Modeling the transport of water and ionic tracers in a micrometric clay sample
Pauline Bacle, Jean-François Dufrêche, Benjamin Rotenberg, Ian C. Bourg, Virginie Marry

To cite this version:

HAL Id: hal-01484130
https://hal.sorbonne-universite.fr/hal-01484130
Submitted on 6 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Modeling the transport of water and ionic tracers in a micrometric clay sample

Pauline Bacle a, Jean-François Dufréch e b, Benjamin Rotenberg a, Ian C. Bourg c, Virginie Marry a

a Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire PHENIX, Case S1, 4 place Jussieu, F-75005 Paris, France
b CEA, CNRS, Université Montpellier, UMR 5257 ICSM, F-34000 Montpellier, France
c Civil and Environmental Engineering and Princeton Environmental Institute, Princeton University, Princeton, NJ 08544, USA

Abstract

Brownian dynamics simulations were performed to examine the self-diffusion of cationic (Na + ), anionic (Cl −), and water tracers in a saturated compacted clay at the micrometric scale. Clay minerals particles, representing stacks of montmorillonite layers, are modeled as cylindrical platelets with characteristics that depend on the dry bulk density of the porous medium, ρb. The tracers are allowed to diffuse between the platelets with their diffusion coefficients; as well as the platelets with a diffusion coefficient that depends on the hydration level of the interlayer pores as determined from experiments or molecular dynamics simulations. The probability for a tracer to enter a platelet is related to its charge as predicted by the Poisson–Boltzmann equation. The apparent diffusion coefficients are calculated as a function of ρb for various salinities and compared with the values obtained from tracer diffusion experiments available in the literature. Despite the simplicity of the clay model, the simulations predict most features of the experimental data and keep the door open for further improvements.

Keywords:
Diffusion
Brownian dynamics
Montmorillonite
Modeling
Molecular dynamics

1. Introduction

Clay minerals are highly abundant natural materials that play significant roles in many environmental and engineering applications because of their high cation exchange capacity and specific surface area, swelling behavior, water and solute retention properties, and low permeability. In particular, compacted swelling clay minerals (smectites) have been proposed as barrier materials for the long-term isolation of high-level radioactive waste in geologic formations (McCombie, 1997; H12 report, 2000; ANDRA report, 2001). Because of the very low hydraulic permeability of compacted clay, molecular diffusion is the predominant mass transfer process in these barriers. This has motivated numerous experimental and theoretical studies of diffusion in compacted, water-saturated smectite, as well as in smectite-rich materials commonly known as bentonite. A particularly large experimental database exists for the self-diffusion of cations (Cs +, Sr 2+, Na +) (Kozaki et al., 1996a, 1996b, 1998a; Liu et al., 2003a), anions (I −, Cl −, ToO −) (Sato et al., 1992; Kozaki et al., 2001a) and water tracers such as HDO or HTO (Nakazawa et al., 1999; Nakashima, 2001; Sato and Suzuki, 2003; Suzuki et al., 2004) in clayey media at various degrees of compaction with dry bulk densities from ρb = 0.02 to 1.95 kg L −1, where ρb is the ratio of the mass of solid to the volume of the sample, i.e., ρb = msolid/Vtot.

The transport of solutes in clays can be quantified by empirical parameters such as adsorption constants or effective diffusion coefficients, which are measured at the macroscopic scale but need to be related to microscopic mechanisms. One difficulty arises from the complex, multi-scale structure of clay materials. Clay mineral particles consist of stacks of parallel negatively-charged layers separated by interlayer nanopores. Consequently, compacted smectite contains two major classes of pores: interlayer nanopores (located inside the particles) and larger mesopores (located between the particles). The permanent negative charge of the clay mineral layers is compensated by counterions located both in the interlayer nanopores and on the external surfaces of particles. Both types of cations are mobile and contribute to the overall cationic flux (Glaus et al., 2007; Melkior et al., 2009). In contrast, inert anions such as Cl − can be viewed as non-adsorbing species that migrate in the ‘free’ pore water (far from the clay mineral surfaces) and, to some extent, in the electric double layer water on the external surfaces of particles. The partial exclusion of anions from the interlayer space due to the negative layer charge has been extensively studied by molecular dynamics simulations (Rotenberg et al., 2007; Hedström and Karnland, 2012) and experimental methods (Kozaki et al., 2001a; Van Loon et al., 2007) and modeled using mean-field theories such as the mean electrostatic model and the Poisson–Boltzmann equation (Birgersson and Karnland, 2009; Jardat et al., 2009).

Along with experiments, conceptual models have been developed to describe the transport of water and solutes in water-saturated bentonite (Bourg et al., 2006); Bourg and Sposito (2010) and simulations from
the atomic scale (Delville, 1992; Leote de Carvalho and Skipper, 2001; Skipper et al., 2006) to larger scales (Churakov and Gimmi, 2011; Churakov et al., 2014) have been performed. In particular, an emerging concept consists in explicitly accounting for nanopores (nanometer-scale interlayer pores) and mesopores (all other pores) as two distinct compartments of the bentonite pore space (Huëckel et al., 2002; Bourg et al., 2006).

