is a generalization of the transport-collapse scheme developed by Brenier [START_REF] Brenier | Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF][START_REF] Brenier | Averaged multivalued solutions for scalar conservation laws[END_REF] and Giga and Miyakawa [START_REF] Giga | A kinetic construction of global solutions of first order quasilinear equations[END_REF] for the deterministic homogeneous scalar conservation law

∂ t u + N i=1 ∂ x i A i (u) = 0 in R N × (0, T ). (1.9)
In this setting, the convergence of the scheme was proven in [START_REF] Brenier | Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1[END_REF][START_REF] Brenier | Averaged multivalued solutions for scalar conservation laws[END_REF][START_REF] Giga | A kinetic construction of global solutions of first order quasilinear equations[END_REF] based on bounded variation arguments. A general methodology for this type of result as well as for error estimates was developed by Bouchut and Perthame [START_REF] Bouchut | Kružkov inequalities for scalar conservation laws revisited[END_REF]. In [START_REF] Vasseur | Kinetic semidiscretization of scalar conservation laws and convergence by using averaging lemmas[END_REF] Vasseur provided an alternative proof of the weak convergence of the transport-collapse scheme based on averaging techniques for the Burger's equation, that is for (1.9) with N = 1 and A i (u) = 1 2 u 2 . The results we present here are new for both deterministic and stochastic settings.

Firstly, we establish a rate of convergence for the transport-collapse scheme (see (1.7)), which was previously unavailable even in the deterministic case (although maybe not too surprising in view of [START_REF] Bouchut | Kružkov inequalities for scalar conservation laws revisited[END_REF]).

Secondly, we prove the convergence of the scheme also in the inhomogeneous case. The classical averaging techniques and, thus, the method developed in [START_REF] Vasseur | Kinetic semidiscretization of scalar conservation laws and convergence by using averaging lemmas[END_REF] do not apply here, since our assumptions allow for degenerate fluxes. Indeed we assume that there exist θ ∈ (0, 1] and C > 0 such that, for every compact interval

I ⊆ R, all (σ, z) ∈ S N -1 × R, x ∈ R N , and ε > 0, |{ξ ∈ I : |σ • A (x, ξ) -z| ≤ ε}| ≤ Cε θ , where S N -1 is the unit sphere in R N and A (x, u) := ∂ u A(x, u).
The well-posedness of the pathwise entropy solutions for (1.1) has been proven in [START_REF] Gess | Scalar conservation laws with multiple rough fluxes[END_REF][START_REF] Lions | Scalar conservation laws with rough (stochastic) fluxes[END_REF][START_REF] Lions | Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case[END_REF]. Regularity and long-time behavior has been considered by Lions, Perthame and Souganidis [START_REF] Lions | Stochastic averaging lemmas for kinetic equations[END_REF] and Gess and Souganidis [START_REF] Gess | Long-time behavior, invariant measures and regularizing effects for stochastic scalar conservation laws[END_REF]. For a detailed account of numerical methods for (deterministic) conservation laws we refer to LeVeque [START_REF] Leveque | Numerical methods for conservation laws[END_REF], Bouchut [START_REF] Bouchut | Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources[END_REF], Godlewski and Raviart [START_REF] Godlewski | Numerical approximation of hyperbolic systems of conservation laws[END_REF], Eymard and Gallouët, Herbin [START_REF] Eymard | Finite volume methods[END_REF] and the references therein.

Finally, we recall that kinetic solutions to (1.9) were constructed by Brenier and Corrias [START_REF] Brenier | A kinetic formulation for multi-branch entropy solutions of scalar conservation laws[END_REF], Lions, Perthame and Tadmor [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF] and Perthame [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF] as limits of the so-called Bhatnagar, Gross, Krook (BGK) approximation, that is, (1.10)

∂ t f ε + N i=1 (A i ) (ξ)∂ x i f ε = 1 ε (Mf ε -f ε ),
where the "Maxwellian" associated with a distribution f is defined by

(1.11) Mf (x, ξ, t) := χ( ˆf (x, η, t)dη, ξ).
In comparison, the transport-collapse scheme we are considering here is based on a fast relaxation scale for the right-hand side of (1.10), that is on enforcing Mf ε = f ε at the time-steps t k .

Structure of the paper. The strong convergence and the rate for the homogeneous case is obtained in section 2. The inhomogeneous case is treated in section 3. Some background for the theory of rough paths is presented in Appendix A. The definition and fundamental properties of pathwise entropy solutions to (1.1) are recalled in Appendix B. A basic, but crucial, bounded variation estimate for indicator functions is given in Appendix C.

Notation. We set R + := (0, ∞) and δ is the "Dirac" mass at the origin in R. The complement and closure of a set A ⊆ R N are denoted respectively by A c and Ā, and B R is the open ball in R N centered at the origin with radius R. We write f C(O) for the sup norm of a continuous bounded function f on O ⊆ R M and, for k = 1, . . . , ∞, we let C k c (O) be the space of all k times continuously differentiable functions with compact support in O. For γ > 0, Lip γ (O; R l ) is the set of R l valued functions defined on O with k = 0, . . . , γ bounded derivatives and γ -γ Hölder continuous γ -th derivative; for simplicity, if γ = 1 and l = 1, we write Lip(O) and denote by • C 0,1 the Lipschitz constant. The subspace of L 1 -functions with bounded total variation is BV . If f ∈ BV , then f BV is its total variation. For u ∈ L 1 ([0, T ]; L p (R N )) we write u(t) p for the L p norm of u(•, t). To simplify the presentation, given a function f (x, ξ) we write f L 1

x,ξ := ´|f |dxdξ := ´|f (x, ξ)|dxdξ. For a measure m on R N × R × [0, T ] we often write m(x, ξ, t)dxdξdt instead of dm(x, ξ, t).

If f ∈ L 1 (R N × [0, T ]) is such that t → f (•, t) ∈ L 1 (R N ) is càdlàg, that is, right-continuous with left limits, we let ˆf (x, t-)dx := lim h↓0 ˆf (x, t -h)dx.
The space of all càdlàg functions from an interval [0, T ] to a metric space M is denoted by D([0, T ]; M ). 

