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SEMI-DISCRETIZATION FOR STOCHASTIC SCALAR CONSERVATION LAWS

WITH MULTIPLE ROUGH FLUXES

BENJAMIN GESS, BENOÎT PERTHAME, AND PANAGIOTIS E. SOUGANIDIS

Abstract. We develop a semi-discretization approximation for scalar conservation laws with multi-
ple rough time dependence in inhomogeneous fluxes. The method is based on Brenier’s transport-
collapse algorithm and uses characteristics defined in the setting of rough paths. We prove strong
L1-convergence for inhomogeneous fluxes and provide a rate of convergence for homogeneous one’s.
The approximation scheme as well as the proofs are based on the recently developed theory of path-
wise entropy solutions and uses the kinetic formulation which allows to define globally the (rough)
characteristics.

1. Introduction

We introduce a semi-discretization scheme and prove its convergence for stochastic scalar conservation
laws (with multiple rough fluxes) of the form

(1.1)

du+

N∑
i=1

∂xiA
i(x, u) ◦ dzit = 0 in RN × (0, T ),

u(·, 0) = u0 ∈ (L1 ∩ L2)(RN ).

The precise assumptions on A, z are presented in the sections 2 and 3 below. To introduce the results
here we assume that A ∈ C2(RN × R;RN ) and z is an α-Hölder geometric rough path; for example,
z may be a d-dimensional (fractional) Brownian motion or z(t) = (t, . . . , t) in which case we are back
in the classical deterministic setting – see Appendix A for some background on rough paths. For
spatially homogeneous fluxes, the theory is simpler and z ∈ C([0, T ];RN ) is enough. In what follows
we may occasionally use the term “stochastic” even when z is a continuous or a rough path.

Stochastic scalar conservation laws of the type (1.1) arise in several applications. For example, (1.1)
appears in the theory of mean field games developed by Lasry and Lions [15], [16], [17]. We refer
to Gess and Souganidis [11] and Cardaliaguet, Delarue, Lasry and Lions [6] for more details on the
derivation of (1.1) in this case.

The semi-discretization scheme we consider here is based on first rewriting (1.1) in its kinetic form
using the classical Maxwellian

(1.2) χ(x, ξ, t) := χ(u(x, t), ξ) :=


+1 for 0 ≤ ξ ≤ u(x, t),

−1 for u(x, t) ≤ ξ ≤ 0,

0 otherwise.

The theory of pathwise entropy solutions introduced by Lions, Perthame and Souganidis in [19] and
further developed by Lions, Perthame and Souganidis in [21] and Gess and Souganidis in [11] (see
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Appendix B for the precise definition and some results) asserts that there exists a non-negative,
bounded measure m on RN × R× [0, T ] such that, in the sense of distributions,

(1.3) ∂tχ+
N∑
i=1

ai(x, ξ)∂xiχ ◦ dzi +
N∑
i=1

∂xiA
i(x, ξ)∂ξχ ◦ dzi = ∂ξm,

where, for notational simplicity, we set

ai(x, ξ) := (∂uA
i)(x, ξ).

Given a partition 0 = t0 < t1 < · · · < tK = T of [0, T ] with mesh size ∆t := maxk=0,...,K−1 |tk+1− tk|,
the approximation u∆t of the pathwise entropy solution to (1.1) that we are considering here is based
on the following splitting and fast relaxation scheme.

We first solve the linear “free-streaming” transport equation

(1.4) ∂tf∆t +
N∑
i=1

ai(x, ξ)∂xif∆t ◦ dzi +
N∑
i=1

∂xiA
i(x, ξ)∂ξf∆t ◦ dzi = 0 on RN × R× [tk, tk+1),

and then introduce a fast relaxation step setting (see section 1 for the notation)

(1.5) u∆t(x, t) :=

ˆ
f∆t(x, η, t−)dη and f∆t(x, ξ, tk+1) := χ(u∆t(x, tk+1), ξ);

for future reference we note that f∆t is discontinuous at tk while u∆t is not.

For the homogeneous stochastic scalar conservation law

du+
N∑
i=1

∂xiA
i(u) ◦ dzi = 0 in RN × (0, T ),(1.6)

we show the strong convergence of the approximations u∆t to the pathwise entropy solution u and
provide an estimate for the rate of convergence (see Theorem 2.1 below), that is, for u0 ∈ (BV ∩L∞∩
L1)(RN ), we show that there exists C > 0 depending only on the data such that

(1.7) ‖u(·, t)− u∆t(·, t)‖L1 ≤ C
√

∆z,

where ∆z is defined by

(1.8) ∆z := max
k=0,...,K−1

sup
t∈[tk,tk+1]

|zt − ztk |.

In the general inhomogeneous case, that is, for (1.1), no bounded variation estimates are known either
for the solution u or for the approximations u∆t. In addition, due to the spatial dependence, we cannot
use averaging techniques. To circumvent these difficulties, we devise a new method of proof based on
the concept of generalized kinetic solutions and new energy estimates (see Lemma 3.3 below). The
result (see Theorem 3.1) is that, if u0 ∈ (L1 ∩ L2)(RN ), then

lim
∆t→0

‖u(·, t)− u∆t(·, t)‖L1(RN×[0,T ]).

The semi-discretization scheme we introduce here is a generalization of the transport-collapse scheme
developed by Brenier [3, 4] and Giga and Miyakawa [13] for the deterministic homogeneous scalar
conservation law

∂tu+

N∑
i=1

∂xiA
i(u) = 0 in RN × (0, T ).(1.9)

In this setting, the convergence of the scheme was proven in [3, 4, 13] based on bounded variation
arguments. A general methodology for this type of result as well as for error estimates was developed
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by Bouchut and Perthame [2]. In [26] Vasseur provided an alternative proof of the weak convergence
of the transport-collapse scheme based on averaging techniques for the Burger’s equation, that is for
(1.9) with N = 1 and Ai(u) = 1

2u
2.

The results we present here are new for both deterministic and stochastic settings.

Firstly, we establish a rate of convergence for the transport-collapse scheme (see (1.7)), which was
previously unavailable even in the deterministic case (although maybe not too surprising in view
of [2]).

Secondly, we prove the convergence of the scheme also in the inhomogeneous case. The classical
averaging techniques and, thus, the method developed in [26] do not apply here, since our assumptions
allow for degenerate fluxes.

Indeed we assume that there exist θ ∈ (0, 1] and C > 0 such that, for every compact interval I ⊆ R,
all (σ, z) ∈ SN−1 × R, x ∈ RN , and ε > 0,

|{ξ ∈ I : |σ ·A′(x, ξ)− z| ≤ ε}| ≤ Cεθ,
where SN−1 is the unit sphere in RN and A′(x, u) := ∂uA(x, u).

The well-posedness of the pathwise entropy solutions for (1.1) has been proven in [11,19,21]. Regularity
and long-time behavior has been considered by Lions, Perthame and Souganidis [20] and Gess and
Souganidis [12]. For a detailed account of numerical methods for (deterministic) conservation laws we
refer to LeVeque [18], Bouchut [1], Godlewski and Raviart [14], Eymard and Gallouët, Herbin [8] and
the references therein.

Finally, we recall that kinetic solutions to (1.9) were constructed by Brenier and Corrias [5], Lions,
Perthame and Tadmor [22] and Perthame [25] as limits of the so-called Bhatnagar, Gross, Krook
(BGK) approximation, that is,

(1.10) ∂tf
ε +

N∑
i=1

(Ai)′(ξ)∂xif
ε =

1

ε
(Mf ε − f ε),

where the “Maxwellian” associated with a distribution f is defined by

(1.11) Mf(x, ξ, t) := χ(

ˆ
f(x, η, t)dη, ξ).

In comparison, the transport-collapse scheme we are considering here is based on a fast relaxation
scale for the right-hand side of (1.10), that is on enforcing Mf ε = f ε at the time-steps tk.

