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We investigate systematically the effect of the cell size and shape on the diffusion properties
in MD simulations. Specifically, we consider a bulk LJ fluid in orthorhombic cells with one
length differing from the other two. The components of the diffusion tensor display complex
variations as a function of the two independent lengths and may even become in some cases
larger than the macroscopic limit for a cubic cell. These results can be perfectly explained by a
purely hydrodynamic theory, which extends results obtained previously for the isotropic case.
We provide the explicit expression of the diffusion tensor, including the effect of the finite size
of the diffusing particle. The simulation results follow a simple scaling as a function of box size
and aspect ratio and the corresponding scaling functions are determined numerically. These
findings should have implications for the practically more relevant case of confined fluids.

1. Introduction

The diffusion of a solute or a solvent molecule arises from momentum transfer with
the surrounding fluid, a process also at the origin of hydrodynamic flows around the
particle — hence of hydrodynamic interactions between solutes. This fundamental
correspondence is evident in the Stokes-Einstein relation, Do, = kT /67na, re-
lating the diffusion coefficient of a spherical particle of radius a to the solvent
viscosity 7 (and the temperature T, with kp Boltzmann’s constant), which can be
derived from macroscopic hydrodynamics assuming stick boundary conditions at
the surface.

One consequence of practical importance is that the computation of diffusion
coefficients with Molecular Dynamics (MD) simulation suffers from finite-size ef-
fects arising from hydrodynamic interactions between periodic images [1, 2]. For a
cubic simulation box, the overall effect for a bulk fluid is a decrease in the diffusion
coefficient. This decrease numerically follows down to almost molecular sizes the
following scaling:

ckgT

PU) =P =G

(1)

with L the box length and ¢ = 2.837. The derivation of this result, already reported
by Diinweg and Kremer [2] and by Yeh and Hummer [1] uses the Oseen tensor to
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compute the flow generated by the particle under a force F and Ewald summation
to account for periodicity. They found that most of this effect is in fact due to the
enforcement of a background force density —F/V, with V' the volume of the system,
ensuring overall momentum conservation. Higher order corrections accounting for
the finite size of the solute can be obtained by considering the Rotne-Prager instead
of the Oseen tensor [1, 3, 4].

Most reported simulation data, even since the publication of these results, neglect
this contribution and therefore underestimate the diffusion coefficient. Neverthe-
less, this scaling law has been verified numerically for a number of systems, includ-
ing several popular water models [5—7], ionic liquids [8] or more complex fluids such
as solutions of star polymers [9] and even in higher dimensional spaces [10]. This
scaling then allows extrapolating the solvent diffusion coefficient to the macroscopic
L — oo limit, or the correction to be applied for solutes [11, 12]. In addition, the
slope provides an estimate of the viscosity — a strategy that was used in particular
to determine the viscosity of water in ab initio MD simulations [13].

More recently, it was observed that for anistropic simulation boxes, the diffusion
tensor becomes anisotropic even for bulk fluids [6]. Such finite-size artefacts may
become problematic for the study of confined fluids, a very active field of research
due to the numerous applications in a wide variety of contexts (e.g. micro- and
nanofluidics, nanoporous materials, etc), for which anisotropic simulation boxes are
the rule rather than the exception. Note that in the case of a slit pore, one dimension
is indeed finite and only the periodicity in the other directions results in spurious
size effects. For an anisotropic bulk water system, Rozmanov and Kusalik found
that replacing L by V~1/3 in Eq. 1 is not sufficient to describe the components of the
diffusion tensor. Rather, they proposed for the considered geometry to use instead
the square root of the cross-sectional area corresponding to each direction [6].

Here we investigate systematically the effect of simulation box anisotropy on the
diffusion tensor. We show that hydrodynamic effects can explain the simulation
results, including the fact that some components may exceed the extrapolated
value for a cubic box in the infinite size limit. To that end, we follow the strategy
of Ref. [1] and consider explicitely (a) the Rotne-Prager tensor instead of Oseen, to
account for the finite size of the diffusion particle (b) all components of the diffusion
tensor instead of the isotropic part. This is presented in Section 2, together with
the simulation methods. Section 3 briefly reports the results for isotropic boxes.
The main results of the present work, dealing with anisotropic boxes, are finally
presented in Section 4.