In this paper, the diffusion of water, Na\(^+\) and Cl\(^-\) in compacted, water-saturated bentonite was studied at the micrometric scale using Brownian dynamics (BD) simulations. The clay mineral particles are modeled as cylindrical platelets, the dimensions and the distribution of which depend on \(\rho_b\). The description of the platelets based on experimental data is made in Section 2.1. The principles of the procedure for generating clay samples are described in Section 2.2. Brownian dynamics simulations are, then, carried out according to the method described in Section 3.1. Briefly, tracers are modeled as moving through the sample with different diffusion coefficients depending on whether they are located inside or outside a platelet. Diffusion in the interparticle pores (i.e., outside the platelets) occurs with the same diffusion coefficient as in bulk solution, whereas diffusion inside the platelet is slowed down by confinement. In addition, tracer mass fluxes across particle edge boundaries are influenced by salinity and the valence of the tracer. Micrometer-scale diffusion coefficients in the modeled clay sample are calculated from the tracer trajectories obtained from BD simulations. Both the concentrations and the diffusion coefficients in the interlayer and interparticle pores are necessary input parameters for the BD simulations. Section 3.2 describes the evaluation of these parameters based on experimental data and molecular dynamics (MD) simulations. The existing experimental database on centimeter-scale apparent diffusion coefficients in compacted, water-saturated clay is described in Section 4. The features of the samples are discussed in the first part of Section 5, while the accuracy of the interlayer/interparticle pore model is evaluated by comparing predicted diffusion coefficients with the experimental database in the second part of Section 5. Finally, the last section contains a conclusive discussion.

2. Model of clay microstructure

In this model, the sample is composed of a set of clay mineral particles represented as cylindrical platelets overlapping each other. As explained below, the dimensions of the platelets and the volume fraction they occupy in the simulation box are calculated for each dry density \(\rho_b\). These quantities are then used to generate a porous medium at each \(\rho_b\), as represented on Fig. 1.

![Fig. 1. A Gay–Berne configuration of 1000 platelets in a cubic box of length 19.186 Å corresponding to \(\rho_b = 0.7\) kg L\(^{-1}\) (parameters: \(R = 2500\) Å, \(h = 688.3\) Å).](image)

2.1. Dimensions of the platelets

Clay mineral particles consist of tens of negatively-charged stacked aluminosilicate layers, with lateral dimensions of hundreds of nanometers (Arnott, 1965). In the present model, the particles are modeled as cylindrical platelets with a diameter of 500 nm, each consisting of 20 stacked clay mineral layers (see Fig. 2). The parameter \(\Delta L\) is defined as the distance between the mid-planes of two consecutive clay mineral layers; the height of each platelet is, then, \(h = 20 \times \Delta L\). The distance \(\Delta L\) depends on the dry density of the sample, because smectite interlayer nanopores (and, hence, the clay mineral particles contain a variable amount of water. Two swelling regimes are observed. At first, the process occurs in discrete steps (crystalline swelling) through the formation of crystallographically ordered layers of water molecules between the silicate layers. Beyond three layers of water molecules, the swelling is better described as a continuous phenomenon until isolated aggregates are formed and a colloidal dispersion is obtained. During the transition from the crystalline to osmotic swelling, the value of \(\Delta L\) jumps from ~18.5 Å to ~40 Å (Norrish, 1954).

Here we consider the case of a montmorillonite (the predominant type of smectite clay mineral) with Na\(^+\) counterions (designated as Na\(^+\) Mt). On the basis of X-ray diffraction (XRD) data reported for Na\(^+\) Mt (Norrish and Quirk, 1954; Calvet, 1973; Fu et al., 1990; Cases et al., 1992; Kozaki et al., 2001a; Ferrage et al., 2005b), the clay is modeled as having stable states at \(\Delta L_{dry} = 9.5\) Å (dry clay), \(\Delta L_{1W} = 12.5\) Å (one layer hydrate, 1W), \(\Delta L_{2W} = 15.5\) Å (two layer hydrate, 2W) and \(\Delta L_{3W} = 18.5\) Å (three layer hydrate, 3W) (Bourg and Sposito, 2010; Holmboe et al., 2012). A 3 Å increase in the \(\Delta L\) between stable swelling states is consistent with the expected thickness of a monolayer of water molecules. Based on the XRD data of Holmboe et al. (2012), the interlayer spaces are viewed as a mixture of 1W and 2W states if \(\rho_b \geq 1.7\) kg L\(^{-1}\) and as a mixture of 2W and 3W states if \(\rho_b\) ranges from 1.35 to 1.7 kg L\(^{-1}\). The average interlayer distance \(\Delta L\) is then calculated for \(\rho_b > 1.35\) kg L\(^{-1}\) with the relation:

\[
\Delta L_{nW,mW} = x_{nW}\Delta L_{nW} + (1 - x_{nW})\Delta L_{mW}.
\]

where \(x_{nW}\) is the fraction of \(nW\) state in the mixture \(nW - mW\). In view of the evolution of \(x_{nW}\) with \(\rho_b\) given in Holmboe et al. (2012), the fraction \(x_{nW}\) of \(nW\) state in the mixture \(nW - mW\) is considered to vary almost linearly between the boundaries of this domain: for instance, \(x_{3W}\) varies linearly from 0 to 1 as \(\rho_b\) varies from 1.7 to 1.35 kg L\(^{-1}\). On the basis of this assumption and Eq. (1), \(\Delta L_{nW,mW}\) can be evaluated for every \(\rho_b > 1.35\) kg L\(^{-1}\). The values are given in Table I of the Supporting information.