Structure of the paper. The strong convergence and the rate for the homogeneous case is obtained
in section 2. The inhomogeneous case is treated in section 3. Some background for the theory
of rough paths is presented in Appendix A. The definition and fundamental properties of pathwise
entropy solutions to (1.1) are recalled in Appendix B. A basic, but crucial, bounded variation estimate
for indicator functions is given in Appendix C.

Notation. We set R+ := (0,∞) and δ is the “Dirac” mass at the origin in R. The complement and
closure of a set A ⊆ RN are denoted respectively by Ac and Ā, and BR is the open ball in RN centered
at the origin with radius R. We write ‖f‖C(O) for the sup norm of a continuous bounded function f

on O ⊆ RM and, for k = 1, . . . ,∞, we let Ckc (O) be the space of all k times continuously differentiable
functions with compact support in O. For γ > 0, Lipγ(O;Rl) is the set of Rl valued functions defined
on O with k = 0, . . . , bγc bounded derivatives and γ − bγc Hölder continuous bγc-th derivative; for
simplicity, if γ = 1 and l = 1, we write Lip(O) and denote by ‖ · ‖C0,1 the Lipschitz constant. The
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subspace of L1-functions with bounded total variation is BV . If f ∈ BV , then ‖f‖BV is its total
variation. For u ∈ L1([0, T ];Lp(RN )) we write ‖u(t)‖p for the Lp norm of u(·, t). To simplify the
presentation, given a function f(x, ξ) we write ‖f‖L1

x,ξ
:=
´
|f |dxdξ :=

´
|f(x, ξ)|dxdξ. For a measure

m on RN × R× [0, T ] we often write m(x, ξ, t)dxdξdt instead of dm(x, ξ, t). If f ∈ L1(RN × [0, T ]) is
such that t 7→ f(·, t) ∈ L1(RN ) is càdlàg, that is, right-continuous with left limits, we letˆ

f(x, t−)dx := lim
h↓0

ˆ
f(x, t− h)dx.

The space of all càdlàg functions from an interval [0, T ] to a metric space M is denoted by D([0, T ];M).
For a function f : [0, T ] → R and a, b ∈ [0, T ] we set f |ba := f(b) − f(a). The negative and positive
part of a function f : RN → R are defined by f− := max{−f, 0} and f+ := max{f, 0}. Finally, given
a, b ∈ R, a ∧ b := min(a, b) and for a, b ∈ RN we set ab := (aibi)Ni=1.

2. Spatially homogeneous stochastic scalar conservation laws

We consider stochastic homogeneous scalar conservation laws, that is, the initial value problem

(2.1)

{
du+

∑N
i=1 ∂xiA

i(u) ◦ dzi = 0 in RN × (0, T ),

u(·, 0) = u0 ∈ (BV ∩ L∞)(RN ),

where

(2.2) z ∈ C([0, T ];RN ) and A ∈ C2(R;RN ).

Informally, in view of (1.2), the kinetic formulation yields a non-negative bounded measure m on
RN × R× [0, T ], where a := A′, such that

(2.3) ∂tχ+
N∑
i=1

ai(ξ)∂xiχ ◦ dzi = ∂ξm.

Fix ∆t > 0, define tk := k∆t with k = 0, . . . ,K and K∆t ≈ T and ∆z as in (1.8), and assume that

(2.4) ∆z ≤ 1.

The approximation u∆t is defined as

(2.5) u∆t(·, 0) = u0 and u∆t(·, t) :=

ˆ
f∆t(·, ξ, t−)dξ,

where f∆t solves {
∂tf∆t +

∑N
i=1 a

i(ξ)∂xif∆t ◦ dzi = 0 on (tk, tk+1)

f∆t(x, ξ, tk) = χ(u∆t(x, tk), ξ),

that is, for t ∈ [tk, tk+1), x ∈ RN and ξ ∈ R,
f∆t(x, ξ, t) = f∆t(x− a(ξ)(zt − ztk), ξ, tk).(2.6)

The main result in this section is:

Theorem 2.1. Assume (2.2) and (2.4), and, for u0 ∈ (BV ∩L∞)(RN ), let u be the pathwise entropy
solution to (2.1) and u∆t be defined as in (2.5). Then

sup
t∈[0,T ]

‖u(·, t)− u∆t(·, t)‖1 ≤
√

2‖u0‖BV ‖a‖C0,1([−‖u0‖∞,‖u0‖∞]) ‖u0‖2
√

∆z.
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Before presenting the rigorous proof of Theorem 2.1 we give an informal overview of the argument.
For the sake of this exposition we assume z ∈ C1([0, T ];RN ) for now and for simplicity we set

M := ‖u0‖∞.
The proof is based on the observation that the semi-discretization scheme introduced above has the

kinetic interpretation

∂tf∆t +

N∑
i=1

ai(ξ)∂xif∆tż
i = ∂ξm∆t :=

∑
k

δ(t− tk)(Mf∆t − f∆t)..(2.7)

Recalling (1.2) and (2.6) we observe that

(2.8) |χ|, |f∆t| ∈ {0, 1} and sgn(χ(x, ξ, t)) = sgn(f∆t(x, ξ, t)) = sgn(ξ).

It follows thatˆ
|χ(t)− f∆t(t)|dξdx =

ˆ
|χ(t)− f∆t(t)|2dξdx =

ˆ (
|χ(t)|2 − 2χ(t)f∆t(t) + |f∆t(t)|2

)
dξdx

=

ˆ
(|χ(t)| − 2χ(t)f∆t(t) + |f∆t(t)|) dξdx.

Multiplying (2.3) and (2.7) by sgn(ξ) and integrating yields

d

dt

ˆ
|χ(t)|dξdx = −2

ˆ
m(x, 0, t)dx and

d

dt

ˆ
|f∆t(t)|dξdx = −2

ˆ
m∆t(x, 0, t)dx,

and, since in the sense of distributions

∂ξχ = δ(ξ)− δ(u(x, t)− ξ) ≤ δ(ξ),
and

∂ξf∆t ≤ δ(ξ)−Dxf∆t(x− a(ξ)(zt − ztk), ξ, tk) · a′(ξ)(zt − ztk),

we obtain

−2
d

dt

ˆ
χf∆tdξdx = −2

ˆ
(∂tχf∆t + χ∂tf∆t) dξdx

= −2

ˆ (
f∆t

(
−

N∑
i=1

ai(ξ)∂xiχż
i + ∂ξm

)
+ χ

(
−

N∑
i=1

ai(ξ)∂xif∆tż
i + ∂ξm∆t

))
dξdx

= 2

ˆ
(∂ξf∆tm+ ∂ξχm∆t) dξdx

≤ 2

ˆ
(m(x, 0, t) +m∆t(x, 0, t)) dx

−
ˆ
Dxf∆t(x− a(ξ)(zt − ztk), ξ, tk) · a′(ξ)(zt − ztk)mdξdx

≤ − d

dt

ˆ
|χ|dξdx− d

dt

ˆ
|f∆t|dξdx+ ‖a′‖C0([−M,M ])|zt − ztk |

ˆ
|Dxm|dξdx,

and, hence,

d

dt

ˆ
|χ(t)− f∆t(t)|dξdx ≤ ‖a′‖C0([−M,M ])|zt − ztk |

ˆ
|Dxm|dξdx.

At this point we face a difficulty. The term
´
|Dxm|dξdx may not be finite and thus an additional

approximation argument is necessary.
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To resolve this issue we replace χ by its space mollification χε making an error of order ε‖u0‖BV and
we note that, if mε is the mollification of m with respect to the x-variable, thenˆ T

0

ˆ
|Dxm

ε|dξdxdt ≤ 1

ε

ˆ T

0

ˆ
mdξdxdt ≤ ‖u0‖2

2ε
.

