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The memory kernel for a tagged particle in a fluid, computed from molecular dynamics simulations,
decays algebraically as t−3=2. We show how the hydrodynamic Basset-Boussinesq force naturally emerges
from this long-time tail and generalize the concept of hydrodynamic added mass. This mass term is
negative in the present case of a molecular solute, which is at odds with incompressible hydrodynamics
predictions. Lastly, we discuss the various contributions to the friction, the associated time scales, and the
crossover between the molecular and hydrodynamic regimes upon increasing the solute radius.
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The Brownian motion of a particle in a fluid finds its
origin in the fluctuating force exerted by the solvent
molecules on the solute. It has long been known that the
canonical description of this random force by a Gaussian
Markov process is only valid in limiting cases. Even in the
limit where the solute is much heavier than the solvent
particles, for which multiple time-scale analysis allows us
to recover the Smoluchowski equation for diffusion [1],
non-Markovian effects are expected when the mass density
ratio is close to unity [2]; this situation is rather the rule than
the exception in, e.g., colloidal suspensions. These non-
Markovian effects arise because of momentum conserva-
tion, leading to slow hydrodynamic modes that manifest
themselves as long-time tails in the velocity autocorrelation
function (VACF) [3–6]. Recent experiments have demon-
strated that the force exerted by the bath includes a
deterministic component [7], well described for large
colloidal spheres by the Basset-Boussinesq (BB) hydro-
dynamic force [8,9],

FBBðtÞ ¼ −6πηRvðtÞ − 2

3
πR3ρ0 _vðtÞ

− 6R2 ffiffiffiffiffiffiffiffiffiffi
πρ0η

p Z
t

0

ðt − uÞ−1=2 _vðuÞdu; ð1Þ

where R is the sphere radius, η the solvent viscosity, and ρ0
its mass density. The first term is the usual Stokes friction.
The other two account for the inertia of the displaced
fluid and involve a finite added mass mBB

0 ¼ 2
3
πR3ρ0 and

a viscosity-dependent retarded component describing the
transient effects of momentum diffusion in the solvent.
While continuous descriptions of steady-state flows

appear to hold down to the nanoscale [10–12], possibly
at the price of adapting the hydrodynamic radius R or the
boundary conditions [13], their validity for the transient
regimes should be questioned. The implicit assumption of a

separation of time scales between the solvent and solute
dynamics, which holds a priori for colloidal particles [14],
is expected to break down with smaller solutes such as
nanoparticles or biomolecules.
Here we address the fundamental questions that arise

when approaching the regime of molecular solutes by
computing directly from molecular dynamics (MD) sim-
ulations the memory kernel and the random noise of the
generalized Langevin equation (GLE). A novel algorithm
based on the Mori-Zwanzig formalism with high numerical
stability allows us to explore long time scales for the first
time. We consider the extreme case of a tagged particle
(identical masses and sizes) in a pure supercritical fluid.
By examining the long-time behavior of the memory

kernel, we demonstrate the generality of the functional
form of Eq. (1) beyond pure hydrodynamic descriptions
and discuss its interpretation as the time-dependent force
exerted by the solvent on the solute at thermal equilibrium.
Importantly, we show how to define and compute a mass
from the memory kernel itself. This generalization from the
microscopic dynamics correctly describes the numerical
results for the VACF almost down to the ballistic time
scale and provides insights into the emergence of the
hydrodynamic behavior for larger solutes, bridging the
gap between the solvent and colloidal time scales.
In the Zwanzig-Mori formalism [15–17], the velocity

vðtÞ of a tagged particle of mass m in a fluid follows the
generalized Langevin equation

m
dv
dt

ðtÞ ¼ −
Z

t

0

KðuÞvðt − uÞduþRðtÞ; ð2Þ

where KðuÞ is the memory kernel and RðtÞ the so-called
random force, which are obtained from the true force F
acting on the tagged particle using the projection operator
technique and defined as
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KðuÞ ¼ hFeið1−PÞLuFi
kBT

¼ hFRðuÞi
kBT

; ð3Þ

with kB the Boltzmann constant and T the temperature, and
RðtÞ ¼ eið1−PÞLtF. In these equations, iL is the Liouvillian
operator corresponding to the unperturbed dynamics and P
is the Mori projection operator along the velocity v, acting
on an observable A as PA ¼ ðhvAi=hv2iÞv. Throughout
the Letter, h·i denotes the canonical equilibrium average
at temperature T. The force F is propagated using the
orthogonal dynamics eið1−PÞLu instead of the normal
dynamics to obtain the Zwanzig-Mori memory kernel.
The autocorrelation function of this projected force

