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TWO-SIDED SPACE-TIME L1 APPROXIMATION AND OPTIMAL CONTROL
OF POLYNOMIAL SYSTEMS

BRUNO DESPRÉS∗ AND EMMANUEL TRÉLAT†

Abstract. We study a two-sided space-time L1 optimization problem and show how to reformulate the problem
within the framework of optimal control theory for polynomial systems. This yields insight on the structure of the
optimal solution. We prove existence and uniqueness of the optimal solution, and we characterize it by means of
the Pontryagin maximum principle. The cost function and the control converge when the polynomial degree tends
to +∞. We illustrate the theory with numerical simulations, which show that our optimal control interpretation
leads to efficient algorithms.
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1. Introduction. Let us start with several notations. Throughout the paper, the notation
I stands for a generic bounded nonempty real interval (typically, I = [0, 1]). The set of real
polynomial functions of one variable, of maximal degree n ∈ IN, is denoted by Pn = IRn[x]. The
(convex) subset of polynomial functions that are nonnegative over I is denoted by

P+
n = {pn ∈ Pn | 0 6 pn(x) ∀x ∈ I} .

We define the set

Un =
{
pn ∈ P+

n | 1− pn ∈ P+
n

}
= {pn ∈ Pn | 0 6 pn(x) 6 1 ∀x ∈ I} .

Quite obviously, Un is a convex compact subset of Pn, of nonempty interior. Given any T > 0,
any n ∈ IN and any qn ∈ P+

n , we also define the (convex) set

Kn(T, qn) =

{
un ∈ L∞(0,+∞;Un) |

∫ T

0

un(t) dt = qn, un(t) = 0 ∀t > T

}
.

Remark 1. The set Kn(T, qn) is nonempty if and only if T > ‖qn‖L∞(I). Indeed, if T >
‖qn‖L∞(I) then the nontrivial function un defined by un(t, x) = 1

T qn(x) (extended by 0 outside of
[0, T ]) belongs to Kn(T, qn). Conversely, if un ∈ Kn(T, qn), since 0 6 un(t, x) 6 1 we must have

0 6
∫ T
0
un(t, x) dt = qn(x) 6 T , and thus T > ‖qn‖L∞(I). Hence, in what follows we will always

assume that T > ‖qn‖L∞(I).

Let s be a strictly convex function (called an entropy), and let w be a nonnegative Lebesgue-
integrable weight function defined on I and satisfying

∫
I
w(x) dx > 0. A typical example is to

choose I = [0, 1], w(x) = 1 and s′(t) = t. We define the linear cost function

J(un) =

∫ +∞

0

∫
I

un(t, x)w(x) dx ds(t),

for every un ∈ L∞(0, T ;Pn) such that un(t) = 0 when t > T . Note that, above, we use the notation
un(t)(x) = un(t, x) without any ambiguity.
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In the present paper, we consider the L1-minimization problem consisting of minimizing the
functional J over the convex set Kn(T, qn), for some given qn ∈ P+

n and T > ‖qn‖L∞(I), that is,

(1) un = argmin {J(un) | un ∈ Kn(T, qn)}

If qn = 0 then the optimal solution is obviously un = 0. If only one inequality is taken into account
in the definition of Kn(T, qn), then the problem becomes obvious. Here, we deal with a space-time
L1 minimization problem that is two-sided. In the case n = 0, a characterization due to Brenier
(see [4, 6]) yields the optimal solution u0(t) = 1 for 0 < t < q0 and u0(t) = 0 for q0 < t: in this
case, u0 is optimal for any admissible entropy function s. The case n = 1 also has a trivial solution
(see [12]), which is the same for different entropy functions s. The general case n > 2 is the subject
of the present work. The set Kn(T, qn) is a closed convex set, nonempty if T > ‖qn‖L∞(I), and we
will establish further its compactness, implying existence of minimizers for Problem (1). The main
issue is that J is not strictly convex since it is only linear, so there is no reason a priori to have a
unique minimizer. Uniqueness will be established but the proof is far from being obvious.

1.1. Motivation of the study: kinetic polynomials. Problem (1) has first been formu-
lated in [12], where the authors model uncertainties in kinetic formulations of nonlinear conserva-
tion laws (see also [23, 24]): it echoes some relationships between uncertainty quantification and
modern L1-minimization. References to L1-minimization in compressed sensing and related prob-
lems can be found in [14, 18]. The theory of L1-minimization in an alternative to formulations with
moments for which we refer to [7, 17]. Moment methods in uncertainty modeling are called chaos
polynomials (see [22]). In the context of uncertainty modeling, un is called a kinetic polynomial
and the weight w characterizes some underlying probability law attached to the uncertainties. In
the construction done in [12], it was assumed (but not proved) that Problem 1 has a unique solu-
tion, un, which, in the context of that paper, is a polynomial modification of the usual “special”
Maxwellian M(t, x) = Ind0<t<qn(x) (indicatrix function). Of course, such a function, used as well
in [4, 6, 23, 24], takes values between 0 and 1 but is not a polynomial in x when fixing t. This is why
it is required to define a convenient projection of this special Maxwellian onto the set Kn(T, qn).
In this sense, the results of the present paper also justify the construction proposed in [12] .

1.2. Formulation as an optimal control problem. Problem (1) can be equivalently ex-
pressed as an optimal control problem, as follows. Given any un ∈ L∞(0,+∞;Un), we define

yn(t, x) =
∫ t
0
un(τ, x) dτ , so that we have ∂tyn(t) = un(t) and yn(0) = 0, and so that un ∈ Kn(T, qn)

if and only if yn(T ) = qn, where it is understood that un(t) has been extended by 0 for t > T .
In this context, the function t 7→ un(t) ∈ Un is viewed as a control, and yn(t) ∈ Pn as a state

at time t. We have then the following equivalent formulation of Problem (1):

(2)

Given qn ∈ P+
n and T > ‖qn‖L∞(I), find a control un ∈ L∞(0, T ;Un)

solution of the optimal control problem

∂tyn(t) = un(t), for a.e. t ∈ [0, T ],

yn(0) = 0, yn(T ) = qn,

un(t) ∈ Un, for a.e. t ∈ [0, T ],

min JT (un) =

∫ T

0

∫
I

un(t, x)w(x) dx ds(t).

