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Abstract

In recent years, arrays of extracellular electrodes have been developed and manufactured to record simultaneously
from hundreds of electrodes packed with a high density. These recordings should allow neuroscientists to reconstruct the
individual activity of the neurons spiking in the vicinity of these electrodes, with the help of signal processing algorithms.
Algorithms need to solve a source separation problem, also known as spike sorting. However, these new devices challenge
the classical way to do spike sorting. Here we review different methods that have been developed to sort spikes from
these large-scale recordings. We describe the common properties of these algorithms, as well as their main differences.
Finally, we outline the issues that remain to be solved by future spike sorting algorithms.

Keywords: Electrophysiology, Signal processing, Spike sorting, Template matching, Multi electrode array, Micro
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1. Introduction

Progress in neuroscience relies to a large extent on the
ability to record simultaneously from large populations of
cells, in order to understand how information is repre-
sented among neurons. One of the most popular tech-
niques to measure such an activity is the use of arrays
of extracellular electrodes. With these devices, each elec-
trode records the extracellular field in its vicinity and can
detect the action potentials emitted by the neighboring
neurons. In contrast to intracellular recording, those ex-
tracellular recordings do not give a direct access to the
neuronal activity: one needs to process the recorded sig-
nals to extract the spikes emitted by the different cells
around the electrode. This process is termed spike sort-
ing, and many algorithms have been suggested to do it
efficiently (see Lewicki (1998) or Rey et al. (2015) for a
review).

The first extracellular recordings were performed with
a single electrode, and could only give access to 3-5 neu-
rons (Gerstein and Clark, 1964). A recent study (Pedreira
et al., 2012) highlighted that the maximal number of ac-
cessible neurons should lie between 8 and 10 in that case.
Over the last decades, there has been a strong effort to in-
crease the number of electrodes, and therefore the number
of recorded neurons. Spike sorting algorithms had to be
adapted to process this increasingly large amount of data.
At first, electrodes were spaced by hundreds of microns
such that the spike of one cell could only be detected on a
single electrode (Jones et al., 1992; Shoham et al., 2003).
In that case, spike sorting on a large amount of electrodes
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could simply be done by processing each electrode inde-
pendently. The parallelization of the problem for large
amount of independent electrodes was relatively easy to
address.

However, devices where electrodes are packed with a
high density have also been developed. The spacing be-
tween electrodes is much smaller (tens of microns). As
a consequence, a spike from a single cell can be detected
on several electrodes. Conversely, each electrode will de-
tect the activity of many cells, a property already encoun-
tered in the case of single electrode. This increased density
helps a lot to resolve single cells (Gray et al., 1995; Franke
et al., 2015a), but electrode signals could not be pro-
cessed independently. Spike sorting algorithms had to be
adapted to this new type of data. While for small numbers
of electrodes (e.g. tetrodes), methods that could be seen
as adaptations of single electrode sorting worked very well
(McNaughton et al., 1983; Harris et al., 2000; Gao et al.,
2012), this is not the case with new devices designed with
hundreds of electrodes all densely packed. CMOS-based
devices with thousands of electrodes have been tested and
are now frequently used (Berdondini et al. (2005); Fiscella
et al. (2012); Müller et al. (2015); Hilgen et al. (2016)),
calling for new algorithmic methods, largely different from
the usual sorting methods.

Here we review the different spike sorting algorithms
that have been proposed to process recordings from these
novel high-density devices. We will first explain the limita-
tions of classical spike sorting approaches to process these
large-scale, dense recordings. Then, we will outline the
main changes introduced by these new algorithms com-
pared to classical spike sorting approaches. We will em-
phasize that most of these new methods follow the same
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global strategy, although they have been developed inde-
pendently by different groups. Therefore, we will outline
the common properties shared by these algorithms, before
explaining and discussing their main differences. Finally,
we will discuss the issues that still need to be resolved by
future spike sorting algorithms.

2. The challenge posed by large-scale multi-
electrode recordings to classical approaches

Most of the classical approaches to spike sorting can
be decomposed in two main steps. First, some specific
features of the spike waveforms are extracted from the raw
data. This allows each spike to be characterized by a small
set of numbers/features. Using these features, each spike
can now be seen as a point in a low dimension space, and
the second step consists in clustering all the points in this
reduced space.

