C. Baerlocher and L. B. Mccusker, Database of Zeolite Structures

A. Goursot, B. Coq, and F. Fajula, Toward a Molecular Description of Heterogeneous Catalysis: Transition Metal Ions in Zeolites, J. Catal, vol.216, pp.324-332, 2003.

P. Nachtigall, M. R. Delgado, D. Nachtigallova, and C. O. Arean, The Nature of Cationic Adsorption Sites in Alkaline Zeolites-Single, Dual and Multiple Cation Sites, PCCP, vol.14, pp.1552-1569, 2012.

M. Zaarour, B. Dong, I. Naydenova, R. Retoux, and S. Mintova, Progress in Zeolite Synthesis Promotes Advanced Applications, Microporous Mesoporous Mater, vol.189, pp.11-21, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01840270

R. M. Barrer and R. P. Townsend, Ion-Exchange Equilibria in Zeolites and Clay Minerals. Different Concentration Scales and Derived Thermodynamic Functions, J. Chem. Soc, vol.80, pp.629-640, 21984.

D. W. Breck and E. M. Flanigen, Synthesis and Properties of Union Carbide zeolites L, X, and Y. In Molecular Sieves, pp.47-61, 1968.

T. Frising and P. Leflaive, Extraframework Cation Distributions in X and Y faujasite Zeolites: A Review, Microporous Mesoporous Mater, vol.114, pp.27-63, 2008.

J. N. Armor, Metal-Exchanged Zeolites as Catalysts, Microporous Mesoporous Mater, vol.22, pp.451-456, 1998.

S. Brandenberger, O. Kröcher, A. Tissler, and R. Althoff, The State of the Art in Selective Catalytic Reduction of NO x by Ammonia Using Metal-Exchanged Zeolite Catalysts, Cat. Rev.-Sci. Eng, vol.50, pp.492-531, 2008.

F. Gao, J. H. Kwak, J. Szanyi, and C. H. Peden, Current Understanding of CuExchanged Chabazite Molecular Sieves for Use as Commercial Diesel Engine DeNO x Catalysts, Top. Catal, vol.56, pp.1441-1459, 2013.

A. Musi, P. Massiani, D. Brouri, J. Trichard, and P. Costa, On the Characterisation of Silver Species for SCR of NO x with Ethanol, Catal. Lett, vol.128, pp.25-30, 2009.

M. Mihaylov, K. Hadjiivanov, and D. Panayotov, FTIR Mechanistic Studies on the Selective Catalytic Reduction of NO x with Methane over Ni-Containing Zeolites: Application in the Methanol Conversion to Hydrocarbons, Microporous Mesoporous Mater, vol.179, pp.30-39, 2013.

V. B. Kazansky, State and Properties of Ion-Exchanged Cations in Zeolites: 2. IR Spectra and Chemical Activation of Adsorbed methane, Kinet. Catal, vol.55, pp.737-747, 2014.

D. Berthomieu and G. Delahay, Recent Advances in Cu I/II Y: Experiments and Modeling, Cat. Rev.-Sci. Eng, vol.48, pp.269-313, 2006.

S. A. Mcmillan, R. Q. Snurr, and L. J. Broadbelt, Interaction of Divalent Metal Cations with Ferrierite: Insights from Density Functional Theory, Microporous Mesoporous Mater, vol.68, pp.45-53, 2004.

J. Dedecek, Z. Sobalik, Z. Tvaruazkova, D. Kaucky, and B. Wichterlova, Coordination of Cu Ions in High-Silica Zeolite Matrixes. Cu + Photoluminescence, IR of NO Adsorbed on Cu 2+ , and Cu 2+ ESR Study, J. Phys. Chem, vol.99, pp.16327-16337, 1995.

K. Pierloot, A. Delabie, M. H. Groothaert, and R. A. Schoonheydt, A Reinterpretation of the EPR Spectra of Cu(II) in Zeolites A, Y and ZK4, Based on ab initio Cluster Model Calculations, PCCP, vol.3, pp.2174-2183, 2001.

P. Rejmak, M. Sierka, and J. Sauer, Theoretical Studies of Cu(I) Sites in Faujasite and Their Interaction with Carbon Monoxide, PCCP, vol.9, pp.5446-5456, 2007.

H. A. Aleksandrov and G. N. Vayssilov, Theoretical Investigation of Ethane Dehydrogenation on Cationic Zn Species in ZSM-5 Zeolites-The Second Al Center in Vicinity of the Cation is Essential for the Accomplishment of the Complete Catalytic Cycle, Catal. Today, vol.152, pp.78-87, 2010.

C. Beauvais, A. Boutin, and A. H. Fuchs, A Numerical Evidence for Nonframework Cation Redistribution Upon Water Adsorption in Faujasite Zeolite, ChemPhysChem, vol.5, pp.1791-1793, 2004.

Z. Sobalí-k, J. D?de?ek, D. Kaucký, B. Wichterlová, L. Drozdová et al., Structure, Distribution, and Properties of Co Ions in Ferrierite Revealed by FTIR, UV-Vis, and EXAFS, J. Catal, vol.194, pp.330-342, 2000.