Once \(\Delta L\) is calculated as described above, the fraction of fluid in the interlayer pores \(f_{il}\), defined as the ratio between the volume of interlayer pores, \(V_{il}\), and the volume of all pores, \(V_p\), can be calculated using the following relation (where \(V_{TOT}\) is the total volume of the sample, \(V_{pl}\) is the volume occupied by the platelets in the sample):

\[
f_{il} = \frac{V_{il}}{V_p} = \frac{V_{il}}{V_{il} + V_{TOT} - V_{pl}} = \frac{x_{il}}{x_{il} + 1/\varphi - 1}
\]

(2)

On the right side of Eq. (2), \(x_{il}\) is the volume fraction of pore space in each platelet and \(\varphi = \frac{V_{pl}}{V_{TOT}}\) is the volume fraction of platelets in the entire sample. The value of \(x_{il}\) is a simple function of \(\Delta L\):

\[
x_{il} = \frac{\Delta L - \Delta L_{dry}}{\Delta L}.
\]

(3)

Moreover, the evolution of \(\varphi\) with \(\rho_b\) can be determined using

\[
\varphi = \frac{V_{pl}}{V_{TOT}} = \frac{\rho_b}{\rho_{pl}}.
\]

(4)
where \( \rho_{pl} = \frac{m_{clay}}{V_{pl}} \), the mass density of the platelet, can be calculated from

\[
\rho_{pl} = \frac{M}{N_A \times A \times \Delta L} = \frac{\alpha}{\Delta L}.
\]  

In Eq. (5), \( M \) is the molecular (unit cell) mass of montmorillonite and \( A \) is the corresponding surface area. The value of \( \alpha \) can be estimated from the accessory mineral inventory of bentonites reported by Karnland et al. (2006) to \( \alpha = 26.5 \) Å for \( \Delta L = 40 \) Å and \( \rho_{pl} \) in kg L\(^{-1}\). From the equations presented above, \( f_{fi} \) is found to increase from \( f_{fi} = 0.88 \) for \( \rho_b = 1.35 \) kg L\(^{-1}\) to \( f_{fi} = 0.96 \) for \( \rho_b = 1.8 \) kg L\(^{-1}\). Indeed, when the clay is compressed, the interparticle pores are the first to decrease in width while the interlayer pores remain in stable hydration states due to the strong interactions between the cations and the water molecules.

The behavior below \( \rho_b = 1.35 \) kg L\(^{-1}\) is different because the swelling becomes continuous. Here, beyond three layers of water molecules, compaction is reckoned to have the same effect on the size of the pores inside a particle as on the interparticle pores. As a result, \( f_{fi} \) is assumed to be essentially invariant with \( \rho_b \) for densities inferior to \( 1.35 \) kg L\(^{-1}\) and the value obtained for this limit \( (f_{fi} = 0.88) \) is kept for \( \rho_b < 1.35 \) kg L\(^{-1}\). Using Eqs. (2)–(5), the value of \( \Delta L \) is then computed as a function of \( \rho_b \) for this range of densities with the relation

\[
\Delta L = \Delta L_{dry} + f_{fi} \times \left( \frac{\alpha}{\rho_b} - \Delta L_{dry} \right).
\]

Let us note that Eq. (6) with fixed \( f_{fi} = 0.88 \) gives \( \Delta L = 40 \) Å for a density of 0.6 kg L\(^{-1}\), which is consistent with the evolution of \( \Delta L \) with \( \rho_b \) found by Norrish (1954) and supports the assumption made on the evolution of \( f_{fi} \).

### 2.2. Platelets organization

Once the height of the platelets is known for one value of \( \rho_b \), the platelets are arranged in a micrometer-sized box and the volume fraction occupied by the platelets \( \psi \) is calculated with Eqs. (4) and (5).

The values of \( \psi \) for each \( \rho_b \) are given in Table I of the Supporting information.

A sample is generated by introducing the platelets in the simulation box until the fraction \( \psi \) corresponding to a given density is reached. The platelets are located by the position of their center of mass and the orientation of the vector normal to the platelet. Since models of sedimentation and other models using cylindrical platelets are not able to build highly compacted samples, a two-step approach is used. First, the positions and orientations of the platelets are determined from molecular dynamics simulations using a system inspired by Ebrahimi et al. (2014) consisting of ellipsoidal particles described by Gay–Berne (GB) potentials. This allows to generate a realistic configuration which accounts for the fact that the orientation of a particle is influenced by the surrounding particles. In a second step, the resulting positions and orientations are assigned to cylindrical platelets with the dimensions determined in the previous section. Then, \( \psi \) can be calculated as the volume occupied by the platelets divided by the volume of the box. When two platelets intersect each other, their common volume is only counted once to evaluate \( \psi \). The cylinders are thus given a priority order to define the platelet to which a common volume belongs. Consequently, the first platelet is unaffected while the last one is divided into fragments because it is intersected by many platelets with higher priorities. In this way, the model indirectly takes into account the flexibility of the particles by compensating for the rigidity of the platelets by allowing several platelets with different orientations to overlap. Finally, the final configurations are obtained by doing successive homotheties on the position of the particles and the size of the box while keeping the structural parameters of the platelets fixed until the right fraction \( \psi \) is reached. For illustrative purposes, Fig. 1 shows a so-called Gay–Berne configuration obtained for \( \rho_b = 0.7 \) kg L\(^{-1}\). As mentioned above, this method allows to reach higher densities than a sedimentation model would. For instance, structures resulting from the random sequential deposition of non overlapping grains of several sizes and shapes were investigated in a work by Coelho et al. (1997): The particles were dropped one at a time in a gravitational field with a non overlap condition. While those structures demonstrate interesting results regarding the fact that effective transport properties are oblivious to the grain shape, they only account for rigid particles with given orientations and therefore fail to reach high densities. Indeed, numerical simulations

![Schematic illustration of the model. Two trajectories are shown: the green trajectory represents the tracer bouncing back on the basal surface of a platelet, the red one represents the tracer entering a platelet through its lateral surface. The radius R, the height of the platelet h and the interlayer space \( \Delta L \) are indicated. The dotted box illustrates the structure of a platelet of height h = 4L. The 4 solid layers are colored in light gray while interlayer pores appear in a darker shade.](image-url)
of the sedimentation of cylinders yield solid fractions up to 0.580 at best whereas the two-step method presented in this paper allows to generate samples with $\psi$ values up to 0.986. For comparison purposes, simpler but less realistic configurations (called ‘random’ configurations in this paper) were also computed where the positions of the platelets in the simulation box are chosen randomly with an isotropic distribution of the orientations of the platelets.