2. Hydrodynamic theory and simulation methods

2.1. Hydrodynamics

The effect of hydrodynamics on the diffusion tensor in periodic systems, as well as
explicit expressions for its isotropic component and for cubic boxes has been given
by Yeh and Hummer [1]. For the sake of completeness, we first recall the main
arguments of their derivation and then extend it to provide the expressions for the
full tensor, including the effect of the finite size of the particle via the Rotne-Prager
tensor. The diffusion tensor under periodic boundary conditions is given by:

b = Dool + kT lim [Tppo(r) — Too(r)] 2)

where Tppc and Ty, denote the mobility tensors under periodic and unbounded
conditions, respectively, and 1 is the identity matrix. These tensors relate the
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velocity of the fluid at a position r around the particle when the latter is submitted
to an applied force F, while a compensating background force —F/V is distributed
uniformly over the fluid, as v(r) = T(r) - F. For point particles, the mobility tensor
in the unbounded case is the Oseen tensor:

00 = o (1+ ) | 3)

- 8mnr r2

where the superscript refers to the vanishing radius a = 0, while for the periodic
case it is more conveniently written in reciprocal space as:

—tkr
0 B e kk
Thoo®) =3 Sy (132 ) (W

k+£0

where the sum extends over the reciprocal lattice vectors k, excluding k£ = 0. For
spheres of radius a # 0, the Oseen tensor is replaced by the Rotne-Prager tensor [3]
and the extension of Eq. 4 has been given by Hasimoto [4] and Beenakker [14]. The
diffusion tensor can then be written as an Ewald sum by introducing a real number
&E>0:

> L M(a) + V6§3Mk<a)] (5)

Dppc = Dol + 7

kpTE[( 64 40a2%€?
67N 3

where we have introduced two tensors:
Ss
Mi(a) =Y {A(s)1+ fo() 5 | (6)
s#0
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s
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Mk(a)zze;{1—|—t4+t8}{1—a§3t}<11—g>. (7)

The two sums extend over real and reciprocal space lattice vectors, respectively.
For an orthorhombic box with lengths L., L, and L., to which we will restrict
ourselves in the following, this reads:

s = nzpéLye, +nyéLye, +n.lL e, (8)
¢ 2m n 2m + 27 ()
=pr—e —e —e
Prer, o L, ™ T e
with ng, . and pg, . integers and where s = [[s|| and ¢ = ||t|| denote the norm of

these vectors.

Egs. 5-9 provide the extension of Eq. 1 to finite size solutes and to anisotropic
simulation boxes, where the components of the diffusion tensor may differ. Eq. 1
is recovered in the a — 0 and taking the isotropic part (%Tr Dppc). In the more
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general case we were not able to compute the Ewald sums analytically, however
they can be easily determined numerically provided a suitable choice of £ and
number of terms in the sums 6 and 7. In the following, results are obtained by
choosing { = 6.4/ ming Lo, Ney,> € [—Nmaz, Mmaz] With Npee = 1 and pry. €
[—Pmazs Pmaz] With pmae = 2€|min, Ly | + 1, which are sufficient to ensure good
convergence. For a systematic study of the effect of anisotropy, we consider for
simplicity orthorhombic systems where two lengths are identical. Without loss of
generality, we note L, = Ly, = L and L, = L (see Figure 1). In that case, the
diffusion tensor is diagonal with Dy, = D, = D and D,, = D,.

2.2. Simulation details

Figure 1. The simulated systems consist of a LJ fluid in orthorhombic cells with one length different from
the other two. Both elongated (L > L, as shown) and flat (L) < L) are considered.

We simulate a Lennard-Jones fluid under the same physical conditions as the
one considered in Ref. [1], namely a reduced density p* = po3 = 0.7 and a reduced
temperature 7% = kpT'/e = 2.75, with ¢ and e the Lennard-Jones diameter and
energy, in the supercritical fluid region. The simulated systems, illustrated in Fig-
ure 1, cover a range of sizes and aspect ratios from flat to elongated. Specifically,
the box lengths corresponding to the results reported below are summarized in
table 1, with particle numbers ranging from 87 to 87500.

L | L,
5. 10, 15, 20, 30, 40, 50
10 5,10, 20, 40, 80
40 5, 10, 20, 40
5,10, 20, 40, 80 10
5, 10, 20, 40 40

Table 1. Size of the simulated systems (see Figure 1), in units of the LJ diameter o. The first line corresponds
to cubic cells.

Molecular simulations are performed in the microcanonical ensemble for 104¢*,
with t* = oy/m/e the Lennard-Jones time unit, using a time step of 1073¢*, after
an equlibration period of 10%¢* in the canonical ensemble. For the latter, a Nose-
Hoover thermostat with a time constant of 0.1¢t* is used. A cut-off of 2.5¢ is used
to compute the Lennard-Jones interactions. For each system, 8 independent runs
(16 for the smallest system L = L, = 5) with different initial conditions are
performed. For each simulation, the mean-square displacement in each direction
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is computed and the components of the diffusion tensor are determined from the
slope for t < 4.103t*. Reported results are averages over these independent runs,
with errorbars computed using the block averaging method [15].