Spatially homogeneous stochastic scalar conservation laws

We consider stochastic homogeneous scalar conservation laws, that is, the initial value problem

(2.1) du + N i=1 ∂ x i A i (u) • dz i = 0 in R N × (0, T ), u(•, 0) = u 0 ∈ (BV ∩ L ∞ )(R N ), where (2.2) z ∈ C([0, T ]; R N ) and A ∈ C 2 (R; R N ).
Informally, in view of (1.2), the kinetic formulation yields a non-negative bounded measure m on

R N × R × [0, T ],
where a := A , such that

(2.3) ∂ t χ + N i=1 a i (ξ)∂ x i χ • dz i = ∂ ξ m.
Fix ∆t > 0, define t k := k∆t with k = 0, . . . , K and K∆t ≈ T and ∆z as in (1.8), and assume that

(2.4) ∆z ≤ 1.
The approximation u ∆t is defined as

(2.5) u ∆t (•, 0) = u 0 and u ∆t (•, t) := ˆf∆t (•, ξ, t-)dξ,
where f ∆t solves

∂ t f ∆t + N i=1 a i (ξ)∂ x i f ∆t • dz i = 0 on (t k , t k+1 ) f ∆t (x, ξ, t k ) = χ(u ∆t (x, t k ), ξ), that is, for t ∈ [t k , t k+1 ), x ∈ R N and ξ ∈ R, f ∆t (x, ξ, t) = f ∆t (x -a(ξ)(z t -z t k ), ξ, t k ). (2.6)
The main result in this section is: Theorem 2.1. Assume (2.2) and (2.4), and, for u 0 ∈ (BV ∩ L ∞ )(R N ), let u be the pathwise entropy solution to (2.1) and u ∆t be defined as in (2.5). Then

sup t∈[0,T ] u(•, t) -u ∆t (•, t) 1 ≤ 2 u 0 BV a C 0,1 ([-u 0 ∞, u 0 ∞]) u 0 2 √ ∆z.
Before presenting the rigorous proof of Theorem 2.1 we give an informal overview of the argument.

For the sake of this exposition we assume z ∈ C 1 ([0, T ]; R N ) for now and for simplicity we set

M := u 0 ∞ .
The proof is based on the observation that the semi-discretization scheme introduced above has the kinetic interpretation

∂ t f ∆t + N i=1 a i (ξ)∂ x i f ∆t żi = ∂ ξ m ∆t := k δ(t -t k )(Mf ∆t -f ∆t ).. (2.7)
Recalling (1.2) and (2.6) we observe that

(2.8) |χ|, |f ∆t | ∈ {0, 1} and sgn(χ(x, ξ, t)) = sgn(f ∆t (x, ξ, t)) = sgn(ξ). It follows that ˆ|χ(t) -f ∆t (t)|dξdx = ˆ|χ(t) -f ∆t (t)| 2 dξdx = ˆ |χ(t)| 2 -2χ(t)f ∆t (t) + |f ∆t (t)| 2 dξdx = ˆ(|χ(t)| -2χ(t)f ∆t (t) + |f ∆t (t)|) dξdx.
Multiplying (2.3) and (2.7) by sgn(ξ) and integrating yields

d dt ˆ|χ(t)|dξdx = -2 ˆm(x, 0, t)dx and d dt ˆ|f ∆t (t)|dξdx = -2 ˆm∆t (x, 0, t)dx,
and, since in the sense of distributions

∂ ξ χ = δ(ξ) -δ(u(x, t) -ξ) ≤ δ(ξ),
and

∂ ξ f ∆t ≤ δ(ξ) -D x f ∆t (x -a(ξ)(z t -z t k ), ξ, t k ) • a (ξ)(z t -z t k ), we obtain -2 d dt ˆχf ∆t dξdx = -2 ˆ(∂ t χf ∆t + χ∂ t f ∆t ) dξdx = -2 ˆ f ∆t - N i=1 a i (ξ)∂ x i χ żi + ∂ ξ m + χ - N i=1 a i (ξ)∂ x i f ∆t żi + ∂ ξ m ∆t dξdx = 2 ˆ(∂ ξ f ∆t m + ∂ ξ χm ∆t ) dξdx ≤ 2 ˆ(m(x, 0, t) + m ∆t (x, 0, t)) dx -ˆDx f ∆t (x -a(ξ)(z t -z t k ), ξ, t k ) • a (ξ)(z t -z t k )mdξdx ≤ - d dt ˆ|χ|dξdx - d dt ˆ|f ∆t |dξdx + a C 0 ([-M,M ]) |z t -z t k | ˆ|D x m|dξdx,
and, hence,

d dt ˆ|χ(t) -f ∆t (t)|dξdx ≤ a C 0 ([-M,M ]) |z t -z t k | ˆ|D x m|dξdx.
At this point we face a difficulty. The term ´|D x m|dξdx may not be finite and thus an additional approximation argument is necessary.

To resolve this issue we replace χ by its space mollification χ ε making an error of order ε u 0 BV and we note that, if m ε is the mollification of m with respect to the x-variable, then

ˆT 0 ˆ|D x m ε |dξdxdt ≤ 1 ε ˆT 0 ˆmdξdxdt ≤ u 0 2 2ε .
In conclusion, we find

ˆ|u(t) -u ∆t (t)|dx ε u 0 BV + a C 0 ([-M,M ]) ∆z u 0 2 2ε ,
and choosing ε ≈ √ ∆z finishes the informal proof.

For future reference we observe that, if

χ ∆t (x, ξ, t) := χ(u ∆t (x, t), ξ), then (2.9) χ ∆t (x, ξ, t) = χ( ˆf∆t (x, η, t)dη, ξ) = Mf ∆t (x, ξ, t).

We continue with

The proof of Theorem 2.1. We first assume z ∈ C 1 ([0, T ]; R N ). In this case χ and f ∆t solve (2.3) and (2.7) respectively. It has been shown in Theorem 3.2 in [START_REF] Lions | Scalar conservation laws with rough (stochastic) fluxes[END_REF] that χ depends continuously on the driving signal z, in the sense that, if u 1 , u 2 are two solutions driven by z 1 , z 2 respectively, then

sup t∈[0,T ] u 1 (t) -u 2 (t) 1 ≤ C z 1 -z 2 C([0,T ];R N ) .
In view of (2.6), it also follows that f ∆t and u ∆t depend continuously on z. This can be seen by induction over k. Given two smooth smooth signals z 1 , z 2 we denote by f z 1 ∆t , f z 2 ∆t the corresponding free streaming functions and we note that, since

f z 1 ∆t (x, ξ, t) = f z 2 ∆t (x, ξ, t) = 0 for all |ξ| > M and sup t∈[t k ,t k+1 ) ˆ|f z 1 ∆t (x, ξ, t) -f z 2 ∆t (x, ξ, t)|dxdξ = sup t∈[t k ,t k+1 ) ˆ|f z 1 ∆t (x -a(ξ)(z 1 t -z 1 t k ), ξ, t k ) -f z 2 ∆t (x -a(ξ)(z 2 t -z 2 t k ), ξ, t k )|dxdξ ≤ sup ˆ|f z 1 ∆t (x + h, ξ, t k ) -f z 2 ∆t (x, ξ, t k )|dxdξ : h ∈ R N , |h| ≤ 2 a C 0 ([-M,M ]) z 1 -z 2 C 0 ([0,T ];R N ) , it follows that lim z 1 -z 2 C 0 ([0,T ];R N ) →0 sup t∈[t k ,t k+1 ) ˆ|f z 1 ∆t (x, ξ, t) -f z 2 ∆t (x, ξ, t)|dxdξ = 0.
Hence, the rough case z ∈ C([0, T ]; R N ) can be handled by smooth approximations in the end (see step 5 below).

Step 1: The kinetic formulation.

The proof is based on the kinetic interpretation of the semi-discretization scheme given by (2.7).