In conclusion, we findˆ
|u(t)− u∆t(t)|dx . ε‖u0‖BV + ‖a′‖C0([−M,M ])∆z

‖u0‖2
2ε

,

and choosing ε ≈
√

∆z finishes the informal proof.

For future reference we observe that, if

χ∆t(x, ξ, t) := χ(u∆t(x, t), ξ),

then

(2.9) χ∆t(x, ξ, t) = χ(

ˆ
f∆t(x, η, t)dη, ξ) =Mf∆t(x, ξ, t).

We continue with

The proof of Theorem 2.1. We first assume z ∈ C1([0, T ];RN ). In this case χ and f∆t solve (2.3)
and (2.7) respectively. It has been shown in Theorem 3.2 in [19] that χ depends continuously on the
driving signal z, in the sense that, if u1, u2 are two solutions driven by z1, z2 respectively, then

sup
t∈[0,T ]

‖u1(t)− u2(t)‖1 ≤ C‖z1 − z2‖C([0,T ];RN ).

In view of (2.6), it also follows that f∆t and u∆t depend continuously on z. This can be seen by

induction over k. Given two smooth smooth signals z1, z2 we denote by fz
1

∆t, f
z2

∆t the corresponding

free streaming functions and we note that, since fz
1

∆t(x, ξ, t) = fz
2

∆t(x, ξ, t) = 0 for all |ξ| > M and

sup
t∈[tk,tk+1)

ˆ
|fz1∆t(x, ξ, t)− fz

2

∆t(x, ξ, t)|dxdξ

= sup
t∈[tk,tk+1)

ˆ
|fz1∆t(x− a(ξ)(z1

t − z1
tk

), ξ, tk)− fz
2

∆t(x− a(ξ)(z2
t − z2

tk
), ξ, tk)|dxdξ

≤ sup
{ˆ

|fz1∆t(x+ h, ξ, tk)− fz
2

∆t(x, ξ, tk)|dxdξ : h ∈ RN , |h| ≤ 2‖a‖C0([−M,M ])‖z1 − z2‖C0([0,T ];RN )

}
,

it follows that

lim
‖z1−z2‖

C0([0,T ];RN )
→0

sup
t∈[tk,tk+1)

ˆ
|fz1∆t(x, ξ, t)− fz

2

∆t(x, ξ, t)|dxdξ = 0.

Hence, the rough case z ∈ C([0, T ];RN ) can be handled by smooth approximations in the end (see
step 5 below).

Step 1: The kinetic formulation. The proof is based on the kinetic interpretation of the
semi-discretization scheme given by (2.7).

An important observation, used in Lemma 3.2 below, is the following L1−contraction property

(2.10) ‖Mf −Mg‖L1
x,ξ
≤ ‖f − g‖L1

x,ξ
,
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which follows from the observations that
´
|χ(u, ξ)− χ(v, ξ)|dξ = |u− v| for all u, v ∈ R andˆ

|Mf(x, ξ)−Mg(x, ξ)|dξ =

ˆ ∣∣χ(

ˆ
f(x, η)dη, ξ)− χ(

ˆ
g(x, η)dη, ξ)

∣∣dξ = |
ˆ
f(x, ξ)− g(x, ξ)dξ|.

We note that m∆t is a non-negative measure. Indeed,

m∆t =

ˆ ξ

0

∑
k

δ(t− tk)(Mf∆t − f∆t)dξ̃ =
∑
k

δ(t− tk)
ˆ ξ

0
(Mf∆t − f∆t)dξ̃

and, moreover, ˆ ξ

0
Mf∆t(t)dξ̃ =

ˆ ξ

0
χ(

ˆ
f∆t(x, η, t)dη, ξ̃)dξ̃ = ξ ∧

ˆ
f∆t(x, η, t)dη

Since f∆t ≤ 1 we find ˆ ξ

0
f∆t(t)dξ̃ ≤ ξ ∧

ˆ
f∆t(t)dξ̃,

and, hence, ˆ ξ

0
(Mf∆t − f∆t)dξ̃ ≥ 0.

Step 2: The approximation. We obtain here an estimate for the error at the kinetic level between
the solution and the approximation. This follows using an argument introduced by Perthame in [24,25]
for the kinetic formulation as an alternative to Kružkov’s method.

Aiming to estimate the errorˆ
|u(t)− u∆t(t)|dx =

ˆ ∣∣ˆ (χ(t)− f∆t(t))dξ
∣∣dx ≤ ˆ |χ(t)− f∆t(t)|dξdx,

we begin by regularizing χ using a standard Dirac sequence ϕε(x) := 1
εN
ϕ(xε ) with ‖ϕ‖1 = 1. That is,

we consider the x-convolution

χε(x, ξ, t) := (χ(·, ξ, t) ∗ ϕε)(x),

which solves, for mε = m ∗ ϕε,

∂tχ
ε +

N∑
i=1

ai(ξ)∂xiχ
εżi = ∂ξm

ε.

In fact in order to make the following calculations rigorous it also necessary to consider a regular-
ization in time and velocity, so that the equation on χε is satisfied in a classical way. For simplicity
of the presentation we drop this technicality here.

We first note that, using (2.8),ˆ
|χ(t)− f∆t(t)|dξdx =

ˆ
|χ(t)− f∆t(t)|2dξdx

=

ˆ
|χ(t)| − 2χ(t)f∆t(t) + |f∆t(t)|dξdx(2.11)

= F ε(t) + Err1(t),

where

F ε(t) :=

ˆ
(|χε(t)| − 2χε(t)f∆t(t) + |f∆t(t)|) dξdx,
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and

Err1(t) :=

ˆ
(|χ(t)| − |χε(t)| − 2(χ(t)− χε(t))f∆t(t)) dξdx.

Since u(·, 0) = u∆t(·, 0), it follows that

(2.12)

ˆ
|χ(t)− f∆t(t)|dξdx =

ˆ
|χ(t)− f∆t(t)|dξdx−

ˆ
|χ(0)− χ∆t(0)|dξdx

=

ˆ t

0

d

dt
F ε(s)ds+ Err1|t0.

Step 3: The estimate of d
dtF

ε. Using again (2.8), we first note that

d

dt

ˆ
|χε|dξdx = −2

ˆ
mε(x, 0, t)dx and

d

dt

ˆ
|f∆t|dξdx = −2

ˆ
m∆t(x, 0, t)dx.(2.13)

Furthermore, since

∂ξχ
ε = (δ(ξ)− δ(ξ − u(x, t))) ∗ ϕε ≤ δ(ξ) and ∂ξχ ≤ δ(ξ),(2.14)

and, for t ∈ [tk, tk+1), f∆t(x, ξ, tk) = χ(u∆t(x, tk), ξ), we find ,

∂ξf∆t = ∂ξ
(
f∆t(x− a(ξ)(zt − ztk), ξ, tk)

)
= (∂ξχ∆t)(x− a(ξ)(zt − ztk), ξ, tk)−Dxf∆t(x− a(ξ)(zt − ztk), ξ, tk) · a′(ξ)(zt − ztk)(2.15)

≤ δ(ξ)−Dxf∆t(x− a(ξ)(zt − ztk), ξ, tk) · a′(ξ)(zt − ztk),

with the above inequalities satisfied in the sense of distributions.