Since the hydrodynamic results involve the viscosity of the fluid, we also compute
this quantity from equilibrium simulations using the Green-Kubo expression:

V (0.9)

= kT A (0ap(t)oap(0)) dt (10)

Ui

involving the auto-correlation function (ACF) of the off-diagonal components of
the stress tensor o,3. The reported results for the viscosity correspond to the
Ly = L, = 15 system. As previously noted in the literature [1], we did not observe
significant size effect on the viscosity. All simulations are performed using the
LAMMPS simulation package [16].

3. Isotropic boxes

Results for isotropic boxes (L” = L, = L) are reported in Figure 2. As expected,
they follow the linear dependence in 1/L of Eq. 1). The value of the viscosity,
n = 1.28 £ 0.03, is in good agreement with Ref. [1] and describes very well the
slope of D vs 1/L. The extrapolated value for infinite box size, Do, = 0.312+0.005
is also consistent with Ref. [1]. These values of n and Dy are then used in the
following for the hydrodynamic calculations in the anistropic cases.

15

0.32 - ol It

R0.28

— Ewald a=0
024_ === Ewald&:O'
§ MD

0.00 005 0.10 0.15 0.20
/L

Figure 2. Diffusion coefficient for isotropic systems (L = L) = L). Simulation results (blue symbols)
are compared to the hydrodynamic calculations for a point particle (Eq. 1, black solid line) and with a
size equal to the LJ diameter (a = o in Egs. 5-7, red dashed line). The inset shows the integral defining
the viscosity in the Green-Kubo relation Eq. 10 (with errorbars in light grey). The corresponding value of
the viscosity is used for the hydrodynamic calculations and the only fitted parameter is the extrapolation
to infinite box size Do (indicated by a green square), used in the following. All quantities are given in LJ
units.

For box sizes comparable to the LJ diameter, one observes deviations from Eq. 1,
as expected for this limit of point particles. Nevertheless the effect of the finite
particle size is moderate, as can also been seen in Figure 2 which reports the exact
numerical result for a size @ = o (the relative correction is of order a?/L?, as shown
in Ref. [1]). For L > 100, this effect can be neglected, as we will do in the following.
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4. Anisotropic boxes

We now turn to the more general case of anisotropic boxes and consider first the
evolution of the components of the diffusion tensor D and D, for fixed values
of Ly, as a function of the perpendicular dimension L. Figure 3 reports results
for Ly = 10 and 400. One first observes that the x and y components are equal,
and that D and D, differ, as expected from the symmetry of the simulation cell.
In addition, none of these components follow the simple scaling (Eq. 1) of the
isotropic case. D) and D may decrease or increase, simultaneously or in opposite
directions, depending on the size and aspect ratio. Both curves intersect as expected
when L} = Lj. A striking observation is that both components may exceed the
value D, for an infinite cubic cell, whereas hydrodynamic effects can only reduce
the diffusion coefficient for isotropic case.

0.5 1

00 01 02 00 01 02
1/L, 1/L,

Figure 3. Diagonal components of the diffusion tensor, for Ly = L, = L =10 and 40, as a function of
1/L. = 1/L, . Simulation results (symbols) are compared to the hydrodynamic result for a point particle
(a = 0 in Egs. 5-7, lines). The diffusion coefficient extrapolated for an infinite isotropic box size, Do, is
also indicated (green square). All quantities are in LJ units.

Finally, we note that the hydrodynamic calculations for point particles (a = 0 in
Eqgs. 5-7) perfectly reproduce the simulation results. This indicates that although
the anisotropic case is more complex than the isotropic one, all the finite size effects
are due to hydrodynamics, at least in this regime where L) and L are larger than
50. All the above discussion also applies to the evolution of D and D, for fixed
values of L], as a function of the perpendicular dimension L, as can be seen for
L) =10 and 40 in Figure 3.

