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RESEARCH ARTICLE

Coarse-graining the dynamics of nano-confined solutes: The case of ions in
clays
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a sk

Rotenberg

aCNRS and UPMC Univ-Paris06, UMR 7195, PECSA, F-75005, Paris, France
(Received 00 Month 200z; final version received 00 Month 200z)

We investigate the possibility of describing by a continuous solvent model the dynamics of solutes confined down
to the molecular scale. We derive a Generalized Langevin Equation (GLE) for the generic motion of a solute in
an external potential using the Mori-Zwanzig formalism. We then compute the corresponding memory function
from molecular simulations, in the case of cesium ions confined in the interlayer porosity of montmorillonite
clays, with a very low water content (only six solvent molecules per ion). Previous attempts to describe the
dynamics of cesium in this system by a simple Langevin equation were unsuccessful. The purpose of the present
work is not to perform GLE simulations using the memory function from molecular simulations, but rather to
analyze the separation of time scales between the confined ions and solvent. We show that such a separation
is not achieved and discuss the relative contribution of the ion-surface, ion-solvent and ion-ion interactions to
the dynamics. On the ps time scale, the ion oscillates in a surface-and-solvent cage, which relaxes on much
longer time scales extending to several nanoseconds. The resulting overall dynamics ressembles that of glasses
or diffusion inside a solid by site-to-site hopping.

Keywords: Generalized Langevin Dynamics, confinement, memory function, clays, cesium

1 Introduction

The dynamics of confined fluids differs dramatically from their bulk counterparts, especially
when the length scale of the confinement becomes comparable to the molecular size [1]. In such
cases, the hydrodynamic flows may depart from the predictions of continuous theories, even
when modified boundary conditions at the wall are introduced, because of the layering due to
the finite size of the fluid molecules [2]. Under even more extreme confinement, where one or
two molecular layers of fluid are present, hydrodynamic descriptions are not relevant anymore.
While molecular simulation remains the reference theoretical tool to investigate such situations,
resort to continuous models is obviously necessary if one wishes to understand the evolution of
large systems over long time scales. For example, diffusion models may still be relevant, since the
motion of fluid molecules on very long time scales remains diffusive. Nevertheless such models
may not accurately reflect the underlying microscopic mechanism, which may differ significantly
from that for bulk diffusion. In particular, while the Brownian theory of diffusion, which relies
on a separation of time scales between the solute and its surrounding medium is expected to
break down [3, 4].

As an example of extremely confined solute, we investigate the case of cesium ions confined in
the interlayer porosity of montmorillonite clays, with a very low water content (a single water
layer with 6 water molecules per ion), for which previous attempts to build a continuous solvent
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2 A. Carof et al.

model failed to reproduce the dynamics predicted by molecular simulations [5, 6]. We first derive
a Generalized Langevin Equation (GLE) for the motion of a solute in an external potential
using the Mori-Zwanzig formalism. We then compute the corresponding memory function from
molecular simulations. The purpose of the present work is not to perform GLE simulations
using this memory kernel, but rather to investigate its properties. In particular, we discuss the
separation of time scales between the confined ions and solvent. We show that such a separation
is not achieved and analyze the relative contribution of the ion-surface, ion-solvent and ion-
ion interactions to the dynamics. This explains why the dynamics of this ion under extreme
confinement cannot be described by a simple Langevin equation, as was previously attempted.

2 Theory: from Newtonian to Langevin and Generalized Langevin dynamics

2.1 Continuous solvent model for ions confined in clay interlayers

We consider here the case of ions confined in the interlayer porosity of clay minerals. These
layered aluminosilicate minerals are abundant in the Earth’s crust and play an important role
in many environmental and industrial processes. Their low porosity and their surface charge
control the mobility of ions through their multi-scale porosities and the sorption of these ions
on the various types of surfaces they offer. This in turn explains their consideration e.g. for
the retention of toxic and radioactive waste. Experimental evidence suggests that in clay rocks
the major pathways for cations is the so-called interlayer porosity [7], where the counter-ions
compensate the negative charged of the mineral layers (see Figure 1). The interlayer space
may also contain some water, in quantities which depend among other on the surface charge
density and the nature of the counter-ion. In particular, for montmorillonite clays with cesium
counterions at low relative humidity (and/or high confining pressure), the most stable state
corresponds to a water monolayer, with only =~ 6 water molecules per cation. The distance
between the confining surfaces is then comparable to the molecular and ionic size.