For the first step, earliest methods only extracted the
spike amplitude (Hubel et al., 1957), and width (Meister
et al., 1994) of each spike. More recently, some meth-
ods use the full waveform directly when the number of
electrodes remains small (Pouzat et al., 2002). Another
standard technique is to project each waveform on a set of
basis functions (Litke et al., 2004; Quiroga et al., 2004),
that are either found by performing a principal component
analysis (PCA) on the entire set of waveforms (Egert et al.
(2002); Pouzat et al. (2002); Einevoll et al. (2012); Swin-
dale and Spacek (2015)), or by choosing a wavelet basis
(Letelier and Weber (2000), Hulata et al. (2002), Quiroga
et al. (2004)). For a comparison between PCA and wavelet
based analysis, see Pavlov et al. (2007). Note that the two
can be combined (Bestel et al., 2012).

Once the dimensionality has been reduced, to tackle
the problem of the clustering step, several approaches have
been used, but the most standard approach is to fit the
clusters with a mixture of Gaussians (Wood et al., 2004;
Rossant et al., 2016; Kadir et al., 2014). However, one
could also find in the literature approaches such as param-
agnetic clustering (Quiroga et al., 2004), mean-shift clus-
tering (Swindale and Spacek, 2014) or even k-means clus-
tering (Atiya, 1992; Chah et al., 2011). Another interest-
ing approach is to consider the most consensual clustering
across an ensemble of k-means solutions (Fournier et al.,
2016).

Not all standard methods strictly follow this workflow.
For example, linear filtering is an alternative approach
which identifies the optimal linear filter to distinguish one
signal, of unknown temporal position but of known wave-
form, from a finite number of other signals of known wave-
forms, observed on noisy electrodes. This approach was
first proposed by Roberts and Hartline (1975), then by
Gozani and Miller (1994) and more recently by Franke
et al. (2010). This method is similar to template match-
ing approaches that we will describe later. An alterna-
tive approach is independent component analysis (ICA)
where the first step demix blindly the data and extract

the individual source signals from which spikes are iden-
tified (Takahashi et al., 2003; Brown et al., 2001; Jäckel
et al., 2012). Note that variants, such as the convolutional
independent component analysis (cICA) of Leibig et al.
(2016), has been developed. However, there is no guar-
antee that the independent components found by those
algorithms are indeed isolated neurons.

While all of these methods can be successful when one
electrode captures the signals from a only few cells, and
when one cell is only recorded by one or a small number
of electrodes, it is not trivial to scale them up to process a
large number of densely packed electrodes. In recordings
performed by large and dense multi-electrode arrays, the
spike waveforms live in a high dimensional space, and this
makes the clustering challenging. We will review below
some suggested improvements to enable clustering on a
large number of electrodes.

Finally, a more fundamental problem with clustering-
based approach is that the extraction of features from
one spike can be distorted by the presence of other spikes
nearby. As a consequence, most of the overlapping spikes
are not captured by clustering approaches, because they
correspond to points in the feature space that are far from
the centers of the corresponding clusters. This is a major
challenge for clustering techniques (Bar-Gad et al., 2001),
that we will explain in more details below. In large scale
and dense multi-electrode recordings, overlapping spikes
become the rule rather than the exception. Solving this
issue is one of the motivation behind new algorithms, based
on template matching, that we will review and discuss in
a second part.

3. Improvements of the clustering

In order to be able to scale up and perform spike sort-
ing for large number of channels with the classical algo-
rithms mentioned above, several refinements of the clus-
tering have been proposed by various groups.

3.1. Improved spike detection
Rossant et al. (2016) have proposed a method that

pre-processes the data to make clustering easier for multi-
electrode sorting. As explained above, the spike of a sin-
gle cell can be detected on multiple electrodes. Conversely,
spikes from several cells can be seen on the same electrode.
They designed a flood fill method to group together spikes
detected on different electrodes that correspond to a single
cell. For this they connect together spikes detected syn-
chronously on adjacent electrodes. The exact algorithm to
connect adjacent events bears some similarity with stan-
dard image processing algorithms, like the Canny contour
detection. Spikes are therefore defined as spatio-temporal
events, with a given spatial extent, called a mask, for each
of them.

In a second step, for each of these events, they remove
any voltage deflection outside of the mask, and replace it
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with noise. This masking removed part of the distortion
induced by other spikes when estimating the features, and
improved the performance of the clustering. While this
improvement is of great help for overlapping spikes that
are distant enough in space, it is less clear how it will help
for spikes coming from two cells that are physically close.
In that case, some electrodes will detect spikes from the
two cells, and their masks will strongly overlap. Therefore
this masking process may only help avoiding temporally
overlapping spikes from distant cells.