Settled as such, this is an optimal control problem in the (n+ 1)-dimensional state space Pn, with
controls taking their values in the (n + 1)-dimensional convex set Un, with fixed initial and final
conditions, and integral minimization criterion. Note that, if Pn is equipped with the Euclidean
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structure inherited, by restriction, from the weighted space L2
w(I) (which is L2(I) for the measure

w dx), with the scalar product being denoted by 〈 , 〉L2
w(I), then

JT (un) =

∫ T

0

〈un(t), 1〉L2
w(I) ds(t).

Of course, this optimal control control is still not strictly convex.
Note that, with the above notations, we have JT (un) = J(un) for every un ∈ L∞(0, T ;Pn)

such that un(t) = 0 when t > T .

1.3. Main results. Our first main result is a generalization of some results due to Bojanic
and DeVore in [3] on one-sided L1 minimization, which is a branch of polynomial approximation
theory. To our knowledge, this is the first time that Bojanic and DeVore results are extended to
space-time with two-sided constraints.

Theorem 1. Let qn ∈ P+
n and let T > ‖qn‖L∞(I). We assume that s′′ ∈ L1(0, T ), and that

there exists s′′− > 0 such that s′′(t) > s′′− for almost every t ∈ [0, T ]. Then Problem (1) (or
equivalently, Problem 2) has a unique optimal solution un ∈ Kn(T, qn). Moreover, un has the
following properties:

• The function t 7→ 〈un(t), 1〉L2
w(I) is nonincreasing.

• There exists T∗ ∈ [0,+∞), depending on n and on qn, such that if T∗ < T then un(t) = 0
for T∗ < t < T .

As already alluded, the nontrivial part is to establish uniqueness. Its proof is based on conve-
nient reformulations of the Bojanic and DeVore theorem (see [3]) and on space-time comparison
inequalities using appropriate test functions. A numerical example provided at the end of this
work in Lemma 36 shows that the critical time may be strictly larger than maxI qn(x) and that it
depends on the entropy function s.

Now, taking advantage of the formulation (2) of Problem (1) in terms of optimal control, one
can apply the Pontryagin maximum principle (see [21, 26, 33]) and obtain a characterization of the
unique optimal solution by means of a first-order optimality system. The study of the resulting
conditions leads to the following theorem, which is our second main result.

Theorem 2. In the context of Theorem 1, there exists λn ∈ Pn (adjoint state) such that the
(unique) optimal solution of Problem (1) is given by

(3) un(t) = argmax
pn∈Un

∫
I

(λn(x)− s′(t))pn(x)w(x) dx = argmax
pn∈Un

〈λn − s′(t), pn〉L2
w(I),

for almost every t ∈ [0, T ]. In particular, un(t) is an extremal point of Un, for almost every
t ∈ [0, T ].

Extremal points of Un are characterized in Section 2.3. The expression (3) is useful to analyze
the optimal solution un. In Appendix B, we show how to use (3) in order to compute explicitly
optimal solutions for n = 2. We also give additional properties in Sections 4.3 on the normal
extremal flow and the shooting method, and in Section 4.4 where we take T = +∞.

Denoting by yn the trajectory corresponding to the control un in Problem 2, interpreted in the
optimal control language, the quadruple (yn, λn,−1, un) is a normal extremal lift of the optimal
trajectory, and (λn,−1) is a normal Lagrange multiplier (see Section 4 for the proof of Theorem
2, and in particular the application of the Pontryagin maximum principle). The number of such
normal Lagrange multipliers is equal to the dimension of the subdifferential at qn of the value
function associated with the optimal control problem 2 (see Remark 7 in Section 4.2).

For n = 0, we recover the Brenier inequality for any convex entropy (see [4, 6]), where the
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solution is the indicatrix function

(4) 1I{0<t<q0} = argmin

{∫ +∞

0

v(t)s′(t) dt | 0 6 v 6 1,

∫ +∞

0

v(t) dt = q0

}
.

A similar result holds true also for n = 1 because a function that is linear on an interval is
characterized by its terminal points (see [12, page 20]). A consequence of the exact solution for
n = 2 performed in Appendix B is the following result.

Proposition 3. In contrast to the cases n = 0 and n = 1, the optimal solution of the Problem
(1) for n > 2 depends on the entropy function s.

The equivalent formulation of Problem (1) as the optimal control problem (2) is not only
interesting to derive first-order necessary conditions as settled above, but it brings also a rich point
of view in order to implement efficient numerical methods for computing optimal solutions. Section
6 will be devoted to provide numerical simulations illustrating our theoretical results.

1.4. Organization of the paper. The paper is structured as follows.
Section 2 gathers several results that are useful to derive our main results but that have also

thei own interest in themselves: in Section 2.1 we study a two-sided polynomial maximization
problem and we define the useful concept of total order of contact; in Section 2.3, we characterize
extremal points of the convex compact subset Un of Pn, and we give a precise description of the
geometry of its boundary strata in terms of the total order of contact; in Section 2.4 we stress
on the possible nonuniqueness of maximizers of a static polynomial maximization problem, in
contrast to uniqueness of the dynamic Problem (1). Section 3 is devoted to prove Theorem 1. The
delicate point is to establish uniqueness of the maximizer, which is done thanks to results given
in Section 2. Theorem 2 is proved in Section 4, by applying the Pontryagin maximum principle
to the optimal control problem (2). Convergence issues as n → +∞ are addressed in Section 5,
such as the convergence as n→ +∞ of un and of JT (un). In Section 6, we present some numerical
simulations that are based on an optimal control implementation of the problem. Section 7 is a
conclusion. Appendix A is devoted to the proof of the technical Theorem 5, and in Appendix B
we give a construction of exact solutions for n = 2.

2. Auxiliary results.

2.1. “Static” two-sided polynomial maximization problem. In order to prove unique-
ness of the optimal solution in Theorem 1, we will use comparison estimates with appropriate
test functions (usual approach in minimization problems) and some technical tools coming from
one-sided best L1 polynomial approximation problem, for which we refer to [3]. Since these results
have their own interest, we present them hereafter separately, as a byproduct of our study.