(or noise), hFeið1−PÞLuFi, differs significantly from the
autocorrelation function of the force hFFðuÞi. In particular,
for a periodic system the latter integrates to zero whereas
the former integrates to the friction ξ. This property of the
projected force is a form of the Einstein relation since the
friction is related to the diffusion constant D of the tagged
particle by D ¼ kBT=ξ. However, extracting the projected
force correlation function, or the kernel, from MD simu-
lations is a difficult task.
We have recently introduced two practical schemes to

compute such properties for generic observables from MD
trajectories [18]. These algorithms are only accurate to first
order in the MD time step δt, which thus prevents their use
in investigating the long-time behavior. Here we employ a
novel algorithm [19], which provides second-order accu-
racy at virtually no additional computational cost, to study
the memory kernel for diffusion in a Lennard-Jones (LJ)
fluid. We consider a system of 104 LJ particles at a reduced
density ρ� ¼ ρσ3 ¼ 0.5 and reduced temperature T� ¼
kBT=ϵ ¼ 1.5 with σ and ϵ the LJ diameter and energy,
respectively, i.e., at the critical density and slightly above
the critical temperature. Newton’s equations of motion
are solved using the velocity Verlet algorithm and cubic
periodic boundary conditions. Interactions are computed
using a cutoff radius rc ¼ 3σ. The system is first equili-
brated at the target temperature during 230.41t� by per-
forming MD with a timestep of 9.2 × 10−4 t�, in the NVT
ensemble using Langevin thermostat with a time constant
of 0.92t�. All properties are then determined from a
230.41t� trajectory with a time step of 4.6 × 10−4 t� in
the NVE ensemble generated with the DLPOLY [23]
simulation package, and block averages were taken over
trajectory segments of one tenth of the total trajectory.
The novel second-order algorithm presents remarkable

long time stability and allows us to investigate time scales
much beyond ∼t�. This is demonstrated in the inset of
Fig. 1, which displays the running time integral of the noise
autocorrelation function (NACF). From the plateau of
the NACF (Fig. 1), we obtain ξ ∼ 4.5� 0.1 LJ units, in
excellent agreement with the Einstein relation (kBT=D∼
4.4 LJ units). In contrast, the running time integral of the

unprojected force autocorrelation function (FACF) tends to
zero, as expected.
Figure 1 then shows the long-time behavior of the

normalized velocity, force, and noise autocorrelation func-
tions. Hydrodynamic and mode coupling theories predict
that the VACF decays at long times as

ZðtÞ ¼ 1

3
hv · vðtÞi ∼ 2kBT

3ρm
½4πðDþ νÞt�−3=2; ð4Þ

where ν ¼ η=ρm is the kinematic viscosity, with η the
fluid viscosity and m the particle mass. The diffusion
constant D is often omitted in this long-time tail;
however it is necessary to reproduce our numerical result
as can be seen from Fig. 1. This term is due to the
diffusion of the particle simultaneously with the momen-
tum transfer in the fluid [24,25]. The FACF is the
second-order derivative of the VACF and should decay
in the same limit as

hFðtÞFð0Þi ¼ d2

dt2
ZðtÞ ∼ t−7=2: ð5Þ

This is indeed the case as shown in Fig. 1. In contrast,
the NACF, which is nothing but the memory kernel K,
decays much more slowly than the FACF, following the
same t−3=2 scaling as the VACF. In fact, such a scaling
is not unexpected: Corngold indeed showed, from the
relation between the Laplace transforms of ZðtÞ and KðtÞ,
that under rather mild conditions for the VACF, the

FIG. 1. Absolute value or the normalized velocity (solid black),
force (dashed red), and noise (dotted blue) autocorrelation
functions, as a function of time in Lennard-Jones units. Molecular
simulation results are compared to the hydrodynamic scalings.
The green lines correspond to Eq. (4) without (solid) and
neglecting (dashed) the diffusion coefficient, and the orange
and cyan lines to Eqs. (5) and (6), respectively. The inset displays
the corresponding integrals for the force (dashed red), which
converges to zero as expected, and noise; while the noise diverges
with the first-order algorithm (solid blue line), it converges to the
friction ξwith the novel second-order one (dotted blue line). Grey
areas indicate the error bars.