One of the main advantages of the present model is certainly its simplicity. However, it can appear rather crude and unrealistic, especially in the light of alternative clay microstructure modeling approaches such as the grain reconstruction procedure developed by Thovvert et al. (2001) or the model proposed by Tyagi et al. (2013). The procedure of Thovvert et al. (2001) is based only on geometrical parameters measurable from images of real samples and uses polydispersive Poissonian penetrable spheres conditioned by the experimental solid size distribution. However, it only accounts for the microporosity of the medium while, even if they are not explicitly represented, the present model includes the interlayer pores in the evaluation of the thickness of the particles and in the parameters used as input for the Brownian Dynamics simulations (discussed in the next section). As for the approach chosen by Tyagi et al. (2013), it explicitly accounts for both the interlayer pores and the larger inter-grains pores according to the desired hydration state, microporosity and pore size distribution. Moreover, it uses a representative ensemble of grains obtained by a lattice Monte Carlo technique to generate anisotropic structures with grains of different minerals according to the clay composition. It certainly allows for more realistic particles shape but it is not as easy to handle as a collection of cylindrical platelets.

3. Brownian dynamics simulations

Brownian dynamics simulations based on the solution of the diffusion equation were used to study the diffusion of several species (referred to as tracers) in the clay sample described in the previous section. For three-dimensional pure diffusion, the concentration profile is given by the following expression (Crank, 1975):

$$C(r,t) = \frac{M}{(4\pi D_{\text{app}}t)^{3/2}} \exp\left(-\frac{r^2}{4D_{\text{app}}t}\right)$$  \hspace{1cm} (7)

where $D_{\text{app}}$ is the apparent diffusion coefficient of the tracer in the sample, $r$ is the distance from a uniform source of the species of interest, and $M$ is the total amount of substance diffusing.

3.1. Method

A tracer is placed in the simulation box containing a configuration of platelets. Its initial position is chosen according to the concentrations of the tracer inside and outside the platelets (which will be defined in Section 3.2). At each time step, the 3D displacement of the tracer $\vec{d}$ is chosen from the following Gaussian distribution:

$$p_d = \frac{1}{(4\pi D_i \Delta t)^{3/2}} \exp\left(-\frac{d^2}{4D_i \Delta t}\right).$$  \hspace{1cm} (8)

where $D_i$ is the diffusion coefficient in the environment $i$ (i.e., either inside or outside the platelets). $\Delta t$ is the time step of the simulation, and $d$ is the norm of the displacement vector. This trial move is then accepted or rejected as follows. One the one hand, when the tracer goes from one platelet to another, the displacement is always accepted (i.e., the probability of crossing from one particle to another $p_{\text{acc}}^N$ is 1). This has an important impact on the way this model describes the porous medium. In fact, although the fragmentation of the platelets is unavoidable due to the overlap between the platelets, the porous medium should not be seen as constituted of very small and numerous clay mineral particles, which would not be realistic. Rather, the fact that $p_{\text{acc}}^N/N$ is equal to 1 means that when the tracer goes from one platelet to another, it actually stays in a same clay mineral particle. The change of orientation can be viewed as a consequence of the flexibility of the clay mineral particles.

On the other hand, if the displacement results in an entrance into an exit from the interplatelet space, it obeys two rules. Firstly, if it goes through the basal surface of a platelet (the surface normal to the orientation vector, see Fig. 2), the tracer bounces back on the surface: The direction of the displacement is reflected on the surface and the tracer travels another distance $d' = d - d$, where $d$ is the distance already covered by the tracer (i.e., the distance between the origin and the impact point on the surface). Secondly, if it goes through a lateral surface (see Fig. 2), the displacement is either accepted or rejected according to the following probability given by the detailed balance and the Metropolis criteria (Frenkel and Smit, 1996):

$$p_{\text{acc}}^i = \min\left\{ 1, \frac{c_i}{c_j} \left(\frac{D_j}{D_i}\right)^{3/2} \exp\left(-\frac{d^2}{4D_i \Delta t} - \frac{d'^2}{4D_j \Delta t}\right) \right\}$$  \hspace{1cm} (9)

where $c_i/c_j$ is the equilibrium ratio of tracer concentrations in environments $i$ and $j$ (either particles (p) or interparticle pores (0)). If the displacement is rejected, the tracer bounces back on the surface.

Several trajectories of 5.10^10 ps with a time step $\Delta t = 10$ ps were simulated. Trajectories with smaller time steps were simulated and gave similar results. For each trajectory, the mean square displacement (MSD) is calculated as a function of time $\tau$. An estimation of the diffusion coefficient $D_i$ is then obtained from the linear fit of the MSD curve between 0 and 2.10^9 ps according to $\text{MSD}(\tau) = 6D_i \tau$. Because of the dispersion of the MSD curves (see Supporting information), the apparent diffusion coefficient $D_0$ is averaged on numerous trajectories to minimize statistical error. At least 18 trajectories are used for each system.

In reality, diffusion within each clay mineral particle occurs in slit-shaped interlayer nanopores: In the present model, the layered internal microstructure of the particles can be accounted for by dividing each platelet into 20 sub-platelets of height $L$, until a plateau is reached at N = 5. Therefore, the simulations were performed with a subdivision of 5 to optimize the model while keeping the computational time as low as possible.