Let fn ∈ Un be fixed. Recall that a given fn ∈ Un is a polynomial of maximal degree n that
satisfies the two-sided constraint 0 6 fn(x) 6 1 for every x ∈ I. We set

(5) Qn = {pn ∈ Pn | −min(1− fn, fn) 6 pn 6 min(1− fn, fn) on I} .

Note that Qn is convex and nonempty since 0 ∈ Qn. We consider the following auxiliary two-sided
polynomial maximization problem:

(6) pn = argmax
pn∈Qn

∫
I

pn(x)w(x) dx

Compared with Problem (1), this maximization problem is “static” in the sense that it does not
involve any time evolution (nor constraint at the final time, a fortiori). This problem is central in
our construction of the test functions that will be used in Section 3 to prove Theorem 1. We prove
in Theorem 5 that Problem (6) is well posed. But before, we need to define contact points and the
notion of total order of contact, also useful in order to characterize extremal points of Un.
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2.2. Contact points. A contact point of fn is an element x ∈ I such that fn(x) = 0 or
fn(x) = 1. Hereafter, for clarity the contact points will be denoted by xi ∈ I if fn(xi) = 0 and by
yj ∈ I if fn(yj) = 1. Contact points yield important constraints on the maximization problem (6),
and their impact has to be explained.

At a given isolated contact point, we first define the local order of contact as the maximal
number of successive derivatives that vanish. The order of contact is necessarily even if the contact
point is in the interior of the interval I. This yields a first family of contact points xi ∈ I on
the lower part of the graph of fn. These contact points are x0 < · · · < xp with contact orders

a0, . . . , ap such that dj

dxj fn(xi) = 0 for 0 6 j 6 ai − 1. If xi is in the interior of I then ai must
be even. If xi is on the boundary of I then ai may be odd or even. It follows that there exists
A ∈ Pn, with A > 0 on I, such that

(7) fn(x) =

p∏
i=0

|x− xi|aiA(x),

for every x ∈ I. The second family of contact points yj ∈ I is y0 < · · · < yq with contact orders

b0, . . . , bq such that dj

dxj (1− fn)(yj) = 0 for all 0 6 j 6 bi − 1. A contact point of the first family
cannot be a contact point of the second family and vice-versa. If yj is in the interior of I then bj
must be even. If yj is at the boundary I then bj may be odd or even. It follows that there exists
B ∈ Pn, with B > 0 on I, such that

1− fn(x) =

q∏
j=0

|x− yj |bjB(x),

for every x ∈ I. If a contact point is not isolated then fn is identically equal to 0 or 1.

Definition 4. Let fn ∈ Un \ {0, 1}. The total order of contact of fn is the integer defined by

toc(fn) =

p∑
i=0

ai +

q∑
j=0

bj .

If fn is identically equal to 0 or 1 then we set by convention toc(0) = toc(1) = +∞ or 2n+ 1.

Actually, if toc(fn) = 2n+ 1, then either fn = 0 or fn = 1. Indeed, then, fn has at least n+ 1
contact points (counted with their multiplicity) either with 0 or with 1, and hence either fn = 0
or fn = 1. It follows that toc(fn) 6 2n for every fn ∈ Un \ {0, 1}, and moreover this bound is
optimal. Indeed, take fn(x) = 1

2 (1 + Tn(2x− 1)) ∈ Un, where Tn the Tchebycheff polynomial of
degree n. Setting x = 1

2 (1 + cos θ) yields fn(x) = 1
2 (1 + Tn(cos θ)), and then it is easy to prove

that toc(fn) =
∑p
i=0 ai +

∑q
j=1 = n+ n = 2n.

The following result can be seen as an extension of the Bojanic and DeVore theorem (see [3]).

Theorem 5. There exists a unique maximizer pn ∈ Qn of Problem (6). Moreover, pn = 0 if
and only if toc(fn) > n+ 1.

The proof of Theorem 5 is quite lengthy and technical, and is done in Appendix A. It consists
of analyzing finely and extending adequately arguments developed by Bojanic and DeVore in [3].
The obvious part of the proposition is that if toc(fn) > n + 1 then pn = 0: indeed, then, the
graph of the function x 7→ min(1− fn, fn)(x) has at least n+ 1 contact points (counted with their
multiplicity) with the horizontal axis. In this situation polynomials in Qn have n+1 roots, so they
must vanish because their degree is less or equal to n. The converse, which is the important and
nontrivial part, will be the cornerstone to establish the uniqueness property claimed in Theorem
1, in Section 3.3.

5



2.3. Extremal points of Un. In the optimal control problem (2), since controls take their
values in the convex set Un, it will be useful to have information on extremal points of this control
constraint set. But there, also, the following result has its own interest and may be useful for
other purposes, for instance in polynomial optimization (see [19]) or in polynomial optimal control
(see [20]). Recall, again, that Un is the set of all polynomials pn of maximal degree n such that
0 6 pn(x) 6 1 for every x ∈ I. It is a compact convex subset (of nonempty interior) of Pn. Note
that pn ∈ ∂Un if and only if there exists x∗ ∈ I such that pn(x∗) = 0 or 1.

The main result of this section is Theorem 8 further, which gives a characterization of the
set Extr(Un) of extremal points of Un: in particular, we are going to establish that a polynomial
pn ∈ Un is an extremal point of Un if and only if toc(pn) > n + 1. But we do not know any
explicit (analytic) description of Extr(Un) in general. Of course, the constant polynomials 0 and 1
are extremal points of Un, but there are many other nontrivial ones. The geometry of the closed
convex set Un is not simple in general, as we are going to see.

2.3.1. Examples: n = 1 and n = 2. Before coming to the general case, we first give,
hereafter, a precise and complete description Un in the cases n = 1 and n = 2, where computations
are easy to perform. For simplicity, we assume that I = [0, 1].

Case n = 1. Any p1 ∈ U1 can be written as p1(x) = ax+b(1−x) with 0 6 a 6 1 and 0 6 b 6 1.
Therefore U1 has exactly 4 extremal points, that are the polynomials 0, 1, x, 1− x.

