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Abstract

This paper focuses on compact deterministic self-stabilizing solutions for the leader elec-
tion problem. When the solution is required to be silent (i.e., when the state of each process
remains fixed from some point in time during any execution), there exists a lower bound of
Ω(log n) bits of memory per participating node , where n denotes the number of nodes in
the system. This lower bound holds even in rings. We present a new deterministic (non-
silent) self-stabilizing protocol for n-node rings that uses only O(log log n) memory bits per
node, and stabilizes in O(n log2 n) rounds. Our protocol has several attractive features that
make it suitable for practical purposes. First, it assumes an execution model that is used
by existing compilers for real networks. Second, the size of the ring (or any upper bound
on this size) does not need to be known by any node. Third, the node identifiers can be
of various sizes. Finally, no synchrony assumption, besides weak fairness, is assumed. Our
result shows that, perhaps surprisingly, silence can be traded for an exponential decrease in
memory space without significantly increasing stabilization time or introducing restrictive
assumptions.

∗A preliminary version of this paper has appeared in [12, 13].
†Additional support from the ANR project IRIS.
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1 Introduction

This paper tackles the problem of designing efficient self-stabilizing algorithms for the leader
election problem. Self-stabilization [19, 20, 37] is a general paradigm to provide recovery ca-
pabilities to distributed systems and networks. Intuitively, a protocol is self-stabilizing if it is
able to recover from any transient failure, without external intervention. Leader election is one
of the fundamental building blocks of distributed computing, as it enables a single node in the
system to be distinguished, and thus to perform specific actions. Leader election is especially
important in the context of self-stabilization as many protocols for various problems assume
that a single leader exists in the system, even when faults occur. Hence, a self-stabilizing leader
election mechanism enables such protocols to be run in networks where no leader is given a
priori, by using simple stabilization-preserving composition techniques [20].

Most of the literature in self-stabilization is dedicated to improving efficiency after failures
occur, including minimizing the stabilization time, i.e., the maximum amount of time one has
to wait before recovering from a failure. While stabilization time is meaningful to evaluate the
efficiency of an algorithm in the presence of failures, it does not necessarily capture the overhead
of self-stabilization when there are no faults [1], or after stabilization. Another important
criterion to evaluate this overhead is the memory space used by each node. This criterion is
motivated by two practical reasons.

First, self-stabilizing protocols for non-trivial tasks require that some communication carries
on forever, in order to be able to detect distributed inconsistencies due to transient failures [8,
18]. The default model for writing self-stabilizing algorithms, the state model, assumes that
the state of every node is communicated to its neighbors infinitely often. This model is also
used in stabilization-preserving compilers that produce actual code [5, 15, 16, 36]. Therefore,
minimizing the memory space used by each node enables the amount of information that is
exchanged between nodes to be minimized.

Second, minimizing memory space also reduces the amount of memory used for the purpose
of redundancy when mixing self-stabilization and replication [27, 28]. While self-stabilization
permits recovery from arbitrary memory corruptions, replication permits withstanding random
memory corruptions. For instance, having three copies of every bit at each node permits one ran-
domly flipped bit to be withstood in a transparent manner. The combination of self-stabilization
and replication increases the probability of masking or containing transient faults when they
randomly appear (using redundancy) and recovering from them (using self-stabilization) [27, 28].
So, decreasing the memory space of a self-stabilizing protocol facilitates the use of redundancy
as less memory is required to replicate the initial memory in order to tolerate a given number
of random bit-flips.

A foundational result regarding memory space in the context of self-stabilization is due to
Dolev et al. [21]. It states that, in n-node networks, Ω(log n) bits of memory per node are
required for solving global tasks such as leader election. Importantly, this bound holds even for
the ring. A key component of this lower bound is that the protocol is assumed to be silent.
(A protocol is silent if each of its executions reaches a point in time after which the states of
nodes do not change.) The lower bound can be extended to talkative protocols (i.e., protocols
that are not silent), but only for some specific settings. For instance, the Ω(log n) bound holds
in anonymous (and uniform) unidirectional rings, even of prime size [11, 26]. As a matter of
fact, most deterministic self-stabilizing leader election protocols [2, 4, 6, 17, 22] use Ω(log n)
bits of memory per node. Indeed, either these protocols directly compare node identifiers (and
thus communicate node identifiers to neighbors), or they compute some variant of a hop-count
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distance to the elected node and this distance can be as large as Ω(n) to be accurate.

A few previous works [31, 32, 35, 11] managed to obtain self-stabilizing leader election algo-
rithms with o(log n) bits of memory per node in other models. Nevertheless, the corresponding
algorithms exhibit shortcomings that hinder their relevance to practical applications.

For instance, Beauquier et al. [11] consider unidirectional networks where node identifiers
are bounded above by n+ k, where k is a small constant and n is the exact size of the network.
Their deterministic algorithm uses a constant number of bits per node and gathers all identifiers
that are below k+1. (There exists at least one of them and at most k+1 of them by hypothesis.)
and elects the node with the lowest identifier as the leader. As acknowledged by the authors,
such assumptions about node identifiers are unrealistic for practical purposes. In Internet-like
networks, unique IP addresses typically span the entire range of addresses (using 128 bits for
the IPv6 standard). By contrast, the actual size of an application-level network such as the
WWW was recently estimated to around 1 billion nodes, which only requires 32 bits for unique
identifiers. So, protocols requiring that the range of addresses matches the network size [11] are
not suitable for practical networks.

Also, the algorithms by Mayer et al. [35], by Itkis and Levin [31], and by Awerbuch and
Ostrovsky [7] use a constant number of bits per node. However, these algorithms only guaran-
tee probabilistic self-stabilization (in the Las Vegas sense). In particular, the stabilization time
is only expected to be polynomial in the size of the network. Moreover, these algorithms are
designed for communication models that are more powerful than the classical state model used
in this paper. More specifically, Mayer et al. [35] use the message passing model and Awer-
buch and Ostrovsky [7] use the link-register model, where communication between neighboring
nodes is carried out through dedicated registers. Finally, Itkis and Levin [31] use the state
model augmented with reciprocal pointers to neighbors. In this model, not only is a node u
able to distinguish a particular neighbor v (which can be done using local labeling), but this
distinguished neighbor v is aware that it has been selected by u. Implementing this mutual
interaction between neighbors typically requires distance-two coloring, link coloring, or two-hop
communication. All these techniques increase the memory space requirement significantly [34].

It is also important to note that the communication models in [7, 31, 35] allow nodes to
send different information to different neighbors, while this capability is beyond the power of the
classical state model where the nodes do not have unique identifiers. The state model enriched
with unique identifiers permits specific information to be sent to specific neighbors. (A node can
simply prefix the information to be sent with the neighbor destination identifier.) However, this
technique requires δ log n bits of memory per node, where δ denotes the node degree, so it is not
compatible with the o(log n) bits memory constraint. The ability to send different messages to
different neighbors is a strong assumption in the context of self-stabilization. It enables a “path
of information” that is consistent between nodes to be constructed. This path is typically used
to distribute the storage of information along a path, in order to reduce the information stored
at each node. However, this additional assumption precludes preserving the o(log n) bit memory
constraint when using existing compilers that produce code for actual hardware [5, 15, 16, 36].
Those compilers are designed for the state model and operate by executing a local broadcast of
the same message to all neighboring nodes, so sending different messages to different neighbors
requires usingthe identifiers to specify the destination. So implementing the protocols in [7,
31, 35] in actual networks requires significant effort (that is, not reusing existing compilers) if
memory usage is to be preserved.

To our knowledge, the only deterministic self-stabilizing leader election protocol for bidirec-
tional rings using sub-logarithmic memory space in the classical state model is due to Itkis et
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al. [32]. Their elegant algorithm uses only a constant number of bits per node, and stabilizes in
O(n2) time in n-node rings. However, the algorithm relies on several restrictive assumptions.
First, the algorithm works properly only if the size of the ring is prime. Second, it assumes that,
at any time, a single node is scheduled for execution, that is, it assumes a central scheduler [25].
Such a scheduler is less general than the classical distributed scheduler, which allows any set
of nodes to be scheduled for execution concurrently. Third, the algorithm in [32] assumes that
the ring is oriented. That is, every node is supposed to possess a consistent notion of left and
right. This orientation permits reciprocal pointers to neighbors to be simulated. Extending
the algorithm by Itkis et al. [32] to other models such as unoriented rings of arbitrary size or
state models with a distributed scheduler, is not trivial if one wants to preserve sub-logarithmic
memory space at each node. For example, the existing transformers enabling protocols designed
for the central scheduler to operate under the distributed scheduler require Θ(log n) memory at
each node [25]. Similarly, self-stabilizing ring-orientation protocols exist, but those with sub-
logarithmic memory space either work only in rings of odd size [29], or just provide probabilistic
guarantees [30]. Moreover, in both cases, the stabilization time is Θ(n2), which is quite large.

To summarize, all existing self-stabilizing leader election algorithms designed for a practical
communication model, for rings of arbitrary size, without a priori orientation, use Ω(log n) bits
of memory per node. Breaking this bound, without introducing any kind of restriction on the
model, requires, beside being talkative, a completely new approach.

Our results

In this paper, we present a deterministic (non-silent) self-stabilizing leader election algorithm
that operates under the distributed scheduler in non-anonymous unoriented rings of arbitrary
size. Our algorithm is talkative to circumvent the Ω(log n) lower bound on the bits of memory
per node in [21]. It uses only O(log log n) bits of memory per node, and stabilizes in O(n log2 n)
time.

Unlike the algorithms in [7, 31, 35], our algorithm is deterministic, and designed to run
under the classical state model [5, 15, 16, 36]. Unlike [32], the size of the ring is arbitrary, the
ring is not assumed to be oriented, and the scheduler is distributed. Moreover the stabilization
time of our algorithm is significantly smaller than the one in [32]. Similarly to [7, 31, 33, 35], our
algorithm uses a technique to distribute the information among nearby nodes along a sub-path
of the ring. However, our algorithm does not rely on powerful communication models such as
the ones used in [7, 31, 35]. Those powerful communication models make the construction and
management of such sub-paths easy. The use of the classical state-sharing model makes the
construction and management of the sub-paths much more difficult.

In addition to the use of sub-logarithmic memory space and a quasi-linear stabilization time,
our algorithm retains several attractive features with respect to versatility. First, the size (or
an upper bound for the size, [11]) does not need to be known by any node. Second, the node
identifiers (or identities) can be of various sizes. (This models, e.g., Internet networks running
different versions of IP.) Third, no synchrony assumption besides weak fairness is assumed. (This
means, a node that is continuously enabled for execution is eventually scheduled for execution.)

At a high level, our algorithm is essentially based on two techniques [3, 24, 10]. One consists
of electing the leader by comparing the identities of the nodes, bitwise, which requires special
care, especially when the node identities can be of various sizes. The second technique consists
of maintaining and merging trees based on a parenthood relation, and verifying the absence of
cycles in the graph induced by this parenthood relation. This verification is performed using
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small memory space by grouping the nodes into hyper-nodes of appropriate size. Each hyper-
node handles an integer encoding a distance to a root. The bits of this distance are distributed
among the nodes of the hyper-nodes to maintain small memory usage per node. Difficulties
arise when one needs to perform arithmetic operations on these distributed bits, especially in
the context where nodes are unaware of the size of the ring. The precise design of our algorithm
requires overcoming many other difficulties due to the need to maintain correct information in
an environment subject to arbitrary faults.

In addition, our algorithm is ready for implementation, i.e., we do not only describe a
conceptual protocol, but also produce a concrete self-stabilizing leader election protocol. This
article provides a high level description of our algorithm, a detailed description of the protocol,
and a complete proof of correctness.1 Our result shows that, perhaps surprisingly, silence can be
traded for an exponential decrease in memory space without significantly increasing stabilization
time or introducing restrictive assumptions.

2 Model and definitions

2.1 Protocol syntax and semantics

We consider a distributed system consisting of n processes that form a ring-shaped communica-
tion graph. The processes are represented by the nodes of this graph, and the edges represent
pairs of processes that can communicate directly with each other. Such processes are said to be
neighbors. The distance between two processes is the length of (i.e., number of edges on) the
shortest path between them in the communication graph. Let Cn = (V,E) be an n-node ring,
where V is the set of nodes, and E the set of edges. A node v has access to a constant unique
identifier Idv, but can only access its identifier one bit at a time, using the Bit(x, Idv) function,
which returns the position of the xth most significant bit equal to 1 in Idv. This position can be
encoded with O(log log n) bits when identifiers are encoded using O(log n) bits, as we assume
they are. A node v has access to locally unique port numbers (1 and 2 in ring-shaped networks)
associated to its adjacent edges. We denote by portu the port number corresponding to neigh-
bor u of node v. We do not assume any consistency between port numbers of a given edge, and
port numbers do not necessarily induce an orientation for the ring. In short, port numbers are
constant throughout the execution but initialized by an adversary.

Each process contains variables and rules. A variable ranges over a domain of values. The
variable varv denote the variable var located at node v. A rule is of the form

〈label〉 : 〈guard〉 −→ 〈command〉.

A guard is a boolean predicate over process variables. A command is a set of variable-
assignments. A command of process p can only update its own variables. On the other hand, p
can read the variables of its neighbors. This classical communication model is called the state
model or the state-sharing communication model.

An assignment of values to all variables in the system is called a configuration. A rule
whose guard is true in some system configuration is said to be enabled in this configuration.

1The reader is invited to consult www-npa.lip6.fr/˜blin/Election/ where a video of the dynamic execution
of the protocol is presented. This video is the result of a complete implementation of the protocol. The video
execution uses a randomized distributed scheduler. The initial configuration is illegitimate, and the video displays
the protocol moving towards a legitimate configuration.
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The rule is disabled otherwise. The atomic execution of a subset of enabled rules (at most one
rule per process) results in a transition of the system from one configuration to another. This
transition is called a step. A run of a distributed system is a maximal alternating sequence
of configurations and steps. Maximality means that the execution is either infinite, or its final
configuration has no rule enabled.

2.2 Schedulers

A scheduler, also called a daemon, is a restriction on the runs to be considered. The schedulers
differ by different execution semantics and by different fairness requirements in the activation
of the processes [25]. With respect to execution semantics, we consider the least restrictive
scheduler, called the distributed scheduler. In a run of a distributed scheduler, any step can
contain the execution of a non-empty arbitrary subset (at most one rule per process) . With
respect to fairness, we use the least restrictive fair scheduler, called the weakly fair scheduler.
In every run of the weakly fair scheduler, a rule of a correct process is executed infinitely often
if it is enabled in all but finitely many configurations of the run. That is, a rule has to be
executed if it is continuously enabled. A round is the smallest portion of an execution where
every process has the opportunity to execute at least one action. In more detail, each process
having at least one enabled rule at the beginning of a round r is either scheduled for execution
during r, or all its rules become disabled due to neighbors’ rules being executed during r.

2.3 Predicates and specifications

A predicate is a boolean function over configurations. A configuration conforms to some
predicate R, if R evaluates to true in this configuration. The configuration violates the predicate
otherwise. Predicate R is closed in a certain protocol P , if every configuration of a run of P
conforms to R, provided that the protocol starts from a configuration conforming to R. Note
that if a protocol configuration conforms to R, and the configuration resulting from the execution
of any step of P also conforms to R, then R is closed in P .

A Problem specification prescribes the protocol behavior. The desired output of the protocol
is expressed through specification variables that in turn form specification configurations. A
problem specification is a the set of sequences of specification configurations.