4.1. Scaling with size and aspect ratio

It may seem surprising that some components exceed in some cases the value for
an infinite cubic cell and even seem to diverge e.g. as Ly — oo for L = 100
(Figure 3). One might expect, for example, to recover Dy, for an infinitely large
system. For example, comparing the L} — oo (resp. L — oo) for L = 400 (resp.
L) to the same limit for 100, one already sees that both D and D) approach
D«,. However, for an anisotropic system the proper macroscopic limit should be
taken at fixed aspect ratio a = L /L. Examination of Eqs. 5-7 shows that both
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0.5
0.4
Q
0.3
0.2
00 01 02 00 01 0.2
1/L /Ly
Figure 4. Diagonal components of the diffusion tensor, for L, = L; = 10 and 40, as a function of

1/Ly = 1/Ly = 1/L). Simulation results (symbols) are compared to the hydrodynamic result for a point
particle (a = 0 in Egs. 5-7, lines). The diffusion coefficient extrapolated for an infinite isotropic box size,
Do, is also indicated (green square). All quantities are in LJ units.

component of the diffusion tensor can be rewritten as:

kT L, a
Dy | = Do + B~ Ly, = 2 11
1L '*ﬁwanVL<§ Iz, Ln> (11)

where the two functions g | can be deduced straitforwardly from the above ex-
pressions. Noting that the Ewald summation technique is independent of the choice
of & (when both sums extend over the complete real and reciprocal space), these
two functions are in fact independent of (L. In addition, we have seen in the pre-
vious section that molecular simulation results are perfectly reproduced, for the
cases considered here (a/L| ~ o/L) < 1/5), by the hydrodynamic result for point
particles (a = 0). In this limit, we thus obtain the following scaling:

kpT L,
Dy = Do+ —2—hy, (=), 12
L ’+6ﬂnL”HA-<L”> (12)

where the two functions /| | now depend only on the aspect ratio v = LJ_/LH. Both
functions can be determined numerically and the isotropic case already provides
h||7J_(1) = —c~ —2.837.

Figure 5 reports the scaling functions hy | = (D)1 — D)/(kgT/67nL)) as a
function of the aspect ratio for all simulated systems. They all collapse on a master
curve (one for each component), which is perfectly described by the hydrodynamic
result of Egs. 5-7.

This figure not only confirms the hydrodynamic origin of the non-trivial finite-
size effect on the diffusion tensor in anisotropic simulation cells, but also provides
the evolution of the scaling functions /| . For the perpendicular component, i
(red curve in Figure 5) decreases monotonously and plateaus for large aspect ratios
(thin rod), with lim, .o b1 &~ —2.925, compared to ¢ = —2.873 for a = 1 (cubic).
For small aspect ratios (flat cell), h, diverges approximately as a~2. The finite-
size correction is positive (D) > Do) for a < oY = 0.396, while it is negative
otherwise. As for the parallel component, ) (blue curve in Figure 5) decreases for
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(D-D,, )/ (kg T/6mnL ||)

-10 : : : . .
-1.0 -0.5 00 05 1.0

log(L /L)

Figure 5. Scaling functions h| ; = (D) 1. — Ds)/(kpT/6nnL|) as a function of the aspect ratio
a = L, /L. Simulation results for all systems (see Table 1) are reported (symbols) together with the
hydrodynamic result Egs. 5-7. Note the logarithmic scale on the z-axis.

a < o' = 0.396 down to h”(aﬁ”) ~ —3.788 and increases for o > at. Tt diverges

approximately as a2 for « — 0 and as «a for & — oo. Finally, the finite-size
correction is positive (D] > D) for a < ozﬁ ~ 0.146 or o > aﬁ ~ 2.794 and
negative otherwise. The fact that the minimum of A is obtained for a value aﬂ"

approximately equal to the zero 040l of h, is striking, but we were not able to
demonstrate the equality between these two particular points.

5. Conclusion

We have investigated systematically the effect of the cell size and shape on the
diffusion properties in MD simulations. Specifically, we considered a bulk LJ fluid
in orthorhombic cells with one length differing from the other two. We showed that
the components of the diffusion tensor display complex variations as a function
of the two independent lengths and may even become in some cases larger than
the macroscopic limit for a cubic cell (for which the finite size effect is always a
decrease in the diffusion coefficient). These variations are perfectly described by
a purely hydrodynamic theory, which extends results obtained previously for the
anisotropic case. In particular, we provided the explicit expression of the diffusion
tensor including the effect of the finite size of the diffusing particle. The latter turns
out to be small in the present case, but may be more important for solutes larger
than solvent molecules in small simulation cells. Using this hydrodynamic descrip-
tion, we have further shown that the simulation results follow a simple scaling as a
function of box size and aspect ratio and the corresponding scaling functions have
been determined numerically. These findings should have implications for confined
fluids (see e.g. Ref. [17]): In that case hydrodynamic flows in the directions parallel
to the confining walls may result in spurious size effects on the computed diffusion
coefficients. The approach followed in the present work should allow to adress this
more practically important case.
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