An important observation, used in Lemma 3.2 below, is the following

L 1 -contraction property (2.10) Mf -Mg L 1 x,ξ ≤ f -g L 1 x,ξ , which follows from the observations that ´|χ(u, ξ) -χ(v, ξ)|dξ = |u -v| for all u, v ∈ R and ˆ|Mf (x, ξ) -Mg(x, ξ)|dξ = ˆ χ( ˆf (x, η)dη, ξ) -χ( ˆg(x, η)dη, ξ) dξ = | ˆf (x, ξ) -g(x, ξ)dξ|.
We note that m ∆t is a non-negative measure. Indeed,

m ∆t = ˆξ 0 k δ(t -t k )(Mf ∆t -f ∆t )d ξ = k δ(t -t k ) ˆξ 0 (Mf ∆t -f ∆t )d ξ
and, moreover,

ˆξ 0 Mf ∆t (t)d ξ = ˆξ 0 χ( ˆf∆t (x, η, t)dη, ξ)d ξ = ξ ∧ ˆf∆t (x, η, t)dη Since f ∆t ≤ 1 we find ˆξ 0 f ∆t (t)d ξ ≤ ξ ∧ ˆf∆t (t)d ξ,
and, hence,

ˆξ 0 (Mf ∆t -f ∆t )d ξ ≥ 0.
Step 2: The approximation. We obtain here an estimate for the error at the kinetic level between the solution and the approximation. This follows using an argument introduced by Perthame in [START_REF] Perthame | Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF] for the kinetic formulation as an alternative to Kružkov's method.

Aiming to estimate the error

ˆ|u(t) -u ∆t (t)|dx = ˆ ˆ(χ(t) -f ∆t (t))dξ dx ≤ ˆ|χ(t) -f ∆t (t)|dξdx,
we begin by regularizing χ using a standard Dirac sequence ϕ ε (x) :

= 1 ε N ϕ( x ε ) with ϕ 1 = 1. That is, we consider the x-convolution χ ε (x, ξ, t) := (χ(•, ξ, t) * ϕ ε )(x), which solves, for m ε = m * ϕ ε , ∂ t χ ε + N i=1 a i (ξ)∂ x i χ ε żi = ∂ ξ m ε .
In fact in order to make the following calculations rigorous it also necessary to consider a regularization in time and velocity, so that the equation on χ ε is satisfied in a classical way. For simplicity of the presentation we drop this technicality here.

We first note that, using (2.8),

ˆ|χ(t) -f ∆t (t)|dξdx = ˆ|χ(t) -f ∆t (t)| 2 dξdx = ˆ|χ(t)| -2χ(t)f ∆t (t) + |f ∆t (t)|dξdx (2.11) = F ε (t) + Err 1 (t),
where

F ε (t) := ˆ(|χ ε (t)| -2χ ε (t)f ∆t (t) + |f ∆t (t)|) dξdx,
and

Err 1 (t) := ˆ(|χ(t)| -|χ ε (t)| -2(χ(t) -χ ε (t))f ∆t (t)) dξdx.
Since u(•, 0) = u ∆t (•, 0), it follows that (2.12)

ˆ|χ(t) -f ∆t (t)|dξdx = ˆ|χ(t) -f ∆t (t)|dξdx -ˆ|χ(0) -χ ∆t (0)|dξdx = ˆt 0 d dt F ε (s)ds + Err 1 | t 0 .
Step 

∂ ξ χ ε = (δ(ξ) -δ(ξ -u(x, t))) * ϕ ε ≤ δ(ξ) and ∂ ξ χ ≤ δ(ξ), (2.14) and, for t ∈ [t k , t k+1 ), f ∆t (x, ξ, t k ) = χ(u ∆t (x, t k ), ξ), we find , ∂ ξ f ∆t = ∂ ξ f ∆t (x -a(ξ)(z t -z t k ), ξ, t k ) = (∂ ξ χ ∆t )(x -a(ξ)(z t -z t k ), ξ, t k ) -D x f ∆t (x -a(ξ)(z t -z t k ), ξ, t k ) • a (ξ)(z t -z t k ) (2.15) ≤ δ(ξ) -D x f ∆t (x -a(ξ)(z t -z t k ), ξ, t k ) • a (ξ)(z t -z t k ),
with the above inequalities satisfied in the sense of distributions.

Combining next (2.13), (2.14), (2.15), and the facts that |f ∆t | ≤ 1 and f ∆t (x, ξ, t) = 0 for all |ξ| > M we obtain

-2 d dt ˆχε f ∆t dξdx = -2 ˆ(∂ t χ ε f ∆t + χ ε ∂ t f ∆t )dξdx = -2 ˆ f ∆t - N i=1 a i (ξ)∂ x i χ ε żi + ∂ ξ m ε + χ ε - N i=1 a i (ξ)∂ x i f ∆t żi + ∂ ξ m ∆t dξdx = 2 ˆ(∂ ξ f ∆t m ε + ∂ ξ χ ε m ∆t ) dξdx ≤ 2 ˆ(m ε (x, 0, t) + m ∆t (x, 0, t)) dx -2 k 1 I {t k <t<t k+1 } ˆDx f ∆t (x -a(ξ)(z t -z t k ), ξ, t k ) • a (ξ)(z t -z t k )m ε dξdx ≤ - d dt ˆ|χ ε |dξdx - d dt ˆ|f ∆t |dξdx + 2 a C 0 ([-M,M ]) ∆z ˆ|D x m ε |dξdx ≤ - d dt ˆ|χ ε |dξdx - d dt ˆ|f ∆t |dξdx + 2 a C 0 ([-M,M ]) ∆z ε ˆm(x, ξ, t)dξdx,
and, in conclusion,

(2.16) d dt F ε (t) ≤ 2 a C 0 ([-M,M ]) ∆z ε ˆm(x, ξ, t)dξdx.
Step 4: The estimate of Err 1 . We estimate |Err

1 (t)| in terms of the BV -norm of u 0 . Lemma 2.2. Assume u 0 ∈ (BV ∩ L ∞ )(R N ) and (2.2). Then, ˆ|χ(t) -χ ε (t)|dξdx ≤ ε u 0 BV ,
and, for all t ∈ [0, T ],

|Err 1 (t)| ≤ ε u 0 BV . Proof. Since |χ(t)| -|χ ε (t)| -2(χ(t) -χ ε (t))f ∆t (t) = (χ(t) -χ ε (t))sgn(ξ)(1 -2|f ∆t |(t))
and |f ∆t | ∈ {0, 1}, we first observe that, for all t ≥ 0,

|Err 1 (t)| ≤ ˆ|χ(t) -χ ε (t)|dξdx.
In addition it follows from [19, Proposition 2.1] that, for all t ≥ 0,

u(t) BV ≤ u 0 BV .
Hence, using Lemma C.1, we find

ˆ|χ(t) -χ ε (t)|dξdx ≤ ε ˆ χ(•, ξ, t) BV dξ = ε u(t) BV ≤ ε u 0 BV .
Step 5: The conclusion. It follows from (2.12), (2.16), (B.2) and Lemma 2.2 that, for all t ∈ [0, T ], ˆ|χ(x, ξ, t) -

f ∆t (x, ξ, t)|dξdx ≤ 2 a C 0 ([-M,M ]) ∆z ε ˆt 0 ˆm(x, ξ, r)dxdξdr + 2ε u 0 BV ≤ a C 0 ([-M,M ]) ∆z ε u 0 2 2 + 2ε u 0 BV ,
and hence, choosing ε ≈ √ ∆z to minimize the expression yields ˆ|χ(x, ξ, t) -

f ∆t (x, ξ, t)|dξdx ≤ 2 u 0 BV a C 0,1 ([-M,M ]) u 0 2 √ ∆z. (2.17) We now go back to z ∈ C([0, T ]; R N ) and choose z n ∈ C 1 ([0, T ]; R N ) such that z n → z in C([0, T ]; R N ).
In view of the continuity in the driving signal, we observe that, as n → ∞