Figure 1. Cesium ions confined between montmorillonite clay surfaces. The interlayer porosity, seen from the side (left)
and the top (right) also contains a monolayer of water. Cyan: Cs, yellow: Si, green: Al and Mg, red: O, white: H, grey: water
molecules.

The motion of ions confined in these sub-nanometer pores has been studied extensively by
molecular simulation [8-11]. It is almost two-dimensional and diffusive in the long time limit,
with a linear growth of the mean-square displacement [12]. The corresponding diffusion coefficient
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is &~ 10 times smaller than in a bulk, infinitely diluted aqueous solution. In a previous work, we
have investigated the possibility to describe this confined motion by a continuous solvent model
in which the ion evolves in the Potential of Mean Force (PMF), which captures the average effect
of all its environment (clay surfaces, water molecules and other ions). The effect of a thermalizing
bath is then accounted for via a constant and uniform friction and random forces [5, 6]. The
resulting model corresponds to simple Langevin Dynamics (for simplicity we write it here in the
one-dimensional case):

dv F t R(t

where v is the velocity of the ion, m its mass, Fpyrr the mean force acting on the ion at its current
position, v the friction and R a random force. The distribution of the latter is taken as Gaussian
with a zero mean and a variance (R(t)R(t')) = 2ymkpTd(t — t'), kp being the Boltzmann
constant, T the temperature and ¢ the Dirac distribution. In general, Lanvegin dynamics refers
to numerical simulations based on the coupled stochastic equations for the evolution of N ions
interacting via the instantaneous force due to the surfaces and to the other ions. In the following,
however, we will use Langevin dynamics to refer to the effective one-body dynamics described
by Eq. (1). Figure 2 compares the Velocity Autocorrelation Function (VACF) from Molecular
Dynamics (MD) simulations with the results of Langevin dynamics in the PMF extracted from
molecular simulations, for several values of the friction coefficient. It shows that no choice of
friction allows to capture simultaneously the initial decay, the depth and the position of the
minimum [5, 6].

Figure 2. Velocity Autocorrelation Function (VACF) obtained by Molecular Dynamics (black curve) and by Langevin
Dynamics using the potential of mean force extracted from molecular simulations, for different values of the friction v (red,
green and blue curves). None of these frictions is able to capture simultaneously the initial decay, the depth and the position
of the minimum. Figure adapted from Ref. [6].

An underlying assumption of the Langevin equation (1) is the decoupling of time scales between
the solute (ion) and its environment, which may not be achieved under extreme confinement
conditions, despite the larger mass of the cesium ion compared to that of water molecules.
The traditional way beyond this approximation is to describe the motion of the solute via a
Generalized Langevin Equation (GLE), which in the absence of an external potential reads [13]:

j::_/o K (w)o(t — ) du+ 00 (2)

m
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This equation introduces a memory kernel linked to the random force (noise) via the fluctuation-
dissipation relation:

(ROO)R(1))

K(t) =
() kaT

(3)

Note that the simple Langevin equation corresponds to an infinitely fast relaxation of the noise,
compared to the evolution of the velocity, i.e. K(t) = 2vd(t), with the friction coefficient:

y = /0 K(t)dt. (4)

In the limit of an infinitely heavy solute, this friction coefficient can be computed as the integral
of the force autocorrelation function (FACF) instead of the memory kernel K [14, 15]. In the
following, we discuss the extension of this framework to include the interactions with the con-
fining surfaces. We first derive the relevant quantities to be determined using the Mori-Zwanzig
formalism of projection operators. We then compute these quantities from molecular dynamics
simulations. We finally discuss the applicability of such a strategy in the present case.