Combining next (2.13), (2.14), (2.15), and the facts that |f∆t| ≤ 1 and f∆t(x, ξ, t) = 0 for all
|ξ| > M we obtain

−2
d

dt

ˆ
χεf∆tdξdx = −2

ˆ
(∂tχ

εf∆t + χε∂tf∆t)dξdx

= −2

ˆ (
f∆t

(
−

N∑
i=1

ai(ξ)∂xiχ
εżi + ∂ξm

ε
)

+ χε
(
−

N∑
i=1

ai(ξ)∂xif∆tż
i + ∂ξm∆t

))
dξdx

= 2

ˆ
(∂ξf∆tm

ε + ∂ξχ
εm∆t) dξdx

≤ 2

ˆ
(mε(x, 0, t) +m∆t(x, 0, t)) dx

− 2
∑
k

1I{tk<t<tk+1}

ˆ
Dxf∆t(x− a(ξ)(zt − ztk), ξ, tk) · a′(ξ)(zt − ztk)mεdξdx

≤ − d

dt

ˆ
|χε|dξdx− d

dt

ˆ
|f∆t|dξdx+ 2‖a′‖C0([−M,M ])∆z

ˆ
|Dxm

ε|dξdx

≤ − d

dt

ˆ
|χε|dξdx− d

dt

ˆ
|f∆t|dξdx+ 2

‖a′‖C0([−M,M ])∆z

ε

ˆ
m(x, ξ, t)dξdx,

and, in conclusion,

(2.16)
d

dt
F ε(t) ≤ 2

‖a′‖C0([−M,M ])∆z

ε

ˆ
m(x, ξ, t)dξdx.

Step 4: The estimate of Err1. We estimate |Err1(t)| in terms of the BV -norm of u0.
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Lemma 2.2. Assume u0 ∈ (BV ∩ L∞)(RN ) and (2.2). Then,
ˆ
|χ(t)− χε(t)|dξdx ≤ ε‖u0‖BV ,

and, for all t ∈ [0, T ],

|Err1(t)| ≤ ε‖u0‖BV .

Proof. Since

|χ(t)| − |χε(t)| − 2(χ(t)− χε(t))f∆t(t) = (χ(t)− χε(t))sgn(ξ)(1− 2|f∆t|(t))

and |f∆t| ∈ {0, 1}, we first observe that, for all t ≥ 0,

|Err1(t)| ≤
ˆ
|χ(t)− χε(t)|dξdx.

In addition it follows from [19, Proposition 2.1] that, for all t ≥ 0,

‖u(t)‖BV ≤ ‖u0‖BV .

Hence, using Lemma C.1, we find
ˆ
|χ(t)− χε(t)|dξdx ≤ ε

ˆ
‖χ(·, ξ, t)‖BV dξ = ε‖u(t)‖BV ≤ ε‖u0‖BV .

�

Step 5: The conclusion. It follows from (2.12), (2.16), (B.2) and Lemma 2.2 that, for all t ∈ [0, T ],

ˆ
|χ(x, ξ, t)− f∆t(x, ξ, t)|dξdx ≤ 2

‖a′‖C0([−M,M ])∆z

ε

ˆ t

0

ˆ
m(x, ξ, r)dxdξdr + 2ε‖u0‖BV

≤
‖a′‖C0([−M,M ])∆z

ε
‖u0‖22 + 2ε‖u0‖BV ,

and hence, choosing ε ≈
√

∆z to minimize the expression yields
ˆ
|χ(x, ξ, t)− f∆t(x, ξ, t)|dξdx ≤

√
2‖u0‖BV ‖a‖C0,1([−M,M ]) ‖u0‖2

√
∆z.(2.17)

We now go back to z ∈ C([0, T ];RN ) and choose zn ∈ C1([0, T ];RN ) such that zn → z in C([0, T ];RN ).
In view of the continuity in the driving signal, we observe that, as n→∞

χn → χ and χn∆t → χ∆t in C([0, T ];L1(RN+1)).

It follows from (2.17) that
ˆ
|χn(x, ξ, t)− fn∆t(x, ξ, t)|dξdx ≤

√
2‖u0‖BV ‖a‖C0,1([−M,M ]) ‖u0‖2

√
∆zn

Passing to the limit in n completes the proof. �
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3. Spatially inhomogeneous stochastic scalar conservation laws

We consider here the inhomogeneous stochastic scalar conservation law

(3.1)

{
∂tu+

∑N
i=1 ∂xiA

i(x, u) ◦ dzi = 0 in RN × (0, T ),

u(·, 0) = u0 ∈ (L1 ∩ L2)(RN ),

and its kinetic formulation

(3.2) ∂tχ+
N∑
i=1

ai(x, ξ)∂xiχ ◦ dzi −
N∑
i=1

bi(x, ξ)∂ξχ ◦ dzi = ∂ξm,

where
ai(x, ξ) := (∂uA

i)(x, ξ) and bi(x, ξ) := ∂xiA
i(x, ξ)

and z is an α-Hölder geometric rough path for some α ∈ (0, 1).

More precisely, we assume that

(3.3)


z ∈ C0,α([0, T ];G[ 1

α
](RN )),

A ∈ C2(RN × R;RN ),

a, b ∈ Lipγ+2(RN × R) for some γ > 1
α ≥ 1, and

b(x, 0) = 0 for all x ∈ RN ,

and note that it has been shown in [11] that, under these assumptions, the theory of pathwise entropy
solutions to (3.1) is well posed.

Fix ∆t > 0 and a partition {t0, . . . , tK} of [0, T ] given by tk := k∆t. The approximation scheme is
given by

(3.4)


∂tf∆t +

N∑
i=1

ai(x, ξ)∂xif∆t ◦ dzi −
N∑
i=1

bi(x, ξ)∂ξf∆t ◦ dzi = 0 on (tk, tk+1),

f∆t(x, ξ, tk) = χ(u∆t(x, tk), ξ),

where

(3.5) u∆t(x, 0) := u0(x) and u∆t(x, t) :=

ˆ
f∆t(x, ξ, t−)dξ.

We begin by expressing f∆t in terms of the characteristics of (3.4). For each final time t1 ≥ 0, we
consider the backward characteristics

dXi
(x,ξ,t1)(t) = ai(X(x,ξ,t1)(t),Ξ(x,ξ,t1)(t))dz

t1,i(t), Xi
(x,ξ,t1)(0) = xi, i = 1, . . . , N,

dΞ(x,ξ,t1)(t) = −
N∑
i=1

bi(X(x,ξ,t1)(t),Ξ(x,ξ,t1)(t))dz
t1,i(t), Ξ(x,ξ,t1)(0) = ξ,

where zt1 is the time-reversed rough path, that is, for t ∈ [0, t1],

(3.6) zt1(t) := z(t1 − t).
Note that, in view of (3.3), the flow of backward characteristics (x, ξ) 7→ (X(x,ξ,t1),Ξ(x,ξ,t1)) is volume

preserving on RN+1. This fact follows from Liouville’s Theorem, the stability of X,Ξ in z and the
fact that, for all z ∈ C1([0, T ];RN ), t ∈ [0, T ], (x, ξ) ∈ RN+1,

N∑
i=1

∂xia
i(x, ξ)żi − ∂ξ

(
N∑
i=1

bi(x, ξ)żi

)
= 0.
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In addition, since b(·, 0) ≡ 0 , for all t1, t ∈ [0, T ] and (x, ξ) ∈ RN+1, we have

sgn(Ξ(x,ξ,t1)(t)) = sgn(ξ) and Ξ(x,0,t1)(t) = 0.(3.7)

Let

(Y(x,ξ,t1)(t), ζ(x,ξ,t1)(t)) := (X(x,ξ,t1)(t),Ξ(x,ξ,t1))
−1.

The solution f∆t to (3.4), for t ∈ [tk, tk+1), is given by

f∆t(x, ξ, t) = f∆t

(
X(x,ξ,t)(t− tk),Ξ(x,ξ,t)(t− tk), tk

)
.

We have:

Theorem 3.1. Let u0 ∈ (L1 ∩ L2)(RN ) and assume (3.3). Then

lim
∆t→0

‖u(·, t)− u∆t(·, t)‖L1(RN×[0,T ]).

Proof. We begin with a brief outline of the proof. The first step as in the proof of of Theorem 2.1 is
to rewrite the scheme in a kinetic formulation with a defect measure m∆t. Then we establish uniform

in ∆t estimates for f∆t and m∆t. This allows to extract weakly?- convergent subsequences f∆t
?
⇀ f ,

m∆t
?
⇀ m. In the third step we identify the limit f as a generalized pathwise entropy solution to

(3.1). Since, in view of [11, Proposition 4.9, Theorem 3.1], generalized entropy solutions are unique,
it follows that f = χ, and this yields the weak convergence of the f∆t. In the last step we deduce the
strong convergence.