R. A. Schoonheydt, Transition Metal Ions in Zeolites: Siting and Energetics of CU 2+, Cat. Rev.-Sci. Eng, vol.35, pp.129-168, 1993.

G. Delahay, E. Villagomez, J. Ducere, D. Berthomieu, A. Goursot et al., Selective Catalytic Reduction of NO by NH 3 on Cu-Faujasite Catalysts: An Experimental and Quantum Chemical Approach, ChemPhysChem, vol.3, pp.686-692, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00178383

J. Groust, C. Pommier, L. Stievano, F. Villain, C. Giorgetti et al., Real Time Monitoring of the Evolution of Ni 2+ Environment in Faujasite upon Rehydration by in situ Dispersive-EXAFS, Catal. Lett, vol.102, pp.257-260, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00020239

W. J. Mortier, E. Van-den-bossche, and J. B. Uytterhoeven, Influence of the Temperature and Water Adsorption on the Cation Location in Na-Y Zeolites, Zeolites, vol.4, pp.41-44, 1984.

C. Abrioux, B. Coasne, G. Maurin, F. Henn, A. Boutin et al., A Molecular Simulation Study of the Distribution of Cation in Zeolites, Adsorption, vol.14, pp.743-754, 2008.

D. Lella, A. Desbiens, N. Boutin, A. Demachy, I. Ungerer et al., Molecular Simulation Studies of Water Physisorption in Zeolites, PCCP, vol.8, pp.5396-5406, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00123934

M. Jeffroy, E. Borissenko, A. Boutin, A. Di-lella, F. Porcher et al., Evidence of a Framework Induced Cation Redistribution upon Water Adsorption in Cobalt Exchanged X Faujasite Zeolite: A Joint Experimental and Simulation Study, Microporous Mesoporous Mater, vol.138, pp.45-50, 2011.

B. Rotenberg, V. Marry, R. Vuilleumier, N. Malikova, C. Simon et al., Water and Ions in Clays: Unraveling the Interlayer/Micropore Exchange Using Molecular Dynamics
URL : https://hal.archives-ouvertes.fr/hal-00369627

, Geochim. Cosmochim. Acta, vol.71, pp.5089-5101, 2007.

V. Marry, B. Rotenberg, and P. Turq, Structure and Dynamics of Water at a Clay Surface from Molecular Dynamics Simulation, PCCP, vol.10, pp.4802-4813, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00369641

B. Rotenberg, J. Morel, V. Marry, P. Turq, and N. Morel-desrosiers, On the Driving Force of Cation Exchange in Clays: Insights from Combined Microcalorimetry Experiments and Molecular Simulation, Geochim. Cosmochim. Acta, vol.73, pp.4034-4044, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00391354

B. Rotenberg, V. Marry, N. Malikova, and P. Turq, Molecular Simulation of Aqueous Solutions at Clay Surfaces, J. Phys.: Condens. Matter, p.284114, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00531718

M. Jeffroy, A. Boutin, and A. H. Fuchs, Understanding the Equilibrium Ion Exchange Properties in Faujasite Zeolite from Monte Carlo Simulations, J. Phys. Chem. B, vol.115, pp.15059-15066, 2011.

H. Guesmi and P. Massiani, A Combined EXAFS and DFT Study of the Ni 2+ Environment in Dehydrated Ni/NaX, Catal. Today, vol.177, pp.25-30, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00667400

F. Porcher, J. Paillaud, L. Gaberova, G. Andre, S. Casale et al., Monitoring by in situ Neutron Diffraction of Simultaneous Dehydration and Ni 2+ Mobility in Partially Exchanged NaY Zeolites, New J. Chem, vol.40, pp.4228-4235, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01263845

W. Louisfrema, B. Rotenberg, F. Porcher, J. Paillaud, P. Massiani et al., Cation Redistribution upon Dehydration of Na 58 Y Faujasite Zeolite: A Joint Neutron Diffraction and Molecular Simulation Study, Mol. Simul, vol.41, pp.1371-1378, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01284815

H. Guesmi, D. Costa, D. Berthomieu, and P. Massiani, Nickel Coordination to Lattice Oxygens in Basic LSX, X and Y Sodium Faujasites: A DFT Study, J. Phys. Chem. C, vol.115, pp.5607-5618, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00602938

B. Moulin, L. Oliviero, F. Maugé, J. Groust, J. Krafft et al., Probing the Strength, Concentration and Environment of Basic Sites in Zeolites by IR, Spectroscopy. In Stud. Surf. Sci. Catal, 2008.

, Part B, vol.174, pp.861-864

D. Barthomeuf and . Si, Al Ordering and Basicity Clusters in Faujasites, J. Phys. Chem. B, vol.109, pp.2047-2054, 2005.

H. Guesmi, P. Massiani, H. Nouali, and J. Paillaud, A Combined Experimental and Theoretical Study of the Simultaneous Occupation of SIa and SI? sites in Fully Dehydrated K-LSX, Microporous Mesoporous Mater, vol.159, pp.87-95, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01054894

J. Marti´, J. Soria, and F. H. Cano, Cation Location in Hydrated NaY Zeolites, J. Colloid Interface Sci, vol.60, pp.82-86, 1977.