2.2 Derivation of a Generalized Langevin Equation

The Mori-Zwanzig formalism provides a natural route from the molecular Newtonian dynamics
to coarse-grained models in which the dynamics is projected onto a reduced number of variables.
We derive here a GLE for the evolution of the velocity of a solute under extreme confinement.
In order to set the stage, let us first recall the standard derivation of Eq. (2) in the absence of
such a potential. The starting point is the Liouville equation for the velocity of the solute:

dv .
i iLv (5)

where the Liouvillian (super)operator L is related to the total Hamiltonian H of the system by:
iL = {H,.}. Since we aim at reducing the description of the whole system to the sole velocity
v of an ion, we introduce the two operators P and () defined by their action on any observable
property A as:

Py = DA ) m 040

QA(t) = Al(t) — PA(t) - (6)

The effect of P is to “project” the time-dependence of A on v, according to its correlation with
the latter. Formal integration of the Liouville equation (5) allows to express the rate of change
in the velocity from a given initial condition as:

d , (0 e~ F(0

£ — €Z£ti£1}(0) _ ez[lt T(n) + ezEtQ T(n) 7 (7)
where we have introduced the fact that P 4+ @Q = 1 and F(0) = m x iLv(0) the force acting on
the solute arising from its interactions with the solvent. Using the parity properties of correla-
tion functions, the hermitian properties of the Liouville operator and Dyson’s relation [16], one
obtains the GLE (2) with the memory kernel (3) and the explicit formal expression of the noise:

R(t) = QL F(0) . (8)
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We now turn to the more complex case where an external potential acts on the solute, and
separate the total force as Fiot = Feyt + Fpatn. Note that such a decomposition is very general
and the choice of how to separate the force due to the external potential F¢,; and to the thermal
bath Fjq, will be discussed below. Following the same procedure, we obtain the GLE:

- /0 v(t —u) K (u) du + B 9)

m

dl o Fext(t)
dt m

Despite a very strong ressemblance with Eq. (2), this result does not simply correspond to
adding the external force to the equation of motion. Indeed, the memory K and noise R are now
obtained by considering the action of the projection operators on the bath force only, instead of
the total force, with the final result:

_ {Ft(0)R())
K(t) = T (10)
R(t) = €' 9% Fyoun (0) . (11)

Note that the external potential is also present in the memory function K. Of course, in the
absence of an external potential this reduces to the previous expressions.

Comparing the exact result of Egs. (9-11) to the model of Ref. [6] described in the previous sec-
tion, we now can explicit the approximations underlying the latter. On the one hand, it identifies
the external force with the Potential of Mean Force Fpyr = —VVppyrr. This seems reasonable
since the interaction with the clay indeed corresponds to an external potential, however the PMF
also includes the average effect, for a given position of the solute, of the solvent and of the other
solutes. On the other hand, it assumes that the remainder of the force Fyuip, = Fiot — FruF
relaxes very rapidly compared to the velocity of the solute so that its effect can be captured by
a memory-less friction and a corresponding white noise. This assumption can be challenged by
computing the memory kernel K from molecular simulations and comparing its relaxation with
that of the VACF, as we now proceed to show. In addition, we analyze the effect of confinement
on the separation of time scales between the solute and its environment by comparing the case
of the cesium ion in the interlayer of montmorillonite and in bulk water. Finally, we discuss
the contributions of the ion-clay, ion-water and ion-ion interactions to the total force and its
relaxation.