Step 1: The kinetic formulation of the approximation scheme. Similarly to the homogeneous
setting we observe that the semi-discretization scheme has the following kinetic representation:

(3.8) ∂tf∆t +
N∑
i=1

ai(x, ξ)∂xif∆t ◦ dzi +
N∑
i=1

∂xiA
i(x, ξ)∂ξf∆t ◦ dzi = ∂ξm∆t

where

∂ξm∆t :=
∑
k

δ(t− tk)(Mf∆t − f∆t),

m∆t being a non-negative measure on RN × R× [0, T ], and M is defined as in (2.9).

We pass to the stable form of (3.8) by convolution along characteristics. For any %0 ∈ C∞c (RN+1),
t0 ∈ [0, T ] and (y, η) ∈ RN+1, we consider

(3.9) %t0(x, y, ξ, η, t) := %0

(
X(x,ξ,t)(t− t0)− y
Ξ(x,ξ,t)(t− t0)− η

)
.

Then, in the sense of distributions in t ∈ [0, T ],

∂t(f∆t ∗ %t0)(y, η, t) = −
ˆ
∂ξ%t0(x, y, ξ, η, t)m∆t(x, ξ, t)dxdξ,

which is equivalent to

(3.10) (f∆t ∗ %t0)(y, η, t)− f∆t ∗ %t0(y, η, s) = −
ˆ

(s,t]

ˆ
∂ξ%t0(x, y, ξ, η, r)m∆t(x, ξ, r)drdxdξ.

for all s < t, s, t ∈ [0, T ].

Step 2: Stable apriori estimate. We establish uniform in ∆t estimates for f∆t and m∆t. We begin
with an L1-estimate.
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Lemma 3.2. Let u0 ∈ (L1 ∩ L2)(RN ) and assume (3.3). Then, for all t ∈ [0, T ],ˆ
|f∆t|(x, ξ, t)dxdξ ≤‖u0‖1.(3.11)

and, for some independent of ∆t positive constant M ,

1

2

ˆ t

0

ˆ
m∆t(x, ξ, r)dξdxdr +

ˆ
f∆t(x, ξ, t)ξdxdξ ≤

1

2
‖u0‖22 +M‖u0‖1.(3.12)

Proof. Since (x, ξ) 7→ (X(x,ξ,t1),Ξ(x,ξ,t1)) is volume-preserving, using (2.10) we find, for all t ∈ [tk, tk+1),ˆ
|f∆t|(x, ξ, t)dxdξ =

ˆ
|f∆t|

(
X(x,ξ,t)(t− tk),Ξ(x,ξ,t)(t− tk), tk

)
dxdξ =

ˆ
|f∆t| (x, ξ, tk) dxdξ

=

ˆ
|Mf∆t| (x, ξ, tk−) dxdξ ≤

ˆ
|f∆t| (x, ξ, tk−) dxdξ,

which proves (3.11) by iteration.

Then (3.12) follows as in [11, Lemma 4.7]. �

Next we show that the approximations f∆t are uniformly tight.

Lemma 3.3. Let u0 ∈ (L1 ∩ L2)(RN ) and assume (3.3). The family f∆t is uniformly tight, that is,
for each ε > 0, there is an R > 0 (independent of ∆t) such that

sup
t∈[0,T ]

ˆ
BcR×R

|f∆t|(x, ξ, t)dxdξ ≤ ε.

Proof. Choose %s,0 ∈ C∞c (RN ) non-negative and %v,0 ∈ C∞c (R) and consider (3.9) with %0(x, ξ) :=
%s,0(x)%v,0(ξ); the superscripts s, v refer to the state and velocity variables respectively.

Then

∂ξρt0(x, 0, ξ, 0, t) = ∂ξ(%
s,0(X(x,ξ,t)(t− t0))%v,0(Ξ(x,ξ,t)(t− t0)))

= (∂ξ%
s,0(X(x,ξ,t)(t− t0)))%v,0(Ξ(x,ξ,t)(t− t0))

+ %s,0(X(x,ξ,t)(t− t0))∂ξ(%
v,0(Ξ(x,ξ,t)(t− t0)))

= D%s,0(X(x,ξ,t)(t− t0)) · (∂ξX(x,ξ,t)(t− t0))%v,0(Ξ(x,ξ,t)(t− t0))

+ %s,0(X(x,ξ,t)(t− t0))D%v,0(Ξ(x,ξ,t)(t− t0))∂ξΞ(x,ξ,t)(t− t0).

Fix ε > 0. It follows from Lemma A.1 that we may choose δ > 0, s < t, t0 ∈ [s, t] and |t− s| so small
that, for all (x, ξ) ∈ RN+1 and r ∈ [s, t],

∂ξΞ(x,ξ,r)(r − t0) ≥ 0, |X(x,ξ,r)(r − t0)− x| ≤ 1

4
and |∂ξX(x,ξ,r)(r − t0)| ≤ δ.(3.13)

Hence, for all (x, ξ) ∈ RN+1, r ∈ [s, t],

−D%s,0(X(x,ξ,r)(r − t0)) · (∂ξX(x,ξ,r)(r − t0))%v,0(Ξ(x,ξ,r)(r − t0))

≤ |D%s,0(X(x,ξ,r)(r − t0)||∂ξX(x,ξ,r)(r − t0)||%v,0(Ξ(x,ξ,r)(r − t0))|

≤ δ|D%s,0(X(x,ξ,r)(r − t0))|.
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Next we consider a sequence of %v,0L ’s such that %v,0L → sgn in L∞(R) for L→∞, %v,0L non-decreasing

on [−1, 1] and |D%v,0L (ξ)| ≤ 1 for all 1 ≤ |ξ| and D%v,0L (ξ) = 0 for all 1 ≤ |ξ| ≤ L. Then

− %s,0(X(x,ξ,r)(r − t0))D%v,0L (Ξ(x,ξ,r)(r − t0))∂ξΞ(x,ξ,r)(r − t0)

≤ −%s,0(X(x,ξ,r)(r − t0))D%v,0L (Ξ(x,ξ,r)(r − t0))∂ξΞ(x,ξ,r)(r − t0)1|Ξ(x,ξ,r)(r−t0)|≥1.

Using Lemma 3.2 and dominated convergence, we conclude

− lim
L→∞

ˆ
(s,t]

ˆ
%s,0(X(x,ξ,r)(r − t0))D%v,0L (Ξ(x,ξ,r)(r − t0))∂ξΞ(x,ξ,r)(r − t0)m∆t(x, ξ, r)dxdξdr ≤ 0

and, hence,

− lim
L→∞

ˆ
(s,t]

ˆ
∂ξρt0,L(x, 0, ξ, 0, r)m∆t(x, ξ, r)dxdξdr ≤

ˆ
(s,t]

ˆ
δ|D%s,0(X(x,ξ,r)(r − t0)|m∆t(x, ξ, r)dxdξdr.

Thus, with (y, η) = (0, 0) ∈ RN+1 in (3.10), we get

lim
L→∞

ˆ
f∆t(x, ξ, t)%t0,L(x, 0, ξ, 0, t)dxdξ − lim

L→∞

ˆ
f∆t(x, ξ, s)%t0,L(x, 0, ξ, 0, s)dxdξ

= − lim
L→∞

ˆ
(s,t]

ˆ
∂ξ%t0,L(x, 0, ξ, 0, r)m∆t(x, ξ, r)dxdξdr

≤ δ
ˆ

(s,t]

ˆ
|D%s,0(X(x,ξ,r)(r − t0))|m∆t(x, ξ, r)dxdξdr.