χ n → χ and χ n ∆t → χ ∆t in C([0, T ]; L 1 (R N +1 )).
It follows from (2.17) that

ˆ|χ n (x, ξ, t) -f n ∆t (x, ξ, t)|dξdx ≤ 2 u 0 BV a C 0,1 ([-M,M ]) u 0 2 √ ∆z n
Passing to the limit in n completes the proof.

Spatially inhomogeneous stochastic scalar conservation laws

We consider here the inhomogeneous stochastic scalar conservation law

(3.1) ∂ t u + N i=1 ∂ x i A i (x, u) • dz i = 0 in R N × (0, T ), u(•, 0) = u 0 ∈ (L 1 ∩ L 2 )(R N ),
and its kinetic formulation

(3.2) ∂ t χ + N i=1 a i (x, ξ)∂ x i χ • dz i - N i=1 b i (x, ξ)∂ ξ χ • dz i = ∂ ξ m,
where

a i (x, ξ) := (∂ u A i )(x, ξ) and b i (x, ξ) := ∂ x i A i (x, ξ
) and z is an α-Hölder geometric rough path for some α ∈ (0, 1).

More precisely, we assume that

(3.3)          z ∈ C 0,α ([0, T ]; G [ 1 α ] (R N )), A ∈ C 2 (R N × R; R N ), a, b ∈ Lip γ+2 (R N × R) for some γ > 1
α ≥ 1, and b(x, 0) = 0 for all x ∈ R N , and note that it has been shown in [START_REF] Gess | Scalar conservation laws with multiple rough fluxes[END_REF] that, under these assumptions, the theory of pathwise entropy solutions to (3.1) is well posed.

Fix ∆t > 0 and a partition {t 0 , . . . , t K } of [0, T ] given by t k := k∆t. The approximation scheme is given by

(3.4)        ∂ t f ∆t + N i=1 a i (x, ξ)∂ x i f ∆t • dz i - N i=1 b i (x, ξ)∂ ξ f ∆t • dz i = 0 on (t k , t k+1 ), f ∆t (x, ξ, t k ) = χ(u ∆t (x, t k ), ξ),
where (3.5) u ∆t (x, 0) := u 0 (x) and u ∆t (x, t) := ˆf∆t (x, ξ, t-)dξ.

We begin by expressing f ∆t in terms of the characteristics of (3.4). For each final time t 1 ≥ 0, we consider the backward characteristics

       dX i (x,ξ,t 1 ) (t) = a i (X (x,ξ,t 1 ) (t), Ξ (x,ξ,t 1 ) (t))dz t 1 ,i (t), X i (x,ξ,t 1 ) (0) = x i , i = 1, . . . , N, dΞ (x,ξ,t 1 ) (t) = - N i=1 b i (X (x,ξ,t 1 ) (t), Ξ (x,ξ,t 1 ) (t))dz t 1 ,i (t), Ξ (x,ξ,t 1 ) (0) = ξ,
where z t 1 is the time-reversed rough path, that is, for t ∈ [0, t 1 ],

(3.6)

z t 1 (t) := z(t 1 -t).
Note that, in view of (3.3), the flow of backward characteristics (x, ξ) → (X (x,ξ,t 1 ) , Ξ (x,ξ,t 1 ) ) is volume preserving on R N +1 . This fact follows from Liouville's Theorem, the stability of X, Ξ in z and the fact that, for all

z ∈ C 1 ([0, T ]; R N ), t ∈ [0, T ], (x, ξ) ∈ R N +1 , N i=1 ∂ x i a i (x, ξ) żi -∂ ξ N i=1 b i (x, ξ) żi = 0.
In addition, since b(•, 0) ≡ 0 , for all t 1 , t ∈ [0, T ] and (x, ξ) ∈ R N +1 , we have sgn(Ξ (x,ξ,t 1 ) (t)) = sgn(ξ) and Ξ (x,0,t 1 ) (t) = 0. (3.7)

Let (Y (x,ξ,t 1 ) (t), ζ (x,ξ,t 1 ) (t)) := (X (x,ξ,t 1 ) (t), Ξ (x,ξ,t 1 ) ) -1 .
The solution f ∆t to (3.4), for t ∈ [t k , t k+1 ), is given by

f ∆t (x, ξ, t) = f ∆t X (x,ξ,t) (t -t k ), Ξ (x,ξ,t) (t -t k ), t k .
We have:

Theorem 3.1. Let u 0 ∈ (L 1 ∩ L 2 )(R N ) and assume (3.3). Then lim ∆t→0 u(•, t) -u ∆t (•, t) L 1 (R N ×[0,T ]) .
Proof. We begin with a brief outline of the proof. The first step as in the proof of of Theorem 2.1 is to rewrite the scheme in a kinetic formulation with a defect measure m ∆t . Then we establish uniform in ∆t estimates for f ∆t and m ∆t . This allows to extract weakly -convergent subsequences f ∆t f , m ∆t m. In the third step we identify the limit f as a generalized pathwise entropy solution to (3.1). Since, in view of [11, Proposition 4.9, Theorem 3.1], generalized entropy solutions are unique, it follows that f = χ, and this yields the weak convergence of the f ∆t . In the last step we deduce the strong convergence.

Step 1: The kinetic formulation of the approximation scheme. Similarly to the homogeneous setting we observe that the semi-discretization scheme has the following kinetic representation:

(3.8) ∂ t f ∆t + N i=1 a i (x, ξ)∂ x i f ∆t • dz i + N i=1 ∂ x i A i (x, ξ)∂ ξ f ∆t • dz i = ∂ ξ m ∆t where ∂ ξ m ∆t := k δ(t -t k )(Mf ∆t -f ∆t ),
m ∆t being a non-negative measure on R N × R × [0, T ], and M is defined as in (2.9).