3 Molecular simulations: methods

3.1 System

The simulated clay system, illustrated in Figure 1, contains two layers of montmorillonite (in
the figure, one of these layers is divided into two halves shown on the top and bottom) of 8 x 4
unit cells each of unit cell formula Csg 75Sig(Al3.25Mgg.75)020(OH)4. The 48 Cst counterions,
together with 288 water molecules, are located in the two interlayer porosities. The interlayer
distance is 12.6 A and the two layers are positioned so that the hexagonal cavities on their
surface, visible in Figure 1, face each other. The lengths of the simulation box in the z and y
directions parallel to the clay layers are 41.44 x 35.88 A2. For the aqueous Cs* ion, the cubic
box of length 18.65 A contains 1 ion and 215 water molecules. Periodic boundary conditions are
applied in all directions.

The water molecules are described according to the SPC/E force field [17], the cesium ions
by the force field from Koneshan et al. [18], and the clayFF force field is used for the clay
layers [19]. The latter are considered rigid and the corresponding atomic positions are set to
the experimental data [20]. Long-range electrostatic interactions are computed using Ewald
summation [21]. Molecular dynamics in the NVT-ensemble are performed using a Nosé-Hoover



6 A. Carof et al.

thermostat with a time constant of 0.5 ps. The system is first randomized at 1000 K for 10 ps,
then equilibrated at 298 K for 80 ps. The properties are subsequently determined in NVE runs
with different lengths: 10 simulations of 35 ps and 4 simulations of 5 ns for the short and long
time dynamics, respectively. Newton’s equation of motion are solved using the Leap-Frog Verlet
algorithm with a time-step of 1 fs. All simulations were performed using the DL_POLY simulation
package [22].

3.2 Potential of Mean Force

The two-dimensional PMF is computed from the equilibrium one-body density as: Vpyrr(z,y) =
—kpT In p(z,y). The latter is determined by averaging over ten trajectories of 35 ps, over the
48 ions and exploiting the hexagonal symmetry of the cavities on the surface. Since the mean
force needs to be evaluated at any position in order to extract the bath force, we further use
an analytical approximation to represent it using the following expression, which corresponds to
the above-mentioned symmetry of the unit-cell:

6 6
4mn, 4
Vi (a,y) = —kpT 3 S Alng,ny) [cos< Gl fﬁ) cos (W)

a a
n,=0n,=0 x Y

+ cos (27”%@ * y\/§)> cos (27rny(y — x\/§)>

Qy ay

+ cos (27mw(m — y\/§)> cos (27my(y + x\/g))]

Ay Qy

(12)

with a, and a, the dimensions of the unit cell. The coefficients A(ns,n,) are determined nu-
merically so as provide the best fit to the molecular simulation results, using the MINUIT
software [23]. The mean force Fpsr is then computed at each time step as the derivative of this
expression, evaluated at the position of the cesium ion.

3.3 Computation of the noise and of the memory kernel

While the extraction of the VACF and FACF from a MD trajectory is straightforward, as the
velocity and force acting on each particles are readily available, the determination of the noise
R, hence of the memory kernel K, is much more involved. Indeed, the projected forces do not
evolve simply according to the Liouvillian as in Eq. (5), but according to the projected operator
1QL. By differentiating the definition Eq. (11) with respect to time and using the properties of
the projector @), we obtain the following evolution equation for the noise [24]:

dRr . <l tot(O)R(t»
— A rotA /AL 1
P iLR(t) + A v (13)
which has to be solved for the initial condition:
R(0) = Fpan(0) . (14)

The numerical algorithm allowing to reconstruct a posteriori the noise from a MD trajectory
will be presented in Ref. [25], which discusses two algorithms based on different points of view
(looking forward or backward in time) and illustrates their relative merits on the case of a
Lennard-Jones fluid. For each configuration of the trajectory, the bath force is determined by
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substracting the analytical representation of the mean force from the total force and used as the
initial condition to integrate Eq. (13). The memory kernel is finally obtained from its definition
Eq. (10).

3.4 Force Splitting

In order to assess the relative contributions to the overall force on the confined ion due to the ion-
clay (C), ion-water (W) and ion-ion (I) interactions, these forces must be computed separately at
each time step of the trajectory. The timescales on which they evolve and their possible coupling
can then be quantified by their auto- and cross-correlation functions.