We choose t0 = s, use that %v,0L → sgn in L∞(R) for L→∞ and sgn(f∆t(x, ξ, t)) = sgn(ξ) to find

(3.14)

ˆ
|f∆t|(x, ξ, t)%s,0(X(x,ξ,t)(t− s))dxdξ −

ˆ
|f∆t|(x, ξ, s)%s,0(x)dxdξ

≤ δ
ˆ

(s,t]

ˆ
|D%s,0(X(x,ξ,r)(r − s))|m∆t(x, ξ, r)dxdξdr.

Let R > 0 large enough to be fixed later and choose %s,0 : RN → [0, 1] such that

%s,0 =

{
1 |x| ≥ R− 1

4 ,

0 |x| < R− 1
2 ,

and |D%s,0| ≤ 4.

If follows, using (3.13), that

%s,0(X(x,ξ,t)(t− s)) =

{
1 |x| ≥ R,
0 |x| ≤ R− 1.

We employ again Lemma A.1 to choose a partition 0 = τ0 < τ1 < · · · < τM̃ = T of [0, T ] with

M̃ = M̃(δ) such that (3.13) is satisfied for all intervals [s, t] = [τk, τk+1]. Then, using (3.14), for all

t ∈ [0, T ] and k ∈ {0, . . . , M̃} such that t ∈ [τk, τk+1), we findˆ
BcR

|f∆t|(x, ξ, t)dxdξ ≤
ˆ
|f∆t|(x, ξ, t)%s,0(X(x,ξ,t)(t− τk))dxdξ

≤
ˆ
|f∆t|(x, ξ, τk)%s,0(x)dxdξ + δ

ˆ
(τk,t]

ˆ
|D%s,0(X(x,ξ,r)(r − τk))|m∆tdxdξdr

≤
ˆ
BcR−1

|f∆t|(x, ξ, τk)dxdξ + 4δ

ˆ
(τk,t]

ˆ
m∆tdxdξdr,
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which, after an iteration and in view of Lemma 3.2, yieldsˆ
BcR

|f∆t|(x, ξ, t)dxdξ ≤
ˆ
Bc
R−M̃

|f∆t|(x, ξ, 0)dxdξ + 4δ

ˆ
[0,t]

ˆ
m∆tdxdξdr

≤
ˆ
Bc
R−M̃

|u0|(x)dx+ 4δ(
1

2
‖u0‖22 +M‖u0‖1).

To conclude, we first choose δ < ε
2‖u0‖22+2M‖u0‖1

and then R large enough. �

Step 3: The weak convergence. For all t0 ≥ 0, all test functions %t0 given by (3.9) with %0 ∈ C∞c
and all ϕ ∈ C∞c ([0, T )), we have

(3.15)

ˆ T

0
∂tϕ(r)(%t0 ∗ f∆t)(y, η, r)dr + ϕ(0)(%t0 ∗ f∆t)(y, η, 0)

=

ˆ T

0

ˆ
ϕ(r)∂ξ%t0(x, y, ξ, η, r)m∆t(x, ξ, r)dxdξdr,

that is,

(3.16)

ˆ T

0

ˆ
∂tϕ(r)%t0(x, y, ξ, η, r)f∆t(x, ξ, r)dxdξdr +

ˆ
ϕ(0)%t0(x, y, ξ, η, 0)χ(u0(x), ξ)dxdξ

=

ˆ T

0

ˆ
ϕ(r)∂ξ%t0(x, y, ξ, η, r)m∆t(x, ξ, r)dxdξdr.

Moreover, once again using Lemma A.1 we find that, for some C > 0 and all t ∈ [0, T ],

(3.17) sup
x,ξ

∥∥∥∥( X(x,ξ,t)(t− ·)− x
Ξ(x,ξ,t)(t− ·)− ξ

)∥∥∥∥
C0([0,T ])

≤ C.

Since %0 has compact support so does %t0 in view of (3.17). Moreover, Lemma 3.2 gives

sup
t∈[0,T ]

‖f∆t(·, ·, t)‖L1(RN×R) ≤ ‖u0‖1.

We use next Lemma 3.3 and |f∆t| ≤ 1 to find a subsequence (again denoted as f∆t) such that, as
∆t→ 0,

f∆t
∗
⇀ f in L∞(RN × R× [0, T ]) and f∆t ⇀ f in L1(RN × R× [0, T ]).

Moreover, Lemma 3.2 yields

‖f‖L∞([0,T ];L1(RN×R)) ≤ ‖u0‖1.
Since sgn(f∆t(x, ξ, t)) = sgn(ξ), the weak? convergence of the f∆t’s implies

f(x, ξ, t)sgn(ξ) = |f |(x, ξ, t) ≤ 1.

Next, we note that

∂ξf∆t =
∑
k

∂ξ(f∆t(X(x,ξ,t)(t− tk),Ξ(x,ξ,t)(t− tk), tk))1[tk,tk+1)(t)

=
∑
k

(∂ξχ∆t)(X(x,ξ,t)(t− tk),Ξ(x,ξ,t)(t− tk), tk)∂ξΞ(x,ξ,t)(t− tk)1[tk,tk+1)(t)

+
∑
k

(Dxf∆t)(X(x,ξ,t)(t− tk),Ξ(x,ξ,t)(t− tk), tk) · ∂ξX(x,ξ,t)(t− tk)1[tk,tk+1)(t).
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Moreover, (3.7) implies that, in the sense of distributions,

(∂ξχ∆t)(X(x,ξ,t)(t− tk),Ξ(x,ξ,t)(t− tk), tk)

= δ(Ξ(x,ξ,t)(t− tk))− δ
(
Ξ(x,ξ,t)(t− tk)− u∆t(X(x,ξ,t)(t− tk), tk)

)
(3.18)

= δ(ξ)− δ
(
Ξ(x,ξ,t)(t− tk)− u∆t(X(x,ξ,t)(t− tk), tk)

)
,

where, for ϕ ∈ C∞c (RN+1),

δ(Ξ(x,ξ,t)(t− tk)− u∆t(X(x,ξ,t)(t− tk), tk))(ϕ) :=

ˆ
ϕ(Y(x,ξ,tk)(t), ζ(x,ξ,tk)(t))δ(ξ − u∆t(x, tk))dxdξ,

and thus

(3.19)

∂ξf∆t =δ(ξ)− ν∆t(x, ξ, t) +
∑
k

δ(ξ)(∂ξΞ(x,ξ,t)(t− tk)− 1)1[tk,tk+1)(t)

+
∑
k

Dxf∆t(X(x,ξ,t)(t− tk),Ξ(x,ξ,t)(t− tk), tk) · ∂ξX(x,ξ,t)(t− tk)1[tk,tk+1)(t),

with

ν∆t(x, ξ, t) :=
∑
k

δ(Ξ(x,ξ,t)(t− tk)− u∆t(X(x,ξ,t)(t− tk), tk))∂ξΞ(x,ξ,t)(t− tk)1[tk,tk+1)(t).

We use again Lemma A.1 to get for ∆t small enough and all t ∈ [tk, tk+1),

(3.20) ∂ξΞ(x,ξ,t)(t− tk) ∈ [0, 2],

which implies that ν∆t is a non-negative measure.

Furthermore, for all R > 0, (3.20) and (3.17) give, for some constants R̃, C > 0 independent of ∆t,ˆ T

0

ˆ
BR

ν∆tdxdξdt =
∑
k

ˆ tk+1

tk

ˆ ˆ
BR

δ(Ξ(x,ξ,t)(t− tk)− u∆t(X(x,ξ,t)(t− tk), tk))∂ξΞ(x,ξ,t)(t− tk)dxdξdt

=
∑
k

ˆ tk+1

tk

ˆ ˆ
BR̃

δ(ξ − u∆t(x, tk))∂ξΞ(x,ξ,t)(t− tk)|Y(x,ξ,tk)(t),ζ(x,ξ,tk)(t)dxdξdt

≤ 2
∑
k

ˆ tk+1

tk

ˆ ˆ
BR̃

δ(ξ − u∆t(x, tk))dxdξdt ≤ C.