Part of the implementation is the mapping from the protocol configurations to the specifica-
tion configurations. This mapping does not have to be one-to-one. However, we only consider
unambiguous protocols where each protocol configuration maps to only one specification con-
figuration. Once the mapping between protocol and specification configurations is established,
the protocol runs are mapped to specification sequences as follows. Each protocol configuration
is mapped to the corresponding specification configuration. Then, stuttering, the appearance
of consecutive identical specification configurations, is eliminated.

Overall, a run of the protocol satisfies the specification if its mapping belongs to the speci-
fication. Protocol P solves problem S under a certain scheduler if every run of P produced by
that scheduler satisfies the specifications defined by S.

Given two predicates l1 and l2 for protocol P , l2 is an attractor for l1 if every run that starts
from a configuration that conforms to l1 contains a configuration that conforms to l2. Such a
relationship is denoted by l1 . l2. Also, the . relation is transitive: if l1, l2, and l3 are predicates
for P , and l1 . l2 and l2 . l3, then l1 . l3. In this last case, l2 is called an intermediate attractor
towards l3.
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Definition 1 (Self-stabilization) A protocol P is self-stabilizing [19] to specification S if
there exists a predicate L for P such that:

1. L is an attractor for true,

2. Any run of P starting from a configuration satisfying L satisfies S.

So, a protocol P solves a problem S in a self-stabilizing manner under scheduler D if from
an arbitrary initial configuration of P , every run of P produced by D contains a configuration
c such that P solves S starting from c.

2.4 Leader election specification

Consider a system of processes where each process’ set of variables is mapped to a boolean
specification variable leader. The leader election specification sequence consists in a single
specification configuration where a unique process p maps to leaderp = true, and every other
process q 6= p maps to leaderq = false.

3 A compact leader-election protocol for rings

In this section, we describe our self-stabilizing algorithm for leader election in arbitrary n-node
rings. The algorithm is later proved to use O(log log n) bits of memory per node, and to stabilize
in quasi-linear time, whenever the identities of the nodes are between 1 and nc, for some c ≥ 1.
We first provide a general overview of the algorithm in Subsection 3.1, followed by a more
detailed description in Subsection 3.2.

3.1 Overview of the algorithm

Like many existing deterministic self-stabilizing leader election algorithms, our algorithm elects
the node with maximum identity among all nodes, and, simultaneously, constructs a spanning
tree rooted at the elected node. The main constraint imposed by our sub-logarithmic memory
usage is that we cannot exchange or even locally use complete identifiers, as the Ω(log n) bits
that are necessary to encode them do not fit. As a matter of fact, we assume that every node
can access the bits of its identifier, but only a constant number of them can be simultaneously
stored and/or communicated to neighbors at any given time. Our algorithm assumes however
that every node is able to store the current position of a particular bit of the identifier, referred
to as a bit-position in the sequel. Only bit-positions related to bits valued 1 in the identifier are
exchanged.

3.1.1 Leader selection

Our algorithm operates in phases. At each phase, each node that remains a candidate leader
reveals a new bit-position, different from the ones exchanged during previous phases, to its two
neighbors. More precisely, let Idv be the identity of node v, and assume that Idv =

∑k
i=0 bi2

i.
Let Iv =

{
i ∈ {0, ..., k}, bi 6= 0

}
be the set of all non-zero bit-positions in the binary represen-

tation of Idv. Let us rewrite Iv = {pos1, ..., posj} where posk > posk+1. During the algorithm
execution, the candidate leaders must agree on the same bit-position posj−i+1 (for i = 1, . . . , j)
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to be revealed; this step of the algorithm defines phase i. (That is, the bit-positions are com-
municated in decreasing order of significance in the encoding of the identifier.) In turn, this
may propagate it to their neighbors, and possibly to the whole network in subsequent phases.
During phase i, node v either becomes passive (that is, v stops acting as a candidate leader) or
remains a candidate leader. If, at the beginning of the execution of the algorithm, more than
one node is a candidate leader, then during each phase, some candidate leaders are expected
to be eliminated, until exactly one candidate leader remains, which becomes the actual leader.
More precisely, let posmax(i) be the most significant bit-position revealed at phase i among all
candidate leader nodes. Then, among them, only those whose bit-position revealed at phase i
is equal to posmax(i) carry on the election process. The other ones become passive.

If all identities are in [1, nc], for some constant c ≥ 1, then the communicated bit-positions
are less than or equal to cdlog ne, and thus can be represented with O(log log n) bits. The
difficulty is to implement this simple “compact” leader election mechanism in a self-stabilizing
manner. In particular, the number of bits used to encode identifiers may be different for two
given nodes, so there is no common upper bound for the size of identifiers. We circumvent this
problem using a ranking on bit-positions that is agnostic on the size of the identifiers.

Our approach is to tie the election process to a tree construction mechanism. Ultimately, the
elected process is the root of the unique constructed tree. More than one candidate indicates
that several trees (rooted at those candidates) are present: the tree construction eventually
merges those trees. In the case where all nodes are passive, this implies that they all have a
parent and are in the same cycle: the tree construction process guarantees that at least one
node detects the cycle and all nodes become candidates again (see Section 3.1.2).

An additional problem in self-stabilizing leader election is the potential presence of impostor
leaders due to an erroneous initial configuration. An impostor leader is a node that believes
(according to its local memory) that it is a leader, while e.g. its identifier is actually not the
largest in the network. If one can store the identity of the leader at each node, then detecting an
impostor is easy. (A node that has a larger identifier than the impostor can detect an error and
trigger a corrective action.) Under our memory constraints, nodes cannot store the identity of
the leader, nor store all the bits of their own identifier. So, detecting impostor leaders becomes
non trivial, notably when an impostor has an identity whose most significant bit is equal to the
most significant bit of the leader. To overcome this problem, the selection of the leader must
run perpetually, causing our algorithm to be talkative.

3.1.2 Spanning tree construction

Our approach to make the above scheme self-stabilizing is to merge the leader election process
with a tree construction process. Every candidate leader is the root of a tree and every passive
node points to its parent, a neighbor one step closer to the root of the tree it belongs to.
Whenever a candidate leader becomes passive, its tree is merged into another tree, until there
remains only one tree. The main obstacle to self-stabilizing tree-construction is the possibility
of an arbitrary initial configuration. This is particularly difficult if the initial configuration
contains a cycle (induced by the parent variables of passive nodes) rather than a spanning
forest whose roots are candidate leaders. When such a cycle exists in a ring-shaped network,
there are no candidate leaders. Such a configuration is called a leaderless configuration. In order
to break cycles that can be present in the initial configuration, we use an improved variant of the
classical distance calculation [23]. In the classical approach, every node u maintains an integer
variable du that stores the distance from u to the root of its tree. If paru denotes the parent of
u, then, when stabilization is achieved, dparu = du − 1 should hold. Now, if in a configuration
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dparu ≥ du, then u can execute a corrective action for its variable paru. As the topology of the
network is a ring, detecting the presence of an initial spanning cycle with this approach implies
that distance variables could be as large as n, requiring Ω(log n) bits of memory.

In order to use exponentially less memory, our algorithm uses the distance technique modulo
(an estimate of) cblog nc, so that distance variables remain O(log log n) bits. More specifically,
each node v maintains three variables : dv, parv, and dBv. The first variable is an integer
dv ∈ {0, ..., cblog nc}, called the “distance” of node v. Only candidate leaders v can have
dv = 0. At every other (passive) node v, it is expected that dv = 1 + (dw mod cblog nc) where
w denotes the parent neighbor of v (see below).

The second variable is parv, denoting the parent of node v when v is passive. This variable
takes values in {∅, 0, 1}, where ∅ denotes the fact that the node has no parent, and 0 and 1
denote the port numbers leading to the parent. When it is clear from the context, we use
parv = u (resp. parv 6= u) to denote the fact that the port number stored in parv leads to (resp.,
does not lead to) neighbor u. This parent is a neighbor w such that dv = 1+(dw mod cblog nc).
By itself, this technique is not sufficient to detect the presence of a cycle, as the number of
nodes could be a multiple of cblog nc. Therefore, we also introduce the notion of hyper-node,
defined as follows:

Definition 2 A hyper-node X is a sequence (x1, x2, · · · , xcblognc) of consecutive nodes in the
ring, such that dx1 = 1, dx2 = 2,. . . , dxcblognc = cblog nc, parx2

= x1, parx3
= x2, ..., parxcblognc

=
xcblognc−1 and parx1

6= x2.

Definition 3 A hyper-leaf is a sequence (x1, x2, · · · , xk) of consecutive nodes in the ring, such
that dx1 = 1, dx2 = 2,. . . , dxk

= k, parx2
= x1, parx3

= x2, ..., parxk
= xk−1 with k < cblog nc,

parx1
6= x2, and xk is a leaf. (That is, the other neighbor x′ of xk is such that parx′ 6= xk.)

When two hyper-nodes X = (x1, x2, · · · , xcblognc) and Y = (y1, y2, · · · , ycblognc) are such
that parx1

= ycblognc, Y is said to be the parent of X. By definition, there are at most
dn/cblog nce hyper-nodes in any given network of size n. Note that, as the last node in a
hyper-leaf is a leaf, it cannot belong to a cycle. Our algorithm tries to maintain the acyclicity
of the graph whose vertices are the hyper-nodes and whose edges are defined by the parent
relation, which happens only when at least one hyper-leaf exists in this graph. The key to
our protocol is that hyper-nodes can maintain larger (e.g. cblog nc bits) distance information
than a single node, by distributing the information among its nodes. More precisely, our al-
gorithm assumes that each node v maintains one bit of information, stored in variable dBv.
Let X = (x1, x2, · · · , xblognc) be a hyper-node. Then, the sequence dBX = (dBx1 , dBx2 , · · · ,
dBxcblognc) can be interpreted as the binary representation of a cblog nc-bit integer (that is, a

value between 0 and 2cblognc − 1). Now, this approach makes it possible to use the classical
distance approach to prevent cycles, but at the hyper-node level. Part of our protocol consists
of comparing the distance dBX and the distance dBY for two hyper-nodes X and Y such that
Y is the parent of X. If the difference between dBX and dBY is not one, an inconsistency is
detected and a corrective action is initiated. Since hyper-nodes include cblog nc nodes (and the
fact that 2cblognc ≥ n/ log n), dealing with distances between hyper-nodes is sufficient to detect
the presence of a cycle spanning the n-node ring. In essence, the part of our algorithm that
is dedicated to checking the absence of a spanning cycle generated by the parent relationship
boils down to comparing distances between hyper-nodes. However, comparing such distances
requires communication between nodes at distance Ω(log n). In some initially incorrect state,
those hyper-node distances may be locally consistent, so this computation must run perpetually.
This is another reason why our algorithm is talkative.
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3.2 General description

3.2.1 Notation and preliminaries

The variable that stores the parent node of v, denoted by parv, actually stores the port number
of the edge connecting v to its parent node, or ∅ if v has no parent. In the case of n-node rings,
parv ∈ {∅, 0, 1} for every v. In a legitimate configuration, the subgraph of Cn induced by the
parent relation must be a tree. The presence of more than one tree, or a cycle, corresponds to
illegitimate configurations. We denote by Nv the set of the two neighbors of v in Cn, for any
node v ∈ V .

The distance of node v to its root, denoted by dv, takes values in {0, 1, ..., cblog nc}. We have
dv = 0 if v is a root of some tree (i.e., a candidate leader) induced by the parent relationship,
and dv ≥ 1 otherwise (i.e., if v is passive). Note that we only assume that variable dv can hold
at least (and not exactly) (cblog nc) + 1 different values, since nodes are not aware of n but only
use an estimate of n that is computed by our algorithm. The children of a node v are the nodes
whose distance is equal to dv = 1 + (dw mod cblog nc) and whose variables are readable by v
using Ch(v). Then, it is possible for a node u to be the child of two nodes v and w. However, at
any given time, u has a single parent. In a legitimate configuration, the overall structure that
is deduced from the parent relationship is eventually a (possibly evolving) tree rooted on the
node with maximum identifier and spanning the whole network.

To detect cycles, we use four variables. First, each node v maintains dBv (introduced in the
Section 2 ) for constructing a distributed integer stored in a hyper-node. The second variable,
Addv ∈ {+, ok, ∅}, is used for performing additions involving values stored distributedly on
hyper-nodes. The third variable, PLv (for pipeline), is used to send the result of an addition to
the children hyper-nodes of v’s hyper-node. Finally, the fourth variable, HCv (for Hyper-node
Checking), is dedicated to checking the accuracy of each hyper-node bit. Both PLv and HCv

are either empty, or composed of a pair of variables (x, y) ∈ {1, ..., cblog nc} × {0, 1}.
For constructing the tree rooted at the node with highest identity, we use three additional

variables. After convergence, we expect the leader to be the unique node with distance zero,
and to be the root of an inward directed spanning tree of the ring, where the edges of the tree
are defined by the parent relation. To satisfy the leader election specifications, we introduce
the variable leaderv ∈ {0, 1, 2} whose value is 1 if v is the leader, 2 if the node is frozen (defined
in Section 3.2.5) and 0 otherwise. Since we do not assume that the identifiers of every node are
encoded using the same number of bits, simply comparing the i-th most significant bit of two
nodes is irrelevant. So, we use variable B̂v, which represents the most significant bit-position of
all the identities present in the ring known to v. This variable is also used at each node v as an
estimate of blog nc. Only the nodes v whose variable B̂v is equal to the most significant bit of Idv
continue participating in the election. Finally, the variables Phase, Place and Check are the core
of the election process. Let r be the root of the tree including node v. Then, the variable Phasev
stores the current phase number i, the variable Placev stores the bit-position of Idr at phase i,
and the variable Checkv stores a boolean value for controlling updates to Phasev and Placev. To
make the algorithm more readable, we introduce the variable Elecv = (Phasev,Placev).

3.2.2 The Compact Leader Election algorithm CLE

Algorithm CLE is composed of three groups of rules as described in Figure 1:

1. The rules dedicated to the leader election and tree construction: RRoot, RPassive and
RUpdate.
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2. The rules dedicated to the hyper-node distances computation and verification: RRootdB,
RHypAdd, RHypBroad and RHypVerif.

3. The rules dedicated to the detection, propagation and correction of errors: RError and
RStart.

3.2.3 Leader election and tree construction

As previously mentioned, our protocol simultaneously performs leader election and the con-
struction of a spanning tree rooted at the leader. The leader should be the node whose identifier
is maximal among all nodes in the ring. Our assumptions regarding identifiers are very weak.
In particular, identifiers may be of various sizes (and encoded using a different number of bits
at each node), and the total number n of different identifiers is not known to the nodes. In our
algorithm, we use the variable B̂v to store the most significant bit-position among all identities
present in the ring. We consider a node v to be inconsistent if B̂v does not contain contain this
value. During the algorithm execution, only nodes whose identifiers match the most significant
bit-position remain candidate leaders. Moreover, only candidate leaders broadcast additional
bit-positions during subsequent phases.

The comparison of bits-positions is relevant only if these bits-positions are revealed at the
same phase. Hence, we force the system to proceed in phases. If, at phase i, the bit-position
ξv of node v is smaller than the bit-position ξu of a neighboring node u, then node v becomes
passive, and v takes u as its parent. It is simple to compare two candidate leaders when these
candidate leaders are neighbors. Yet, along with the execution of the algorithm, some nodes
become passive, and therefore the remaining candidate leaders can be far away, separated by
passive nodes. Each passive node v (dv > 0) is in a subtree rooted at some candidate leader.
Let us now consider one such subtree Tv rooted at a candidate leader v. Whenever v increases
its phase from i to i+ 1, and sets the bit-position related to phase i+ 1, all nodes u in Tv must
update their variable Elecu in order to have the same value as Elecv.

