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ABSTRACT

This contribution presents a method for the numerical determination of the steady-state response
of complex charged porous media to pressure, salt concentration and electric potential gradients.
The Pore Network Model (PNM), describing the porosity as a network of pores connected by
channels, is extended to capture electrokinetic couplings which arise at charged solid-liquid
interfaces. This allows us to compute the macroscopic fluxes of solvent, salt and charge across a
numerical sample submitted to macroscopic gradients. On the channel scale, the microscopic
transport coefficients are obtained by solving analytically (in simple cases) or numerically the
Poisson-Nernst-Planck and Stokes equations. The PNM approach then allows us to upscale these
transport properties to the sample scale, accounting for the complex pore structure of the material
via the distribution of channel diameters. The Onsager relations between macroscopic transport
coefficients are preserved, as expected. However, electrokinetic couplings combined with the
sample heterogeneity result for some macroscopic transport coefficients (e.g. permeability or
electro-osmotic coefficient) in qualitative differences with respect to their microscopic
counterparts. This underlines the care that should be taken when accounting for transport
properties based on a single channel of average diameter.

KEYWORDS: Electrokinetics, Coupled transport, Homogenization, Lattice Boltzmann, Pore
Network Model, Upscaling
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INTRODUCTION

Electrokinetic effects refer to the dynamic coupling between the solvent and charge flows which
occur at a charged interface. The presence of surface charge in a porous medium has important
practical applications in membrane technology (e.g., ion exchange and water desalination) and in
environmental science, since most rocks and soils contain minerals (such as clays) that bear a
permanent surface charge. As an example, electro-osmosis generates a solvent flow under an
applied electric field, due to the driving of the electrically charged fluid in the vicinity of charged
surfaces. Conversely, a pressure gradient induces the flow of a charged fluid, hence, an electric
current. In geophysics, the electroseismic effect, by which an electro-magnetic wave is generated
from the motion of underground fluids under an applied acoustic wave, is exploited to determine
the properties of geological formations (Thompson, 1936; Pride and Haartsen, 1996; Mizutani et
al., 1976). Streaming potentials and electro-osmotic flows can be measured in the laboratory to

characterize the properties of porous media (Luong and Sprik, 2013).

The modeling and simulation of electrokinetic effects in porous media, and, more generally, of
all coupled transport phenomena, including the osmotic solvent flow due to a salt concentration
gradient, thus have been the subject of a large number of investigations, both on the pore scale
where the couplings originate and on the sample scale corresponding to the experimental
measurements. From the mathematical point of view, this upscaling can be performed rigorously
using the homogenization approach. This provides expressions of the macroscopic transport
coefficients as solutions of coupled partial differential equations on the pore scale, which then
have to be solved using simplifying assumptions or numerically. Some general results, such as
Onsager's relations for the macroscopic transport coefficients, can be demonstrated without even
resorting to the numerical resolution of the mathematical problem (Moyne and Murad, 2006a&b;

Allaire et al., 2010&2014).

For practical applications, most studies of electrokinetic couplings rely on an oversimplified
idealization of the geometry, with single slit pores or cylinders with dimensions or surface
charge densities estimated from the macroscopic properties of the real system (Bresler, 1973;

Gongalves et al.,, 2012). However, the heterogeneity of the material, combined with the
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electrokinetic couplings, may influence the overall behavior on the sample scale, so that such
idealizations may not reflect the actual response of the medium. Direct numerical resolution of
the coupled Poisson-Nernst-Planck (PNP) and Navier-Stokes (NS) equations in various complex
systems (random packings, reconstructed and fractured porous media) has also been proposed by
Adler and co-workers. Such an approach is usually difficult to implement for macroscopic
samples, due to the lack of experimental data on the fine structure of the material over large
distances (Coelho et al., 1996; Marino et al., 2001; Gupta et al., 2006). The systematic study of a
representative number of samples is also prevented by the computational cost of direct numerical

simulation.