3.2. Pre-clustering
Marre et al. (2012) and Swindale and Spacek (2014)

use a method to break down the clustering problem into
multiple smaller parts. After detecting all the spikes in
the recording, waveforms are grouped in different subsets
according to the electrode where the highest voltage peak
was found. Instead of performing a single clustering al-
gorithm on all the waveforms, this grouping outputs N
subsets, if N is the number of electrodes. Each subset
contains all the spikes peaking on the same electrode. A
clustering is then performed on each of these subsets inde-
pendently.

Note that this pre-grouping does not assume that the
spikes are only detected on a single electrode, which would
amount to multiple single electrode sorting. Here, after
this pre-grouping, a clustering is performed for each group,
and this clustering used the information available on all the
electrodes. This simplification allows reducing drastically
the number of spikes that have to be processed together.
It also allows a simple parallelization of the clustering,
which is crucial for large-scale recordings with hundreds
or thousands of electrodes.

The main issue with this method is that a cell that
is located between two electrodes might emit spikes that
peak alternatively on one or the other electrode. In that
case, the cell will be split between two different groups,
and subsequently in two different clusters. This strategy
has therefore to be combined with a later step where all
the clusters that correspond to the same cell are merged
together. This method is therefore on the side of overclus-
tering the spikes, and merging the different clusters later
on. However, merging clusters is usually easier than split-
ting them since there is one possible result for the first
operation whereas the second one presents many possible
solutions.

3.3. Main issues associated with clustering
A complete review of all the clustering algorithms used

for spike sorting is beyond the scope of this review. How-
ever, we would like to outline the main issues associated
with the clustering step, that are common to almost every
clustering algorithm.

3.3.1. Mathematical definition and non-linear optimiza-
tion

Two of the main issues associated with any spike sort-
ing solution relying on a clustering approach can be found
in the roots of the clustering per se. Mathematically, the
clustering suffers from a lack of problem statement and
problem resolution. First, one need to agree on a mathe-
matical definition of the notion of cluster to state the prob-
lem. Because there exists many different cluster models
(e.g. centroid models, distribution models, density mod-
els), there are numerous notions of what a cluster is. It is
not obvious if one of these notions would fit appropriately
to the biological reality. Hence, the first problem is that
the stated problem is an approximation of the true prob-
lem. Thus, the solution to this clustering problem is an
approximated solution to the true problem. This is why
it often requires the user to spend a rather large amount
of time in manual curation, because the solution to the
true problem is in the neighborhood of the approximated
solution.

Second, solving a clustering problem brings additional
issues. The different methods used to do clustering involve
finding the minimum of an objective function, and the so-
lution landscape almost surely presents local minima. As a
consequence, running twice the same clustering algorithm
with two different set of parameters (i.e. internal param-
eters such as initial centroids for the k-means algorithm)
can lead to different results. The reason is that the two
runs can be trapped in two different local minima. In
many cases it takes several trials before converging to the
global minimum, which increases the computational cost.
In practice, the algorithm may stop before convergence be-
cause the more complex/challenging is the solution land-
scape, the less likely is the convergence in a reasonable
time.

3.3.2. Overlapping spikes
More importantly, as mentioned above, a major issue

with clustering is that it will miss many overlapping spikes.
If two spikes are overlapping on the same electrode, there
will be a distortion in the feature estimation, that will
drive the spike beyond the limits of the cluster defined
on isolated spikes. Note that the superposition problem
has been known for a long time (Prochazka et al., 1972;
Roberts and Hartline, 1975). The issue was apparent in
Harris et al. (2000): they showed that the error rate of the
spike sorting is strongly increased during spindle waves,
which are epochs of synchronous firing. False positive er-
rors could change from 5% to almost 80%, and false neg-
ative were also increased by at least 20%. The issue was
more extensively studied by Pillow et al. (2013), where
they show that synchronous spikes will be missed by a
pure clustering approach. An additional study of Franke
et al. (2015a) confirms that clustering-based methods per-
form poorly for overlapping spikes, as shown by Lewicki
(1998) and Quiroga et al. (2004). Template matching ap-
proaches have been developed in order to deal with these
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overlapping spikes.