Hence, there exists a non-negative measure ν so that, along a subsequence,

ν∆t
∗
⇀ ν.

Observe that, for each ϕ ∈ C∞c (RN × R× [0, T ]),∑
k

ˆ
ϕ(x, ξ, t)(Dxf∆t)(X(x,ξ,t)(t− tk),Ξ(x,ξ,t)(t− tk), tk) · ∂ξX(x,ξ,t)(t− tk)1[tk,tk+1)(t)dxdξdt

=
∑
k

ˆ ti+1

ti

ˆ
(Dxf∆t)(x, ξ, tk) · ϕ(Y(x,ξ,tk)(t), ζ(x,ξ,tk)(t), t)∂ξX(x,ξ,t)(t− tk)|Y(x,ξ,tk)(t),ζ(x,ξ,tk)(t)dxdξdt

= −
∑
k

ˆ ti+1

ti

ˆ
f∆t(x, ξ, tk) ·Dx

(
ϕ(Y(x,ξ,tk)(t), ζ(x,ξ,tk)(t), t)∂ξX(x,ξ,t)(t− tk)|Y(x,ξ,tk)(t),ζ(x,ξ,tk)(t)

)
dxdξdt,

and, since Lemma A.1 yields that, as ∆t→ 0,

sup
t∈[tk,tk+1]

‖∂ξX(·,·,t)(t− tk)‖C1(RN+1) → 0,
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we find∑
k

ˆ
ϕ(x, ξ, t)(Dxf∆t)(X(x,ξ,t)(t− tk),Ξ(x,ξ,t)(t− tk), tk) · ∂ξX(x,ξ,t)(t− tk)1[tk,tk+1)(t)dxdξdt→ 0.

Moreover, again Lemma A.1 gives that, for ∆t→ 0,

‖∂ξΞ(·,·,t)(t− tk)− 1‖C(RN+1) → 0,

and thus letting ∆t→ 0 in (3.19) we find that, in the sense of distributions,

∂ξf =δ(ξ)− ν.

Recall that (see Lemma 3.2), for all t ∈ [0, T ]

1

2

ˆ t

0

ˆ
m∆t(x, ξ, r)dξdxdr ≤

1

2
‖u0‖22 +M‖u0‖1.

It follows that there exists some nonnegative measure m and a weak? convergent subsequence such

that m∆t
∗
⇀m.

Taking the limit in (3.16) then yields

ˆ T

0

ˆ
∂tϕ(r)%t0(x, y, ξ, η, r)f(x, ξ, r)dxdξdr +

ˆ
ϕ(0)%t0(x, y, ξ, η, 0)χ(u0(x), ξ)dxdξ

=

ˆ T

0

ˆ
ϕ(r)∂ξ%t0(x, y, ξ, η, r)m(x, ξ, r)dxdξdr.

Hence, f is a generalized rough kinetic solution to (3.1). The uniqueness of generalized rough kinetic
solutions (see [11, Theorem 3.1, Proposition 4.9]) yields that f = χ and thus f is the unique pathwise
entropy solution to (3.1). Hence, the whole sequence f∆t converges to χ weakly? in L∞(RN×R×[0, T ])
and weakly in L1(RN × R× [0, T ]).

Step 4: The strong convergence. We note that, in view of the weak convergence of f∆t to χ in
L1(RN × R× [0, T ]), we have, for ∆t→ 0,

ˆ T

0

ˆ
|f∆t − χ|2dxdξdt =

ˆ T

0

ˆ
|f∆t|2 − 2f∆tχ+ |χ|2dxdξdt ≤

ˆ T

0

ˆ
|f∆t| − 2f∆tχ+ |χ|dxdξdt

=

ˆ T

0

ˆ
f∆tsgn(ξ)− 2f∆tχ+ |χ|dxdξdt→

ˆ T

0

ˆ
χsgn(ξ)− 2χχ+ |χ|dxdξdt

= 0.

The uniform tightness of f∆t then implies
´ T

0

´
|f∆t − χ|dxdξdt→ 0 and, hence, as ∆t→ 0,

ˆ T

0

ˆ
|u∆t − u|dxdt =

ˆ T

0

ˆ
|
ˆ
f∆tdξ −

ˆ
χdξ|dxdt ≤

ˆ T

0

ˆ
|f∆t − χ|dξdxdt→ 0.

�
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Appendix A. Definitions and some estimates from the theory of rough paths

We briefly recall some basic facts of the Lyons’ rough paths theory used in this paper. For more details
we refer to Lyons and Qian [23] and Friz and Victoir [10].

Given x ∈ C1−var([0, T ];RN ), the space of continuous paths of bounded variation, the step M signature
SM (x)0,T given by

SM (x)0,T :=

(
1,

ˆ
0<u<T

dxu, . . . ,

ˆ
0<u1<···<uM<T

dxu1 ⊗ · · · ⊗ dxuM
)
,

takes values in the truncated step-M tensor algebra

TM (RN ) = R⊕ RN ⊕ (RN ⊗ RN )⊕ . . .⊕ (RN )⊗M ;

in fact, SM (x) takes values in the smaller set GM (RN ) ⊂ TM (RN ) given by

GM (RN ) :=
{
SM (x)0,1 : x ∈ C1−var([0, 1];RN )

}
.

The Carnot-Caratheodory norm of GM (RN ) given by

‖g‖ := inf

{ ˆ 1

0
|dγ| : γ ∈ C1−var([0, 1];RN ) and SM (γ)0,1 = g

}
,

gives rise to a homogeneous metric on GM (RN ).

Alternatively, for any g ∈ TM (RN ), we may set

|g| := |g|TM (RN ) := max
k=1...M

|πk(g)|,

where πk is the projection of g onto the k-th tensor level, which is an inhomogeneous metric on
GM (RN ). It turns out that the topologies induced by ‖ · ‖ and | · | are equivalent.

For paths in TM (RN ) starting at the fixed point e := 1+0+. . .+0 and β ∈ (0, 1], it is possible to define
β-Hölder metrics extending the usual metrics for paths in RN starting at zero. The homogeneous β-
Hölder metric is denoted by dβ−Höl and the inhomogeneous one by ρβ−Höl. A corresponding norm is
defined by ‖ · ‖β−Höl = dβ−Höl(·, 0), where 0 denotes the constant e-valued path.

A geometric β-Hölder rough path x is a path in T b1/βc(RN ) which can be approximated by lifts
of smooth paths in the dβ−Höl metric. It can be shown that rough paths actually take values in

Gb1/βc(RN ). The space of geometric β-Hölder rough paths is denoted by C0,β([0, T ];G
[ 1
β

]
(RN )).

We state next a basic stability estimate for solutions to rough differential equations (RDE) of the form

dx = V (x) ◦ dz,

where z is a geometric α-Hölder rough path.

It is well known (see, for example, [10]) that the RDE above has a flow ψz of solutions. The following
is taken from Crisan, Diehl, Friz and Oberhauser [7, Lemma 13].

Lemma A.1. Let α ∈ (0, 1), γ > 1
α ≥ 1, k ∈ N and assume that V ∈ Lipγ+k(RN ;RN ). For all

R > 0 there exist C = C(R, ‖V ‖Lipγ+k) and K = K(R, ‖V ‖Lipγ+k), which are non-decreasing in
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all arguments, such that, for all geometric α-Hölder rough paths z1, z2 ∈ C0,α([0, T ];G[ 1
α

](RN )) with
‖z1‖α−Höl;[0,T ], ‖z2‖α−Höl;[0,T ] ≤ R and all n ∈ {0, . . . , k},

sup
x∈RN

‖Dn(ψz
1 − ψz2)(x)‖α−Höl;[0,T ] ≤ Cρα−Höl;[0,T ](z

1, z2),

sup
x∈RN

‖Dn((ψz
1
)−1 − (ψz

2
)−1)(x)‖α−Höl;[0,T ] ≤ Cρα−Höl;[0,T ](z

1, z2)

and, for all n ∈ {1, . . . , k},

sup
x∈RN

‖Dnψz
1
(x)‖α−Höl;[0,T ] ≤ K and sup

x∈RN
‖Dn(ψz

1
)−1(x)‖α−Höl;[0,T ] ≤ K.