PRL 116, 147804 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
8 APRIL 2016

147804-2



memory kernel defined by Eq. (2) should decay as [26]
KðtÞ ∼ −ðξ2=kBTÞZðtÞ, leading to

KðtÞ ∼ −
2ξ2

3ρm
½4πðDþ νÞt�−3=2; ð6Þ

from the asymptotic behavior of ZðtÞ. As can be seen in
Fig. 1, this prediction is indeed satisfied by the memory
kernel determined from MD. This scaling is also con-
sistent with the low-frequency limit of the hydrodynamic
memory kernel corresponding to Eq. (1) (see below).
It has then been observed experimentally for colloidal
particles where this limit applies [7]. Our results confirm
for the first time that this scaling also holds for the
diffusion of microscopic particles.
From the decay of the memory kernel at long times,

the development of the Laplace transform of the friction
kernel is

~KðsÞ ¼ ξþ αs1=2 þm0sþ oðsÞ; ð7Þ

with

απ−1=2 ¼ 4

3
ξ2

1

ρm½4πðνþDÞ�3=2 ; ð8Þ

where we have introduced a mass defined by

m0 ≡ −
Z þ∞

0

�
KðtÞ þ 1

2
απ−1=2t−3=2

�
tdt; ð9Þ

under the assumption thatKðtÞ þ 1
2
απ−1=2t−3=2 decreases to

zero faster than t−2, and where an integration by parts was
used for the second equality. Note that while the speed of
convergence depends on higher-order terms in the expan-
sion Eq. (7), the value of m0 defined by Eq. (9) does not.
Figure 2 shows the running integral associated with the
definition of this mass. The observed plateau demonstrates
the convergence of the integral and thus validates the above
assumption in the present case. Equation (9) therefore
provides the first definition of the mass term from the
microscopic dynamics.
Surprisingly, this mass term is negative, with a value

of m0 ∼ −0.18m, in contradiction to the incompressible
hydrodynamic prediction for the added mass mBB

0 ¼
2
3
πR3ρ0 [25,27]. This observation can be interpreted as

follows, by analyzing the various contributions to the
kernel K. At short times, K is dominated by short-
range collisions between the solute and the solvent and
can be approximated by an exponential decay KðtÞ ¼
ðξE=τ0Þe−t=τ0 , with ξE the Enskog friction [4] and τ0 the
characteristic time for the decay of the FACF (τ0 ∼ 0.05t�
in the present case). The subscript 0 indicates that this time
corresponds to the collisions between the solvent molecules
and the solute, rather than to a time scale associated with

the decay of the solute VACF. This collisional component
of the kernel contributes to the mass defined in Eq. (9) as a
negative termmE

0 ¼ −ξEτ0. Computing the Enskog friction
[28] for a solute of size σ, we get ξE ≈ 5.8. This value
is consistent with the maximum of the time-dependent
friction in Fig. 1 (see below) and results in a mE

0 ≈ −0.29m
contribution to the mass.
Other mechanisms come into play on time scales longer

than τ0. Indeed, momentum transfer from the solute to the
solvent includes a transient regime that gives rise to a
positive contribution to the mass term (here over a time
τm ∼ 0.5t�, as can be seen in Fig. 2) and eventually
becomes diffusive, leading to the retarded force and to a
decrease in the friction (see Fig. 1). The solvent backflow
tends to drag the solute in the direction of its initial velocity;
i.e., it contributes negatively to the friction. Assuming
that this component of the mass term is well described by
the hydrodynamic result despite the molecular size of the
solute, we obtain a total mass m0¼mE

0 þmBB
0 ≈−0.16m,

which is in good agreement with the MD result considering
the strong assumptions involved (i.e., the validity of the
Enskog result at high packing fraction and hydrodynamic
model of the mass), and strengthens our interpretation of
the two competing contributions to the mass term.
We now consider the ensemble-averaged velocity v̄

obtained over an ensemble of identical systems initially
in equilibrium and put out of equilibrium at time t ¼ 0 by a
time-dependent applied force fϵðtÞ, identical to all replicas
of the system. We show in the Supplemental Material that
the evolution of the ensemble-averaged velocity v̄ is given
by the same kernel as the GLE for the microscopic velocity
with the random force replaced by the applied force [19].
For slowly varying forces, the ensemble-averaged velocity
also varies slowly and we can consider the s → 0 limit
in ~KðsÞ. The first three terms of Eq. (7) correspond to an
evolution of v̄, according to