4. Template matching approaches

Several template matching approaches have been devel-
oped for spike sorting (Pillow et al., 2013; Pachitariu et al.,
2016; Marre et al., 2012; Yger et al., 2016; Prentice et al.,
2011). Note that historically the use of template matching
(Gerstein and Clark, 1964) predates the use of clustering
(Simon, 1965) and then experienced renewed interest. All
these methods usually assume that the extracellular signal
can be decomposed as a sum of so-called “templates” (one
template is the average extracellular waveform triggered
by one neuron) plus some noise:

~s(t) =
∑

ij

aij ~wj(t− ti) + ~e(t) (1)

where ~s(t) is the signal recorded over the electrodes of
the multi electrode array and over multiple time points.
~wj(t − ti) is the spatiotemporal template associated with
each cell, which represents the average waveform triggered
on the electrodes by cell j (example in figure 1B). ti are all
the putative spike times over all the electrodes, aij is the
amplitude factor for spike time ti for cluster j, and ~e(t) is
the background noise.

In this notation, the spike train associated with cell
j is the set of times ti where aij is different from zero.
The template matching approach aims at finding the right
values for ~wj(t) and aij , i.e. to find where each cell spiked.
Almost all the template-matching based methods try first
to find the value of the templates, and then the values of
aij . Depending on the algorithm, the amplitude values
can only be 0 or 1, or can take any continuous value. We
will review these methods in subsections 4.3 and 4.4.

4.1. Template extraction
To estimate the templates, most methods usually rely

on clusters extracted from the recording using one of the
methods described above. Each cluster corresponds to a
set of snippets in the extracellular data. The snippets of
a given cluster are supposed to be realizations of action
potential of a single cell. We want to extract a canonical
representative (i.e. a template). A naive method would be
to consider the average waveform of these snippets. How-
ever, because averaging is very sensitive to outliers, if some
of the snippets also include overlapping spikes from other
cells, they might distort the estimate of the template. Two
solutions have been developed to circumvent this issue.
The simplest (and fastest) one is to take the median at
each time point instead of the mean (Marre et al., 2012;
Yger et al., 2016). The median is way less sensitive to out-
liers than the mean. This method usually solves the issue
of overlapping spikes.

Another solution is to model the extracellular signal
from the clustering result:

~s(t) =
∑

ij

bij ~wj(t− ti) + ~e(t) (2)

Notations are similar to equation 1, except that bij are bi-
nary variables such that bij is set to 1 if ti is associated to
cluster j, and to 0 otherwise. Here the unknown variables
are the templates ~wj(τ). Under these conditions, it is pos-
sible to find the templates that will fit the extracellular
data best, by minimizing the following square difference
(Pillow et al., 2013; Ekanadham et al., 2014):

min
~w

∥∥∥~s(t)−∑
ij

bij ~wj(t− ti)
∥∥∥2

2
(3)

The two methods seem to give similar results1 although, in
theory, the first approach is less sensitive to noise, whereas,
the second one is less sensitive to strong correlations be-
tween cells (i.e. overlapping spikes). This is due to the
fact that taking the median is a way to minimize the
`1-norm between the different snippets and the template,
while equation 3 is a minimization of a `2-norm.

4.2. Finding the spike trains
Once the templates are found, we need to find when

they appear on the extracellular signal. For this, tem-
plate matching methods usually use algorithms similar to
projection pursuit (Friedman and Tukey (1974), although
with different criteria for acceptance and stop). Most of
them can be summarized as an iterative greedy approach
with the following steps, for a given time chunk (illustrated
in figure 1A):

...
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Figure 1: The template matching approach. A: illustration of the
iterative template matching approach. The extracellular signal (in
blue, shown for 20 electrodes) is matched iteratively with a sum of
templates. At each step, a template is added to the signal (red)
to match better the data. At the end, all the spikes are fitted by
a template, and the sum of templates (red) predict very well the
data (blue). B: example of a single template over 16 electrodes. C:
example of amplitude values fitted to the data for one template, as
a function of time. Gray lines represent the average amplitude over
time, and the minimal amplitude over time (see text for details).

1See http://phy.cortexlab.net/data/sortingComparison/ for a di-
rect comparison on some synthetic ground-truth datasets
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1 Find the template that matches best the raw data.
If amplitude is allowed to be different from 1, find
the best matching amplitude.

2 Define a criterion to accept the template. It can
either be about the quality of the fit to the raw data,
or about the value of the best amplitude, or both.

3 If the template is accepted, subtract it from the raw
data. Then go back to the first step.

The different algorithms that have been proposed differ
mostly in the acceptance criterion, and in the possibility
to have amplitude different from 0 and 1 or not.