Case n = 2. We start with an easy remark. Let p2 be a polynomial of maximal degree 2.
Writing p2(x) = ax2 + 2bx(1− x) + c(1− x)2, we have 1− p2(x) = (1− a)x2 + 2(1− b)x(1− x) +
(1− c)(1− x)2.

Now, if p2(x) > 0 for every x ∈ [0, 1], then according to the Lukács theorem (see [27, 31]) it
can also be written as p2(x) = (αx + β(1 − x))2 + γ2x(1 − x). Then, we must have a = α2 > 0,
b = β2 > 0 and 2b = 2αβ + γ2, from which it follows that b > −

√
a
√
c. Conversely, if a > 0, c > 0

and b > −
√
a
√
c then p2(x) = ax2 + 2bx(1− x) + c(1− x)2 > (

√
ax−

√
c(1− x))2 > 0.

Similarly, if p2(x) 6 1 for every x ∈ [0, 1], then a 6 1, c 6 1 and b 6 1 +
√

1− a
√

1− c, and
conversely. Therefore, we have the following lemma.

Lemma 6. The polynomial p2(x) = ax2 + 2bx(1 − x) + c(1 − x)2 belongs to U2 if and only if
(a, b, c) ∈ V2 :=

{
(a, b, c) ∈ IR3 | 0 6 a 6 1, 0 6 c 6 1, −

√
a
√
c 6 b 6 1 +

√
1− a

√
1− c

}
.

Fig. 1. Plot of V2 in IR3

According to this lemma, U2 is identified with the convex set V2 with a linear bijective trans-
form. Therefore Extr(U2) is identified with Extr(V2). The set V2 is drawn on Figure 1. On this
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figure, the surfaces at the sides are pieces of planes, and the bordering lower and upper surfaces,
which are the graphs (a, c) 7→ −

√
a
√
c and (a, c) 7→ 1 +

√
1− a

√
1− c, are ruled surfaces (i.e.,

generated by lines). Therefore Extr(V2) consists of 8 points, given by the triples (0, 0, 0), (0, 1, 0),
(1, 0, 0), (1, 1,−1), (1, 0, 1), (0, 1, 1), (1, 1, 1), (0, 0, 2) (which are the vertices that one can observe
on the figure), and of curves (graphs of a square root) joining some of them, which are edges that
one can be see on Figure 1. In particular, the cardinal of Extr(V2) is infinite.

2.3.2. General results on the geometry of Un. We now come to the general case, by giving
precise results describing the boundary of Un, which is a stratified submanifold of Pn thanks to
the following simple lemma (see, e.g., [16] for Whitney stratifications).

Lemma 7. The set Un is semi-algebraic. As a consequence, Un has a Whitney stratification,
i.e., it admits a partition into smooth submanifolds of Pn satisfying the Whitney conditions.

Proof. Assuming without loss of generality that I = [0, 1], given any pn ∈ P+
n (i.e., pn is a

polynomial of maximal degree n that is nonnegative on [0, 1], it is well known that there exist
B ∈ Pn and C ∈ Pn−1 such that

(8) pn(x) = B(x)2 + x(1− x)C(x)2.

We write pn(x) =
∑n
i=0 aix

i, B(x) =
∑n
i=0 bix

i and C(x) =
∑n−1
i=0 cix

i, and we define a =
(a0, . . . , an) ∈ IRn+1, b = (b0, . . . , bn) ∈ IRn+1 and c = (c0, . . . , cn−1) ∈ IRn. By expanding (8),
we get 2n + 1 relations involving the coefficients of a, b and c, are are polynomial: the set of
(a, b, c) ∈ IRn+1 × IRn+1 × IRn satisfying these relations is algebraic. By projection, it follows that
the set of all a ∈ IRn+1 for which the corresponding pn ∈ Pn belongs to P+

n is semi-algebraic
(this follows from the Tarski-Seidenberg theorem, see [2, 35]). To conclude, it suffices to note that
pn ∈ Un if and only if pn ∈ P+

n and 1 − pn ∈ P+
n , and that the intersection of two semi-algebraic

sets is semi-algebraic. By o-minimality of semi-algebraic sets (see [35]), the Whitney stratifiability
property follows.

By Lemma 7, the boundary ∂Un of the convex Un is a stratified compact submanifold of
Pn ' IRn+1 of dimension n, which is therefore the finite union of strata, each stratum being a
submanifold (with boundary) of dimension k ∈ {0, . . . , n}. For instance, on Figure 1, strata of
dimension 2 are pieces of planes at the sides and the bordering lower and upper (ruled) surfaces;
strata of dimension 1 are (curved) edges, some of them consisting of extremal points; strata of
diemnsion 0 are the 8 extremal points mentioned previously, which are the vertices.

Now, let us characterize points belonging to a stratum of dimension k. First of all, recall that
pn ∈ ∂Un if and only if there exists x∗ ∈ I such that pn(x∗) = 0 or 1, if and only if toc(pn) > 1.
Actually, the interior of Un is

◦
Un = {pn ∈ Un | toc(pn) = 0},

and its boundary is

∂Un = {pn ∈ Un | toc(pn) > 1} =

2n+1⋃
j=1

Vjn,

with Vjn = {pn ∈ Un | toc(pn) = j}. Note that, for j = 2n + 1, we have V2n+1
n = {0, 1}. Now,

each Vjn is itself stratified into submanifolds, as follows. Hereafter, for simplicity we assume that
I = [0, 1].