We pass to the stable form of (3.8) by convolution along characteristics. For any

0 ∈ C ∞ c (R N +1 ), t 0 ∈ [0, T ] and (y, η) ∈ R N +1 , we consider (3.9) t 0 (x, y, ξ, η, t) := 0 X (x,ξ,t) (t -t 0 ) -y Ξ (x,ξ,t) (t -t 0 ) -η .
Then, in the sense of distributions in t ∈ [0, T ],

∂ t (f ∆t * t 0 )(y, η, t) = -ˆ∂ξ t 0 (x, y, ξ, η, t)m ∆t (x, ξ, t)dxdξ,
which is equivalent to

(3.10) (f ∆t * t 0 )(y, η, t) -f ∆t * t 0 (y, η, s) = - ˆ(s,t] ˆ∂ξ t 0 (x, y, ξ, η, r)m ∆t (x, ξ, r)drdxdξ.
for all s < t, s, t ∈ [0, T ].

Step 2: Stable apriori estimate. We establish uniform in ∆t estimates for f ∆t and m ∆t . We begin with an L 1 -estimate.

Lemma 3.2. Let u 0 ∈ (L 1 ∩ L 2 )(R N ) and assume (3.3). Then, for all t ∈ [0, T ], ˆ|f ∆t |(x, ξ, t)dxdξ ≤ u 0 1 . (3.11)
and, for some independent of ∆t positive constant M ,

1 2 ˆt 0 ˆm∆t (x, ξ, r)dξdxdr + ˆf∆t (x, ξ, t)ξdxdξ ≤ 1 2 u 0 2 2 + M u 0 1 . (3.12)
Proof. Since (x, ξ) → (X (x,ξ,t 1 ) , Ξ (x,ξ,t 1 ) ) is volume-preserving, using (2.10) we find, for all t ∈ [t k , t k+1 ),

ˆ|f ∆t |(x, ξ, t)dxdξ = ˆ|f ∆t | X (x,ξ,t) (t -t k ), Ξ (x,ξ,t) (t -t k ), t k dxdξ = ˆ|f ∆t | (x, ξ, t k ) dxdξ = ˆ|Mf ∆t | (x, ξ, t k -) dxdξ ≤ ˆ|f ∆t | (x, ξ, t k -) dxdξ,
which proves (3.11) by iteration.

Then (3.12) follows as in [START_REF] Gess | Scalar conservation laws with multiple rough fluxes[END_REF]Lemma 4.7].

Next we show that the approximations f ∆t are uniformly tight.

Lemma 3.3. Let u 0 ∈ (L 1 ∩ L 2 )(R N
) and assume (3.3). The family f ∆t is uniformly tight, that is, for each ε > 0, there is an R > 0 (independent of ∆t) such that

sup t∈[0,T ] ˆBc R ×R |f ∆t |(x, ξ, t)dxdξ ≤ ε. Proof. Choose s,0 ∈ C ∞ c (R N ) non-negative and v,0 ∈ C ∞ c ( 
R) and consider (3.9) with 0 (x, ξ) := s,0 (x) v,0 (ξ); the superscripts s, v refer to the state and velocity variables respectively.

Then

∂ ξ ρ t 0 (x, 0, ξ, 0, t) = ∂ ξ ( s,0 (X (x,ξ,t) (t -t 0 )) v,0 (Ξ (x,ξ,t) (t -t 0 ))) = (∂ ξ s,0 (X (x,ξ,t) (t -t 0 ))) v,0 (Ξ (x,ξ,t) (t -t 0 )) + s,0 (X (x,ξ,t) (t -t 0 ))∂ ξ ( v,0 (Ξ (x,ξ,t) (t -t 0 ))) = D s,0 (X (x,ξ,t) (t -t 0 )) • (∂ ξ X (x,ξ,t) (t -t 0 )) v,0 (Ξ (x,ξ,t) (t -t 0 )) + s,0 (X (x,ξ,t) (t -t 0 ))D v,0 (Ξ (x,ξ,t) (t -t 0 ))∂ ξ Ξ (x,ξ,t) (t -t 0 ).
Fix ε > 0. It follows from Lemma A.1 that we may choose δ > 0, s < t, t 0 ∈ [s, t] and |t -s| so small that, for all (x, ξ) ∈ R N +1 and r ∈ [s, t],

∂ ξ Ξ (x,ξ,r) (r -t 0 ) ≥ 0, |X (x,ξ,r) (r -t 0 ) -x| ≤ 1 4 and |∂ ξ X (x,ξ,r) (r -t 0 )| ≤ δ. (3.13) Hence, for all (x, ξ) ∈ R N +1 , r ∈ [s, t], -D s,0 (X (x,ξ,r) (r -t 0 )) • (∂ ξ X (x,ξ,r) (r -t 0 )) v,0 (Ξ (x,ξ,r) (r -t 0 )) ≤ |D s,0 (X (x,ξ,r) (r -t 0 )||∂ ξ X (x,ξ,r) (r -t 0 )|| v,0 (Ξ (x,ξ,r) (r -t 0 ))| ≤ δ|D s,0 (X (x,ξ,r) (r -t 0 ))|. Next we consider a sequence of v,0 L 's such that v,0 L → sgn in L ∞ (R) for L → ∞, v,0 L non-decreasing on [-1, 1] and |D v,0 L (ξ)| ≤ 1 for all 1 ≤ |ξ| and D v,0 L (ξ) = 0 for all 1 ≤ |ξ| ≤ L. Then -s,0 (X (x,ξ,r) (r -t 0 ))D v,0 L (Ξ (x,ξ,r) (r -t 0 ))∂ ξ Ξ (x,ξ,r) (r -t 0 ) ≤ -s,0 (X (x,ξ,r) (r -t 0 ))D v,0 L (Ξ (x,ξ,r) (r -t 0 ))∂ ξ Ξ (x,ξ,r) (r -t 0 )1 |Ξ (x,ξ,r) (r-t 0 )|≥1
. Using Lemma 3.2 and dominated convergence, we conclude

-lim L→∞ ˆ(s,t] ˆ s,0 (X (x,ξ,r) (r -t 0 ))D v,0 L (Ξ (x,ξ,r) (r -t 0 ))∂ ξ Ξ (x,ξ,r) (r -t 0 )m ∆t (x, ξ, r)dxdξdr ≤ 0
and, hence,

-lim L→∞ ˆ(s,t] ˆ∂ξ ρ t 0 ,L (x, 0, ξ, 0, r)m ∆t (x, ξ, r)dxdξdr ≤ ˆ(s,t] ˆδ|D s,0 (X (x,ξ,r) (r -t 0 )|m ∆t (x, ξ, r)dxdξdr.
Thus, with (y, η) = (0, 0) ∈ R N +1 in (3.10), we get lim

L→∞ ˆf∆t (x, ξ, t) t 0 ,L (x, 0, ξ, 0, t)dxdξ -lim L→∞ ˆf∆t (x, ξ, s) t 0 ,L (x, 0, ξ, 0, s)dxdξ = -lim L→∞ ˆ(s,t] ˆ∂ξ t 0 ,L (x, 0, ξ, 0, r)m ∆t (x, ξ, r)dxdξdr ≤ δ ˆ(s,t] ˆ|D s,0 (X (x,ξ,r) (r -t 0 ))|m ∆t (x, ξ, r)dxdξdr. 
We choose t 0 = s, use that v,0 L → sgn in L ∞ (R) for L → ∞ and sgn(f ∆t (x, ξ, t)) = sgn(ξ) to find (3.14)

ˆ|f ∆t |(x, ξ, t) s,0 (X (x,ξ,t) (t -s))dxdξ -ˆ|f ∆t |(x, ξ, s) s,0 (x)dxdξ ≤ δ ˆ(s,t] ˆ|D s,0 (X (x,ξ,r) (r -s))|m ∆t (x, ξ, r)dxdξdr.
Let R > 0 large enough to be fixed later and choose s,0 : R N → [0, 1] such that

s,0 = 1 |x| ≥ R -1 4 , 0 |x| < R -1 2 ,
and |D s,0 | ≤ 4.