3.2. Input parameters

According to Eq. (9), the equilibrium concentration ratio between particles and interparticle pores ($c_p/c_0$) and the diffusion coefficients in the two phases ($D_0$ and $D_p$) are required, for each species of interest, as input parameters of the simulations.

3.2.1. Concentrations

In the case of water and other inert tracers, equilibrium concentration in the interlayer is the same as in the interparticle pores. Therefore, $c_p$ is related to $c_0$ through $x_0$:

$$c_p = c_0 \times x_0,$$  \hspace{1cm} (10)

where $x_0$ depends on $\Delta L$ (see Eq. (3)): $c_p$ is smaller than $c_0$ because a part of the platelet is occupied by the solid. The model of $\Delta L$ as a function of $p_{\text{acc}}$ described in Section 2.1 directly yields $c_p$ at each $p_{\text{acc}}$. In the
case of ionic species, however, the equilibrium concentration ratio in the fluid inside and outside the interlayer pore, \( c_{\text{int}}/c_0 \), is not a priori equal to one. Because the clay mineral layers are negatively charged, there is an excess concentration of cations in the interlayer pores, while anions are partially excluded from them. In the model presented here, the Poisson-Boltzmann equation and the equality of chemical potentials in the interlayer and interparticle pores (Dufrêche et al., 2001; here, the Poisson-Boltzmann equation and the equality of chemical potentials in the interlayer and interparticle pores (Dufrêche et al., 2001; Hedström and Karland, 2012) are used to numerically calculate the ratio \( c_{\text{int}}/c_0 \) as a function of \( c_0 \) for each hydration state of the interlayer pore (1W, 2W, 3W) (see Supporting information for more details).

Then, as for water traces, the global concentration in platelets where all interlayer pores are in the nW state can be obtained using the volumetric fraction of fluid \( \chi^W \), \( c_{\text{nW}} = \chi^W \times c_{\text{int}} \). Thus, in a mixture of two types of pores (nW and mW) corresponding, for example, to 2W and 3W hydration states, the concentration inside the platelet becomes:

\[
c_p = c_{\text{mW}} \times x_{\text{mW}} (\Delta L_{\text{mW}} - \Delta L_{\text{dry}}) + c_{\text{nW}} \times x_{\text{nW}} (\Delta L_{\text{nW}} - \Delta L_{\text{dry}})
\]

For clays in a natural environment, the ionic strength of the surrounding solution is of the order of \( 1 \times 10^{-1} \) M. This value is used as an upper bound for the concentrations \( c_0 \) used for ions as tracers. The values of \( c_p \) at different \( c_p \) and ionic strength are given in Supporting information.

In the above equation, no change in \( \Delta L \) was considered when the salinity varied, for lack of data. This assumption is somewhat questionable at small \( c_p \) values where the pores at 40 Å can partially coagulate in the presence of salt. However, in the case of a monovalent salt, the coagulation remains limited at small ionic strength (Michot et al., 2013). The ratio \( c_p/c_0 \) is higher than 1 for Na\(^+\) and is very high at low ionic strength because the cations compensate the negative charge of the clay mineral layers. The ratio \( c_p/c_0 \) is smaller than 1 for Cl\(^-\) and is very low at low ionic strength because the anions are strongly excluded from the interlayer pores.

### 3.2.2. Diffusion coefficients

The diffusion coefficients of water and sodium in interlayer pores at different hydration states are available in the literature based on experimental and numerical simulation methods such as quasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulations.

In this work, diffusion coefficients of water in 1W- and 2W-interlayer pores were evaluated from QENS experiments (Malikova et al., 2006; Michot et al., 2007, 2012; Marry et al., 2013). The diffusion coefficients in 1W and 2W-interlayer pores are approximately ten and five times lower than in bulk water. The latter was estimated experimentally at 0.24 Å\(^2\) ps\(^{-1}\) (Holz et al., 2000). Here, approximate diffusion coefficients based on these trends were used. They are summarized in Table 1.

#### Table 1

<table>
<thead>
<tr>
<th>Pore</th>
<th>Water</th>
<th>Na(^+)</th>
<th>Cl(^-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1W-IL</td>
<td>0.044</td>
<td>0.023(^a)</td>
<td>0.034</td>
</tr>
<tr>
<td>2W-IL</td>
<td>0.048</td>
<td>0.046(^a)</td>
<td>0.055</td>
</tr>
<tr>
<td>3W-IL</td>
<td>0.12</td>
<td>0.133(^c)</td>
<td>0.177(^d)</td>
</tr>
</tbody>
</table>

\(^a\) Burg and Sposito (2010).
\(^b\) Holz et al. (2000).
\(^c\) Li and Gregory (1974).
\(^d\) Koneshan et al. (1998).
Fick’s law of diffusion, which gives:

\[
D_p = \frac{x_{nw}(\Delta L_{nw} - \Delta L_{dry}) \times D_{nw} + x_{mw}(\Delta L_{mw} - \Delta L_{dry}) \times D_{mw}}{x_{nw}(\Delta L_{nw} - \Delta L_{dry}) + x_{mw}(\Delta L_{mw} - \Delta L_{dry})}
\]  

(12)

for a mixture of nw and mw interlayer pores. See the Supporting information for more details.