Case j = 1. Any pn ∈ Un such that toc(pn) = 1 must either vanish or be equal to 1 at one
of the boundaries (0 or 1) of the interval I. Therefore, V1

n is the union of four strata, the first of
which (for instance) being {pn ∈ Un | pn(0) = 0}. The latter is a convex subset (and thus, a flat
stratum) of dimension n.
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Note that such a stratum can be parametrized as follows. We write pn(x) = xAn−1(x) with
An−1 ∈ Pn−1 satisfying An−1(x) > 0 for every x ∈ [0, 1], and pn(x) < 1 on [0, 1]. Then, there
exists ε > 0 (small enough) such that the perturbation of pn given by

v(δA)n−1
(x) = pn(x) + (x− x0)(δA)n−1(x) = (x− x0) (An−1(x) + (δA)n−1(x))

belongs to Un (i.e., 0 6 v(δA)n−1
6 1 on I), for any polynomial (δA)n−1 ∈ Pn−1 satisfying

‖(δA)n−1‖L∞(I) < ε. Such perturbations generate a flat convex subset of the boundary ∂Un
(because v(δA)n−1

(x0) = 0) of dimension n, of barycenter pn.
Case j = 2. Let pn ∈ Un be such that toc(pn) = 2. Then, either pn touches 0 or 1 at both

boundaries of I, or pn has exactly one contact point (with 0 or 1) in the interior of the interval I.
Therefore, V2

n is the union of six strata.
In the first case (the four first strata), one has, for instance, pn(0) = pn(1) = 0, which makes

a convex subset (flat stratum) of dimension n− 1.
In the second case (the two last strata), there exists a single contact point x0 in the interior of

I, such that (for instance) pn(x0) = p′n(x0) = 0 and p′′n(x0) > 0. The set of such polynomials is a
submanifold of dimension n, containing a convex subset of dimension n− 1. Indeed, for x0 fixed,
the latter conditions give an open convex subset of Pn of codimension 2 (Hermite interpolation at
x0); then, making x0 vary in the interior of I generates (in a nonlinear way) one more dimension.

It is interesting to make explicit a parametrization of such a stratum. Let us write pn(x) =
(x − x0)2An−2(x) with An−2 ∈ Pn−2 satisfying An−2(x) > 0 for every x ∈ [0, 1], and note that
pn(x) < 1 for every x ∈ I. Then, there exists ε > 0 (small enough) such that the perturbation of
pn given by

v(δA)n−2,η(x) = pn(x)− η(2x− 2x0 − η)An−2(x) + (x− x0 − η)2(δA)n−2(x)

= (x− x0 − η)2 (An−2(x) + (δA)n−2(x))

belongs to Un (i.e., 0 6 v(δA)n−2
6 1 on I), for any η ∈ IR and any polynomial (δA)n−2 ∈ Pn−2

satisfying |η| + ‖(δA)n−2‖L∞(I) < ε. The second line of the above formula is obtained by noting
that (x−x0)2−η(2x−2x0−η) = (x−x0−η)2. Making vary both parameters (δA)n−2 and η gives
perturbations v(δA)n−2,η that generate a subset of ∂Un (because v(δA)n−2,η(x0) = 0) of dimension
n, containing pn in its interior. Among these perturbations:

• Fixing η = 0, quite similarly to the case toc(pn) = 1, the perturbations (δA)n−2 7→
v(δA)n−2,0 generate a flat convex subset of ∂Un (because v(δA)n−2,0(x0) = 0) of dimension
n− 1, of barycenter pn.

• Fixing (δA)n−2 = 0, the perturbations η 7→ v0,η generate a (1D) curve of ∂Un (because
v0,η(x0 + η) = 0), which is transverse to the previous flat convex subset. Here, we have
this additional perturbation which consists of moving the contact point x0: this was not
allowed in the previous case toc(pn) = 1 because x0 was at the boundary of I.

For instance for n = 2 we recover exactly the upper and lower surfaces of Figure 1, which are ruled
but are not planes, in accordance with the above items.

Remark 2. We stress that contact points are counted with their multiplicity. For instance if
toc(pn) = 5 and pn(x) = (x−x0)(x−x1)4An−5(x), with x0 at the left boundary of I and x1 in the
interior of I, then explicit perturbations are written as

v(δA)n−5,η1,η2(x) = (x− x0)(x− x1 − η1)2(x− x1 − η2)2 (An−5(x) + (δA)n−5(x)) ,

and thus pn belongs to a flat convex subset of this stratum of dimension n− 4 inside a stratum of
dimension n− 2.
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Generalization. Proceeding similarly, assuming that toc(pn) = j, we get that:
• If j is odd, then one of the contact points is at the boundary of I, and all other (j − 1)/2

contact points (counted with their multiplicity) are in the interior. Reasoning as above, pn
belongs to the interior of a stratum of dimension n− (j − 1)/2, and moreover, pn belongs
to a flat convex subset of this stratum of dimension n− j + 1.
• If j is even, then:

– Either the two boundaries of I are contact points, and all other j/2−1 contact points
(counted with their multiplicity) are in the interior. Then pn belongs to the interior
of a stratum of dimension n− j/2, and moreover, pn belongs to a flat convex subset
of this stratum of dimension n− j + 1.

– Or all j/2 contact points are in the interior. Then pn belongs to the interior of a
stratum of dimension n− j/2 + 1, and moreover, pn belongs to a flat convex subset
of this stratum of dimension n− j + 1.

The computation of codimensions is done as follows. Assume for instance that pn has exactly two
contact points x0 and y0 in the interior of I, the first one with 0 and the second one with 1 (then
toc(pn) = 4). The set

{pn ∈ Un | ∃x0 ∈ (0, 1), pn(x0) = p′n(x0) = 0, p′′n(x0) > 0,

∃y0 ∈ (0, 1), pn(y0) = 1, p′n(y0) = 0, p′′n(y0) < 0}

is a submanifold of Un of dimension n − 1, containing an open convex subset (flat stratum) of
dimension n − 3. Indeed, for x0 and y0 fixed, the above conditions give an open convex subset
of Pn of codimension 4 (Hermite interpolation at x0 and y0); then, making vary x0 and y0 in the
interior of I generates (in a nonlinear way) two more dimensions.

Note however that, in contrast to what has been written above, it seems difficult here to write
explicit perturbations. But an implicit characterization is enough for our needs.

We have therefore obtained the following result.

Theorem 8. Let pn ∈ ∂Un, and let j = toc(pn) ∈ {1, . . . , 2n}.
• If j is odd then pn belongs to the interior of a stratum of dimension n− (j − 1)/2.
• If j is even then pn belongs to the interior of a stratum of dimension either equal to
n− j/2 + 1 if all contact points are in the interior of I, or n− j/2 if the two boundaries
of I are contact points.