Appendix B. Pathwise entropy solutions to stochastic scalar conservation laws

Assume (2.2) and consider the spatially homogeneous problem

(B.1)

{
du+

∑N
i=1 ∂xiA

i(u) ◦ dzi = 0 in RN × (0, T ),

u(·, 0) = u0 ∈ (L1 ∩ L∞)(RN ).

The following notion of pathwise entropy solutions to (B.1) and its well-posedness were introduced
in [19].

Definition B.1. A function u ∈ (L1 ∩ L∞)(RN × [0, T ]) is a pathwise entropy solution to (B.1), if
there exists a nonnegative, bounded measure m on RN ×R× [0, T ] such that, for all %0 ∈ C∞c (RN+1),
all % given by

%(x, y, ξ, η, t) := %0(y − x+ a(ξ)z(t), ξ − η),

and all ϕ ∈ C∞c ([0, T )),ˆ T

0
∂tϕ(r)(% ∗ χ)(y, η, r)dr + ϕ(0)(% ∗ χ)(y, η, 0) =

ˆ T

0

ˆ
ϕ(r)∂ξ%(x, y, ξ, η, r)m(x, ξ, r)dxdξdr,

where the convolution along characteristics % ∗ χ is defined by

% ∗ χ(y, η, r) :=

ˆ
%(x, y, ξ, η, r)χ(x, ξ, r)dxdξ.

The following is proved in [19].

Theorem B.2. Let u0 ∈ (L1 ∩ L∞)(RN ) and assume (2.2). Then there exists a unique pathwise
entropy solution u ∈ C([0, T ];L1(RN )) satisfying, for all p ∈ [1,∞],

sup
t∈[0,T ]

‖u(t)‖p ≤ ‖u0‖p,

and ˆ T

0

ˆ
[−‖u0‖∞,‖u0‖∞]c

ˆ
RN

m(x, ξ, t)dxdξdt = 0,

ˆ T

0

ˆ
RN+1

m(x, ξ, t)dxdξdt ≤ 1

2
‖u0‖22.(B.2)

The notion of pathwise entropy solutions was extended in [21] and [11] to inhomogeneous stochastic
scalar conservation laws of the type

(B.3)

{
∂tu+

∑N
i=1 ∂xiA

i(x, u) ◦ dzi = 0 in RN × (0, T ),

u(·, 0) = u0 ∈ (L1 ∩ L2)(RN ).
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Assume that A, z satisfy (3.3). For each t1 ≥ 0 and for i = 1, . . . , N, consider the backward charac-
teristics 

dXi
(x,ξ,t1)(t) = ai(X(x,ξ,t1)(t),Ξ(x,ξ,t1)(t)) ◦ dzt1,i(t),

dΞ(x,ξ,t1)(t) = −
N∑
i=1

(∂xiA
i)(X(x,ξ,t1)(t),Ξ(x,ξ,t1)(t)) ◦ dzt1,i(t),

Xi
(x,ξ,t1)(0) = xi and Ξ(x,ξ,t1)(0) = ξ,

where, for t ∈ [0, t1], zt1 is the time-reversed rough path defined in (3.6).

Let %t0 be a test-function transported along the characteristics, that is, for some %0 ∈ C∞c (RN+1),
t0 ∈ [0, T ], (y, η) ∈ RN+1,

(B.4) %t0(x, y, ξ, η, t) := %0

(
X(x,ξ,t)(t− t0)− y
Ξ(x,ξ,t)(t− t0)− η

)
.

The following definition is Definition 2.1 and Definition 4.2 of [11].

Definition B.3. Let u0 ∈ (L1 ∩ L2)(RN ). (i). A function u ∈ L∞([0, T ];L1(RN )) is a pathwise
entropy solution to (B.3), if there exists a nonnegative bounded measure m on RN × R × [0, T ] such
that, for all t0 ≥ 0, all test functions %t0 given by (B.4) with %0 ∈ C∞c and ϕ ∈ C∞c ([0, T )),

(B.5)

{´ T
0 ∂tϕ(r)(%t0 ∗ χ)(y, η, r)dr + ϕ(0)(%t0 ∗ χ)(y, η, 0)

=
´ T

0

´
ϕ(r)∂ξ%t0(x, y, ξ, η, r)m(x, ξ, r)dxdξdr.

(ii). A function f ∈ L∞([0, T ];L1(RN × R)) is a generalized pathwise entropy solution to (B.3), if
there exists a nonnegative measure ν and a nonnegative, bounded measure m on RN ×R× [0, T ] such
that

(B.6) f(x, ξ, 0) = χ(u0(x), ξ), |f |(x, ξ, t) = sgn(ξ)f(x, ξ, t) ≤ 1 and
∂f

∂ξ
= δ(ξ)− ν(x, ξ, t),

and (B.5) holds with f replacing χ, for all t0 ≥ 0, %t0 as in (B.4) and ϕ ∈ C∞c ([0, T )).

The following well-posedness results was proved in [11]

Theorem B.4. Let u0 ∈ (L1 ∩ L2)(RN ) and assume (3.3). Then there exists a unique pathwise
entropy solution to (B.3) and generalized pathwise entropy solutions to (B.3) are unique.

Appendix C. Indicator functions of BV functions

We present here an observation which connects the BV -norms of u and χ(u(·), ξ).

Lemma C.1. Let u ∈ L1
loc(RN ). Then

‖u‖BV =

ˆ
R
‖χ(u(·), ξ)‖BV dξ.

Proof. It follows from Theorem 1 in Fleming and Rishel [9] that, for any u ∈ L1
loc,

‖u‖BV =

ˆ
R
‖1(−∞,u(·))(ξ)‖BV dξ.
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Hence,

‖u‖BV = ‖u+‖BV + ‖u−‖BV

=

ˆ
R
‖1(−∞,u+(·))(ξ)‖BV dξ +

ˆ
R
‖1(−∞,u−(·))(ξ)‖BV dξ

=

ˆ ∞
0
‖1(−∞,u+(·))(ξ)‖BV dξ +

ˆ ∞
0
‖1(−∞,u−(·))(ξ)‖BV dξ

=

ˆ ∞
0
‖1(0,u+(·))(ξ)‖BV dξ +

ˆ ∞
0
‖1(0,u−(·))(ξ)‖BV dξ

=

ˆ ∞
0
‖χ(u+(·), ξ)‖BV dξ +

ˆ ∞
0
‖χ(u−(·), ξ)‖BV dξ.

Since, for ξ ≥ 0, χ(u, ξ) = 1(0,u)(ξ) = 1(0,u+)(ξ) = χ(u+, ξ) and χ(u, ξ) = −χ(−u,−ξ) we get
ˆ
R
‖χ(u(·), ξ)‖BV dξ =

ˆ ∞
0
‖χ(u(·), ξ)‖BV dξ +

ˆ 0

−∞
‖χ(u(·), ξ)‖BV dξ

=

ˆ ∞
0
‖χ(u+(·), ξ)‖BV dξ +

ˆ 0

−∞
‖ − χ(−u(·),−ξ)‖BV dξ

=

ˆ ∞
0
‖χ(u+(·), ξ)‖BV dξ +

ˆ ∞
0
‖χ(−u(·), ξ)‖BV dξ

=

ˆ ∞
0
‖χ(u+(·), ξ)‖BV dξ +

ˆ ∞
0
‖χ(u−(·), ξ)‖BV dξ,

and, hence, the claim. �
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