If follows, using (3.13), that

s,0 (X (x,ξ,t) (t -s)) = 1 |x| ≥ R, 0 |x| ≤ R -1.
We employ again Lemma A.1 to choose a partition 0 = τ 

0 < τ 1 < • • • < τ M = T of [0, T ] with M = M (δ)
≤ ˆ|f ∆t |(x, ξ, τ k ) s,0 (x)dxdξ + δ ˆ(τ k ,t] ˆ|D s,0 (X (x,ξ,r) (r -τ k ))|m ∆t dxdξdr ≤ ˆBc R-1 |f ∆t |(x, ξ, τ k )dxdξ + 4δ ˆ(τ k ,t]
ˆm∆t dxdξdr, which, after an iteration and in view of Lemma 3.2, yields ˆBc

R |f ∆t |(x, ξ, t)dxdξ ≤ ˆBc R- M |f ∆t |(x, ξ, 0)dxdξ + 4δ ˆ[0,t] ˆm∆t dxdξdr ≤ ˆBc R- M |u 0 |(x)dx + 4δ( 1 2 u 0 2 2 + M u 0 1 ).
To conclude, we first choose δ <

ε 2 u 0 2 2 +2M u 0 1
and then R large enough.

Step 3: The weak convergence. For all t 0 ≥ 0, all test functions t 0 given by (3.9) with 0 ∈ C ∞ c and all ϕ ∈ C ∞ c ([0, T )), we have

(3.15) ˆT 0 ∂ t ϕ(r)( t 0 * f ∆t )(y, η, r)dr + ϕ(0)( t 0 * f ∆t )(y, η, 0) = ˆT 0 ˆϕ(r)∂ ξ t 0 (x, y, ξ, η, r)m ∆t (x, ξ, r)dxdξdr, that is, (3.16) 
ˆT 0 ˆ∂t ϕ(r) t 0 (x, y, ξ, η, r)f ∆t (x, ξ, r)dxdξdr + ˆϕ(0) t 0 (x, y, ξ, η, 0)χ(u 0 (x), ξ)dxdξ = ˆT 0 ˆϕ(r)∂ ξ t 0 (x, y, ξ, η, r)m ∆t (x, ξ, r)dxdξdr.

Moreover, once again using Lemma A.1 we find that, for some C > 0 and all t ∈ [0, T ],

(3.17) sup

x,ξ

X (x,ξ,t) (t -•) -x Ξ (x,ξ,t) (t -•) -ξ C 0 ([0,T ]) ≤ C.
Since 0 has compact support so does t 0 in view of (3.17 

f ∆t (•, •, t) L 1 (R N ×R) ≤ u 0 1 .
We use next Lemma 3.3 and |f ∆t | ≤ 1 to find a subsequence (again denoted as f ∆t ) such that, as ∆t → 0,

f ∆t * f in L ∞ (R N × R × [0, T ]) and f ∆t f in L 1 (R N × R × [0, T ]). Moreover, Lemma 3.2 yields f L ∞ ([0,T ];L 1 (R N ×R)) ≤ u 0 1 .
Since sgn(f ∆t (x, ξ, t)) = sgn(ξ), the weak convergence of the f ∆t 's implies

f (x, ξ, t)sgn(ξ) = |f |(x, ξ, t) ≤ 1.
Next, we note that

∂ ξ f ∆t = k ∂ ξ (f ∆t (X (x,ξ,t) (t -t k ), Ξ (x,ξ,t) (t -t k ), t k ))1 [t k ,t k+1 ) (t) = k (∂ ξ χ ∆t )(X (x,ξ,t) (t -t k ), Ξ (x,ξ,t) (t -t k ), t k )∂ ξ Ξ (x,ξ,t) (t -t k )1 [t k ,t k+1 ) (t) + k (D x f ∆t )(X (x,ξ,t) (t -t k ), Ξ (x,ξ,t) (t -t k ), t k ) • ∂ ξ X (x,ξ,t) (t -t k )1 [t k ,t k+1 ) (t).
Moreover, (3.7) implies that, in the sense of distributions,

(∂ ξ χ ∆t )(X (x,ξ,t) (t -t k ), Ξ (x,ξ,t) (t -t k ), t k ) = δ(Ξ (x,ξ,t) (t -t k )) -δ Ξ (x,ξ,t) (t -t k ) -u ∆t (X (x,ξ,t) (t -t k ), t k ) (3.18) = δ(ξ) -δ Ξ (x,ξ,t) (t -t k ) -u ∆t (X (x,ξ,t) (t -t k ), t k ) , where, for ϕ ∈ C ∞ c (R N +1 ), δ(Ξ (x,ξ,t) (t -t k ) -u ∆t (X (x,ξ,t) (t -t k ), t k ))(ϕ) := ˆϕ(Y (x,ξ,t k ) (t), ζ (x,ξ,t k ) (t))δ(ξ -u ∆t (x, t k ))dxdξ,
and thus

(3.19) ∂ ξ f ∆t =δ(ξ) -ν ∆t (x, ξ, t) + k δ(ξ)(∂ ξ Ξ (x,ξ,t) (t -t k ) -1)1 [t k ,t k+1 ) (t) + k D x f ∆t (X (x,ξ,t) (t -t k ), Ξ (x,ξ,t) (t -t k ), t k ) • ∂ ξ X (x,ξ,t) (t -t k )1 [t k ,t k+1 ) (t), with ν ∆t (x, ξ, t) := k δ(Ξ (x,ξ,t) (t -t k ) -u ∆t (X (x,ξ,t) (t -t k ), t k ))∂ ξ Ξ (x,ξ,t) (t -t k )1 [t k ,t k+1 ) (t).
We use again Lemma A.1 to get for ∆t small enough and all t ∈ [t k , t k+1 ),

∂ ξ Ξ (x,ξ,t) (t -t k ) ∈ [0, 2], (3.20) 
which implies that ν ∆t is a non-negative measure.