One common issue that needs to be mentioned before
comparing the approaches is sampling jitter. When a cell
emits a spike, the spike time may peak at a time t + dt,
where t is the closest time point sampled by the data ac-
quisition, and dt is the time difference between the true
spike time and t, smaller than the acquisition period. As
a result, in template matching approaches, a template will
be matched at time t to explain a spike that occurred at
t + dt. The compensation of this dt is necessary (McGill
and Dorfman, 1984) when one does not use a high sampling
frequency. For example, Prentice et al. (2011) use linear
interpolations, Pillow et al. (2013) use local approxima-
tions based on Taylor expansions and Yger et al. (2016) use
similar expansions (see also Marre et al. (2012) where this
issue is mentioned). Additional solutions, such as polar
expansions, were developed by Ekanadham et al. (2011).

4.3. Approaches with binary amplitudes
Segev et al. (2004), Pillow et al. (2013) and Franke

et al. (2015b) assume that the amplitude of a template is
always equal to 1 (aij ∈ {0, 1} in equation 1). Segev et al.
(2004) keep a template if it improved the prediction of the
extracellular signal by the sum of templates, i.e. if sub-
tracting it to the raw data led to a reduction in variability
that passes a given threshold. This threshold is needed to
avoid overfitting the noise with small templates. Pillow
et al. (2013) base the criterion of acceptance on an objec-
tive function: the value of the function had to be improved
when fitting an additional spike. This function is the sum
of two terms:∥∥∥~s(t)−∑

ij

aij ~wj(t− ti)
∥∥∥2

2
−
∑

j

γj

∑
i

aij (4)

The first one is the square difference between the extra-
cellular signal and the sum of templates, in the metric
defined by the noise covariance. It will usually decrease if
an additional spike is fitted to the signal. The second term
is a regularization on the average firing rate of each cell,
and corresponds to a cost per spike. This term decreases
when an additional spike is fitted to the signal, and re-
flects the prior that cells are more likely to be silent (i.e.
respect their firing rate) than to fire all the time. This sec-
ond term is here to avoid overfitting the noise with small

templates. Note that, while this term is called a prior
by Pillow et al. (2013), it is based on the data (on the
measured firing rate for each cell). We will call it a reg-
ularization term in the following. Conceptually, we can
see that the two methods are quite similar. If we whiten
the extracellular signal before template matching, then the
first term in the objective function of Pillow et al. (2013)
is equivalent to the square difference between the extra-
cellular signal and the sum of templates, which is exactly
what Segev et al. (2004) use. When Segev et al. (2004)
then compare the reduction of this square difference to a
threshold, this threshold can be compared to the change
of the second term in the objective function of Pillow et al.
(2013), which reflects the regularization on the firing rate.
The method of Pillow et al. (2013) is more elaborate be-
cause the regularization term can change from one cell to
the other, while the method of Segev et al. (2004) uses the
same threshold for all cells. However, it seems that the ex-
act regularization values does not change much the results
of the spike sorting (Pillow et al., 2013). Therefore, we
expect that these algorithms should give similar results.
More recently, Franke et al. (2015b) used a relatively simi-
lar approach but allowed fitting two templates at the same
time. This additional feature leads to a better estimation
in the case of overlapping spikes.

4.4. Approaches with graded amplitudes
Other methods have assumed that a template can be

scaled up or down every time the cell spikes: they assume
that the amplitude aij can take other values than 0 or
1 in equation 1. Prentice et al. (2011) assume that the
spike amplitude for a given cell follows a Gaussian proba-
bility distribution, whose mean is equal to 1. The standard
deviation of the distribution is estimated from the previ-
ously found cluster. Then, they maximized an objective
function that has two terms: the first one is the same as
the one of Pillow et al. (2013), i.e. the difference between
extracellular signal and the sum of templates in the noise
covariance metric. The second one is a regularization term
that reflects two facts. First, an amplitude closer to 1 is
more likely than a very small, or a very big one. Second,
a template with a high firing rate is more likely than an-
other one with a low firing rate. By balancing these two
terms, the optimization process avoid to add a lot of tem-
plates with small amplitudes that are highly unlikely. It
also avoid to add a lot of templates associated to units
with low firing rates. This second term can thus be under-
stood as a combination of two regularization constraints:
one over the amplitudes, and another one over the firing
rates.