At each phase, trees are merged into larger trees. At the end of phase i, all the nodes
in a given tree have the same bit-position, and the leaves of the tree (i.e., nodes v for which
the function Ch(v) returns empty), inform their ancestors that the phase is finished. The local
variable Check is dedicated to this purpose. Each leaf assigns 1 to its Check variable, and a
bottom-up propagation of this control variable eventually reaches the root. In this way, the
root learns that the current phase is finished. Each phase results in halving the number of
trees, and therefore halving the number of candidate leaders. Remember that, at phase 1, a
candidate leader node v publishes Bit(1, Idv), at phase 2, it publishes Bit(2, Idv), etc. So the

RError : Error(v) → Freeze(v);
RStart : ¬Error(v) ∧ (leaderv = 2) ∧ (∀u ∈ Nv.(u 6∈ Ch(v))) → Start(v);

RPassive : ¬Error(v) ∧ T.Best(v) ∧ (leaderv 6= 2) ∧ T.dB(v) → Pass(v);DB(v)
RRoot : ¬Error(v) ∧ ¬T.Best(v) ∧ (leaderv = 1) ∧ T.Inc(v) → Inc(v);
RUpdate : ¬Error(v) ∧ ¬T.Best(v) ∧ (leaderv = 0) ∧

(
T.Down(v) ∨ T.Up(v)

)
→ Update(v);

RRootdB : ¬Error(v) ∧ ¬T.Best(v) ∧ (leaderv = 1) ∧ (∀u ∈ Ch(v).(PLv = HCu)) → StartdB(v);
RHypAdd : ¬Error(v) ∧ ¬T.Best(v) ∧ (leaderv 6= 1) ∧ Tree(v) ∧ (Addv = ⊥) ∧ T.Add(v) → BinAdd(v);
RHypBroad : ¬Error(v) ∧ ¬T.Best(v) ∧ (leaderv 6= 1) ∧ Tree(v) ∧ (Addv 6= ⊥) ∧ T.Pipe(v) → Pipe(v);
RHypVerif : ¬Error(v) ∧ ¬T.Best(v) ∧ (leaderv 6= 1) ∧ Tree(v) ∧ (T.Verif(v) ∨ CleanHC(v)) → Verif(v);

Figure 1: Formal description of algorithm CLE.
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number of phases is bounded by the number of 1s in the binary representation of the largest
identifier in the network. Thus, within at most blog nc+ 1 phases, a single leader remains. To
avoid electing an impostor leader, the (unique) newly elected leader restarts the election at the
first phase. This is repeated forever. If an arbitrary initial configuration induces an impostor
leader `, either ` does not have the most significant bit-position in its identifier, or this impostor
leader has its most significant bit-position equal to the most significant bit-position of the (true)
leader. In the former case, the error is detected by any node whose most significant bit-position
is maximum. In the latter case, the error is detected by at least one node (the true leader),
because there exists at least one phase i where the bit-position of the leader is larger than to
the bit-position of the impostor.

The process of leader election and spanning tree construction is slowed down by the hyper-
node construction and management. When a node v changes its parent, it also changes the value
of dBv, in order to not impact the current construction of the tree. The point is that variable
dBv should be handled with extra care to remain coherent with a tree resulting from merging
different trees. To handle this, every candidate leader assigns bits of the distance hyper-node for
its descendants in its variable PL. More precisely, if a root v has no children, then v publishes
the bit of the distance hyper-node for its future children u with du = 1. If root v has children
at distance one, then v publishes the bit of the distance hyper-node for its descendants u with
du = 2.This process is repeated by the node v until the last descendant in its hyper-node reaches
B̂v. More precisely, the hyper-node distance of a child of a leader r is 0, so r publishes (1, 0) in
variable PL for the descendant at distance one, (2, 0) for the descendant at distance two, until
(B̂r, 0) for the descendant at distance B̂r (Remember that, after convergence B̂v = cblog nc.) A
detailed description of this mechanism is presented in Section 4.4. On the other hand, a node
cannot change its parent until the tentative new parent publishes the required distance. When
the hyper-node adjacent to the root is constructed, the hyper-node assignment and verification
process takes care of the assignment of the bits to the nodes inside the hyper-node.

3.2.4 Hyper-nodes distance assignment and verification

Let us consider two hyper-nodes X = (x1, x2, · · · , xk) and Y = (y1, y2, · · · , yk), with X the
parent of Y . Our technique for assigning and verifying the distance between X and Y is the
following. X initiates the verification. For this purpose, X dedicates two local variables at each
of its nodes: Add (to perform the increment) and PL (to broadcast the result of this increment
inside X). Similarly, Y uses variable HC for receiving the result of the increment.

The increment consists of adding 1 to the hyper-node distance of X. For example, suppose
that dBX is equal to 11 (eleven). Then, its binary representation distributed among all the
nodes of X, we have dBX = (1, 0, 1, 1). In our data structure, the least significant bit is stored
in xk (dxk

= B̂xk
) and the most significant bit is stored in x1 (dx1 = 1). The increment process

starts from xk to x1. In our example, if 1 is added to dBx4 = 1, the result generates a carry, so
x4 publishes the result of the increment for y4 (that is, 0) and publishes the carry for x3. As a
consequence, x3 adds 1 to dBx3 = 1. This also generates a carry, so x3 publishes the result of
the increment for y3 (that is, 0) and publishes the carry for x2. Node x2 adds 1 to dBx2 = 0
and, in this case the result does not generate a carry. As a consequence, the increment has been
accomplished, and x2 publishes the result of the increment for y2 (that is, 1) and notifies the
end of the increment. In turn, x1 publishes the result of the increment for y1 (that is, 1). The
global result obtained with the publications of every node of X is (1, 1, 0, 0), so dBY equals 12,
which is coherent with dBX = 11. If one node in Y detects an inconsistency with the result of
the publication of X, an error is detected. When the publication of the result by X for Y is
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done, X plays the same rule as Y for its hyper-node child.

3.2.5 Detection, propagation and fixing of errors

An error is characterized by the presence of inconsistencies between the values of the variables
at a node v and the values of the variables of its neighbors. An error at node v can have
impact on its descendants, because the descendants of v have election and hyper-node distance
variables that are dependent on those of v. For these reasons, after a node v detects an error,
the algorithm cleans v and all of its descendants. The cleaning process is achieved in three
steps. Let v denote the node that detects the error. First, v deletes its parent and becomes
frozen (v sets its variable leaderv to 2.) Note that, a frozen node cannot take a parent. Second,
we freeze all the descendants of v. Last, the node are cleaned in the reverse direction up to the
starting node v.

This approach presents several advantages. After detection of the presence of a cycle by
a node v, the cycle is broken (v deletes its parent). It is important to note that frozen nodes
continue the hyper-node distance verification process, but not the election process. A frozen
node cannot reach its own subtree, due to the cleaning process taking place from the leaves to
the root, so a livelock of two cleaning processes is avoided.

4 Detailed description of Algorithm CLE

This section is dedicated to the detailed description of each of the algorithm’s rules. In the
predicate definitions below, we use P ≡ b to define Boolean b, which is true if and only if
predicate P is true.

4.1 Variables

The core variable of Algorithm CLE for each node v is leaderv. Upon stabilization, the node v
whose identity is maximal has leaderv = 1 and all other nodes u have leaderu = 0.

The election process is carried out through the publication, using variable Elec, of the
successive bit-positions of competing nodes. Variable Elecv is a pair (Phasev,Placev), whose
components denote the current phase i and the corresponding bit-position to be revealed by
a candidate leader during phase i, respectively. Variable Checkv is employed to control the
broadcast of Elecv. Whenever Elecv becomes smaller (in lexicographic order) than Elecu, for
some neighbor u of v, v becomes passive. Variable Hypv is a tuple

(dBv,Addv,HCv,PLv)

containing hyper-node distance assignment and verification variables. Consider two hyper-nodes
X and Y , such that X is the parent of Y . If v is an element of X, dBv is one bit of the binary
representation of the distance of X, Addv is used to increment the distance, PLv is employed to
broadcast the result of this increment inside X, and HCv is employed to receive the result of
the increment in Y .

4.2 Rules RError and RStart

Rule RError

RError : Error(v)→ Freeze(v);
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This rule is dedicated to the detection of an error by node v. When an error is detected by v,
it deletes its parent and sets leaderv to 2 (by executing the Freeze(v)(4)). A frozen node is a
node that executed Freeze.

Error(v) ≡ T.Er(v) ∨
(
(leaderv = 0) ∧ (leaderparv = 2)

)
(1)

The predicate Error(v) is composed of two groups. The predicate T.Er(v) is dedicated to
detecting an error in node v and the second part of the guard is dedicated to freezing the tree
rooted at v after v detected an error. There exist three types of errors: (i) the errors that
are generated by the election variables, (ii) the errors that are generated by the hyper-node
distance verification variables, and (iii) the errors that are generated by the frozen nodes. As
the precise description of these errors requires explaining in detail the Election and Hyper-node
distance verification predicates, additional dedicated explanations are delegated to the end of
the relevant subsections.

T.Er(v) ≡ ErElec(v) ∨ ErHyper(v) ∨ ErFreeze(v) (2)

Normally, a frozen node v (i.e., such that leaderv = 2) has either no parent or a frozen
parent. Otherwise, the algorithm detects an error. We denote this error by ErFreeze(v):

ErFreeze(v) ≡ (leaderv = 2) ∧
(
(parv = ∅) ∨ (leaderparv 6= 2)

)
(3)

Let us now explain Command Freeze(v). A node v that detects an error (T.Er(v) = true)
becomes frozen (leaderv := 2), and also deletes its parent parv := ∅. Deleting the parent is
extremely important, because it break a cycle when it is detected. An unfrozen v with a
frozen parent assigns leaderv = 2 but leaves its parent unchanged. The other variables are left
unchanged to permit cycle detection.

Freeze(v) :

{
leaderv := 2; parv := ∅ if T.Er(v)
leaderv := 2; otherwise

(4)

Rule RStart

RStart : ¬Error(v) ∧ (leaderv = 2) ∧ (∀u ∈ Nv.(u 6∈ Ch(v)))→ Start(v);

A frozen node v with no child (see Function Ch(v)(22)) should reset its variables. Note that
a frozen node cannot participate in the election process. A frozen tree resets its variables
from the leaves to the root. When a node v resets its variables, it becomes a candidate leader
(leaderv := 1 and parv := ∅), its election variable is set to correspond to its first bit-position
(Elecv := (1, B̂v)). The control variable Checkv = 0 means that v starts broadcasting in its
tree if has any children. The value (1, 0) in Hypv is used to indicate that the children u of v
(du = 1) must take for hyper-node distance the bit 0 (dBu = 0). The Start command consists
of the following:

Start(v) : leaderv := 1; parv := ∅;
B̂v := Bit(1, Idv);Elecv := (1, B̂v);Checkv := 0;
dv := 0;Hypv := (0,⊥, (⊥,⊥), (1, 0))

(5)
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4.3 Detailed description of Election rules:

This subsection is dedicated to the detailed description of each of our algorithm’s rules, pred-
icates, and functions related to the leader election. Its proof of correctness is delegated to
Section 5.

4.3.1 Rules and variables for leader election:

The election process is based on the repeated publication of bit-positions of the nodes identities.
As nodes may have identifiers spanning a different number of bits, the node whose identity is
maximum is necessarily one of those whose identity uses the most number of bits (removing
useless prefix zeroes). For the purpose of publishing those bit-positions, we use variable Elec.
If a node v has a neighbor u with a better election variable, v becomes passive (see details of
rule RPassive in Subsection 4.3.3), and joins u’s tree. Only the election variables of roots (i.e.,
candidate leaders) are useful for the election process, however roots may be separated by passive
nodes, making direct comparison more difficult. Let us consider two roots r1 and r2 that are
separated by passive nodes (see Figure 2). The passive nodes between r1 and r2 are either in
tree T1 (the tree rooted at r1) or in tree T2 (the tree rooted at r2). Let us denote by `1 the leaf
of tree T1 and by `2 the leaf of tree T2, between r1 and r2. Note that `1 and `2 are neighbors.
As a consequence, if all passive nodes in T1 have the same election variable as r1 and all passive
nodes in T2 have the same election variable as r2, then there exist two neighbors `1 and `2 able
to compare the election variables of r1 and r2. Rule RUpdate is dedicated to broadcasting the
election variable of a root r in its tree Tr. So, RUpdate updates the election variable of r1 down
to `1, and that of r2 down to `2, so that their values can be compared (see details of rule RUpdate

in Subsection 4.3.5).

r1 `1 `2 r2

Figure 2: Separated roots

During the broadcast of the election variable from the root down the tree, when a child u
of node v takes the election value of v it sets its variable Check to zero (see Figure 3(a)). If the
the election variable of r1 is equal to the election variable of r2, `1 and `2 both set their variable
Check to one. This assignment is then propagated from the leaves to the roots (see Figure 3(b)).
The broadcast and convergecast are performed by rule RUpdate. If three trees T1, T2 and T3 have
the same election variables, the two neighbors of r2 have Check = 1, as a consequence r2 must
publish its following bit-position to continue the election process. This action is performed by
rule RRoot, which increases the phase and publishes the corresponding bit-position (see details
of rule RRoot in Subsection 4.3.4 and Figure 3 (b and c)). The election variables of node v are
better than the election variables of node u if and only if:

(B̂v > B̂u) ∨
(

(B̂v = B̂u) ∧ (Phasev = Phaseu) ∧ (Placev > Placeu)
)

If the election variables of r2 is better than the election variables of r3, tree T3 is merged tree T2
(see Figure 3(d)). Rule RPassive is activated when a node has a neighbor with a better election
variables. The different trees merge until a single tree (rooted at the node with maximum
identity) remains.
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0 r1 0 0 0

`1
0

`2
0 r2 0 0 0

`3
0 0 r3

(a) Broadcast of election variables. T1, T2 and T3 have the same election variables.

1 r1 1 1 1

`1
1

`2
1 r2 1 1 1

`3
1 1 r3

(b) Convergecast: T1, T2 and T3 have the same election variables.

0 r1 0 0 0

`1
0

`2
0 r2 0 0 0

`3
0 0 r3

(c) Broadcast of the new election variables: Election variables of T1 and T2 are better than that of T3.

1 r1 1 1 1

`1
1

`2
1 r2 0 0 0 0 0 r3

(d) Merging of T2 and T3. Election variables of T1 and T2 are better than that of T3

Figure 3: Comparison of election variables: big nodes denote the roots, small nodes denote
the passive ones. The number inside a passive node denotes the value of variable Check. The
election variables in the shaded nodes are higher than those of the non-shaded nodes.

4.3.2 States of nodes:

We first describe the predicates corresponding to a root and a passive node. A root v is a
candidate leader (i.e., leaderv = 1), it doesn’t have any parent (i.e, parv = ∅), and its distance
to the root is equal to zero (i.e., dv = 0).

Moreover, a root v has its most significant bit-position equal to the first bit-position of its
identifier (i.e., B̂v = Bit(1, Idv)), and Placev = Bit(Phasev, Idv). Note that variable Checkv,
which is dedicated to controlling the update of election variables, has value zero (see Com-
mand Start). Indeed, a zero denotes a broadcast phase, and a root is always in such a phase.
Then, either all its descendants broadcast their election variables, or convergecast (Checku = 1,
with u a child of the root) leading the root to publish new election variables. The bit published
at a root for each hyper-node child is kept at 0.