4. Experimental database

Diffusion of dilute solutes in porous media can be described using an effective diffusion coefficient \( D_e (m^2 s^{-1}) \) or an apparent diffusion coefficient \( D_a \). They are related by a factor \( \alpha \) called the rock capacity factor:

\[ D_e = \alpha D_a \]

where \( \alpha \) is the equilibrium ratio between the total concentration of the species of interest per volume of porous medium (\( C_0 \)) and the concentration of the ‘free’ species in the bulk-liquid-like pore fluid (\( C_b \)). When no adsorption occurs, \( \alpha = \psi \) is the porosity and \( D_a \) only depends on the diffusion of the tracer in the pores and the geometry of the sample (Bourg and Tournassat, 2015).

Different experimental methods can be used to measure \( D_a \) and \( D_e \). In closed-cell (CC) experiments (Sato et al., 1992; Kozaki et al., 1996b; Nakazawa et al., 1999; Tachi and Yotsuji, 2014), blocks of compacted, water-saturated bentonite are placed on both sides of a thin sample of tracer-enriched bentonite in a closed diffusion cell. After a time \( t \), the bentonite is divided into slices to determine the new concentration profile, which yields \( D_a \) through Eq. (7). In the through-diffusion (TD) method (Muurinen et al., 1988; Choi and Oscarson, 1996; Van Loon et al., 2007; Gonzalez Sanchez et al., 2008; Glaus et al., 2013), a diffusion cell containing the porous medium is placed between two bulk water reservoirs, one of which is enriched with the tracer. The flux of the tracer reaching the tracer-depleted reservoir is monitored as a function of time and interpreted to obtain \( D_a \) and \( D_e \). In in-diffusion (ID) experiments (Garcia-Gutierrez et al., 2004), the porous medium is in contact with a single reservoir doped with the tracer. One can determine both \( D_a \) and \( D_e \) by recording the decrease of the concentration in the source reservoir as a function of time and the concentration profile in the porous medium at the end of the experiment. Alternative methodologies for measuring diffusion coefficients exist such as electromigration experiments (Tanaka et al., 2011) and pulsed gradient spin echo 1H nuclear magnetic resonance (PCSE 1H NMR) (Nakashima, 2001, 2003a, 2003b, 2004; Nakashima and Mitsumori, 2005).

Experimental data on the diffusion coefficients of water, Na+, and Cl− (or I−) at 298 K were taken from a recent compilation (Bourg and Tournassat, 2015). Confidence intervals (± 95%) were calculated as \((B + 2V/n^{1/2}) \times D_{nw}\) where \(B\) quantifies systematic errors as a fraction of \( D_{nw}\), \(V\) is the coefficient of variation associated with random errors, and \(n\) is the number of replicates. The value of \(V\) was taken from Bourg et al. (2006) (\(V = 0.11\)) and \(B\) was roughly estimated to 0.2 for most experimental results. However, for TD and ID studies that did not account for the impact of filter-plates on their diffusion results, the latter was increased to \(B = 0.5\) in order to reflect the expected lower accuracy of these studies.

5. Results and discussion

5.1. Porous medium

Several trajectories were simulated for different configurations of the clay platelets. Overall, diffusion coefficients obtained for configurations generated from Gay–Berne potentials (designated as ‘GB’ configurations) are 1.6 to 2.1 times greater than for ‘random’ configurations, for every kind of tracer. This can be explained by the lower tortuosity of those configurations. Indeed, tortuosity is the ratio of the average length of the fluid path between two points of a porous medium and the geometrical distance between those points. Large regions where platelets are organized according to a preferential orientation exist in GB configurations (see Fig. 1), which creates straight paths and should result in a lower tortuosity relative to the completely random configurations. Besides, due to the way they are generated, the diffusion is slightly anisotropic for GB configurations: The diffusion coefficients along the x-, y- and z-axis are not equivalent (i.e., \(D_x^GB > D_y^GB > D_z^GB\)). For random isotropic configurations, however, they are similar. This is merely an artifact from the MD simulations: Because the simulation box is not infinite, the arrangement of the GB ellipsoids cannot be fully isotropic, as it should be with an infinite box since no direction is favored by pressure in the MD simulations. The fact remains that, because of the uniaxial sample compression, the compacted bentonite used in diffusion experiments is indeed not isotropic and therefore the experimental diffusion tensor displays asymmetry (Bourg and Tournassat, 2015). However, given the nature of the MD simulations performed here, this aspect of the diffusion will not be further investigated and only he average \(D_a\) value in all three directions will be discussed from now on.

In order to gain further insight into the influence of particle arrangements on pore network geometry, the number and the size of the inter-particle pores were investigated in both GB and ‘random’ configurations at \(p_b = 1.3\) kg L\(^{-1}\). For that purpose, tracers were only allowed to diffuse in interparticle pores. The zones explored by the tracer were found to be less numerous but much larger for Gay–Berne configurations than for ‘random’ ones, which show less connectivity between the interparticle pores. At \(p_b = 1.3\) kg L\(^{-1}\), the average volume of connected interparticle pores is more than three times higher for the GB configuration (~\(2.3 \times 10^6 \text{Å}^3\)) than for the ‘random’ one (~\(7.1 \times 10^5 \text{Å}^3\)). The largest connected interparticle pores for both configurations are displayed in Fig. 4 for illustrative purposes. The higher connectivity found for GB configurations is consistent with the ratio \(D_{nw}/D_{nw}\) being higher for these configurations than for ‘random’ ones, as will be shown below.