Marre et al. (2012) and Yger et al. (2016) also allow
amplitude variations, but the acceptance criterion was dif-
ferent: after having found the amplitude that best matches
the extracellular signal, the template was kept if the am-
plitude was between thresholds, amin and amax. At first
sight, this criterion seems surprising since it does not de-
pend on the improvement in the quality of the fit. In fact,
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the process of finding the best amplitude is by itself an
estimation of the improvement of the fit. For a given iter-
ation, if we note ~r(t) the extracellular signal that remains
to be fitted (i.e. after subtraction of the templates fitted
in the previous iterations), and ~w(t) the new candidate
template that needs to be fitted, then the best matching
amplitude a will be found by minimizing (~r(t) − a~w(t))2.
It can be shown that, if this template is accepted, the
square difference will decrease by a2(~w(t))2. In other al-
gorithms, this decrease of the square difference has to be
larger than the increase of the regularization term for the
template to be accepted. Setting a minimal amplitude is
therefore equivalent to having a regularization term that
is different for each cell, but constant as a function of the
amplitude of the spike (similar to what was done by Pillow
et al. (2013)). The other threshold for maximal amplitude
is less important, and only plays a role to avoid very high,
unrealistic values.

The advantage of having an amplitude threshold as
a parameter, instead of a threshold for improvement in
the goodness of fit, is that this parameter is much more
intuitive for the user: we can figure out reasonably well
what a minimal amplitude of 0.4 or 0.8 means. Thresh-
olds on goodness of fit are less easy to understand. Fur-
thermore, by looking at the set of amplitudes fitted over
time, we can get a sense of the right values for these am-
plitude thresholds. If the minimal amplitude threshold is
too low, the template is also fitted on noise, with small
amplitudes which are clearly different from the amplitude
of real spikes, that are close to 1. When we labeled the
pairs of spikes with refractory period violations, we often
see that most of them involve one of these spurious fits.
It is therefore easy to readjust the threshold to a correct
value. These thresholds can also be made time dependent,
as can be seen in figure 1C. This gives more flexibility to
process non-stationary data while keeping understandable
parameters. Of course, the disadvantage of this method is
that the algorithm is not expressed as the minimization of
a cost function.

4.5. Different algorithms correspond to different assump-
tions about spike amplitude distributions

Can all these methods be expressed with an objective
function having a similar structure? As we showed be-
fore, all the three methods discussed above (Prentice et al.,
2011; Marre et al., 2012; Pillow et al., 2013) aim at mini-
mizing the square difference between the extracellular sig-
nal and the sum of fitted templates. The difference lies
in the regularization term, which reflects an assumption
about the possible amplitude for the spike. More formally,
the quantity we want to minimize is:

min
aij

∥∥∥~s(t)−∑
ij

aij ~wj(t− ti)
∥∥∥2

2
− λR

(
{aij}

)
(5)

where the first term is the square difference between the
data and the reconstruction model, R denotes the regu-

larization function over the amplitude values aij and λ is
a free parameter (i.e. trade-off between the two terms).

In Prentice et al. (2011), the regularization term re-
flects an assumed Gaussian distribution for the amplitude.
In Marre et al. (2012), the amplitude thresholds might re-
flect an assumption of flat amplitude distribution between
the minimal and maximal amplitudes, and 0 elsewhere.

With a similar approach, Ekanadham et al. (2014) use
a `1-minimization algorithm to find the right amplitudes.
This `1-minimization is equivalent to assuming that the
spike amplitude distribution that has the form of a power
law, i.e. 1/(ε + a)p. The form of this distribution gives
an advantage to small amplitudes. As a consequence, this
algorithm outputs a lot of small amplitude spikes, and
this is later corrected by removing all the spikes whose
amplitude is smaller than a given threshold. The threshold
is estimated a posteriori by fitting a Gaussian distribution
to the amplitude distribution found empirically.

One way to summarize the difference between these
three methods is therefore to say that they differ in their
assumption on the amplitude distribution. Prentice et al.
(2011) assume a Gaussian distribution, Marre et al. (2012)
and Yger et al. (2016) assume a flat distribution between
some thresholds, Ekanadham et al. (2014) and Pachitariu
et al. (2016) assumed a power-law distribution in the core
of the algorithm, but corrected it later on with a Gaussian
distribution.