The predicate Root consists of the following:

Root(v) ≡ (leaderv = 1) ∧ (parv = ∅) ∧ (B̂v = Bit(1, Idv))∧
(Placev = Bit(Phasev, Idv)) ∧ (dv = 0) ∧ (Checkv = 0) ∧ (PLv[1] = 0)

(6)

A passive node v is not a candidate leader (leaderv = 0), and it has a parent (parv is equal to
a port number of v.) The most significant bit-position of v is greater than or equal to the first
bit-position of its identity. However, a passive node has its distance’s variable different from
zero :

PassNd(v) ≡ (leaderv = 0) ∧ (parv ∈ {0, 1} ∧ (B̂v ≥ Bit(1, Idv)) ∧ (dv > 0)) (7)

4.3.3 Detailed description of the RPassive rule:

RPassive : ¬Error(v) ∧ T.Best(v) ∧ (leaderv 6= 2) ∧ T.dB(v)→ Pass(v);DB(v)
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Predicate T.dB(v) is dedicated to monitoring assigment to variable dB. A node v may execute
rule RPassive if its tentative parent publishes variable dB to v’s intent (see predicate T.dB(15)).
More precisely, if v must adopt distance d (the distance of its parent plus one), then its parent
must publish the bit dedicated to the hyper-node distance at the distance d. Rule RPassive

is enabled by a root or a passive node (since leaderv 6= 2). Such a node v is enabled for rule
RPassive if at least one of its neighbors u has a better value for the election process (if its two
neighbors qualify, v chooses the one with the best value, see Function Best(v)(13)). Moreover,
to avoid the creation of an error, v makes sure that all its children have assigned v’s election
variable to their own (election variable).

T.Best(v) ≡ (leaderparv 6= 2) ∧ Best(v) ∧ (∀u ∈ Ch(v).(Elecu = Elecv)) (8)

There exist three categories of nodes with better values. First, the nodes with a most
significant bit-position greater than the most significant bit-position of node v.

NgSupBs(v) = {u ∈ Nv : (leaderu 6= 2) ∧ (B̂u > B̂v)} (9)

Second, the neighbors with the same most significant bit-position as v (i.e., B̂u = B̂v) that
are in the same phase as v (i.e., Phaseu = Phasev), but with a greater bit-position than that of
v (i.e., Placeu > Placev).

NgSupBp(v) = {u ∈ Nv : (leaderu 6= 2) ∧ (B̂u = B̂v) ∧ (Phaseu = Phasev) ∧ (Placeu > Placev)}
(10)

The last category is more intricate, and deserves further explanations. Indeed, our algo-
rithm does not synchronize phases throughout the network, and due to our weakly fair daemon
assumption, it is possible that the phase of one tree does not match the phase of another tree.
Let us consider k consecutive trees in a ring, denoted by T1, T2, . . . , Tk and let us consider the
following scenario represented in Figure 4. Let c be a configuration where all the trees are in the
same phase i. If the election values of all trees at the same phase are equal, then all tree roots
can increase their phase to i+1. Let us suppose that node r1, the root of T1, is not activated by
the weakly fair daemon and remains at phase i. Now T2, . . . , Tk are in phase i+ 1, if T2, . . . , Tk
have the same bit-position in phase i + 1, T3, . . . , Tk can increase their phases. But T2 cannot
increase its phase, because its leaf between T1 and T1 does not have the same election variable
as in T2. This process can be repeated, until no root can increase its phase anymore.
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Figure 4: Phases

If the election variable of T1 at phase i + 1 is better than the election variable of T2 at
phase i+ 1 then the election variable of T1 is also better than all election variables of T3, . . . , Tk
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at phase i + 1 (otherwise the phases of these trees cannot increase). As a consequence, in a
normal election process, if a neighbor u of v has a smaller phase and Check = 0 then u is better
with respect to the election than v. Remember that Check = 0 corresponds to the broadcast
of the new election variable of the root, and Check = 1 corresponds to the converge-cast if two
neighbors trees have the same election variable.

NgInfPhC(v) = {u ∈ Nv : (leaderu 6= 2) ∧ (B̂u = B̂v) ∧ (Phaseu < Phasev) ∧ (Checku = 0)} (11)

To summarize, the set of better values is as follows:

Better(v) = NgSupBs(v) ∪ NgInfPhC(v) ∪ SupBp(v) (12)

For our purpose, we need the best possible value among the values that improve the election
variable. The neighbors with a most significant bit-position greater than the most significant
bit-position of node v have better values for the election process, so among these nodes we
choose one with the maximum most significant bit-position. Then, according to the description
of Function 11, nodes in NgInfPhC are better than nodes in NgSupBp. So, if NgSupBs(v) = ∅,
we choose in NgInfPhC the node with the smallest phase. Finally, if NgSupBs(v) = ∅ and
NgInfPhC = ∅, we choose a node in the same phase as v but with a greater bit-position. In case
of several choices, we choose the one with the minimum port number. Function Best below
directly follows from these explanations:

Best(v) =

 min{portu : B̂u = max{B̂w : w ∈ NgSupBs(v)}} if NgSupBs(v) 6= ∅
min{portu : Phaseu = min{Phasew : w ∈ NgInfPhC(v)}} if NgSupBs(v) = ∅ ∧ NgInfPhC(v) 6= ∅
min{portu : Placeu = max{Placew : w ∈ NgSupBp(v)}} otherwise

(13)

A node enabled by rule RPassive assigns its best neighbor value, and resets its hyper-node
variables to avoid inconsistencies. This command makes use of the δ+ function, that returns
the appropriate value of updating the distance of the node (defined in Equation 20).

Pass(v) : leaderv := 0; parv := Best(v); / ∗ leader variables ∗ /
B̂v := B̂parv ;Elecv := Elecparv ;Checku = 0; / ∗ election variables ∗ /
dv := δ+(parv);Hypv := (0,⊥, (⊥,⊥), (⊥,⊥)) / ∗ hyper-node variables ∗ /

(14)

Moreover, a node with a best election variable must publish the bit dedicated to the hyper-
node distance (i.e., dB). Let u denote the node with the best election variable. If u’s distance
is equal to B̂v, u is the last node of a hyper-node, and v becomes the first node of a new hyper-
node. In this case, for the hyper-node distance bit, v checks variable PL, whose value must be
equal to the hyper-node distance bit for a node at distance one. Otherwise, if u’s distance is
inferior to B̂v, v joins the hyper-node of u. In this case, v checks variable HC of u. We later
detail the role of variables PL and HC in Section 4.4. This command makes use of the π+

function, that returns the next phase (defined in Equation 19).

T.dB(v) ≡ [(dBestv
= B̂v)∧(PLparv [0] = π+(Best(v)))]∨[(dBestv

< B̂v)∧(HCparv [0] = π+(Best(v)))]
(15)

Command DB(v) assigns a bit to the hyper-node distance bit variable, according to PL if
node v has a distance equal to one, and otherwise according to HC.
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DB(v) :

{
dBv := PLparv [1] if (dv = 1)

dBv := HCparv [1] if (dv > 1)
(16)

Note that all remaining rules are enabled only if there exist no better neighbor (¬T.Best(v)
holds in all of the following rules).

In the last case of Best, only a node with a greatest most significant bit-position can detect
an error. For example, in Figure 4(d), if the root r4 of tree T4 reaches phase i+ 3, that implies
that Elecr2 = (B̂r2 , i+1,Placer2) is equal to Elecr4 = (B̂r4 , i+1,Placer4), otherwise r4 would not
have been able to increase its phase until i+ 3 (see the explanations above in Figure 4). So, if
Elecr1 > Elecr2 at phase i+ 1, then Elecr1 > Elecr4 at phase i+ 1. As a consequence, if r4 has a
neighbor u ∈ NgInfPhC(r4), then r4 detects an error if the bit-position of u is smaller than its
own bit-position at the same phase as u:

ErPlace(v) ≡ (leaderv ∈ {0, 1}) ∧ (B̂v = B̂Best(v)) ∧ (PlaceBest(v) < Bit(Phasev, Idv)) (17)

Let us consider the following case with two nodes u and v. Suppose that at phase i, the bit
positions of u and v differ. If v has a bit position larger than a bit position of u in phase i, the
identity of v is higher than the identity of u, and the comparisons between the bit positions in
phases greater than i are meaningless.

A passive node v has a coherent parent parv if parv has a better value (i.e., parv ∈ Better(v)),
or if pv’s phase is equal to that of v (and Elecv = Elecparv) or is immediately superior (see
Function π+). This last possibility corresponds to the activation of command Update by pv (see
Normal(v)).

Normal(v) ≡ (B̂v = B̂parv) ∧ ((Elecv = Elecparv) ∨ (Phasev = π−(parv))) (18)

Where π−(v) and π+(v) denote the previous and next phases of v, respectively. When a phase
reaches the maximum (that is, B̂), the algorithm starts again at phase one.

π+(v) =

{
Phasev + 1 if (Phasev < B̂v)

1 if (Phasev = B̂v)
π−(v) =

{
Phasev − 1 if (Phasev > 1)

B̂v if (Phasev = 1)

(19)

An additional constraint for a passive node v is that its distance is equal to that of its parents
plus one. Recall that distance zero is for the roots. As a consequence we use the distances from
one to B̂v for the passive nodes. Normally, a passive node v takes as distance the distance of
its parent plus one, but if its parent has distance B̂v, v assigns one to its distance variable (see
the function δ+).

δ+(v) =

{
dv + 1 if (dparv < B̂v)

1 if (dparv = B̂v)
(20)

CohP(v) ≡ (parv ∈ Better(v)) ∨
(
Normal(v) ∧ (dv = δ+(parv))

)
(21)

Let us now define the set of children of a node (see Function Ch(v)(22)). A child u of node
v is not a root (i.e., leaderu 6= 1), u has a parent paru 6= ∅, and u’s distance equal that of v plus
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one (i.e., du = δ+(v)). More precisely, there exist two types of children for node v. The first
kind is a child u with the same election variables as v (i.e., Elecu = Elecv). The second kind is
a child with the same most significant bit-position (i.e., B̂u = B̂v) that did not already update
its phase (i.e., Phaseu = π−(v)).

Ch(v) = {u ∈ N(v) : (leaderu 6= 1) ∧ (paru 6= ∅) ∧ (du = δ+(v)) ∧ Normal(u)} (22)

4.3.4 Detailed description of the rule RRoot:

RRoot : ¬Error(v) ∧ ¬T.Best(v) ∧ (leaderv = 1) ∧ T.Inc(v)→ Inc(v);

Let us now explain predicate T.Inc(v): A root v (i.e., leaderv = 1 in a guard of rule RRoot) can
increase its phase if and only if all its children have the same election variable as v and advertise
that the election broadcast is finished (i.e., Checku = 1). The other neighbors must have the
same election variable as v, or be in the next phase.

T.Inc(v) ≡ (∀u ∈ Nv.(B̂u = B̂v)) ∧ (Nv = {u ∈ Ch(v) : (Elecu = Elecv) ∧ (Checku = 1)}
∪{u ∈ Nv \ Ch(v) : (Elecu = Elecv) ∨ (Phaseu = π+(v))

)
}

(23)
A root v that is enabled for rule RRoot increases its phase and assigns its bit-position variable
a value that conforms to the new phase, namely v executes Command Inc(v):

Inc(v) : Elecv := (π+(v),Bit(π+(v), Idv)); (24)

4.3.5 Detailed description of the rule RUpdate:

RUpdate : ¬Error(v) ∧ ¬T.Best(v) ∧ (leaderv = 0) ∧
(
T.Down(v) ∨ T.Up(v)

)
→ Update(v);

This rule is dedicated to the updating of trees. When a root increases its phase, all its descen-
dants must update their election variables according to the root’s election variable (that is, if a
passive node v has Checkv = 1 and its parent is in the next phase).

T.Down(v) ≡ (leaderparv 6= 2) ∧ (Checkv = 1) ∧ (B̂v = B̂parv) ∧ (Phaseparv = π+(v)) (25)

Predicate T.Up(v) is employed to monitor the end of the updating. When all the descendants
of a root r have updated their variables, a wave starts from the leaves to r. The purpose of this
wave is to indicate to r that the updating has ended and that r can now increase its phase. More
precisely, the leaf ` assigns Check` = 1, and when all children u of a node v have Checku = 1,
then v assigns Checkv = 1. Note that all neighbors u of a leaf ` must have the same election
variable, otherwise ` is a better value for u, and u can join `’s tree.

T.Up(v) ≡ (leaderparv 6= 2)∧(Checkv = 0)∧(∀u ∈ Nv.(Elecu = Elecv))∧(∀u ∈ Ch(v).(Checku = 1))
(26)

A passive node enabled for rule RUpdate either copies its parent’s variables, or executes the
convergecast part of the wave, namely executes Command Update(v) below:

Update(v) :

{
Elecv := Elecparv ;Checkv := 0; if Elecv 6= Elecparv
Checkv := 1 otherwise

(27)
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It is possible for node v to use variable Checkv to detect an error: if Checkv = 1 and there
exists at least one child u such that Checku = 0 (see line “error of child” in predicate 28:
ErCheck), or if its parent has Checkparv = 0 (see line “error of parent” in predicate 28: ErCheck).
Moreover, a leaf v with Checkv = 1 detects an error if at least one of its passive neighbors has an
election variable with value different than its (see line “error of leaf” in predicate 28: ErCheck).

ErCheck(v) ≡ (leaderv 6= 1) ∧ (parv 6= ∅) ∧
(
(Checkv = 0) ∧ (Checkparv = 1)

)
∨ /*Error of parent */

[(Checkv = 1)∧
(∃u ∈ Ch(v).(Elecu 6= Elecv) ∨ (Checku = 0))∨ /* Error of child */
(∃u ∈ Nv.PassNd(u) ∧ (Elecu 6= Elecv))] /* Error of leaf */

(28)

4.3.6 Errors of election

A node v can only be in three states: i) root, (ii) passive, or (iii) frozen. If v is not in one of
these three states, v detects an error.

ErNd(v) ≡ (¬Root(v) ∧ ¬PassNd(v) ∧ (leaderv ∈ {0, 1})) ∨ (PassNd(v) ∧ ¬CohP(v)) (29)

To summarize the errors of the election process we use the following predicate:

ErElec(v) ≡ ErNd(v) ∨ ErPlace(v) ∨ ErCheck(v) (30)

4.4 Detailed description of the rules of Hyper-nodes distance verification:

Let us consider two hyper-nodes X and Y , X being the parent of Y . If v is an element of
X, dBv is one bit of the binary representation of the distance of X. Variable Add is used to
perform the binary addition (see details of rule RHypAdd in Subsection 4.4.1). The result of
the addition is employed to check the correctness of the distance between X and Y . The last
node of a hyper-node is the node that starts the addition process. Variable PL is employed to
broadcast the result of the addition within X (see details of rule RHypBroad in Subsection 4.4.2).
Similarly, HC is employed to receive the result of the addition in Y (see details of rule RHypVerif

in Subsection 4.4.3). We use the same mechanism to verify and to assign the distance of a hyper-
node. First, we describe the verification mechanism, and then the rule RRootdB that makes use
of it. We remark that hyper-node distances are used to detect a cycle. In our setting, if the
overlay structure induced by the parent variables parv, for v ∈ V , forms a cycle C, then the
cycle C necessarily contains all nodes. So, it is not necessary to verify the hyper-node distance
if one neighbor u of v has no relationship with v (That is, parv 6= u and u 6∈ Ch(v).) As a
consequence, we check distances only if relevant:

Tree(v) ≡ (∀u ∈ Nv.(leaderu = leaderv) ∧
(
(parv = u) ∨ (u ∈ Ch(v))

)
) (31)

4.4.1 Detailed description of the rule RHypAdd:

RHypAdd : ¬Error(v)∧¬T.Best(v)∧(leaderv 6= 1)∧Tree(v)∧(Addv = ⊥)∧T.Add(v)→ BinAdd(v);
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Incrementing the hyper-node distance is described in Subsection 3.2.4. To make reading
easier, we present an example as Table 1. The increment process is started bottom-up from
non-root nodes (that is, leaderv ∈ {0, 2}) whose distance is B̂v to the non-root nodes whose
distance is one (see Example of hyper-node, Table 1). The + sign for variable Add represents
the start of the increment for the node whose distance is B̂ (see vk in Table 1 and predicate
Add+(v)(32)) and the possible carry for the other nodes. More precisely, in our example,
Addvk−1

= + and dBvk−1
= 1 means (for the parent of node vk−1) that the increment induces a

carry (see predicate Add+(v)(32)). On the other hand, Addvk−2
= + and dBvk−2

= 0 means that
the increment is finished. As a consequence, vk−3 assigns ok to Add. Moreover, all ancestors of
vk−3 acknowledge the end of the increment by assigning ok to Add (see predicate Addok(v)(33)).
When node v1 assigns its variable Add, the increment process starts, and all nodes with ok do
not change their bit (i.e., dB remains the same), and all nodes with + change their bit (see the
last line in Table 1).