J. M. Thomas, C. Williams, and T. Rayment, Monitoring Cation-Site Occupancy of NickelExchanged Zeolite Y Catalysts by High-Temperature in situ X-Ray Powder Diffractometry, J. Chem. Soc., Faraday Trans. 1, vol.84, pp.2915-2931, 1988.

E. Dooryhee, C. R. Catlow, J. W. Couves, P. J. Maddox, J. M. Thomas et al., A Study of Cation Environment and Movement during Dehydration and Reduction of Nickel-Exchanged Zeolite Y by X-Ray Absorption and Diffraction, J. Phys. Chem, vol.95, pp.4514-4521, 1991.

S. M. Seo, W. T. Lim, and K. Seff, Single-Crystal Structures of Fully and Partially Dehydrated Zeolite Y (FAU, Si/Al = 1.56) Ni 2+ Exchanged at a Low pH, 4.9, J. Phys. Chem. C, vol.116, pp.13985-13996, 2012.

C. W. Kim, K. J. Jung, N. H. Heo, S. H. Kim, S. B. Hong et al., Crystal Structures of Vacuum-Dehydrated Ni 2+-Exchanged Zeolite Y (FAU, Si/Al = 1.69) Containing

. Three-coordinate and . Ni, Ni 8 O 4 ·xH 2 O 8+ , x ? 4, Clusters with Near Cubic Ni 4 O 4 Cores, and H +, J. Phys. Chem. C, vol.113, pp.5164-5181, 2009.

A. C. Larson and R. B. Von-dreele, General Structure Analysis System (GSAS), pp.86-748, 2004.

B. Toby, EXPGUI, a Graphical User Interface for GSAS, J. Appl. Crystallogr, vol.34, pp.210-213, 2001.

E. Jaramillo and S. M. Auerbach, New Force Field for Na Cations in Faujasite-Type Zeolites, J. Phys. Chem. B, vol.103, pp.9589-9594, 1999.

L. X. Dang, Mechanism and Thermodynamics of Ion Selectivity in Aqueous Solutions of 18-Crown-6 Ether: A Molecular Dynamics Study, J. Am. Chem. Soc, vol.117, pp.6954-6960, 1995.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of Simple Potential Functions for Simulating Liquid Water, J. Chem. Phys, vol.79, pp.926-935, 1983.

S. Buttefey, A. Boutin, and A. H. Fuchs, Cation Distribution in Faujasite-Type Zeolites: A Test of Semi-Empirical Force Fields for Na Cations, Mol. Simul, vol.28, pp.1049-1062, 2002.

P. Gallezot, Y. Ben-taarit, and B. Imelik, X-Ray Diffraction Study of Nickel Ion Migration in Y-Zeolite, J. Catal, vol.26, pp.481-483, 1972.

P. Gallezot and B. Imelik, Location of Nickel Ions in Y Zeolites. I. Influence of Thermal Treatment and Exchange Level on Nickel Positions, J. Phys. Chem, vol.77, pp.652-656, 1973.

D. H. Olson, Crystal Structure of the Zeolite Nickel Faujasite, J. Phys. Chem, vol.72, pp.4366-4373, 1968.

J. W. Couves, R. H. Jones, J. M. Thomas, and B. J. Smith, Charting Cation Migration in a Nickel exchanged Zeolitic Catalyst: An in situ Rietveld X-Ray Study, Adv. Mater, vol.2, pp.181-183, 1990.

R. M. Haniffa and K. Seff, Partial Structures of Fully Dehydrated Ni 30 Na 7 Cl 12 Si 137 Al 55 O 384 (Solid-State Nickel(II)-Exchanged Zeolite Y) and of Its D 2 O Sorption Complex by Pulsed-Neutron Diffraction, J. Phys. Chem. B, vol.102, pp.2688-2695, 1998.

I. E. Maxwell and J. J. De-boer, Crystal Structures and Dehydrated Divalent-CopperExchanged Faujasite, J. Phys. Chem, vol.79, pp.1874-1879, 1975.

C. Mellot-draznieks, S. Buttefey, A. Boutin, and A. H. Fuchs, Placement of cations in NaX faujasite-type zeolite using (N,V,T) Monte Carlo simulations, Chem. Comm, pp.2200-2201, 2001.

S. Tazi, J. J. Molina, B. Rotenberg, P. Turq, R. Vuilleumier et al., A Transferable ab initio Based Force Field for Aqueous Ions, J. Chem. Phys, p.114507, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01897599

S. Tesson, M. Salanne, B. Rotenberg, S. Tazi, and V. Marry, Classical Polarizable Force Field for Clays: Pyrophyllite and Talc, J. Phys. Chem. C, vol.120, pp.3749-3758, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01515664