4.6. Caveats when minimizing an objective function
While this is an intuitive way to explain the differences

between the different algorithms, it has to be noted that
some sorting algorithms do not directly minimize the ob-
jective function described above. For example, in both
Prentice et al. (2011) and Marre et al. (2012), during the
iterative process, the amplitude was chosen as the one that
best matches the data, without taking into account the
regularization term on the amplitude values. Formally,
the amplitudes were chosen to be the solution of:

min
aij

∥∥∥~s(t)−∑
ij

aij ~wj(t− ti)
∥∥∥2

2
(6)

A direct minimization of the total objective function, in-
cluding the regularization term, would have biased all the
amplitudes towards 1 since the amplitudes would have
been the solution of:

min
aij

∥∥∥~s(t)−∑
ij

aij ~wj(t− ti)
∥∥∥2

2
− λ

∑
ij

log
(
p(aij)

)
(7)

where λ is a free parameter and p(aij) is the probability
density function of the amplitude values. This bias af-
fects the quality of the fit, and can lead to fitting other
templates where templates have been fitted with biased
amplitudes. For example, figure 2A shows a comparison
of several errors function used while optimizing the ampli-
tude of a given waveform, displayed in figure 2B. As we can
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see, the choice of the error criteria can have a strong impact
on the “optimal" amplitude, leading to more or less pro-
nounced residuals (see figure 2C). To avoid this, it is nec-
essary to take the amplitude value that best matches the
data, without any regularization, and only use the regular-
ization to decide afterwards whether this template should
be kept or not.

Mean squared
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Log-likelihood
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Figure 2: Illustration of biased amplitudes toward 1 when minimiz-
ing the log-likelihood. A: Comparison of the error function used for
the optimization of the amplitudes. Mean squared error of the resid-
ual, as described in equation 6 (blue). Penalty which comes from a
regularization with a Gaussian distribution on the amplitude values
(red). Log-likelihood, as described in equation 7 (green). The dotted
vertical lines indicate the minimium of each of these error functions.
B: Illustration of the results of the fit, with optimal scaled waveforms
for each error function superimposed onto the raw data (gray), col-
orcoded as in A. C: Residuals (fit minus raw data) for each of those
error functions, colorcoded as in A.

4.7. Assumptions behind the template decomposition
An important question is whether template matching

algorithms can always replace clustering algorithms, or if
they have some intrinsic limitations that make them less
flexible than clustering. This is still an open question, and
only direct comparisons between the different approaches,
in cases where the true solution is known, will tell us what
is the best approach (Yger et al., 2016). Here we would like
to give some intuition about how the main assumptions of
template matching approaches can translate in the feature
space that clustering approaches use.

In the template matching approach, the noise is sup-
posed to be independent of the templates. In the case
where no amplitude variation is allowed, it means that the
variability in the snippets always comes from the same
noise source. In a given feature space, it means that all
the clusters should be elongated in the same directions.
This is illustrated in figure 3A: while the clusters have dif-
ferent centers, they are all ellipses extended in the same
directions.

If the spike amplitude is allowed to change, this means
that, in a feature space, each cluster has two sources of
variability: a common one, which corresponds to the noise,
and another one that is specific to each template. The sec-
ond one is constrained to be in the direction of the tem-
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Figure 3: Illustrations of the assumptions of the template matching
in the clustering space. A: Example of two clusters in the feature
space, when assuming that they are generated by templates with no
amplitude variation. B: Same than A, but now with the assump-
tion that the template can vary in amplitude according a Gaussian
distribution. C: Equivalent borders (see text) for the clusters for a
template matching that chooses the template closest to the spike. D:
Equivalent borders in the case where the template is chosen based
on the spike shape, and that only a certain range of amplitude is
allowed. See text for details.

plate, which is approximately the cluster center. There-
fore, in a feature space, it means that the clusters have
now noise in common directions, but also an elongation
that will follow the arrow that connects the point 0 in the
feature space, and the center of the cluster (figure 3B).
This is more realistic than the previous assumption, but
it is not clear whether this gives a good account of all the
variability found for each cluster.

If we were to use template matching only on isolated
spikes, we could also define areas in the feature space where
a point is assigned to a given template. A snippet is al-
ways assigned to the best matching template. In some
algorithms (Pillow et al., 2013), it means this template
is closest in the sense of the least square difference. In
the feature space, this means that a point will always be
assigned to the closest centroid. We can use this rule to
define equivalent cluster borders (figure 3C). In other algo-
rithms (Prentice et al., 2011; Marre et al., 2012), only the
spike shape is used to define the best matching template,
and then the algorithm decides whether the best matching
amplitude is plausible or not. This defines different shapes
for the border: a straight line from the 0 point to separate
the regions of preferred spike shape and some circles to
define the allowed amplitudes, following the approach of
Marre et al. (2012). Figure 3D illustrates these shapes.