Hyper-node X

nodes vk vk−1 vk−2 vk−3 . . . v1
d B̂ B̂− 1 . . . . . . . . . 1

dB 1 1 0 1 1 0

Add + + + ok ok ok

PL (B̂v, 0) (B̂v − 1, 0) (..., 1) (..., 1) (2, 1) (1, 0)

Table 1: Example of increment

Predicate Add+(v) verifies if there exists a carry for v, in other words if all children u have
dBu = 1 and Addu = +:

Add+(v) ≡ (∀u ∈ Ch(v).((Addu = +) ∧ (dBu = 1))) (32)

Predicate Addok(v) verifies if the increment is finished for v, in other words if all children u have
dBu = 1 and Addu = 0, or all children u have Add(u) = ok:

Addok(v) ≡ (∀u ∈ Ch(v).((Addu = +) ∧ (dBu = 0)) ∨ (Add(u) = ok)) (33)

So, v is enabled if dv = B̂v, or if either there exists a carry for v or the increment is finished.
Moreover, we check if the variable dedicated to the publication of the addition result is empty
(PLv = (⊥,⊥)).

T.Add(v)≡[
(
(dv = B̂v) ∨ Add+(v)

)
∨ Addok(v)] ∧ (PLv = (⊥,⊥)) (34)

Command BinAdd(v) assigns + or ok to variable Addv, conforming to predicates Add+(v)
and Addok(v):

BinAdd(v) :

{
Addv := + if (dv = B̂v) ∨ Add+(v)
Addv := ok if Addok(v)

(35)

Let us consider the errors involving variable Add. Let two nodes u and v be such that u is a
child v. If Addv = + and Addu 6= +, v detects an error. Likewise, if Addv = + and Addu = +
but dBu = 0, v detects an error. Now, let us consider Addv = ok. Then there exist two case
where v detects an error: (i) if Addu = ⊥, or ii) if Addu = + and dBu = 1.
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ErAdd(v) ≡ (leader 6= 1) ∧ (Addv 6= ⊥) ∧ (dv < B̂v) ∧ Tree(v)∧[(
(Addv = +) ∧ (dv 6= B̂v) ∧ ¬Add+(v)

)
∨
(
(Addv = ok) ∧ ¬Addok(v)

)] (36)

Moreover, if during the increment a carry is proposed to node v with dv = 1, and the bit
stored by v is 1, then the increment results in an overflow: as a consequence an error is detected.

ErOverflow(v) ≡
(
(dv = 1) ∧ (dBv = 1) ∧ (∃u ∈ Ch(v).(Addu = +) ∧ (dBu = 1))

)
(37)

4.4.2 Detailed description of the rule RHypBroad

RHypBroad : ¬Error(v)∧¬T.Best(v)∧(leaderv 6= 1)∧Tree(v)∧(Addv 6= ⊥)∧T.Pipe(v)→ Pipe(v);

step 1 step 2 step 3 step 4 step 5 step 6 step 7

d dB Add PL Add PL Add PL Add PL Add PL Add PL Add PL

1 0 ok (⊥,⊥) ⊥ (1, 0) ⊥ (1, 0) ⊥ (⊥,⊥) ⊥ (⊥,⊥) ⊥ (⊥,⊥) ⊥ (⊥,⊥)
X 2 1 ok (⊥,⊥) ok (⊥,⊥) ok (1, 0) ok (1, 0) ⊥ (2, 1) ⊥ (2, 1) ⊥ (⊥,⊥)

3 0 + (⊥,⊥) + (⊥,⊥) + (⊥,⊥) + (1, 0) + (1, 0) + (2, 1) + (2, 1)
4 1 + (⊥,⊥) + (⊥,⊥) + (⊥,⊥) + (⊥,⊥) + (1, 0) + (1, 0) + (1, 0)

d dB HC HC HC HC HC HC HC

Y 1 0 (⊥,⊥) (⊥,⊥) (⊥,⊥) (⊥,⊥) (⊥,⊥) (⊥,⊥) (1, 0)

Table 2: Example of broadcast of the addition from the hyper-node X to the hyper-node Y .

Predicate T.Pipe manages variable PL (see an example in Table 2). Variable PL is used
for broadcasting the result of the increment from the node with distance 1 to the node with
distance B̂ (see Table 2). Remember that PL is composed of a pair of elements: a distance,
and a bit. In other words, to send the result of the increment, we assign the distance of the
recipient to the current broadcast distance, and the corresponding bit in a child hyper-node.
So, a node v has three tasks (i) publish the result of the increment, (ii) broadcast the result of
its ancestors, and iii) delete variable PL after broadcasting.

T.Pipe(v) ≡ Publish(v) ∨ Pipe(v) ∨ CleanPV(v) (38)

Let us describe the publishing process. The oldest ancestor (that is, the node with dv = 1)
publishes first the result of the increment (see the first line in predicate 39: Publish). Note that
the guard of Command Pipe(v) is true if and only if the increment is finished (see (Addv 6= ∅)
in the guard). If a node v and all its children have the result of the increment of v’s parent,
then the broadcast of the result is finished, and v can publish its own result (see the last two
lines in predicate 39: Publish).

Publish(v) ≡
(
(dv = 1) ∧ (∀u ∈ Ch(v) ∪ {v}.PLu = (⊥,⊥))

)
∨[

(PLv[0] = dv − 1) ∧ (PLparv = (⊥,⊥))∧(
((B̂v > dv > 1) ∧ (∀u ∈ Ch(v).PLu = PLv))∨

(dv = B̂v) ∧ (∀u ∈ Ch(v).HCu = PLv)
)] (39)
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The broadcast process is the following. When all children u of node v have the same result
(i.e., PLu = PLv for B̂v > dv > 1, or HCu = PLv for dv = B̂v) and v’s parent stores the next
result (i.e., PLparv [0] = PLv[0] + 1)), then v copies the result of its parent.

Pipe(v) ≡ (PLparv 6= (⊥,⊥)) ∧ (PLparv [0] = PLv[0] + 1)∧[(
(B̂v > dv > 1) ∧ (∀u ∈ Ch[v].PLu = PLv)

)
∨(

(dv = B̂v) ∧ (∀u ∈ Ch[v].HCu = PLv)
)] (40)

The last task is dedicated to deleting PL after broadcasting. More precisely, when a node
v had published its own variable PLv[0] = dv, and all its children have recorded v’s variable
((∀u ∈ Ch(v).PLu = PLv)), v can delete PLv.

CleanPV(v) ≡ (PLparv = (⊥,⊥)) ∧ (PLv[0] = dv) ∧ (∀u ∈ Ch(v).PLu = PLv) (41)

Command Pipe(v) corresponds to executing this process. Note that when a node publishes
its result, it can deletes the result of the increment stored in Add. In the command, dBv denotes
the opposite of dBv (that is, dBv = 1 if dBv = 0, and 0 otherwise).

Pipe(v) :



PLv := (dv, dBv);Addv := ⊥ if Publish(v) ∧ (Addv = ok)

PLv := (dv, dBv);Addv := ⊥ if Publish(v) ∧ (Addv = +)

PLv := PLparv if Pipe(v) ∧ (B̂v > dv > 1)

HCv := PLparv if Pipe(v) ∧ (dv = B̂v)

PLv := (⊥,⊥) if CleanPV(v)

(42)

A non-root node v broadcasts the bits of its ancestors in its hyper-node and its own bit (a
node with dv = 1 has no ancestors in its hyper-node). So, if v has in PLv[0] a distance that is
greater than its distance (i.e., PLv[0] > dv), v detects an error. The fact that PLparv = (⊥,⊥)
and PLv 6= (⊥,⊥) may only happen when v publishes its variables or the variable of its parent
permits an error to be detected at v if PLv[0] > dv. Last, if PLparv 6= (⊥,⊥), v must be in a
broadcast process either with the same variable as its parent, or with the previous variable of
its parent. If it is not the case, v detects an error ((PLv 6= PLparv) ∧ (PLv[0] 6= PLparv [0]− 1)).

ErPL(v) ≡ (leaderv 6= 1) ∧ (PLv 6= (⊥,⊥)) ∧ Tree(v) ∧ (dv > 1) ∧
[
(PLv[0] > dv)∨(

(PLparv = (⊥,⊥)) ∧ (Addparv 6= ⊥)
)
∨(

(PLparv 6= (⊥,⊥)) ∧ (PLv 6= PLparv) ∧ (PLv[0] 6= PLparv [0]− 1)
)] (43)

4.4.3 Detailed description of the rule RHypVerif:

RHypVerif : ¬Error(v)∧¬T.Best(v)∧(leaderv 6= 1)∧Tree(v)∧(T.Verif(v)∨CleanHC(v))→ Verif(v);

The process of assigning or verifying is the following. The increment results in broadcasting
with variable HC from the node with distance one to the node with distance B̂v (see Table 3).

Let us consider a hyper-node X. The node v whose distance is one is the ancestor of all
other passive nodes in X, so v collects the values for distance verification in variable PLpv
of its parent, because parv is not in the same hyper-node as v. For the other passive nodes
(i.e., such that dv > 1), the distance verification uses variable HC of the parent (see Line 1 in
predicate Broad(v)(44)). A node collects its parent’s variable if its own variable has already
been collected by its children. We remark that, the node with dv = B̂v has no children within
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step 1 step 2 step 3 step 4 step 5 step 6 step 7

d dB Add PL Add PL Add PL Add PL Add PL Add PL Add PL

1 0 ⊥ (⊥,⊥) ⊥ (⊥,⊥) ⊥ (⊥,⊥) ⊥ (⊥,⊥) ⊥ (⊥,⊥) ⊥ (⊥,⊥) ⊥ (⊥,⊥)
X 2 1 ⊥ (⊥,⊥) ⊥ (⊥,⊥) ⊥ (⊥,⊥) ⊥ (⊥,⊥) ⊥ (⊥,⊥) ⊥ (⊥,⊥) ⊥ (⊥,⊥)

3 0 + (2, 1) + (2, 1) ⊥ (3, 1) ⊥ (3, 1) ⊥ (⊥,⊥) ⊥ (⊥,⊥) ⊥ (⊥,⊥)
4 1 + (1, 0) + (2, 1) + (2, 1) + (3, 1) + (3, 1) ⊥ (4, 0) ⊥ (4, 0)

d dB HC HC HC HC HC HC HC

1 0 (1, 0) (1, 0) (2, 1) (2, 1) (3, 1) (3, 1) (4, 0)
Y 2 1 (⊥,⊥) (⊥,⊥) (⊥,⊥) (2, 1) (2, 1) (3, 1) (3, 1)

3 1 (⊥,⊥) (⊥,⊥) (⊥,⊥) (⊥,⊥) (⊥,⊥) (⊥,⊥) (3, 1)
4 0 (⊥,⊥) (⊥,⊥) (⊥,⊥) (⊥,⊥) (⊥,⊥) (⊥,⊥) (⊥,⊥)

Table 3: Example of hyper-node distance verification from Hyper-node X to Hyper-node Y .

its hyper-node, so it does not check its children for this task (see Lines 2 and 3 in predicate
Broad(v)(44)).

Broad(v) ≡[
((dv = 1) ∧ (HCv[0] 6= PLparv [0] 6= ⊥

)
∨
(
(dv > 1) ∧ (HCv 6= HCparv) ∧ (HCparv 6= (⊥,⊥))

)]
∧[

(dv < B̂v) ∧
(
∀u ∈ Ch(v).

(
(HCv[0] = dv) ∧ (HCu = (⊥,⊥))

)
∨
(
(HCv[0] > dv) ∧ (HCu = HCv)

))]
(44)

To verify the hyper-node distances, all nodes v of X must check whether the bit in variable
HCv[1] for itself (HCv[0] = dv) corresponds to its actual bit. If it is not the case, node v detects
an error.

ErHypDis(v) ≡ (HCv[0] = dv) ∧ (HCv[1] 6= dBv) (45)

Finally, once the broadcast is finished, node v requires cleaning.

CleanHC(v) ≡ (HCparv = (⊥,⊥)) ∧ (HCv[0] = B̂v)∧
(∀u ∈ Ch(v) : (du = B̂u) ∨

(
(du < B̂u) ∧ (HCu = HCv)

) (46)

Command Verif(v) consists in selectively applying these assignments:

Verif(v) :


HCv := PLparv if (dv = 1) ∧ Broad(v)

HCv := HCparv if (dv > 1) ∧ Broad(v)

HC := (⊥,⊥) otherwise

(47)

A passive node v collects the bits of its descendants and itself, so if v has in variable PLv[0]
a distance that is lower than its distance (i.e., HCv[0] < dv), v detects an error. The only
possibility for Child u of v to have HCu = (⊥,⊥) and PLv 6= (⊥,⊥) is when v publishes its
variables, so if HCv[0] 6= dv, node v detects an error. Last, if HCu 6= (⊥,⊥), node u must be in
a broadcast process either with the same variable as its parent v, or with the previous variable
of its parent. If it is not the case, v detects an error ((HCu 6= HCv) ∧ (HCu[0] 6= HCv[0]− 1))).
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ErHC(v) ≡ (leaderv 6= 1) ∧ (HCv 6= (⊥,⊥)) ∧ Tree(v)∧[
(HCv[0] < dv) ∨ [(dv < B̂v)∧(
(∃uCh(v).HCu = (⊥,⊥)) ∧ (HCv[0] 6= dv)

)
∨(

(∃uCh(v).HCu 6= (⊥,⊥)) ∧ (HCu 6= HCv) ∧ (HCu[0] 6= HCv[0]− 1)
)
]
] (48)

4.4.4 Detailed description of rule RRootdB:

RRootdB:¬Error(v) ∧ ¬T.Best(v) ∧ (leaderv = 1) ∧ (∀u ∈ Ch(v).PLv = HCu)→ StartdB(v);

A root r is not an element of a hyper-node, moreover the distance of its child hyper-node
is zero. So, let us denote by X the child hyper-node of r. All nodes u ∈ X must have dBu = 0.
The child v of r broadcasts for all nodes in X the pair (distance,bit) using variable HCv. To
achieve that, r must publish all theses pairs. This process is also employed for verifying the
distance of X. As a consequence, when r has published the bit for the last node in X, r restarts
the publishing.

StartdB(v) : PLv := (δ+(PLv[0]), 0); (49)

We remark that a node v that is a neighbor of u with Root(u) = true waits to become
passive until u publishes PLu = (1, 0) (see predicate T.dB(15) in Subsection 4.3.3). As a root
is not included in a hyper-node, the variable dedicated to performing the hyper-node distance
increment Add and the variable dedicated for receiving the result of the increment remain equal
to ⊥. A root detects an error if it is not the case.