In the case of clays, an additional difficulty arises due to the complex multiscale porosity of the
material and the lack of experimental data on the intermediate scales, which is at the heart of this
workshop. In the present contribution, we present a numerical homogenization scheme leading to
a description of transport through macroscopic charged porous materials at low computational
cost, thereby enabling the systematic study of the combined effects of electrokinetic couplings
and sample heterogeneity. The algorithm to upscale the electrokinetic couplings is based on the
Pore Network Model (PNM), which relies on the one hand on a simplified description of the
electrokinetic transport on the pore scale and on the other hand on a statistical distribution of the
geometry of the pores. This allows to investigate how the upscaled electrokinetic properties
depend on the heterogeneity of the sample, in addition to the surface charge density and the salt

concentration.

ELECTROKINETICS ON THE SAMPLE SCALE

On the macroscopic scale of a clay sample, pressure P, electric potential V and salt concentration
gradients (or, equivalently, solvent, cation and anion chemical potentials gradients), induce
macroscopic fluxes of mass, electric charge and salt (or, equivalently, solvent, cation and anion
chemical fluxes). For sufficiently small applied gradients, the response is linear and the fluxes

can be expressed as a function of the applied gradients via a coupling matrix:
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where the subscripts 0, 1 and 2 refer to solvent, cations and anions, respectively, Q indicate their
fluxes, C is the logarithm of the salt concentration, 1 the solvent viscosity and S the cross-section
of the sample. Along the diagonal one finds for example the sample permeability K" and the
electric conductivity K,". The fundamental question is then: How do these coefficients emerge
from the microscopic structure of the material, including heterogeneities on intermediate scales,

and from the surface charge density of the solid matrix?

ELECTROKINETICS ON THE PORE SCALE

Recently, significant progress has been made on the derivation of the macroscopic transport
equations from the pore-scale ones. These studies usually start from a continuous description of
the fluid via transport equations, which are then upscaled to derive their average effect on the
sample scale, which is quantified by a coupling matrix relating the solvent and ionic fluxes to the
corresponding forces (pressure, potential, and concentration gradients). The solvent flow under
applied local forces is accounted for via the NS equation (or even the Stokes equation), which
includes a local force due to electrochemical potential gradients. The solute fluxes are due one
the one hand to the advection by the fluid and on the other hand to the local electrochemical
potential gradients; they can be modelled on this scale using the PNP equations. The limitations
of such continuous descriptions to describe solvent and ion transport in clay nanopores, which
can be assessed using molecular simulations (Botan et al., 2010&2013), will not be discussed
here. Rather, the present discussion focusses on how to upscale this to the macroscopic scale,

since the structure is too complex for a direct resolution on the whole sample.

The coupled Navier-Stokes and Poisson-Nernst-Planck equations can be solved numerically
using finite element or volume methods. For example, Adler and co-workers used this direct
numerical resolution in various complex systems (random packings, reconstructed and fractured
porous media) (Coelho ef al., 1996; Marino et al., 2001), demonstrating in particular a universal

electrokinetic behaviour if appropriate rescaled quantities are introduced (Gupta et al., 2006,
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2008). Recently, alternative methods have been proposed to simulate electrokinetic effects
starting from a more fundamental description of the fluid than the PNP and NS equation
(Pagonabarraga et al., 2010). For example, Capuani et al. proposed a hybrid lattice based
approach (Lattice Boltzmann Electrokinetics, LBE) to capture the coupling of hydrodynamic
flow with ion transport and the simulation of electrokinetic effects in colloidal suspensions
(Capuani et al., 2004; Pagonabarraga et al., 2005). Such Lattice Boltzmann simulations have
already been applied, without accounting for electrokinetic effects, to realistic rock geometries
(Boek and Venturoli, 2010). In the context of the present numerical homogenization, LBE was
recently used in a simple cylindrical geometry, in order to assess the validity range of the
analytical solution of the linearized problem (Obliger et al., 2013). This simpler analytical
solution is then used in the PNM, even though in principle a numerical expression for the

transport coefficient on the pore scale may also be used.