So the competition between the different templates de-
fines some natural borders. There is no guarantee that this
is the best and proper definition for the cluster borders.
Future works will need to address this issue by comparing
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the results of template matching and clustering algorithms.
However, the intuitions we have drawn here can be used
to compare more intuitively pure clustering-based versus
template matching approaches.

5. Conclusion: challenges ahead

The methods described here have enabled to sort spikes
from a large number of cells and electrodes (Yger et al.,
2016; Pachitariu et al., 2016). However, there are still
several challenges that need to be overcome. First, most
of the algorithms described here have been tested on in
vitro data, in the retina (but see Ekanadham et al. (2014),
Franke et al. (2015b) or Yger et al. (2016) for in vivo tests).
In vivo tests on silicon probes with a large number of
recording sites close apart will be necessary. A possible
required improvement is a better description of the cluster
(Yger et al., 2016). As we explained above, the template
matching makes some assumptions about the shape of the
clusters, and it is not clear if these assumptions are verified
or not in vivo. A related issue with spike sorting is the need
to have more ground truth data, i.e. recordings where at
least one cell is recorded with another technique, so that
we know when the spikes occur. These data are essential
to test spike sorting algorithms (Neto et al. (2016)).

A second point is that template matching does not re-
place clustering. All the methods described require a set of
clusters, from which the templates can be extracted. The
clustering can do mistakes that can be tolerated, as long as
they do not distort the template estimation. But a decent
performance in clustering is nonetheless required. So one
still needs an efficient way to cluster. Ekanadham et al.
(2014) and Pillow et al. (2013) have proposed to do back
and forth between template estimation and finding the am-
plitudes. This is an extension of the approach we described
previously: after finding the amplitudes, they are used to
estimate the templates again with a least square method.
Then this new set of templates is fitted once again to the
data. Note that this global iteration does not remove the
need for an initial clustering, so that the templates are
properly initiated (at the very least, they need to be in
sufficient numbers). The interest of doing multiple iter-
ations of template estimation and matching is not com-
pletely clear. While Ekanadham et al. (2014) claim that it
is crucial, Pillow et al. (2013) mention that there is only a
marginal improvement after the first pass. Another mod-
ification of the iterative approach can be found in a work
of Franke et al. (2015b), where solutions beyond this it-
erative approach have been developed that can lead to a
better sorting of synchronous spikes.

Another challenge is the time spent on manual cura-
tion. Even the best clustering makes mistakes, and some
cells will be represented by more than one template. Find-
ing all the pairs that need to be merged require a signifi-
cant amount of time for hundreds of electrodes. Methods
need to be developed to make this kind of tasks as auto-

mated as possible, so that the time spent by the user is
reduced to a minimum (Yger et al., 2016).

Nowadays, new devices with CMOS components now
allow recordings from thousands electrodes simultaneously
(Berdondini et al. (2005); Fiscella et al. (2012); Müller
et al. (2015); Hilgen et al. (2016)), and it remains to be
seen it these algorithms can scale up and process such a
large amount of data. We need to be sure that the time
spent on manual curation can remain small enough that
we can get thousands of spike trains in a decent amount
of time (see preliminary evidence that it might be the case
by Yger et al. (2016)).

Finally, one problem that needs to be properly tackled
by the new generation of spike sorting algorithms appears
during long lasting chronic recordings (Nicolelis et al.,
2003). It is indeed well known that because of tissue
changes, or because of experimental protocols, recordings
can be non-stationary and drifts in the neuronal wave-
forms can appear over long time scales. For any tem-
plate matching based approach, one should rather consider
spatio-temporal kernels that could evolve over time, and
be distorted. To some extent, some of these deformations
can be dealt with by allowing graded amplitudes for the
templates (see for example figure 1C, where the amplitude
evolves over time). However, a more robust framework
is required for a better understanding of the drifts, espe-
cially because latest algorithms (Yger et al., 2016; Pachi-
tariu et al., 2016) seem to pave the way toward real-time
spike sorting. Such an understanding would be crucial in
the context of accurate online spike sorting.
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Large	and	dense	arrays	of	electrodes	require	new	spike	sorting	methods.		
	
Novel	methods	have	been	designed	that	rely	on	template	matching.	
	
Most	of	them	follow	the	same	general	strategy.		
	
We	review	their	common	points	and	differences.		
	
	