ErMRoot(v) ≡ (leaderv = 1) ∧ ¬
(
(Addv = ⊥) ∧ (HCv = (⊥,⊥))

)
(50)

4.4.5 Errors of hyper-node distances

To summarize the errors of the hyper-nodes distance verification, we use the following predicate:

ErHyper(v) ≡ ErAdd(v) ∨ ErOverflow(v) ∨ ErPL(v) ∨ ErHypDis(v) ∨ ErHC(v) ∨ ErMRoot(v) (51)

5 Correctness

In this section, we provide a detailed proof that establishes the correctness of our Algorithm.

Theorem 1 Algorithm CLE solves the leader election problem in a self-stabilizing manner in
any n-node ring, assuming the state model, and a distributed weakly-fair scheduler. Moreover,
if the n node identities are in [1, nc], for some c ≥ 1, then Algorithm CLE uses O(log log n)
bits of memory per node, and stabilizes in O(n log2 n) rounds.

The main difficulty for proving Theorem 1 is to establish the ability of CLE to detect any
cycle that could be generated by the parenthood relation in the initial configuration, and when-
ever such a cycle is detected, to remove this cycle. Let Γ be the set of all possible configurations
of the n-node ring. First, we prove that Algorithm CLE detects the presence of “trivial” errors,
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that is, inconsistencies between neighbors. Second, we prove that, after correcting all trivial
errors (possibly using a cleaning mechanism), CLE converges and maintains configurations free
of trivial errors. The set of configurations that are free of trivial errors is denoted by ΓTEF, where
TEF stands for “Trivial Error Free”. Then, we assume that configurations are in ΓTEF only.
The core of the cycle detection proof is based on proving the correctness of the hyper-node dis-
tance verification process. This verification process is the most technical part of the algorithm,
and proving its correctness is the main challenge on the way to establishing Theorem 1. Once
the hyper-node distance verification process has been proved, we establish the convergence of
Algorithm CLE from an arbitrary configuration in ΓTEF to a configuration without cycles, and
where all hyper-node distances are correct. The set of configurations without cycles is denoted
by ΓCF (where CF stands for “Cycle Free”). We prove that a configuration is in ΓCF if and only
if all hyper-node distances are correct. Then, we restrict ourselves to configurations in ΓCF, and
prove the correctness of our mechanisms for detecting and removing impostor leaders. We de-
note by ΓIEF (where IEF stands for “Impostor leader Error Free”) the set of configurations with
no impostors. Finally, assuming a configuration in ΓIEF, we prove that the system reaches and
maintains a configuration with exactly one leader, equal to the node with maximum identity.
Moreover, we establish that the structure induced by the parenthood relation is a tree rooted
at the leader that spans all nodes. We denote by ΓLE the set of configurations where the unique
leader is the node with maximum identity. Overall, we prove that CLE is self-stabilizing to
ΓLE.

In the details of lemmas that are presented in the sequel, we use predicates on configura-
tions. These predicates are intermediate attractors towards a legitimate configuration (i.e., a
configuration with a unique leader). To establish that those predicates are indeed attractors, we
use potential functions [37], that is, functions that map configurations to non-negative integers,
and that strictly decrease after any algorithm step is executed.

To avoid additional notations, we use sets of configurations to define predicates; the predicate
should then be understood as the characteristic function of the set (that returns true if the
configuration is in the set, and false otherwise).

Let us first define predicate ΓLE (Leader Election), that serves as the definition for legitimate
configurations. Let L : Γ→ N be the function defined by

L(γ) =
∑
v∈V

leaderv .

A configuration γ is legitimate for the leader election specification (i.e., satisfies ΓLE) if and only
if L(γ) = 1. That is,

ΓLE = {γ ∈ Γ : L(γ) = 1}.

For the sake of clarity we denote by P (v, γ) the predicate P for node v in configuration γ.

We now define the trivial errors predicate:

ErT(v) ≡ ErFreeze(v) ∨ ErNd(v) ∨ ErCheck(v) ∨ ErAdd(v) ∨ ErPL(v) ∨ ErHC(v) ∨ ErMRoot(v) (52)

and the predicate ΓTEF (Trivial Error Free). Let ψ : Γ× V → N be the function defined by:

ψ(γ, v) =

{
1 if ErT(v, γ) is true
0 otherwise

Let Ψ : Γ→ N be the function defined by:

Ψ(γ) =
∑
v∈V

ψ(γ, v) .
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Note that all nodes are legitimate with respect to ErT(v) if and only if Ψ(γ) = 0. We define

ΓTEF = {γ ∈ Γ : Ψ(γ) = 0}.

Lemma 1 true . ΓTEF in one round.

Proof. We prove that, starting from an arbitrary initial configuration γ0, Algorithm CLE
reaches a configuration in ΓTEF in one round. Any node v with ErT(v, γ0) = true is enabled by
rule RError (since predicates of ErT are a subset of those of T.Er). These nodes are activated
during the first round. After execution of command Freeze (see Formula (4)), all these nodes
become frozen. In other words, upon activation, a node v with ErT(v, γ0) assigns leaderv = 2
and parv = ∅ in γ1, but does not change other variables (see Subsection 4.2).

Remark 1: To evaluate to true, ErNd(v) (see Formula (29)) and ErMRoot(v) (see Formula (50))
require leaderv ∈ {0, 1}, and ErFreeze(v) (see Formula (3)) requires leaderv = 2.

Remark 2: To evaluate to true ErFreeze(v)(see Formula (3)), ErCheck(v) (see Formula (28)),
ErAdd(see Formula (36)), ErPL(v) (see Formula (43)) and ErHC(v) (see Formula (48))
require parv 6= ∅ (see predicate Normal(v) for ErAdd(v), ErPL(v) and ErHC(v)).

Remark 3: If a node u with ErT(u, γ0) = false executes a command taking into account its
neighbors’ variables, and its neighbors do not execute any command, then by con-
struction of CLE commands, no error is generated and ErT(u, γ1) remains false.

A node v with leaderv = 2 and parv = ∅ has ErT(v, γ1) = false (see Formula (52) and Remarks 1
and 2). Note that, after execution of Freeze(v, γ0), v’s variables do not change (except leaderv
and parv). Let u be a neighbor of v with ErT(u, γ0) = false. Only predicate ErFreeze(u) (see
Formula (3)) included in predicate ErT(u) checks variable leaderv of its neighbors if paru = v.
Yet, in γ1, variable leaderv = 2, so ErFreeze(u, γ1) = false, and thanks to Remark 3, ErT(u, γ1)
remains false. Thus, starting from any arbitrary initial configuration γ0, the system reaches a
configuration γ1 ∈ ΓTEF in one round. 2

Lemma 2 ΓTEF is closed.

Proof. We prove that, starting from a configuration where γ0 ∈ ΓTEF holds, Algorithm CLE
preserves the fact that ErT(v) (see Formula (52)) remains false for any node v in V .

We now consider the impact of the execution of each rule at node v.

RError: This rule is detailed in Subsection 4.2. We remark that only three types of errors are
not included in ErT (see Formula (52)): ErPlace(see Formula (17)), ErOverflow(see For-
mula (37)), and ErHypDis(see Formula (45)). Now, if at least one of these predicates is true
at node v, then rule RError is enabled. The proof of Lemma 1 shows that in this case, af-
ter execution of command Freeze(v) (see Formula (4)), ErT(v)(see Formula (52)) remains
false, and any neighbor u of v also has ErT(u) = false. Rule RError is also executed by a
node v whose parent is frozen (leaderparv = 2), so ErFreeze(v) (see Formula (3)) remains
false and by Lemma 1, we obtain for a node v and any of its neighbors u that ErT(v) and
ErT(u) both remain false. So, starting in a configuration in γ0 ∈ ΓTEF, after execution of
command Freeze(v), predicate ErT(v, γ1) remains false.
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RStart: This rule is detailed in Subsection 4.2. Only a frozen node v with no child can execute
this rule. After execution of command Start(v) (see Formula (5)), v becomes a root
(leaderv = 1).

Remark 4: Predicates Root(v) (see Formula (6)), ErMRoot(v) (see Formula (50)), and PassNd(v)
(see Formula (7)) are independent from the local variables of v’s neighbors. By
construction of CLE’s commands, those do not generate errors in Root(v) (see For-
mula (6)), ErMRoot(v) (see Formula (50)) and PassNd(v) (see Formula (7)).

Execution of Start(v)(see Formula (5)) assigns leaderv = 0. Thanks to Remarks 2 and
4, we obtain that ErT(v, γ1) remains false independently of a command execution by a
neighbor of v. So, starting in a configuration in γ0 ∈ ΓTEF, after execution of command
Start(v), predicate ErT(v, γ1) remains false.

RRoot and RRootdB: These rules are detailed in Subsections 4.3.4 and 4.4.4. They are enabled at any node
v with Root(v, γ0) = true (see leaderv = 1 in the guard of RRoot). Executing Inc(v)
(see Formula (24)) or StartdB(v) (see Formula (49)) maintains leaderv = 1. Thanks to
Remarks 2 and 4, we obtain the fact that ErT(v, γ1) (see Formula (52)) remains false,
independently of a command execution by a neighbor of v. So, starting in a configuration
in γ0 ∈ ΓTEF, after execution of command Inc(v), predicate ErT(v, γ1) remains false.

RPassive: This rule is detailed in Subsection 4.3.3.

Remark 5: Executing command Pass(v) (see Formula (14)) deletes the hyper-nodes variables
of v. As a consequence, the following predicates become false: ErAdd(v, γ1)(see For-
mula (36)), ErPL(v, γ1)(see Formula (43)), and ErHC(v, γ1) (see Formula (48)).

Remark 6: Predicate CohP(v)(see Formula (21)) depends on the local variables of v’s parent of
v. Predicate ErCheck(v)(see Formula (28)) depends on the local variable of v’s parent
when Checkv = 0, and on the local variables of its neighbors when Checkv = 1.

Remark 7: Let v and u be two neighbors such that parv = u in γ0 and γ1. Then, command
Freeze(u, γ0) assigns leaderu = 2 and can assign paru = ∅, which have no impact
on CohP(v, γ1) (see Formula (21)) and ErCheck(v, γ1) (see Formula (28)), if u remains
parent of v in γ1.

Remark 8: A node with u with leaderu = 2 cannot be a best neighbor of its neighbors v
(Best(v) (see Formula (13))), and u cannot involve v as its parent in rules RUpdate

(see T.Down(v)(Formula (25)) and T.Up(u) (see Formula (26)).

From Remarks 4 and 5, to evaluate ErT(v, γ1)(see Formula (52)), we only need to check
predicates CohP(v) (see Formula (21)) and ErCheck(v) (see Formula (28)). Let us study
the impact of executing commands Freeze(u, γ0) (see Formula (4)), Start(u, γ0) (see For-
mula (5)), Inc(u, γ0) (see Formula (24)), Pass(u, γ0) (see Formula (14)), and Update(u, γ0)
(see Formula (27)) by a node u ∈ Nv. If these commands are enabled, the others com-
mands have no impact on predicates CohP(v) (see Formula (21)) and ErCheck(v) (see For-
mula (28)). Executing Pass(v) (see Formula (14)) assigns Checkv = 0 in γ1. From Re-
mark 6, we only need to study the neighbor u of v such that parv = u in γ1 (Best(v, γ0) =
u) (see Formula (13)). We remark that Checku = 0 and Elecv 6= Elecu in γ0 (due to
ErCheck(u) = false and Best(v) = u).

− For commands Freeze(u, γ0) (see Formula (4)) and Start(u, γ0) (see Formula (5)),
see Remarks 7 and 8.
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− Command Inc(u, γ0) (see Formula (24)) requires Elecw = Elecu or Phaseu = π−(w),
for all w ∈ Nu, which contradicts Best(v, γ0) = u (see Formula (13)). So, rule
RRoot(u, γ0) is not enabled.

− Since Checku = 0 in γ0, rule RUpdate requires Elecw = Elecu, for all w ∈ Nu, to be
enabled (see predicate T.Up (see Formula (26))). So, RUpdate(u, γ0) is not enabled
because Best(v, γ0) = u.

− Command Pass(u, γ0) (see Formula (14)) is enabled if and only if there exists a neigh-
bor w of u such that Best(uγ0) = w and w 6= v. As Best(v, γ0) = u and Best(u, γ0) =
w after execution of Pass(v, γ0) and Pass(u, γ0), we have Best(v, γ1) = u. So, pred-
icate CohP(v) remains true in γ1. Command Pass(u) assigns Checku = 0, so v and
its parent u have Checkv = Checku = 0 in γ1. Therefore, ErCheck(v, γ1) (see For-
mula (28)) remains false.

Overall, starting in a configuration in γ0 ∈ ΓTEF, after execution of command Pass(v),
predicate ErT(v, γ1) remains false.

RUpdate: This rule is detailed in Subsection 4.3.5. It is enabled by a passive node v (so ErMRoot(v, γ0) =
false) and by Remark 4, we obtain PassNd(v, γ1) = true (see Formula (7)) and ErMRoot(v, γ1) =
false (see Formula (50)). The execution of command Update (see Formula (27)) by v does
not modify the variables used by predicates ErAdd(v) (see Formula(36)), ErPL(v) (see For-
mula (43)), and ErHC(v) (see Formula (48)) for v and its neighbors. As a consequence, we
need to check predicates CohP(v) (see Formula (21)) and ErCheck(v) (see Formula (28)).
Command Update(v) (see Formula (27)) has two possible actions.

The first case is when T.Down(v, γ0) = true (see Formula (25)), and then the execution of
Update(v, γ0) assigns Elecv := Elecparv and Checkv := 0 in γ1. Remarks 6 and Checkv = 0
in γ1 imply that in order to check ErT(v, γ1), we need to study the impact of executing
one command in γ0, for u = parv in γ1

− For commands Freeze(u, γ0) and Start(u, γ0), see Remarks 7 and 8.
− Command Inc(u) (see Formula (24)) requires in γ0 that Elecw = Elecu or Phaseu =
π−(w), for all w ∈ Nu, which contradicts T.Down(v) = true (see Formula (25)). So
rule RRoot(u, γ0) is not enabled.

− Rule RUpdate (see Formula (27)) requires Elecw = Elecu, for all w ∈ Ch(u), to be en-
abled (see predicates ErCheck(u) (see Formula (28)) and T.Up(u) (see Formula (26))),
but v ∈ Ch(u, γ0) and T.Down(v, γ0) implies Elecv 6= Elecu, so RUpdate(u, γ0) is not
enabled.

− Command Pass(u) (see Formula (14)) is enabled if and only if there exists a neighbor
w of u such that Best(u) = w and w 6= v. As Elecv in γ1 is equal to Elecu in γ0,
we have Best(v) = u after execution of Update(v) (see Formula (27)) and Pass(u)
(see Formula (14)). Hence, predicate CohP(v, γ1) remains true. Moreover, command
Pass(u, γ0) assigns Checku = 0, so both v and its parent u have Checkv = Checku = 0
in γ1. Therefore, ErCheck(v, γ1) (see Formula (28)) remains false.

The second case is when T.Up(v, γ0) = true (see Formula (26)). In other words, Elecv =
Elecu for all u ∈ Nv, and Checkv = 0 and Checku = 1 for all u ∈ Ch(v). We remark that,
since ErCheck(u, γ0) = false, we have Checku = 0 in γ0 (see Figure 5(a)). Execution of
Update(v) assigns Checkv = 1(see Figure 5(b)). Let u be the neighbor of v such that
parv = u, and w be the neighbor such that parw = v in γ1.
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w
Checkw = 1

Elecw = Elecv

v
Checkv = 0

Elecv = Elecw = Elecu

u
Checku = 0

Elecu = Elecv

(a) Configuration γ0

w
Checkw = 1

Elecw = Elecv

v
Checkv = 1

Elecv = Elecw = Elecu

u
Checku = 0

Elecu = Elecv

(b) Configuration γ1

Figure 5: T.Up(v) = true in γ0.