Furthermore, for all R > 0, (3.20) and (3.17) give, for some constants R, C > 0 independent of ∆t,

ˆT 0 ˆBR ν ∆t dxdξdt = k ˆtk+1 t k ˆˆB R δ(Ξ (x,ξ,t) (t -t k ) -u ∆t (X (x,ξ,t) (t -t k ), t k ))∂ ξ Ξ (x,ξ,t) (t -t k )dxdξdt = k ˆtk+1 t k ˆˆB R δ(ξ -u ∆t (x, t k ))∂ ξ Ξ (x,ξ,t) (t -t k )| Y (x,ξ,t k ) (t),ζ (x,ξ,t k ) (t) dxdξdt ≤ 2 k ˆtk+1 t k ˆˆB R δ(ξ -u ∆t (x, t k ))dxdξdt ≤ C.
Hence, there exists a non-negative measure ν so that, along a subsequence,

ν ∆t * ν. Observe that, for each ϕ ∈ C ∞ c (R N × R × [0, T ]), k ˆϕ(x, ξ, t)(D x f ∆t )(X (x,ξ,t) (t -t k ), Ξ (x,ξ,t) (t -t k ), t k ) • ∂ ξ X (x,ξ,t) (t -t k )1 [t k ,t k+1 ) (t)dxdξdt = k ˆti+1 t i ˆ(D x f ∆t )(x, ξ, t k ) • ϕ(Y (x,ξ,t k ) (t), ζ (x,ξ,t k ) (t), t)∂ ξ X (x,ξ,t) (t -t k )| Y (x,ξ,t k ) (t),ζ (x,ξ,t k ) (t) dxdξdt = - k ˆti+1 t i ˆf∆t (x, ξ, t k ) • D x ϕ(Y (x,ξ,t k ) (t), ζ (x,ξ,t k ) (t), t)∂ ξ X (x,ξ,t) (t -t k )| Y (x,ξ,t k ) (t),ζ (x,ξ,t k ) (t) dxdξdt,
and, since Lemma A.1 yields that, as ∆t → 0, sup

t∈[t k ,t k+1 ] ∂ ξ X (•,•,t) (t -t k ) C 1 (R N +1 ) → 0, we find k ˆϕ(x, ξ, t)(D x f ∆t )(X (x,ξ,t) (t -t k ), Ξ (x,ξ,t) (t -t k ), t k ) • ∂ ξ X (x,ξ,t) (t -t k )1 [t k ,t k+1 ) (t)dxdξdt → 0.
Moreover, again Lemma A.1 gives that, for ∆t → 0,

∂ ξ Ξ (•,•,t) (t -t k ) -1 C(R N +1 ) → 0,
and thus letting ∆t → 0 in (3. [START_REF] Lions | Scalar conservation laws with rough (stochastic) fluxes[END_REF]) we find that, in the sense of distributions,

∂ ξ f =δ(ξ) -ν.
Recall that (see Lemma 3.2), for all t ∈ [0, T ]

1 2 ˆt 0 ˆm∆t (x, ξ, r)dξdxdr ≤ 1 2 u 0 2 2 + M u 0 1 .
It follows that there exists some nonnegative measure m and a weak convergent subsequence such that m ∆t * m.

Taking the limit in (3.16) then yields ˆT 0 ˆ∂t ϕ(r) t 0 (x, y, ξ, η, r)f (x, ξ, r)dxdξdr + ˆϕ(0) t 0 (x, y, ξ, η, 0)χ(u 0 (x), ξ)dxdξ = ˆT 0 ˆϕ(r)∂ ξ t 0 (x, y, ξ, η, r)m(x, ξ, r)dxdξdr.

Hence, f is a generalized rough kinetic solution to (3.1). The uniqueness of generalized rough kinetic solutions (see [11, Theorem 3.1, Proposition 4.9]) yields that f = χ and thus f is the unique pathwise entropy solution to (3.1). Hence, the whole sequence f ∆t converges to χ weakly in L ∞ (R N ×R×[0, T ]) and weakly in L 1 (R N × R × [0, T ]).

Step 4: The strong convergence. We note that, in view of the weak convergence of

f ∆t to χ in L 1 (R N × R × [0, T ]), we have, for ∆t → 0, ˆT 0 ˆ|f ∆t -χ| 2 dxdξdt = ˆT 0 ˆ|f ∆t | 2 -2f ∆t χ + |χ| 2 dxdξdt ≤ ˆT 0 ˆ|f ∆t | -2f ∆t χ + |χ|dxdξdt = ˆT 0 ˆf∆t sgn(ξ) -2f ∆t χ + |χ|dxdξdt → ˆT 0 ˆχsgn(ξ) -2χχ + |χ|dxdξdt = 0.
The uniform tightness of f ∆t then implies ´T 0 ´|f ∆t -χ|dxdξdt → 0 and, hence, as ∆t → 0,

ˆT 0 ˆ|u ∆t -u|dxdt = ˆT 0 ˆ| ˆf∆t dξ -ˆχdξ|dxdt ≤ ˆT 0 ˆ|f ∆t -χ|dξdxdt → 0.
all arguments, such that, for all geometric α-Hölder rough paths z 1 , z 2 ∈ C 0,α ([0, T ]; G 

du + N i=1 ∂ x i A i (u) • dz i = 0 in R N × (0, T ), u(•, 0) = u 0 ∈ (L 1 ∩ L ∞ )(R N ).
The following notion of pathwise entropy solutions to (B.1) and its well-posedness were introduced in [START_REF] Lions | Scalar conservation laws with rough (stochastic) fluxes[END_REF]. The following is proved in [START_REF] Lions | Scalar conservation laws with rough (stochastic) fluxes[END_REF]. The notion of pathwise entropy solutions was extended in [START_REF] Lions | Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case[END_REF] and [START_REF] Gess | Scalar conservation laws with multiple rough fluxes[END_REF] to inhomogeneous stochastic scalar conservation laws of the type 

(B.3) ∂ t u + N i=1 ∂ x i A i (x, u) • dz i = 0 in R N × (0, T ), u(•, 0) = u 0 ∈ (L 1 ∩ L 2 )(R N ).

  For a function f : [0, T ] → R and a, b ∈ [0, T ] we set f | b a := f (b) -f (a). The negative and positive part of a function f : R N → R are defined by f -:= max{-f, 0} and f + := max{f, 0}. Finally, given a, b ∈ R, a ∧ b := min(a, b) and for a, b ∈ R N we set ab := (a i b i ) N i=1 .

  ). Moreover, Lemma 3.2 gives sup t∈[0,T ]

[ 1 α

 1 ] (R N )) with z 1 α-Höl;[0,T ] , z 2 α-Höl;[0,T ] ≤ R and all n ∈ {0, . . . , k},sup x∈R N D n (ψ z 1 -ψ z 2 )(x) α-Höl;[0,T ] ≤ Cρ α-Höl;[0,T ] (z 1 , z 2 ), sup x∈R N D n ((ψ z 1 ) -1 -(ψ z 2 ) -1 )(x) α-Höl;[0,T ] ≤ Cρ α-Höl;[0,T ] (z 1 , z 2 )and, for all n ∈ {1, . . . , k},sup x∈R N D n ψ z 1 (x) α-Höl;[0,T ] ≤ K and sup x∈R N D n (ψ z 1 ) -1 (x) α-Höl;[0,T ] ≤ K. Appendix B.Pathwise entropy solutions to stochastic scalar conservation laws Assume (2.2) and consider the spatially homogeneous problem (B.1)

Definition B. 1 .