In all cases, if moreover j 6 n then pn belongs to a flat convex subset contained in this stratum,
of dimension n− j + 1 (and thus pn is not extremal).

In particular:
• Strata of dimension greater than n/2 contain no extremal point in their interior.
• Flat strata of ∂Un of dimension n exactly consist of all pn ∈ ∂Un such that toc(pn) = 1.
• A polynomial pn ∈ Un is an extremal point of Un if and only if toc(pn) > n+ 1.

Remark 3. If pn ∈ Extr(Un) \ {0, 1} then pn must have contact points with 0 and with 1.
Indeed, otherwise, since toc(pn) > n+ 1 by the last item of Theorem 8, either pn or 1− pn would
have n+ 1 zeros, but then pn would be identically equal to 0 or 1 because its maximal degree is n.

2.4. A useful remark on a polynomial optimization problem. Let rn ∈ Pn be fixed.
We consider the polynomial maximization problem

(9) max
pn∈Un

∫ 1

0

rn(x)pn(x) dx.

Since Un is compact and convex in Pn, this problem is well posed, and since the maximization
functional is linear, any maximizer pn must either be an extremal point of Un, or belong to a
segment joining two distinct extremal points of Un.
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If rn ∈ P+
n , i.e., if rn > 0 on [0, 1], then Problem (9) has a unique maximizer, which is pn = 1.

This is in accordance with Theorem 5, because in Problem 6 we can take w = rn > 0 and in (5)
we take fn = 1/2. Similarly, if rn ∈ P−n , i.e., if rn 6 0 on [0, 1], then Problem (9) has a unique
maximizer, which is pn = 0.

But if rn does not keep a constant sign over [0, 1], then it may happen that Problem (9)
have several distinct maximizers. Indeed, (9) corresponds to maximizing the scalar product
〈rn, pn〉L2(0,1) over all pn ∈ Un. If rn is orthogonal (in L2(0, 1)) to a supporting hyperplane of
Un containing at least two distinct extremal points of Un, then Problem (9) has an infinite number
of maximizers.

We have seen in the previous section that this may happen: for n = 2 the upper (or the lower)
surface of V2 is ruled, and for instance it contains the segment joining (1, 1, 1) to (0, 0, 2). Then
it suffices to consider the hyperplane containing this segment and tangent to the surface, and to
choose p2 corresponding to a normal to this hyperplane: this gives an example where there is no
uniqueness of the maximizer in (9).

However, nonuniqueness is in some sense exceptional with respect to rn. Indeed, nonuniqueness
may only happen whenever rn is orthogonal to a supporting hyperplane of Un that contains (at
least) a nontrivial segment of points of Un. According to Theorem 8, this happens if and only if rn
is orthogonal to a flat convex subset of some stratum, which implies some nontrivial orthogonality
conditions on rn thus encoding a nongenericity condition.

We conclude that there exists an open dense subset On of Pn such that, if rn ∈ On (meaning
that rn is in a “generic” position with respect to the convex set Un), then the maximizer of (9) is
unique.

3. Proof of Theorem 1. In the proof of Theorem 1, the delicate point is to establish unique-
ness of the optimal solution un. This strongly relies on Theorem 5, which has been stated previously
(and separately because the result has its own interest).

3.1. Preliminaries. It is convenient to reformulate Problem (1) using a time integration

by parts. We define zn(t) = yn(t) − qn
T t, where we recall that yn(t) =

∫ t
0
un(τ) dτ . We have

∂tzn(t) = un(t)− qn
T , zn(0) = 0, and we have zn(T ) = 0 if and only if yn(T ) = qn. Now, we define

the sets

Rn(T ) =
{
zn ∈W 1,∞((0,+∞),Pn) | zn(0) = 0 and zn(t) = 0 for t > T

}
,

Sn(T, qn) =

{
zn ∈ Rn(T ) | 0 6

qn(x)

T
+ ∂tzn(t, x) 6 1 for (t, x) ∈ [0, T ]× I

}
,

(10)

and we define the functional

S(zn) =

∫
I

∫ +∞

0

zn(t, x)s′′(t) dtw(x) dx, zn ∈ Rn(T ).

Since T > ‖qn‖L∞(I), by Remark 1, the set Sn(T, qn) contains the zero function (and thus is

nonempty).

Lemma 9. The function un ∈ Kn(T, qn) is a minimizer of J if and only if the function zn ∈
Sn(T, qn) is a maximizer of S.
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Proof. Integrating by parts, we have

J(un) =

∫
I

∫ T

0

(
∂tzn(t, x) +

qn
T

)
s′(t) dt dx

= −
∫
I

∫ T

0

s′′(t)zn(t, x) dtw(x) dx+
s(T )− s(0)

T

∫
I

qn(x)w(x) dx

= −S(zn) +
s(T )− s(0)

T

∫
I

qn(x)w(x) dx.

Since the last term is a constant independent of un and of zn, the lemma follows.

3.2. Existence of an optimal solution.

Lemma 10. There exists a maximizer zn ∈ Sn(T, qn) of S, and there exists a minimizer un ∈
Kn(T, qn) of J .

Proof. With the formulation of Problem 1 as an optimal control problem, existence of optimal
solutions follows immediately from standard existence results in optimal control (see, e.g., [8, 33]),
using the fact (also easy to establish) that Un is convex and compact in Pn endowed with its L2

w

norm. Let us however provide a direct argument of proof.
Let us prove that there exists Cn > 0 such that ‖zn‖W 1,∞((0,T )×I) 6 Cn for every zn ∈

Sn(T, qn). Indeed: a) the derivative of zn with respect t is bounded by definition (see (10)); b) the
function zn is bounded by integration of the time derivative from 0 to t ∈ [0, T ]; c) the derivative
with respect to x is bounded by the Markov theorem (see [13, page 97]), which implies that
‖∂xPn‖L∞(I) 6 n2‖Pn‖L∞(I) for polynomials of degree less than or equal to n. Therefore Sn(T, qn)
is embedded in a ball in W 1,∞((0, T )× I) and is thus compactly embedded in L1((0, T )× I).