4 Results and Discussion

4.1 Potential of Mean Force

The two-dimensional PMF for a Cs™ ion in a monohydrated montmorillonite is reported in
Figure 3. It displays a global minimum corresponding to the ion above the center of the hexag-
onal cavity as well as secondary minima above the surface silicon atoms (i.e. coordinated by
three surface oxygen atoms to which the silicon is bonded). Both situations can be observed
on Figure 1. The diffusion of the Cs™ ion from one cavity to another involves hopping through
the secondary minima, with an activation barrier of ~ 3kgT. These results are in qualitative
agreement with those of Ref. [5, 6] obtained with a different force field.

PMF (in kyT)

Figure 3. Two-dimensional Potential of Mean Force (PMF) in units of the thermal energy kg7 for an interlayer cesium
ion.

4.2 Short time dynamaics

The main purpose of the present paper is to assess the relevance of a continuous solvent model to
describe the dynamics of ions confined down to the molecular scale. The VACF for Cs™' confined
in the interlayer of montmorillonite in the monolayer hydration state is reported in Figure 4.
In agreement with previous simulations of the same system using a different force field [5], we
find that the VACF decreases from kp7'/m to a negative minimum value (= —0.25kgT/m) in
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approximately 0.5 ps, before decaying to 0 for ¢ &~ 1 ps). As mentioned above, the simple Langevin
equation (1) has been shown to fail to reproduce this VACF obtained by molecular simulation [5,
6]. We now investigate in more detail the validity of the main approximation underlying this
model, namely that the thermal bath which models the deviation of the instantaneous force from
the mean force, evolves on a faster time scale than the solute.

— Velocity 015F — T T

LL e ]
O "7 7
<C -0.15{ 1 1
§ 0.3 't% )
= (ps) A
g _____________________________
S -
zZ

15 2

Figure 4. Normalized autocorrelation functions for the velocity (VACF), force (FACF) and noise (memory function K),
for an interlayer cesium ion. The insert shows the slower decay of the memory function compared to the VACF and FACF.

In the limit of an infinitely heavy solute (compared to the solvent) the friction coefficient of the
Langevin equation (1) is given by the integral of the force autocorrelation function (FACF) [14,
15]. Such an assumption may seem reasonable in the case of the Cs* which is ~10 times heavier
than a water molecule. The FACF, also reported in Figure 4 decays to zero more rapidly than the
VACF, within 0.5 ps, after a significantly faster initial decrease (0.1 ps) to a negative minimum (&
-0.2 <F2>) followed by a shallower one (=~ —0.1 <F2> at 0.3 ps). Under the above approximation,
the relatively fast decorrelation of the force compared to the velocity, even though not complete,
may suggest that the Brownian approximation is reasonable.

However, the relevant correlation function to define the memory kernel K is the noise auto-
correlation function (NACF), as can be seen in Eq. (10). The NACF, computed from the noise
extracted from the trajectory as explained in Section 3.3, is reported for the confined ion in
Figure 4. It coincides with the FACF at very short times (up to 50 fs) and its variations up
to 250 fs, with a miminum followed by a maximum, clearly ressemble that of the FACF in this
intermediate regime. Nevertheless, there are significant differences between the memory kernel
and the FACF. Firstly, contrary to the latter, the memory is always positive. Secondly, and most
strinkingly, the memory appears to level off at a plateau, at ~ 10% of its initial value after 400 fs.
It then decays to zero on a much longer time scale, larger than 10 ps (see insert of Figure 4).
This slow decay of the memory kernel compared to the VACF, which constitutes the main result
of the present work, pinpoints the failure of the simple Langevin model, as the latter assumes an
instantaneous relaxation of the solute-bath interaction compared to the dynamics of the solute
(VACF). It may seem that the fast initial decay, which decreases the memory kernel by an order
of magnitude, is sufficient to ensure a separation of time scales and the proper definition of a
friction coefficient. This is however not the case, as the slower decay from this smaller value
contributes significantly to the integral of K, which would define the friction if such a concept
were applicable.
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4.3 Confined vs bulk ions

. — Veéocity — Confined |
0.75 - For.ce » Bulk i
=+ Noise

Normalized ACF

Figure 5. Normalized autocorrelation functions for the velocity (VACF), force (FACF) and noise (memory function K):
comparison between a cesium ion in the interlayer of montomorillonite clay (lines without symbols) and in bulk water (lines
with symbols).