NUMERICAL HOMOGENIZATION VIA A PORE NETWORK MODEL

In order to investigate electrokinetic couplings on larger scales, including the effect of the
heterogeneity of the material, we have recently proposed a simplified description based on the
Pore Network Model (PNM). Such a model, originally developed by Fatt (1956) to predict
multiphase flow properties in porous media, describes the porosity as a network of pores
connected by channels. It has been extensively used and extended by petrophysicists in various
situations, such as capillarity and multiphase flow through porous media (Békri et al., 2005;
Blunt, 2001; van Dijke and Sorbie, 2002), or mineral dissolution and precipitation in the context

of CO; sequestration (Algive ef al., 2010).

In a nutshell, the PNM approach amounts to solving a set of conservation equations on the nodes
of the network (in analogy with Kirchhoff’s law for a network of resistors), on the basis of local
fluxes through the channels connecting the nodes, under the effect of an external, macroscopic
gradient. For electrokinetics, the pressure, salt concentration and electrical potential are
introduced as pore variables on the nodes of the network. The fluxes through each link between

nodes are determined locally using the transport matrix for a cylindrical channel, as determined
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in the previous section as a function of the channel diameter, the surface charge density of the
solid and the salt concentration inside the channel. The latter is determined via the Donnan
equilibrium with a fictitious reservoir corresponding to the properties of the pores at both ends of
the channel (Obliger et al., 2014). Therefore, the macroscopic problem to be solved numerically
has a non-linear structure, contrary to most previous applications of the PNM approach. This can

be achieved numerically using a non-linear Newton solver.

TRANSPORT COEFFICIENTS ON THE SAMPLE SCALE

In addition to the transport coefficients on the channel scale, the crucial ingredient of the PNM is
the distribution of pore/channel sizes and their spatial arrangement describing in a very
simplified manner the complex structure of the porous network. In order to demonstrate the
feasibility of the approach and to investigate systematically the effect of heterogeneity, a model
distribution (of the Weibull type) was considered first. However, it is also possible to introduce a

distribution deduced from experimental data, if a reliable one can be provided.

For a given pore/channel diameter distribution, a sufficient number of networks must be
generated. For each of numerical sample, the macroscopic coefficients are determined by solving
the conservation equations in the presence of applied gradients and by computing the
macroscopic steady-state flux through the sample. In practice, three calculations must be done
(one for each applied gradient) for which the three fluxes (mass, charge, salt concentration) are
computed. This provides the nine macroscopic coefficients, which must then be averaged over
the networks corresponding to the same diameter distribution. This general approach will be

illustrated during the workshop on a number of test cases.

CONCLUSION

During the workshop, the various steps of the proposed PNM approach will be presented and its

interest illustrated for charged porous materials. The influence of the surface charge density, the
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salt concentration in the reservoirs and of the channel diameter distribution will be analyzed. The
symmetry of the transport matrix is preserved by the present upscaling method, as required from
Onsager’s theory. In general, the coefficients of this matrix qualitatively behave as their
microscopic counterpart for a channel with the average diameter. However, the combined effects
of electrokinetic couplings on the local scale and of heterogeneity result in a decrease of the
overall transport coefficients, in accordance with Le Chatelier’s principle. Overall, the coupling
between the complex pore structure of porous media and electrokinetic effects underlines the
limitations of approaches based on idealized geometries (single slit pore or cylindrical channel)

parametrized directly from the experimental macroscopic properties.

The relevance and limitations of this new strategy to the case of clay minerals will be discussed.
In that respect, experimental information on the pore network and its size distribution on
intermediate (10-100 nm) scales is highly desirable for the present method to provide more
quantitative predictions in this case. In the future, one should benefit from recent numerical
(Tyagi et al., 2013) and experimental (Brisard et al., 2012; Levitz, 2007) developments for the
generation of realistic numerical samples for the description of real materials. As a recent
example, Robinet et al. recently simulated the diffusion of solutes in 3D-images of a Callovo-
Oxfordian clay-rich rock obtained by SEM and micro-CT experiments to investigate the effect of
mineral distribution (Robinet et al., 2012). Multiscale experiments using NMR also provide an
ideal tool to investigate themultiscale dynamics of mobile species in such complex materials

(Porion et al., 2013).
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