− For commands Freeze(u, γ0) and Start(u, γ0), see Remarks 7 and 8. Freeze(w, γ0)
and Start(w, γ0) contradict the fact that parw = v in γ1, because leaderv 6= 2 im-
plies that command Freeze(w, γ0) assigns parw = ∅ and command Start(w, γ0) also
assigns parw = ∅.

− Command Inc(u, γ0) (see Formula (24)) requires Elecx = Elecu, and Checkx = 1 for
all x ∈ Ch(u, γ0), which contradicts T.Up(v, γ0) = true (see Formula (26)). So, rule
RRoot(u, γ0) is not enabled. Then, command Inc(w, γ0) is enabled by a root and does
not modify its parent, so this contradicts parw = v in γ1. Hence, rule RRoot(w, γ0) is
not enabled.

− Rule RUpdate is not enabled for u and w in γ0, since u requires either Checku = 1 or
Checku = 0 and Checkv = 1, and w requires Elecw 6= Elecv to be enabled.

− Command Pass(u, γ0) is enabled if and only if there exists a neighbor x of u such
that Best(u) = x and x 6= v. As Elecv in γ1 is equal to Elecu in γ0, Best(v) = u
holds after execution of Update(v) and Pass(u), so predicate CohP(v, γ1) remains
true. Moreover, command Pass(u, γ0) assigns Checku = 0, so v and its parent u
satisfy Checkv = Checku = 0 in γ1. Therefore, ErCheck(v, γ1) remains false. Command
Pass(w, γ0) is enabled if and only if there exists a neighbor x of u such that Best(u) =
x and x 6= v. Yet, this activation assigns parw = x in γ1, which contradicts our
assumption that parw = v in γ1. So, rule RPassive(w, γ0) is not enabled.

Overall, starting in a configuration in γ0 ∈ ΓTEF, after execution of command Update(v),
predicate ErT(v, γ1) remains false.

Remark 9: Commands BinAdd(v), Pipe(v), and Verif(v) do not modify leaderv (i.e., leaderv ∈
{1, 2}). Thanks to Remark 4, ErNd(v, γ1) and ErMRoot(v, γ1) remain false after execu-
tion of one of these commands.

Remark 10: Algorithm CLE maintains ErFreeze(v) = false, a node v has ErFreeze(v) = true if
and only if leaderv = 2 and leaderparv 6= 2. If we consider a configuration γ0 ∈ ΓTEF,
and a node v with leaderv = 2, either v has no parent and no rule assigns a parent to
a node with leaderv = 2, or v has a parent and its parent has leaderparv = 2. Then,
the only rule executable by parv is Start, but this rule is executable only by a node
without child.

RHypAdd: This rule is detailed in Subsection 4.4.1. Command BinAdd(v) only modifies variable
Addv.

ErCheck(v) (see Formula (28)): Command BinAdd(v) does not modify the variables used
in ErCheck(v), so ErCheck(v) may become true if and only if one of its neighbors u
modifies a variable used in ErCheck(v). In other words, if u executes Pass(u) or
Update(u). Let us consider first the case when Checkv = 0. We need to check
Checku with parv = u (Remark 6) in γ1. If command Pass(u) is executed in γ0,
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then Checku = 0 in γ1, and ErCheck(v) remains false. Rule RUpdate is not enabled
for u (thanks ErCheck(v) = false in γ0). Now we consider, Checkv = 1, we need to
check Checku with u ∈ Ch(v) (remark 6) in γ1. Thanks to ErCheck(v, γ0) = false,
RPassive(u, γ0) and RUpdate(u, γ0) are not enabled.

ErAdd(v) (see Formula (48)): Command BinAdd(v) modifies the variables used in ErAdd(v),
so we need to check variable Addu of the child u of v in γ1 (Remark 6) if dv < B̂v.
Three commands may modify Addu. The first one is Pass(u), but from Remark
5, ErAdd(v) remains false. The second one is BinAdd(u), but the activation of rule
RHypAdd at u implies that Addu 6= ⊥, so RHypAdd is not enabled for u. The last one is
Pipe(u), and more precisely when predicate Publish(u) = true (see Formula (39)).
If Publish(u) = true, then either du = 1 (it is not the case since u is child of v, and
v is not a root), or PLu[0] = du − 1. Let us study the second case. The hypothesis
that RHypAdd is enabled for v implies Addv = ⊥ and PLv = (⊥,⊥), so ErPL(v) = false
in γ0 implies PLu = (⊥,⊥) or PLu[0] = du − 1. We already saw that du 6= 1, so
as Publish(u) = true, predicate PLu 6= (⊥,⊥). Now, PLu[0] = du − 1 in γ0 implies
Addu = ⊥ (Thanks to ErPL = false in γ0), which contradicts the activation of RHypAdd

for v (which needs Addu 6= ⊥). As a consequence, rule RHypBroad is not enabled for u.
Then, ErAdd(v) remains false in γ1.

ErPL(v) (see Formula (43)): Command BinAdd(v) does not modify the variables used in
ErPL(v). So, we need to check variable PL(u) of the parent u of v in γ1 (Remark 6)
if dv > 1. Only commands Pipe(u) and Pass(u) may modify PLu. Rule RHypBroad is
not enabled, because ErAdd(v) = false in γ0 implies Addu = ⊥, and rule RHypBroad is
not enabled at u in this case. By Remark 5, ErPL(v) remains false after execution of
Pass(u).

ErHC(v) (see Formula (48)): Command BinAdd(v) does not modify the variables used in
ErPL(v). So, we need to check variable HCu of the child u of v in γ1 (Remark 6) if
dv < B̂v. Only commands Pass(u), Pipe(u), and Verif(u) may modify HCu. By
Remark 5, ErHC(v) remains false after execution of Pass(u). Now, du > 1 since
paru = v and v is not a root, so rule RHypVerif is enabled in two case. If HCv 6= (⊥,⊥)
and HCu 6= HCv, command Verif(u) assigns HCu = HCv, and ErHC(v) remains false
in γ1. Otherwise rule RHypVerif is enabled if HCv = (⊥,⊥), and command Verif(u)
assings HCu = (⊥,⊥). So,ErHC(v) remains false in γ1.

Overall, starting in configuration in ΓTEF, after execution of command BinAdd(v), predi-
cate ErT(v, γ1) remains false.

RHypBroad: This rule is detailed in Subsection 4.4.2. Command Pipe(v) (see Formula (42)) modifies
variables PLv and HCv.

ErCheck(v) and ErHC(v): Command Verif(v) does not modify the variables used in ErCheck(v)
and ErHC(v), so these cases are dealt with in the proof of closure of rule RHypAdd.

ErAdd(v) (see Formula (36)): Command Pipe(v) does not modify the variables used in
ErAdd(v), so ErAdd(v) may become true if and only if its child u modifies its variable
used in ErAdd(v) (Remark 6). In other words, if rule RHypAdd is enabled for u, and
u executes BinAdd(u). Rule RHypBroad is enabled for v if and only if Addv 6= ⊥, so
RHypAdd is not enabled for u because Addu 6= ⊥ (Thanks to ErAdd(v) = false in γ0).

ErPL(v) (see Formula (43)): Command Pipe(v) modifies the variables used in ErPL(v). So,
we need to check variable PL(u) of the parent u of v in γ1 (Remark 6) if dv > 1.
Only commands Pipe(u) and Pass(u) may modify PLu. By Remark 5, ErPL(v)
remains false after execution of Pass(u). predicates Publish(v) and CleanPV require
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PLu = (⊥,⊥), so Addu = ⊥ (thanks to ErPL(v) = false in γ0). Then, rule RHypBroad

is not enabled for u in this case. predicate Pipe(v) requires PLu 6= PLv, so u has a
child (v) with different variable PL. Then, Publish(u), Pipe(u), and CleanPV(u) are
false in γ0. As a consequence, rule RHypBroad is not enabled at u in this case.

Overall, starting from a configuration in ΓTEF, after execution of command BinAdd(v),
predicate ErT(v, γ1) remains false.

RHypVerif: This rule is detailed in Subsection 4.4.3. Command Verif(v) (see Formula (47)) only
modifies variable HCv.

ErCheck(v), ErAdd(v) and ErPL(v): Command Verif(v) does not modify the variables used
in ErCheck(v), ErAdd(v) and ErPL(v). Son, these cases are dealt with in the proof of
closure of rules RHypBroad and RHypAdd.

ErHC(v) (see Formula (48)): Command Verif(v) does not modify the variables used in
ErHC(v). So, we only need to check variable HCu of the child u of v in γ1 (Remark 6)
if dv < B̂v. Only commands Pass(u) (see Formula (14)), Pipe(u) (see Formula (42))
and Verif(u) (see Formula (47)) may modify HCu. By Remark 5, ErHC(v) remains
false after execution of Pass(u). Then, du > 1 because paru = v and v is not a
root, so rule RHypVerif is enabled in two case. If HCv 6= (⊥,⊥) and HCu 6= HCv,
command Verif(u) assigns HCu = HCv, and ErHC(v) remains false in γ1. Otherwise
rule RHypVerif is enabled if HCv = (⊥,⊥), and command Verif(u) assigns HCu =
(⊥,⊥), so ErHC(v) remains false in γ1. Command Pipe(u) modifies HCu if and only
if du = B̂u. As u is the parent of v, dv = 1 and ErHC(v) remains false in γ1.

Overall, starting in a configuration in ΓTEF, after execution of command BinAdd(v), pred-
icate ErT(v, γ1) remains false.

To conclude, starting from a configuration γ0 ∈ ΓTEF, Algorithm CLE preserves the fact
that ErT(v) (see Formula (52)) remains false for all nodes v in V . 2

We now define predicate ΓCF (for Cycle Free), which ensures that no cycles induced by parent
variables remain in the network. Let λ : Γ× V → N be the function defined by:

λ(γ, v) = |dBPX
− dBX − 1|

Where X is a hyper-node containing v, and PX is the hyper-node parent of X (recall that dBX

is an integer whose binary representation is dBx1 , . . . , dBxk
where k = B̂). Let Λ : Γ → N be

the function defined by:

Λ(γ) =
∑
v∈V

λ(γ, v).

Let φ : Γ× V → N be the function defined by:

φ(γ, v) =

{
|dparv − dv − 1| if dparv < B̂v

|dv − 1| if dparv = B̂v

Let Φ : Γ→ N be the function defined by:

Φ(γ) =
∑
v∈V

φ(γ, v).

We now define:
ΓCF = {γ ∈ ΓTEF : Φ(γ) = Λ(γ) = 0 and L(γ) > 0}.
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Lemma 3 ΓTEF . ΓCF in O(n log n) rounds.

Proof. Consider an initial configuration γ0 ∈ ΓTEF such that the structure induced by the
parent variables parv, for v ∈ V , forms a cycle C. The cycle C necessarily contains all nodes,
which implies that no node has an empty parent pointer. Moreover, since γ0 ∈ ΓTEF, for every
node v, leaderv 6= 1. Rule RPassive can modify the parent pointer. Let us consider a configuration
γ0 where no node is enabled with respect to rule RPassive. Then, for all u, v ∈ V (Elecv = Elecu).
Otherwise in a cycle, there would exist at least a node v with a best neighbor u (see Functions
NgSupBs (see Formula (9)), NgInfPhC (see Formula (11)), NgSupBp (see Formula (10)), and Best

(see Formula (13))). Since L(γ) = 0, there is no root, so for all v ∈ V , dv > 0. As a consequence,
rule RRoot (see dv = 0 in rule RRoot in Subsection 4.3.4) is not enabled. Therefore, command
Inc(v) cannot be executed at any node v. Then, the system reaches a configuration γ0′ ∈ ΓTEF,
where the rule RUpdate(v) is not enabled, for every node v ∈ V (see Subsection 4.3.5).

Claim: Φ(γ0′) = 0.

Assume for the purpose of contradiction that Φ(γ0′) 6= 0. Then there exists at least one
passive node v that detects an error between its distance and the distance of its parent (see
predicates CohP(v) (see Formula (21)) and ErNd (see Formula (29))), which contradicts γ0′ ∈
ΓTEF. Thus, Φ(γ0′) = 0. A direct consequence of the fact that Φ(γ0′) = 0 is that the number of
hyper-nodes in γ0′ is exactly n/MaxB̂.

We are now ready to show that, if the initial configuration γ0 contains a cycle, then Algorithm
CLE detects an error in O(n log n) rounds.

We remark that the assignment dB is made when a node takes its parent or changes its
parent (see rule RPassive in Subsection 4.3.3). Moreover, all passive nodes v have dBv ∈ {0, 1}
by definition of variable dBv. This would contradict the hypothesis that γ0′ ∈ ΓTEF. The distance
hyper-node verification can be made. Since all nodes are passive in γ0′ , the only commands that
can be executed by a node are those related to the distance verification between hyper-nodes,
that is, commands BinAdd(v),Pipe(v) and Verif(v). More specifically, the only nodes that
can possibly be activated in γ0′ are the nodes v such that dv = B̂v.

For every hyper-node X = (x1, x2, . . . , xk), where k = MaxB̂, since the scheduler is weakly
fair, predicate T.Add(xk) = true, and xk executes command BinAdd(xk) at round 1. This yields
the proper execution of the binary addition. The binary addition occurs from xk to x1, and
every node in each hyper-node X eventually takes value ”+” or ”ok” once MaxB̂ rounds have
elapsed. Now, if dBx1 = 1 and Addx1 = +, then an error is detected since the binary addition
overflows (see predicate ErOverflow(v) (see Formula (37))).

Node x1 starts the verification process that propagates from x1 to xk. Consider Hyper-
node X = (x1, x2, . . . , xk), and let us denote by Y the child hyper-node of X in the current
configuration at round MaxB̂. Node x1 computes the values of dBy1 (see predicate T.Pipe, and
command Pipe). This value is broadcast from x1 to xk (see predicate T.Pipe, and command
Pipe). Node y1 checks whether PLxk

[1] = dBy1 . If it is the case, then the verification process
for all other nodes in Y carries on (see predicate T.Verif and command Verif). Otherwise y1
detects an error (see ErHypDis(v) (see Formula (46))).

Thanks to predicates T.Add, T.Pipe, and T.Verif, and to commands BinAdd , Pipe, and
Verif , all node in Y are eventually checked, after an additional MaxB̂ rounds. The total number
of rounds for checking hyper-nodes is the following, assuming MaxB̂ = blog nc : there are
n/blog nc hyper-nodes, and each hyper-node completes verification in O(blog nc) rounds, so the
overall process takes O(n log n) rounds.
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To sum-up, if the configuration γ0 contains a cycle, then at least one node v of a hyper-node
detects an error in O(n log n) rounds, and executes command Freeze(v) (see Formula (4)).

Finally, if L(γ0) = 0 in an arbitrary configuration, then Algorithm CLE detects an error in
O(n log n) rounds. Then, by Lemma 1, the node detecting the cycle resets its parent variable
in one round. As a consequence, the system reaches a configuration in ΓCF. 2

Lemma 4 ΓCF is closed.

Proof. Let us consider a configuration γ ∈ ΓCF. We already noticed in the proof of Lemma 2
that Algorithm CLE preserves coherent distances (i.e., Φ(γ) = 0), and does not introduce
trivial errors (i.e., Ψ(γ) = 0). Moreover, in the proof of Lemma 3, we have explained that the
hyper-node distance verification correctly reports errors, if any. variable dB is only modified by
command Pass. In the sequel, we use the wording “v joins Tr” when a node v executes Pass,
and the pointer parv of v then points to a node in the subtree Tr rooted at r.