FIG. 2. Running integral defining the mass m0, normalized by
the mass m of the Lennard-Jones particle [see Eq. (9)]. The grey
area indicates the error bars.
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m _̄vðtÞ ¼ fϵðtÞ − ξv̄ðtÞ −m0
_̄vðtÞ

− απ−1=2
Z

t

0

ðt − uÞ−1=2 _̄vðuÞdu; ð10Þ

for a system put out of equilibrium from t ¼ 0 by a slowly
varying infinitesimal force fϵðtÞ. There is no hypothesis of
separation of time scales between slow and fast degrees of
freedom of the system in this equation; its meaning is that
of a slowly varying response to a slow perturbation [29].
This evolution provides a generalization of the Basset-
Boussinesq equation (1) to arbitrary solutes satisfying only
the above generic assumptions on the long-time behavior
of the corresponding memory kernel.
Following the method of Chow and Hermans for the

VACF of a particle subject to a BB force [9], we express
analytically the VACF of the solute subject to the force
Eq. (10) and compare it to the simulation results in Fig. 3,
in both logarithmic and linear scales. The agreement is
excellent down to relatively short times (less than 0.5t�),
without any adjustable parameter. This further demon-
strates the relevance of the above definition of the mass
term from the memory kernel (i.e., not from the solute
geometry and hydrodynamic properties of the solvent).
Note, however, that truncating the memory kernel to the
first three terms of the low-frequency expansion Eq. (7)
leads to some limitations for the description of the short-
time behavior, such as an incorrect initial value of the
VACF, namely kBT=ðmþm0Þ instead of kBT=m [9].
A negative contribution to the mass term can also be

derived from the hydrodynamics of compressible fluids,
involving the time R=c it takes for sound waves to
propagate over the particle radius; this confirms the
role of retardation effects in this negative contribution.
However, introducing compressibility in continuum

hydrodynamics [30,31] does not improve the prediction
for the VACF, even with an effective hydrodynamic radius
adjusted to reproduce the calculated friction (see [19]),
because it does not capture molecular-scale effects.
Finally, let us consider the implications of the present

work for larger solutes. We consider here spherical solutes
with a density equal to that of the solvent, which is the
most common experimental situation of density-matched
colloidal suspensions, with a mass M ¼ ð4πR3=3Þρ0. The
following discussion is illustrated in Fig. 4. For a large
particle (R ≫ σ=2 and M ≫ m), the Enskog friction,
ξE ∝ R2, and the negative Enskog contribution to the mass,
−ξEτ0 (where τ0 only weakly depends on R), dominate
at short times. The Stokes friction ξS ∝ R and the BB
hydrodynamic mass mBB

0 ∝ R3 are recovered over a time
τm ∝ R2=ν. While in the present case this analysis neglects
molecular features, τm provides the correct order of
magnitude for the time over which the integral defining
the mass converges (see Fig. 2).
The long-time tail of the memory kernel bridges micro-

scopic dynamics with continuum hydrodynamics, as it
gives rise to a force entering in the evolution equation of the
tagged velocity similar to the BB hydrodynamic force. The
memory kernel further allows for the first microscopic
definition of the mass present in this evolution equation.
This mass is found to be negative for a solute identical to
solvent particles and is related to the retardation of the
friction force. Extracting the mass term directly from MD
simulations paves the way to the study of isotopic effects.
It can also be used to quantify in a well-defined way the
number of molecules brought along ions during transport,
or to interpret the peculiar behavior of the friction on
alkanes as a function of chain length [32,33]. In particular,
it provides a microscopic route to model acoustophoresis
[34,35] or electro-osmotic effects [36,37]. Finally, the
novel algorithm introduced here could be used to compute
projected correlation functions of other observables
and to investigate the properties of the corresponding
GLE.

FIG. 3. Normalized velocity autocorrelation function: (a) loga-
rithmic scale; (b) linear scale for short times. The molecular
simulation results (black solid line) are compared to the long-time
scaling [Eq. (4), blue dotted line] and the analytical result of
Ref. [9] corresponding to the memory kernel Eq. (7) with three
values of the mass m0.

FIG. 4. Schematic evolution of the friction (a) and mass (b) with
increasing solute radius R for a spherical density-matched solute.
The curves correspond to increasing radius from black to red
to blue.
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