 1 A function u ∈ (L 1 ∩ L ∞ )(R N × [0, T ]) is a pathwise entropy solution to (B.1), if there exists a nonnegative, bounded measure m on R N × R × [0, T ] such that, for all 0 ∈ C ∞ c (R N +1), all given by (x, y, ξ, η, t) := 0 (y -x + a(ξ)z(t), ξ -η), and all ϕ ∈ C ∞ c ([0, T )), ˆT 0 ∂ t ϕ(r)( * χ)(y, η, r)dr + ϕ(0)( * χ)(y, η, 0) = ˆT 0 ˆϕ(r)∂ ξ (x, y, ξ, η, r)m(x, ξ, r)dxdξdr,where the convolution along characteristics * χ is defined by * χ(y, η, r) := ˆ (x, y, ξ, η, r)χ(x, ξ, r)dxdξ.

Theorem B. 2 .

 2 Let u 0 ∈ (L 1 ∩ L ∞ )(R N ) and assume (2.2). Then there exists a unique pathwise entropy solution u ∈ C([0, T ]; L 1 (R N )) satisfying, for all p ∈ [1, ∞], sup t∈[0,T ] u(t) p ≤ u 0 p , and ˆT 0 ˆ[u 0 ∞, u 0 ∞] c ˆRN m(x, ξ, t)dxdξdt = 0, ˆT 0 ˆRN+1 m(x, ξ, t)dxdξdt ≤

1 (

 1 -∞,u + (•)) (ξ) BV dξ + ˆR 1 (-∞,u -(•)) (ξ) BV dξ = ˆ∞ 0 1 (-∞,u + (•)) (ξ) BV dξ + ˆ∞ 0 1 (-∞,u -(•)) (ξ) BV dξ = ˆ∞ 0 1 (0,u + (•)) (ξ) BV dξ + ˆ∞ 0 1 (0,u -(•)) (ξ) BV dξ = ˆ∞ 0 χ(u + (•), ξ) BV dξ + ˆ∞ 0 χ(u -(•), ξ) BV dξ. Since, for ξ ≥ 0, χ(u, ξ) = 1 (0,u) (ξ) = 1 (0,u + ) (ξ) = χ(u + , ξ) and χ(u, ξ) = -χ(-u, -ξ) we get ˆR χ(u(•), ξ) BV dξ = ˆ∞ 0 χ(u(•), ξ) BV dξ + ˆ0 -∞ χ(u(•), ξ) BV dξ = ˆ∞ 0 χ(u + (•), ξ) BV dξ + ˆ0 -∞ -χ(-u(•), -ξ) BV dξ = ˆ∞ 0 χ(u + (•), ξ) BV dξ + ˆ∞ 0 χ(-u(•), ξ) BV dξ = ˆ∞ 0 χ(u + (•), ξ) BV dξ + ˆ∞ 0 χ(u -(•), ξ) BV dξ,and, hence, the claim.

  3: The estimate of d dt F ε . Using again (2.8), we first note that d dt ˆ|χ ε |dξdx = -2 ˆmε (x, 0, t)dx and d dt ˆ|f ∆t |dξdx = -2 ˆm∆t (x, 0, t)dx.

	(2.13)
	Furthermore, since

  such that(3.13) is satisfied for all intervals [s, t] = [τ k , τ k+1 ]. Then, using(3.14), for all t ∈ [0, T ] and k ∈ {0, . . . , M } such that t ∈ [τ k , τ k+1 ), we find ˆBc

	|f ∆t |(x, ξ, t)dxdξ ≤ ˆ|f ∆t |(x, ξ, t) s,0 (X (x,ξ,t) (t -τ k ))dxdξ
	R
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Appendix A. Definitions and some estimates from the theory of rough paths

We briefly recall some basic facts of the Lyons' rough paths theory used in this paper. For more details we refer to Lyons and Qian [START_REF] Lyons | System control and rough paths[END_REF] and Friz and Victoir [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF].

Given x ∈ C 1-var ([0, T ]; R N ), the space of continuous paths of bounded variation, the step M signature S M (x) 0,T given by

takes values in the truncated step-M tensor algebra

The Carnot-Caratheodory norm of G M (R N ) given by

gives rise to a homogeneous metric on G M (R N ).

Alternatively, for any g ∈ T M (R N ), we may set

where π k is the projection of g onto the k-th tensor level, which is an inhomogeneous metric on G M (R N ). It turns out that the topologies induced by • and | • | are equivalent.

For paths in T M (R N ) starting at the fixed point e := 1+0+. . .+0 and β ∈ (0, 1], it is possible to define β-Hölder metrics extending the usual metrics for paths in R N starting at zero. The homogeneous β-Hölder metric is denoted by d β-Höl and the inhomogeneous one by ρ β-Höl . A corresponding norm is defined by

, where 0 denotes the constant e-valued path.

A geometric β-Hölder rough path x is a path in T 1/β (R N ) which can be approximated by lifts of smooth paths in the d β-Höl metric. It can be shown that rough paths actually take values in

We state next a basic stability estimate for solutions to rough differential equations (RDE) of the form

where z is a geometric α-Hölder rough path.

It is well known (see, for example, [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF]) that the RDE above has a flow ψ z of solutions. The following is taken from Crisan, Diehl, Friz and Oberhauser [7, Lemma 13].

For all R > 0 there exist C = C(R, V Lip γ+k ) and K = K(R, V Lip γ+k ), which are non-decreasing in Assume that A, z satisfy (3.3). For each t 1 ≥ 0 and for i = 1, . . . , N, consider the backward characteristics

X i (x,ξ,t 1 ) (0) = x i and Ξ (x,ξ,t 1 ) (0) = ξ, where, for t ∈ [0, t 1 ], z t 1 is the time-reversed rough path defined in (3.6).

Let t 0 be a test-function transported along the characteristics, that is, for some

The following definition is Definition 2.1 and Definition 4.2 of [START_REF] Gess | Scalar conservation laws with multiple rough fluxes[END_REF].

) is a pathwise entropy solution to (B.3), if there exists a nonnegative bounded measure m on R N × R × [0, T ] such that, for all t 0 ≥ 0, all test functions t 0 given by (B.4

= ´T 0 ´ϕ(r)∂ ξ t 0 (x, y, ξ, η, r)m(x, ξ, r)dxdξdr. The following well-posedness results was proved in [START_REF] Gess | Scalar conservation laws with multiple rough fluxes[END_REF] Theorem B.4. Let u 0 ∈ (L 1 ∩ L 2 )(R N ) and assume (3.3). Then there exists a unique pathwise entropy solution to (B.3) and generalized pathwise entropy solutions to (B.3) are unique.

Appendix C. Indicator functions of BV functions

We present here an observation which connects the BV -norms of u and χ(u(•), ξ).