We denote by X the set of candidate leader nodes. Let us first consider a node v (in X or
not), and a root r ∈ X such that dv ≤ blog nc, and v joins Tr when r increases its phase from i−1
to i, for some integer i. Thanks to predicate T.StartdB and to command StartdB, r publishes
first the bit for the node whose distance from r is 1. In other words, PLr = (1, 0). When any
node v at distance 1 joins Tr, v sets dBv = PLr[1], and then v informs r about the updating of
dB by assigning PLv = PLr. At this point, r can publish the bit for nodes at distance 2 (i.e.,
PLr = (2, 0)), and so on until the distance reaches blog nc. Now, a node v joins Tr only if its
candidate leader parent publishes the bit that corresponds to the binary representation of the
distance between v and r. In other words, for any node u, if du = k with k < blog nc, then B̂u

must be equal to k + 1. This enables Λ(γ) = 0 to remain invariant. When k reaches blog nc,
a hyper-node is created. Then, a binary addition process is carried out, and computes the bit
for v when v joins Tr. This process maintains Λ(γ) = 0, and, as a direct consequence, L(γ)
remains greater than 0. To conclude, algorithm CLE maintains Ψ(γ) = 0, Φ(γ) = 0, Λ(γ) = 0,
and L(γ) > 0. 2

We now introduce predicate ΓIEF (for Impostor Error Free), which ensures that the currently
elected leader is not an impostor. Let ξ : Γ× V → N be the function defined by:

ξ(γ, v) = |maxFB− B̂v|

where maxFB = max{Bit(1, Idv) : v ∈ V }. Let Ξ : Γ→ N be the function defined by:

Ξ(γ) =
∑
v∈V

ξ(γ, v).

We show that CLE reaches a legitimate configuration with respect to leader election if and only
if Ξ(γ) = 0.

Let ε : Γ× V → N be the function defined by:

ε(γ, v) =


0 if dv = 0 ∧ Bit(minPh, Idv) = Bit(minPh, l∗)
1 if dv = 0 ∧ Bit(minPh, Idv) < Bit(minPh, l∗)
0 otherwise

where minPh = min{Phasev : v ∈ V } and l∗ is the identity of the node with the maximum
identity. Let Υ : Γ→ N be the function defined by:

Υ(γ) =
∑
v∈V

ε(γ, v)
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We define:
ΓIEF = {γ ∈ ΓCF : Ψ(γ) = Ξ(γ) = Υ(γ) = 0}.

Lemma 5 ΓCF . ΓIEF in O(n log n) rounds.

Proof. Let us first consider an initial configuration γ ∈ ΓCF. We observed in Lemma 3 that
γ being in ΓCF implies L(γ) > 0, and at least one node has no parent. As frozen nodes do
not participate to the election process, without loss of generality, we consider that the system
contains no frozen node.

We remark that, in a configuration γ ∈ ΓIEF, a root v such that Phasev = B̂v can restart
the phase from the begining if and only if all the nodes are in its subtree, or all subtree are in
phase Phase = B̂v. Let us suppose the opposite, let Tv denote the subtree rooted at v (such
that Phasev = B̂v). Let u be the neighbor of `v, a leaf of Tv. If Phaseu < Phase`v , then u is a
best neighbor of `v. If Check`v = 1, then an error is detected, which contradicts the hypothesis
that γ ∈ ΓIEF. Otherwise, if Check`v = 0, then Tv reaches the subtree containing u.

Let us denote by L ∗ the node with maximum identity, and let X denote the set of candidate
leader nodes. Let us suppose that L ∗ 6∈ X. Then, let L be the node with maximum identity in
X. At some point in the execution, the system reaches a configuration where all sub-spanning
tree merge in a unique spanning tree rooted at L . Thus, let us suppose that γ is a configuration
where the network is spanned by an unique tree rooted at L . In this case, dL = 0 and du > 0,
for every node u 6= L .

Let us assume, for the purpose of contradiction, that Ξ(γ) 6= 0. If the tree is rooted at L ,
then every node must have the same B̂ as L . Since L is a root, B̂L = Bit(1, IdL ). Hence,
B̂L 6= maxFB (because Ξ(γ) 6= 0). Now, B̂L cannot be larger than maxFB, so there exists v such
that B̂v = maxFB, and PassNd(v) is true. This contradicts γ ∈ ΓTEF, so we can conclude that
Ξ(γ) = 0.

Since L and L ∗ have the same number of bits, there must exist one phase where the
bit-position of L ∗ is larger than the bit-position of L . More formally, there exists i, 1 <
i ≤ blog nc + 1, such that, for every j < i, we have Bit(j, IdL ) = Bit(j, IdL ∗), and, for every
k ≥ i, we have Bit(k, IdL ) < Bit(k, IdL ∗). Note that i > 1, because, in ΓTEF, predicate PassNd

must be true. The worst case with respect to time complexity is for i = blog nc + 1, and the
arbitrary initial configuration starts at phase 2. In this case, only RRoot can be activated for L ,
and only rule RUpdate for the other nodes (in parallel to the hyper-node distance verification).
Node ` executes command Inc(L ) blog nc + 1 − 2 times. After each execution of command
Inc, every node executing this command updates Elec in a top-down manner (see predicate
T.Up and command Update). This updating process takes at most n rounds. When all nodes
have the same election values, a bottom-up control process is initiated (see predicate T.Up and
command Update). This process takes at most n rounds. After that, L increases its phase,
and the same process is repeated. At the last phase, ErPlace(L ∗) = true holds. Then, an error
is detected. Therefore, if the system contains a impostor leader, then an error is detected in
O(n log n) rounds. 2

Lemma 6 ΓIEF is closed.

Proof. Let γ ∈ ΓIEF, with L(γ) > 0. Let X be the set of candidate leaders (i.e., for every
x ∈ X, Root(x) = true). Let x ∈ X, and let T(x,i) be the subtree rooted at x during phase

i. For a node v ∈ T(x,i), we have (i) either B̂v < B̂x or B̂v = B̂x, or ii) Bit(j, Idv) < Bit(j, Idx)
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for every j ≤ i. Moreover, for any two candidates leaders x1 and x2, we have that, at phase i,
B̂x1 = B̂x2 , and Bit(j, Idx1) = Bit(j, Idx2), for every j ≤ i. Let i be such that T(x1,i) and T(x2,i)

have adjacent nodes. Let x′1 ∈ T(x1,i) and x′2 ∈ T(x2,i) be two nodes such that x′1 is adjacent
to x′2. If, at phase i + 1, Bit(i + 1, Idx1) > Bit(i + 1, Idx2), then the nodes of T(x1,i) and T(x2,i),
activated by predicate T.Up, execute Update. When x′1 reaches Elecx1 at phase i+1, x′2 becomes
passive (cf. command Pass) and selects x′1 as its parent. In a bottom-up fashion, every node
of T(x2,i) joins the subtree T(x1,i+1) (cf. command Pass), and, eventually, x2 becomes passive

and joins T(x1,i+1). By this process, for every node v in T(x1,i+1), we have (i) either B̂v < B̂x1

or B̂v = B̂x1 , and ii) Bit(j, Idv) < Bit(j, Idx1) for every j ≤ i+ 1. This process is repeated until
phase blog nc, where there remains a single leader in the network. 2

Let us define the predicate ΓNF (No Frozen node). We define F(γ), the set of nodes v with
leaderv = 2 and parv = ∅ in γ, Tv(γ), the tree rooted at v ∈ F, and T2v(γ) = {u ∈ T(γ)v :
leaderu = 2}. Let η : Γ× F→ N be the function defined by:

η(γ, v) =

{
n2 − |T2v(γ)| if T2v(γ) 6= Tv(γ)
|T2v(γ)| otherwise

Let κ : Γ→ N be the function defined by:

κ(γ) =
∑
v∈F

η(γ, v)

Note that all nodes are not frozen node if and only if κ(γ) = 0. We define:

ΓNF = {γ ∈ ΓIEF : κ(γ) = 0}.

Lemma 7 ΓIEF . ΓNF in O(n) rounds.

Proof. Let us consider an initial configuration γ0 ∈ ΓIEF such that η(γ0) 6= 0. As ΓTEF ⊂ ΓIEF,
if a node v has leaderv = 2, then either v has no parent, or the parent u of v has leaderu = 2
(see ErFreeze(v) (see Formula (3))). Without loss of generality, let us consider that the set F(γ0)
is composed of exactly two nodes u and v such that T2u 6= Tu and T2v = Tv (see Figure 6). As a
consequence κ(γ0) = n2 − |T2u(γ0)|+ |T2v(γ0)|.

− Let x ∈ Tu and x ∈ T2u be the first descendant of u such that leaderparx = 2 and leaderx 6= 2.
So, x is continuously enabled by rule RError, while command Freeze(x) is not executed,
due to the presence of ¬Error(x) in all the others rules (see Algorithm CLE).

− Let `v be the leaf of tree Tv(γ0). So `v is continuously enabled for rule RStart, while
command Start(x) is not executed. Yet, RStart is the only rule enabled with leader`v = 2
(see Algorithm 1)).

− Let `u be the leaf of Tu, so `u is not enabled until its parent becomes frozen. Because
the rules of hyper-nodes increment require that all neighbors of `v are in the same tree
as `v, that is not the case (`v is a leaf). Rule RPassive(`u) requires a best neighbor, but
the parent of `u is in the same tree, so it is not a best neighbor. Moreover, node v has
leaderv = 2, so v is not a best neighbor (see Best(v) Formula (13)).

− Node yi not in Tv or Tu between u and `v cannot reach Tv or Tu, because a node a with
leadera = 2 cannot be a best neighbor (see Best(a) Formula (13)).

− A node z, neighbor of `u, can reach Tu if and only if Best(z) = `u, otherwise this node is
not enabled. We remark that a node in Tu but not in T2u has no impact on κ.
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Since the scheduler is weakly fair, and x is continuously enabled, there exists a configuration
γ′ where the scheduler activates x, and we get |T2u(γ′)| > |T2u(γ0)|, so κ(γ′) < H(γ0). Likewise,
for `v, and we obtain |T2v(γ′)| < |T2v(γ0)|, so κ(γ′) < H(γ0). Now, if the scheduler activates x and
`v in the same round, we obtain |T2u(γ′)| > |T2u(γ0)| and |T2v(γ′)| < |T2v(γ0)|, so κ(γ′) < H(γ0).
As a consequence, while F is non-empty, starting from configuration γ0, the activation of rule
RError or rule RStart result in a configuration γ′ such that κ(γ′) < H(γ).

The number of rounds are bounded by the last frozen tree that disappears. Let us denote
by Tv such a tree. Suppose that in γ0, T

2
v contains only v. Then, the child u of v is continuously

enabled, so the first round ends when u is active, and so on until Tv = T2v = n. Now, the leaf
`v of T2v is continuously enabled, so the round ends when `v is activates, and so on until v is
started and T2v is empty, that is in at most n rounds. So starting in a configuration γ whith
F 6= ∅, the system converge in configuration γ′ ∈ ΓNF in 2n rounds. 2

Lemma 8 ΓNF is closed.

Proof. Directly by Lemmas 2, 4 and 6. 2

Lemma 9 ΓNF . ΓLE in O(n log2 n) rounds.

Proof. We know by Lemma 4 that ΓCF is closed, and we know by Lemma 6 that ΓIEF is closed.
Moreover the proof of Lemma 6 provides details about the election process at each phase. Let
γ ∈ ΓIEF at round t. Moreover, let us suppose that γ ∈ ΓCF. That is, L(γ) > 0. More precisely,
let i, 1 ≤ i ≤ blog nc + 1, denote the smallest phase counter in the network, among all nodes.
At phase i, there are at most n/2i−1 candidate leaders (i.e., at most n/2i−1 roots). Thus,
L(γ) = n/2i−1 at phase i. We have studied in the proof of Lemma 5 how Algorithm CLE
performs the election process. After O(n log n) rounds, phase i+1 is completed, and the system
reaches some configuration γ′. At this point, there remains at most n/2i candidate leaders.
Since L(γ′) ≤ n/2i, we get that:

L(γ′) < L(γ).

The number of phases is upper bounded by blog nc + 1. At phase blog nc + 1, we reach a
configuration γ′′ satisfying L(γ′′) = 1. A direct consequence of Lemmas 5 and 6 is that only
the node L ∗ with maximum identity has leaderL ∗ = 1. Every other node v has leaderv = 0.
Moreover, for every node v 6= L ∗, we have parv 6= ∅, and the structure induced by the pointers
parv, for all v 6= L ∗ forms a spanning tree rooted at L ∗. Regarding time complexity, our
algorithm takes O(n log n) rounds to detect an impostor leader, O(n) rounds to clean the system
after the detection of an error, and O(n log2 n) rounds to elect the leader. Therefore, in total,
Algorithm CLE performs O(n log2 n) rounds to converge to the leader specification. 2
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Lemma 10 ΓLE is closed.

Proof. The rule RPassive(v) is the only rule performed by v that modifies the distance and
the leader variables of node v. Let L ∗ be the node with the maximum identity. As a direct
consequence of Lemma 9, in the initial configuration, L ∗ is the only node that has dL ∗ = 0
and leaderL ∗ = 1. In other words, L ∗ is the only elected node. Therefore, L ∗ changes the
phase of the system by increasing the current phase, or by restarting from phase 1 (see predicate
T.Inc and command Inc). Thus, every node v satisfies B̂v ≤ B̂L ∗ . Moreover, for every phase
i, 1 ≤ i ≤ blog nc + 1, every node v satisfies Bit(i, Idv) < PlaceL ∗ . Hence, every node can
only executes the command Update, and the commands related to the hyper-node distances
verification. Finally, nodes never change their distance, parent, and leader variables. 2

5.1 Memory requirements

Lemma 11 Algorithm CLE use O(log log n) bits of memory per node.

Proof. Algorithm CLE has two types of variables: the variables that use a constant number
of bits, and those that use O(log log n) bits. Variables of the first type are:

parv ∈ {∅, 0, 1}, dBv ∈ {0, 1}, Addv ∈ {+, ok, ∅}, and leaderv ∈ {0, 1, 2}.

Variables of the second type are:

B̂v ∈ {1, ..., blog nc}, PLv ∈ {1, ..., blog nc} × {0, 1}, HCv ∈ {1, ..., blog nc} × {0, 1},

and
Elecv ∈ {1, ..., blog nc} × {1, ..., blog nc} × {0, 1}.

Hence, CLE uses O(log log n) bits of memory per node. 2

6 Conclusion

In this paper, we have shown that, in the state model, with a weakly fair distributed scheduler,
one can elect a leader in a ring with a (talkative) self-stabilizing algorithm using only O(log log n)
bits of memory per node.

The techniques developed in this paper suggest that more tasks based on unique process
identifiers could be solved with o(log n) bits of memory per node, when allowing the protocol to
be talkative. One natural candidate is the center finding task in general graphs, that is known
to require Ω(log n) bits of memory per node if required to be silent [21]. To our knowledge,
the best talkative protocol [14] for this problem does match this bound. So, the existence of a
talkative solution with o(log n) bits remains open.

Finally, it is known that one cannot do the same using only O(1) bits of memory per node [9].
An intriguing question is whether one can perform leader election in the same framework as in
this paper, using o(log log n) bits per node. By applying the techniques in this paper recursively,
it might be possible to reduce the memory requirements to O(log∗ n) bits of memory per node.
However, this seems non-trivial, as self-stabilization has to be maintained at every level of the
recursion.
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