Before analyzing in more detail the microscopic origin of this slow decay of the memory kernel,
let us first compare the dynamics of confined Cs™ with that in bulk water. Figure 5 compares the
normalized VACF, FACF and memory kernel in the bulk and confined cases. The bulk results
for the VACF and FACF are qualitatively similar to the confined case, even though quantitative
differences are observed. For example, the decay of the VACF is slightly slower in the bulk
and the negative minimum is only ~ —0.2kpT/m. The initial decay of the FACF is almost
identical to the confined case, but the subsequent oscillations are less pronounced. The impact
of confinement is the largest on the memory kernel, which is the most important of the three
correlation functions for the purpose of deriving continuous solvent models. The memory kernel,
which follows the same initial sharp decay in the bulk and under extreme confinement, does not
exhibit a plateau on this time scale and decays much more rapidly than in the confined case.
Note that even in this case the contribution of the power-law decay (not visible on the figure) of
the memory kernel to the integral which defines the friction coefficient is non negligible. In the
bulk, this corresponds to the hydrodynamic backflow of solvent, which occurs on a time scale
longer than the typical collision time with the solute with its neighbouring solvent molecules
reflected in a negative minimum of the VACF for ~ 0.5 ps.

4.4 Ion-water, ton-surface and ion-ion interactions

The sharper decay and oscillations of the VACF under extreme confinement suggests that the
interaction of Cs™ with water molecules is more repulsive in that case. The confined water
molecules cannot transfer momentum to the rest of the fluid as easily as in the bulk and the
solvent cage around the ion is stronger. In addition, the slower decay of the memory kernel also
reflects the hindered momentum transfer to the rest of the fluid. In order to further quantify the
role of ion-clay (IC), ion-water (IW) and ion-ion (II) interactions on the dynamics of the confined
ion, we now analyze their correlation functions. Figure 6 reports the auto- and cross-correlation
functions for these three specific forces, along and perpendicular to the clay surfaces.

In the direction along the surface, all these correlation functions do not show any significant
variation over the picosecond time scale, with the notable exception of the ion-water autocor-
relation function, which displays a minimum for ~0.1 ps followed by a plateau. This clearly
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Figure 6. Specific force correlation functions (SFCF), for the three contributions to the force acting on the ion: ion-clay (IC),
ion-water (IW) and ion-ion (II) interactions. Both auto- (IC-IC, IW-IW, II-II) and cross- (IC-IW, IW-II, II-IC) correlation
functions are reported. Left Components parallel to the surface. Right Component perpendicular to the surface.

demonstrates that the evolution of the FACF and of the memory kernel discussed in the previ-
ous section is due to the ion-water interactions and more precisely to the oscillations of the Cs™
ion in a solvent cage which otherwise does not evolve on this time scale. One can futher notice
that the order of magnitude of all forces is similar: The initial value of the auto-correlation func-
tions increases by a factor of 4 from ion-clay to ion-ion and ion-water interactions (IC-1C, II-1I
and IW-IW on Figure 6, respectively), indicating a two-fold increase in 1/ (F?2). In addition, the
ion-clay and ion-water interactions are almost uncorrelated (small values of the cross-correlation
function) , while the ion-ion interactions are anti-correlated with both the ion-water and ion-clay
interactions (negative cross-correlation functions). Since the environment of the ion is frozen on
this time scale, the ion-ion interaction and the parallel component of the ion-clay interaction
can be considered constant and the anti-correlation only reflects the fact that the total force
vanishes on average.