Functions in Sn(T, qn) are uniformly bounded in L∞, so the cost function I is also bounded
by construction over this set. The compact embedding of Sn(T, qn) in L1((0, T ) × I) shows that
maximizing sequences of I converge to optimal solutions. Extracting a subsequence if necessary, we
obtain the existence of a maximizer zn for S, and thus by Lemma 9 a minimizer of J in Kn(T, qn).

3.3. Uniqueness of the optimal solution. Let zn ∈ Sn(T, qn) be a maximizer of S. We are
going to define a new function zµ,εn , which is equal to zn except along the interval [µ−ε, µ+ε] ⊂ [0, T ]
(with µ ∈ [ε, T − ε] for 0 < ε < T/2) where it is equal to a test function which is maximal in
a sense explained below. Comparison inequalities between zn and the test function will give a
characterization of the maximizer, which in turn, combined with Theorem 5, will prove that the
maximizer is unique.

We first define ẑµ,εn , the linear interpolation of zn between µ− ε and µ+ ε, given by

ẑµ,εn (t, x) = zn(µ− ε, x) +
t− µ+ ε

2ε
(zn(µ+ ε, x)− zn(µ− ε, x)) , µ− ε 6 t 6 µ+ ε.

Now, let zµ,εn ∈ Rn(T ) be defined by

(11)
for 0 6 t < µ− ε, zµ,εn (t, x) = zn(t, x),
for µ− ε 6 t 6 µ+ ε, zµ,εn (t, x) = ẑµ,εn (t, x) + εϕ( t−µε )rµ,εn (x),
for µ+ ε < t 6 T, zµ,εn (t, x) = zn(t, x),

for some rµ,εn ∈ Pn, where ϕ : [−1, 1] → IR is the “hat” function ϕ(t) = min(1 + t, 1 − t). The
function zµ,εn is continuous by construction at t = µ± ε. In order to determine an “optimal” rµ,εn ,
we define the set

Qµ,εn = {sn ∈ Pn | −gµ,εn 6 sn 6 gµ,εn on I}
11



with gµ,εn = min(1− fµ,εn , fµ,εn ) and fµ,εn = 1
T qn + zn(µ+ε)−zn(µ−ε)

2ε . Since zn ∈ Sn (T, qn), we have

fµ,εn = 1
2ε

∫ µ+ε
µ−ε

(
1
T qn + ∂tzn(s)

)
ds ∈ Un. Hence gµ,εn > 0 and the definition of Qµ,εn makes sense.

The next result provides a condition on rµ,εn such that zµ,εn is admissible.

Lemma 11. We have zµ,εn ∈ Sn (T, qn) if and only if rµ,εn ∈ Qµ,εn .

Proof. By construction zµ,εn (0, x) = zµ,εn (T, x) = 0 for every x ∈ I. The condition (10) on the
derivative is satisfied by construction for 0 < t < µ− ε and µ+ ε < t < T . For µ− ε < t < µ+ ε,
the time derivative is computed accordingly to (11). Then, the condition (10) is equivalent to

0 6
1

T
qn(x) +

zn(µ+ ε, x)− zn(µ− ε, x)

2ε
± rµ,εn (x) 6 1, x ∈ I

which is equivalent to the claim. The lemma is proved.

Since Qµ,εn has the structure described in (5), it defines a problem similar to (6). The maxi-
mizer, which exists and is unique thanks to Theorem 5, is written as

(12) rµ,εn = argmax
sn∈Qµ,εn

∫
I

sn(x)w(x)dx.

Now that zµ,εn and rµ,εn are constructed in such a way that are good candidates to locally ”test”
the maximizer zn, let us establish some of their properties.

Lemma 12. We have 0 6
∫
I
rµ,εn (x)w(x)dx.

Proof. It suffices to note that 0 ∈ Qµ,εn .

Lemma 13. We have

(13) ε2s′′−

∫
I

rµ,εn (x)w(x) dx 6
∫
I

∫ µ+ε

µ−ε

µ+ ε− t
2ε

(zn(t, x)− zn(µ− ε, x)) s′′(t)w(x) dt dx

−
∫
I

∫ µ+ε

µ−ε

t− µ+ ε

2ε
(zn(µ+ ε, x)− zn(t, x)) s′′(t)w(x) dt dx.

Proof. Since zn is a maximizer, we have S(zµ,εn ) 6 S(zn) for all possible µ, ε. Discarding the
integrals for t 6 µ−ε and t > µ+ε where zµ,εn and zn are equal by definition (see (11)), this yields
the inequality ∫

I

∫ µ+ε

µ−ε
zµ,εn (t, x)s′′(t)w(x) dt dx 6

∫
I

∫ µ+ε

µ−ε
zn(t, x)s′′(t)w(x) dt dx.

Elimination of zµ,εn in function of zn and rµ,εn yields the inequality∫
I

∫ µ+ε

µ−ε

(
zn(µ− ε, x) +

t− µ+ ε

2ε
(zn(µ+ ε, x)− zn(µ− ε, x))

)
s′′(t)w(x) dt dx

+ ε

∫
I

rµ,εn (x)w(x) dx

∫ µ+ε

µ−ε
ϕ

(
t− µ+ ε

ε

)
s′′(t) dt 6

∫
I

∫ µ+ε

µ−ε
zn(t, x)s′′(t)w(x) dt dx.

Since ε2s′′− = ε
∫ µ+ε
µ−ε s

′′
−ϕ
(
t−µ+ε
ε

)
dt 6 ε

∫ µ+ε
µ−ε s

′′(t)ϕ
(
t−µ+ε
ε

)
dt, it follows that

ε2s′′−

∫
I

rµ,εn (x)w(x) dx 6
∫
I

∫ µ+ε

µ−ε
zn(t, x)s′′(t)w(x) dt dx

−
∫
I

∫ µ+ε

µ−ε

(
µ+ ε− t

2ε
zn(µ− ε, x) +

t− µ+ ε

2ε
zn(µ+ ε, x)

)
s′′(t)w(x) dt dx.

Using that 1 = µ+ε−t
2ε + t−µ+ε

2ε , the lemma follows.
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Lemma 14. We have

(14) lim
ε→0+

∫ T−ε

ε

∫
I

rµ,εn (x)w(x) dx dµ = 0.