Furthermore, because of the way the porous medium is created, small portions of particles or pores may be inaccessible to the tracer (e.g., volumes delimited only by basal surfaces of platelets). As a consequence, the ratio between the volume of platelets explored by the tracer and the total volume explored by the tracer can differ from the theoretical \(\psi\) used to generate the porous sample (cf. Section 2). These unconnected zones were located by exploring the simulation boxes and detecting regions where the tracers were confined. The volume of these zones in ‘random’ configurations was found to represent between 0.6% to 1% of the total volume of the simulation box while in GB configurations they represented 0.015% of the total volume at most. In fact, GB configurations had very few lost volumes or even no lost volume at all for densities inferior to 1.3 kg L\(^{-1}\). The much smaller number of such zones for GB configurations than for random ones is consistent with the fact that GB configurations display a better connectivity than ‘random’ configurations. In both cases, the accessible porosity was found to differ from the theoretical \(\psi\) by at most 0.6%.

5.2. Diffusion

Diffusion coefficients calculated from Brownian dynamics simulations of water tracers in ‘random’ and GB configurations are compared with experimental \(D_a\) values in Fig. 5. Measured and predicted diffusion coefficients values are not entirely equivalent, in that the former were obtained with samples anisotropically compacted in the same direction as the diffusion measurement, whereas the latter were obtained with essentially isotropic systems. The difference is negligible at \(p_b > 0.8\) kg L\(^{-1}\) and amounts to a factor of ~1.5 to 3 at \(p_b = 1.5\) kg L\(^{-1}\) (Bourg and Tournassat, 2015).

Despite the significant scatter in the experimental results, the simulations clearly capture the essential features of the real system. In particular, the \(p_b\)-dependence of the diffusion coefficient is broadly consistent with the measured trend. Overall, predictions obtained with the GB
configuration consistently overestimate the best available experimental data (black symbols) by a factor of ~2 to 4.

Closer examination of the simulation predictions with the GB configuration reveals that the decrease in $D_a/D_0$ between $\rho_b = 0.7$ kg L$^{-1}$ and 1.6 kg L$^{-1}$ by a factor of 4.6 can be primarily attributed to the reduction of $D_p/D_0$ by a factor 3.4 (cf Supporting information) and also, to a much smaller extent, to a change in porous geometry with increasing $\rho_b$ (larger tortuosity, smaller connectivity between interparticle pores, smaller interparticle pore size).

Experimental data on the diffusion of Cl$^-$ and Na$^+$ are compiled and displayed in Figs. 6 and 7, respectively, along with BD simulation predictions. For both types of species, several ionic strengths were investigated (from 0.001 M to 0.1 M). In the case of anions, for the densities corresponding to mixtures of 2W- and 3W-layers, two configurations were explored with 84% and 21% of 3W-layers, respectively ($\rho_b = 1.4$ kg L$^{-1}$ and $\rho_b = 1.6$ kg L$^{-1}$). Although enough trajectories were simulated to obtain the diffusion coefficient for an ionic strength of 0.1 M for both densities, simulations were inconclusive for lower ionic strengths for $\rho_b = 1.6$ kg L$^{-1}$ where most interlayer spaces are 2W hydrates. Indeed, in most of the trajectories, the tracer remains in small regions of the simulation box because of the low value of the ratio $c_p/c_0$. An accurate estimation of $D_a$ would require much longer simulations.

For every ionic strength, results from simulations for Cl$^-$ are in good agreement with experimental data on $D_a/D_0$, especially for GB configurations. In the case of random configurations, the poor connectivity between interparticle pores forces anions to diffuse through the platelets. This is strongly inhibited at high $\rho_b$ and low ionic strength, because of the very low value of $c_p/c_0$ (see Fig. 6b).

The agreement between simulations and experiments is recovered when anion diffusion results are expressed as $(D_a/D_0)_{Cl^-}/(D_a/D_0)_{water}$ as shown in in Fig. 6c. The decrease of this ratio when increasing $\rho_b$ derives from the stronger decrease of $c_p/c_0$ with $\rho_b$ for Cl$^-$ than for H$_2$O.
which is a direct consequence of anion exclusion. The inflection observed on the simulated curve near $\rho_b = 1.3$ kg L$^{-1}$ coincides with the inflection of $c_p/c_0$ as a function of $\rho_b$ (see Supporting information), which approximately corresponds to the transition from a mixture of 3W and 40 Å states to a mixture of 3W and 2W hydration states. Predicted anion diffusion coefficients clearly display a strong salinity dependence (see Fig. 8a), in agreement with most of the experimental data which show a global increase in $D_a/D_0$ with $I$. The simulations show that this increase is caused by the increase in $c_p/c_0$ with increasing ionic strength. This means that anions do not solely travel in the interparticle pore space, where the salinity should have no influence in the present model, and that diffusion through the platelets significantly impacts the overall diffusive flux: Anions spend most of their time in interparticle pores, but they sometimes must travel through the platelets in order to diffuse from an interparticle pore to another, and this transition is highly sensitive to salinity. This finding is further supported by the results for random configurations (not shown), where the salinity dependence is stronger and increases more strongly with $\rho_b$ than in GB configurations, because the smaller interparticle pores and lower connectivity of the random system force anionic tracers to pass through more particles in order to diffuse through the porous medium.

Fig. 6. Same as in Fig. 5 in the case of Cl$^-$ at two ionic strengths in panels (a) $I = 0.1$ M and (b) $I = 0.01$ M. Panel (c) shows predicted and experimental data on the ratio $(D_a/D_0)_{Cl^-}/(D_a/D_0)_{water}$ as a function of $\rho_b$. The star indicates when the clay is saturated with pure water. Black symbols are used for the best available data obtained by standard measurement techniques such as TD or CC (Muurinen et al., 1988; Kim et al., 1993; Kozaki et al., 1998b, 1999b, 2001a; Molera et al., 2003) (full symbols) or by electromigration experiments (Tanaka et al., 2011) (open symbols); data obtained without account for the influence of filter-plates (Choi and Oscarson, 1996; Garcia-Gutierrez et al., 2004) and with no sampling of concentration profiles in the clay (Van Loon et al., 2007; Glaus et al., 2010, 2011) are shown in open and full gray symbols, respectively.