The force experienced by the confined ion in the direction perpendicular to the surfaces is,
as expected, dominated by the ion-clay interaction, since the vertical confinement results from
the steric repulsion by the clay surface. The perpendicular component of ion-ion interaction is
negligible compared to the ion-clay and ion-water interactions, because the ion-ion vectors are
approximately parallel to the surfaces. In that direction, only the ion-clay interaction evolves
significantly over a few ps as the ion oscillates on this time scale, as indicated by the weakly
damped oscillatory behaviour of the perpendicular component of this force. Note that it does not
decay to zero on this time scale, reflecting the asymmetry of the instantaneous local environment
of the ion near the middle of the interlayer. Thus the description of the system as purely two-
dimensional is only approximate. As for the parallel component, the anti-correlation between
the ion-clay and ion-water interactions reflects the vanishing of the total force on average over
this time scale.

4.5 Long-time dynamics

All these correlation functions decay to zero on a much longer time scale, as illustrated on
Figure 7. Despite the decorrelation of the total force within 1 ps, it takes several ns for the
ion-water, ion-clay and ion-ion interactions to decorrelate. The picture that emerges from this
observation, together with the previous results, is that of a multi-scale process, with a short
equilibration of the ion inside a local free energy minimum corresponding to a surface cavity and
a solvent cage, and a much slower relaxation of this local environment and the corresponding
motion of the ion to another local free energy minimum. Such slow relaxation is reminiscent
of that observed in glasses or with site-to-site hopping in solids. The theoretical tools used to
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Figure 7. Correlation functions of the different forces acting on the ion. The total force is separated into ion-clay (IC),
ion-water (IW) and ion-ion (II) interactions. Both auto- (IC-IC, IW-IW, II-II) and cross- (IC-IW, IW-II, II-IC) correlation
functions are reported, for the components parallel to the surfaces.

model the dynamics of such systems may thus prove useful in the description of the long-time
dynamics of solutes under extreme confinement.

5 Conclusion

Using the Mori-Zwanzig formalism of projection operators, we have derived a Generalized
Langevin Equation for the continuous solvent description of the dynamics of a confined so-
lute. The solute evolves in the Potential of Mean Force under the effect of a random noise and
a friction with a memory that both differ from that in a bulk solvent. As an example, we have
considered the case of the Cs™ ion confined in the interlayer of montmorillonite clays with a very
low water content. We have computed the memory kernel from molecular dynamics simulations
and have shown that it decays on a time scale longer that 10 ps, while the main features of the
velocity autocorrelation function decay within a few ps. Thus there is no separation of time scales
between the dynamics of the confined Cs™ and that of the confined solvent, despite the much
larger mass of the ion. This explains why the dynamics of this ion under extreme confinement
cannot be described by a simple Langevin equation, as was previously attempted.

In the bulk, the slowest decay mode for the memory function, which is faster than in the
confined case, corresponds to the hydrodynamic backflow of the solvent, while the shortest
corresponds to the collision of the solute with its solvent cage. In order to understand the
microscopic origin of the slow decay of the memory function under extreme confinement, we have
further analyzed the relative contribution of the ion-surface, ion-solvent and ion-ion interactions
to the dynamics. On the ps time scale, the only appreciable motion corresponds to the vibration
of the ion in its neighbour cage, which involves the clay atoms in the direction perpendicular
to the surface and water molecules in the direction parallel to the surfaces. This cage relaxes
on a much longer (up to several ns) time scale, with the hopping of ions between local free
energy minima, probably via the correlated motion of ions and solvent molecules. The resulting
overall dynamics ressembles that of glasses or diffusion inside a solid by site-to-site hopping.
This work opens a new perspective for the description of the dynamics of ions in water under
extreme confinement, which could be applied in other materials of great scientific and practical
relevance, such as zeolites [26] or carbon nanotubes [27]. Since in the bulk a Langevin description
is relevant, it would be interesting to investigate wider pores, such as silica slit pores with a few
water layers [28], in order to determine where the cross-over between the extreme confinement
and bulk-like regimes takes place.
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