Fig. 7. Same as in Fig. 6 in the case of Na$^+$: (a) $D_a/D_0$ as a function of $\rho_b$ in bentonite at $I = 0.1$ M; (b) $(D_a/D_0)_{Na^+}/(D_a/D_0)_{water}$ as a function of $\rho_b$. The star indicates when the clay was saturated with pure water, the italics indicates that the ionic strength is unknown. Black symbols are used for the best available data obtained by standard measurement techniques such as TD or CC (Kozaki et al., 1998a, 2005, 2008; Eriksen et al., 1999; Liu et al., 2003a; Glaus et al., 2007); data obtained with no sampling of concentration profiles in the clay (Molera and Eriksen, 2002; Melkior et al., 2009; Tachi and Yotsuji, 2014) are shown in gray symbols.
Experimental data and simulations results on $D_\text{w}/D_0$ for Na$^+$ in bentonite are shown in Fig. 7a. While both experiments and simulations show a fairly similar dependence on $\rho_b$, as also reported in the case of water and Cl$^-$, the diffusion coefficients from the simulations are up to three times larger than the experimental ones. The ratio $(D_\text{w}/D_0)_{\text{Na}^+}/(D_\text{w}/D_0)_{\text{water}}$ is between 0.5 and 1 for all dry densities, in good agreement with most of the experimental results. This is consistent with the fact that for these experiments (Liu et al., 2003a) and Kozaki et al. (1998a, 2005), simulations also overestimate the water diffusion coefficients (Fig. 5).

Because of their large $c_p/c_0$ ratio, cations are expected to diffuse primarily via the platelets and the interparticle pores should have little influence on $D_\text{w}/D_0$. Therefore, the fact that the simulations overestimate $D_\text{w}/D_0$ may result from a too high connectivity between the platelets. In the simulations, a tracer goes from one platelet to another with a probability of one, as long as it does not cross a basal surface. As a consequence, cationic tracers can diffuse through a large part of the sample without passing through interparticle pores. The good connectivity of the platelets in the simulations is evidenced by the fact that, contrary to the Cl$^-$ case, salinity has little impact on the $D_\text{w}/D_0$ values of Na$^+$. Fig. 8b illustrates that the variation of $D_\text{w}/D_0$ as a function of $I$ remains small compared to the anion case, in good agreement with the experimental database.

The ‘asymmetry’ between cation and anion diffusion noted above (minor salinity-dependence of $D_0$ for the former, large salinity-dependence for the latter) is further expressed by the fact that the diffusion coefficients obtained with ‘random’ configurations are up to 4.4 times smaller than the ones calculated from trajectories in GB configurations in the case of Cl$^-$, but only 1.3 to 1.8 times smaller in the case of Na$^+$. As noted above, the main difference between the two types of configurations is that GB configurations display a better connectivity between interparticle pores. This connectivity strongly facilitates the diffusion of the anions while having relatively little impact on the diffusion of cations (which diffuse mostly within the particles). These observations are consistent with the results of less coarse-grained simulations that account explicitly for electrostatic effects, in particular the ‘electrostatic bottlenecks’ experienced by anions as they diffuse through interparticle pores (Rotenberg et al., 2010; Jardat et al., 2012).

One possible improvement to this model would consist in decreasing the probability to go from one platelet to another. Such a change would decrease the connectivity between platelets, which would decrease the $D_\text{w}/D_0$ values of cations (and, to a smaller extent, of water) while having little impact on the $D_\text{w}/D_0$ values of anions, potentially bringing all GB simulation predictions in closer agreement with the experimental database.

6. Conclusion

A Brownian dynamics simulation methodology was developed to investigate the diffusion of cationic (Na$^+$), anionic (Cl$^-$), and water tracers in compacted, water-saturated montmorillonite, on scales of micrometers and milliseconds. A new model of clay mineral particles is introduced in which cylindrical platelets can overlap, which allows to represent highly compacted samples. Diffusion in individual pores (interlayer nanopores and interparticle mesopores) was modeled using two different diffusion coefficients determined from experimental and simulation results obtained at nanometer and nanosecond scales.

Overall, the simulations broadly predict the major features of water, Na$^+$, and Cl$^-$ diffusion in compacted clays as a function of density and ionic strength. The main discrepancy with the experimental database is that the model overestimates the $D_0$ values of Na$^+$ (by a factor of ~4) and of water (by a factor of ~2). This can be ascribed, at least in part, to the simplicity of the structure used to model the clay. One way of improving the existing model would be to refine the effect of the sample structure on the diffusion behavior of the tracer by tuning the transition probability between particles. Such a modification would decrease the $D_0$ values of Na$^+$ and, to a lesser extent, of water tracers and improve the agreement with experimental results. Another way of improving the model would be to take into account the effect of compaction along one direction, which was neglected in this work. For example, new porous media could be generated by applying a higher pressure in one direction on the system constituted by ellipsoidal particles (see Section 2.2). The connectivity between interparticle pores should, then, be higher and the tortuosity lower in the direction perpendicular to the compaction, with consequences regarding the asymmetry of the diffusion tensor, as observed experimentally in anisotropically-compacted clays and clay-rocks.

Acknowledgements

The authors thank Roland Pellenq and Davoud Ebrahimi for helpful discussions and for providing us configurations of ellipsoidal platelets from which the GB configurations are derived.

The DOE Office of Science, Office of Basic Energy Sciences supported I. C. Bourg under Contract DE-AC02-05CH11231.