Proof. Integrating (13) over µ ∈ [ε, T − ε], we get an inequality Aε 6 Bε − Cε, with

(15) 0 6 Aε = ε2s′′−

∫ T−ε

ε

∫
I

rµ,εn (x)w(x) dx dµ

where the lower bound follows from Lemma 12,

Bε =

∫ T−ε

e

∫
I

∫ µ+ε

µ−ε

µ+ ε− t
2ε

(zn(t, x)− zn(µ− ε, x)) s′′(t)w(x) dt dx dµ,

Cε =

∫ T−ε

ε

∫
I

∫ µ+ε

µ−ε

t− µ+ ε

2ε
(zn(µ+ ε, x)− zn(t, x)) s′′(t)w(x) dt dx dµ.

Performing in Cε the change of variables t 7→ t − ε, µ 7→ µ − ε, we get that Cε = Cε1 + Cε2 − Cε3
with

Cε1 =

∫ T−ε

ε

∫
I

∫ t+ε

t−ε

µ− t+ ε

2ε
(zn(t, x)− zn(µ− ε, x)) s′′(µ− ε)w(x) dt dx dµ,

Cε2 =

∫ T

T−ε

∫
I

∫ t+ε

t−ε

µ− t+ ε

2ε
(zn(t, x)− zn(µ− ε, x)) s′′(µ− ε)w(x) dt dx dµ,

Cε3 =

∫ 2ε

ε

∫
I

∫ t+ε

t−ε

µ− t+ ε

2ε
(zn(t, x)− zn(µ− ε, x)) s′′(µ− ε)w(x) dt dx dµ.

We obtain the inequality

(16) |Aε| 6 |Bε − Cε1 |+ |Cε2 |+ |Cε3 |.

Note that Bε and Cε1 are integrals over D = {ε < µ < T − ε} ∩ {µ− ε < t < µ+ ε} which is
rectangular, but they have a slightly different integrand because s′′(t) in Bε becomes s”(µ− ε) in
Cε1 . We have

Bε − Cε1 =

∫
D

∫
I

a(x, t, µ, ε) (s′′(t)− s′′(µ− ε)) dt dµw(x) dx

with a(x, t, µ, ε) = µ+ε−t
2ε (zn(t, x)− zn(µ− ε, x)). The definition of D yields 0 < µ + ε − t < 2ε,

hence |a(x, t, µ, ε)| 6 |zn(t, x)− zn(µ− ε, x)| for (t, µ) ∈ D. Moreover |∂tzn| 6 1 as a consequence
of the (10). Since µ− ε− t 6 2ε, we infer that

|Bε − Cε1 | 6 2ε

∫
I

w(x) dx

∫
D
|s′′(t)− s′′(µ− ε)| dt dµ.

For a given ε, performing another change of variable adapted to the rectangular structure of D,
namely τ = t− µ+ ε, µ′ = µ− ε, we get∫

D
|s′′(t)− s′′(µ− ε)| dt dµ =

∫ 2ε

0

∫ T−2ε

0

|s′′(µ′ + τ)− s′′(µ′)| dµ′ dτ 6 2εmod1(s′′, 2ε),

where mod1(s′′, 2ε) is the L1-modulus of continuity of s′′. Therefore

|Bε − Cε1 | 6 4ε2mod1(s′′, 2ε)

∫
I

w(x) dx.
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The other terms are simpler to treat. We have |Cε2 | 6
(
2
∫
I
w(x) dx

)
ε2
∫ T
T−2ε s

′′(τ) dτ and |Cε3 | 6(
2
∫
I
w(x) dx

)
ε2
∫ 2ε

0
s′′(τ) dτ . Plugging in (16) and rescaling by 1

ε2 , we obtain 1
ε2A

ε → 0 as ε→ 0+.
Using (15), the result follows.

In (14), it is tempting to pass to the limit and to define rµ,0n , and then to use Theorem 5 to
establish that rµ,0n vanishes. However, using another path, it is possible to avoid the technical
problem of proving that rµ,εn has a limit as ε → 0+. It consists in reformulating (14) for another
function to which Theorem 5 applies immediately. This is performed with the help of a comparison
argument, as follows. Given any t ∈ [0, T ], we define

Qn(t) = {sn ∈ Pn | −gn(t) 6 sn 6 gn(t) on I} ,

with gn(t, x) = min(1− fn(t, x), fn(t, x)) and fn(t) = 1
T qn + ∂tzn(t). Since zn is a maximizer, one

has that fn ∈ Un for almost every t ∈ [0, T ]. With the help of Theorem 5, we define the polynomial

rn(t) = argmax
sn∈Qn(t)

∫
I

sn(x)w(x) dx.

Lemma 15. We have 0 6
∫
I
rn(t, x)w(x) dx and

1

2ε

∫ µ+ε

µ−ε

∫
I

rn(t, x)w(x) dx 6
∫
I

rµ,εn (x)w(x) dx.

Proof. For the first inequality, the lower bound is immediate since 0 ∈ Qn(t). By definition of
rn ∈ Qn(t), we have −fn(t, x) 6 rn(t, x) 6 fn(t, x) and −1 + fn(t, x) 6 rn(t, x) 6 1− fn(t, x), for

x ∈ I. Noting that 1
2ε

∫ µ+ε
µ−ε fn(t) dt = fµ,εn , integrating in time yields

−min (1− fµ,εn , fµ,εn ) 6
1

2ε

∫ µ+ε

µ−ε
rn(t, x) dt 6 min (1− fµ,εn , fµ,εn ) ,

and thus 1
2ε

∫ µ+ε
µ−ε rn(t, ·) dt ∈ Qµ,εn . By definition the polynomial rµ,εn ∈ Qµ,εn is the maximizer of

the integral in (12), hence the second inequality follows.

Lemma 16. We have
∫ T
0

∫
I
rn(t, x)w(x) dx dµ = 0.

Proof. It suffices to combine Lemma 15 with the estimate (14).

Lemma 17. We have toc
(
1
T qn + ∂tzn(t)

)
> n+ 1 for almost every t ∈ [0, T ].

Proof. If toc
(
1
T qn + ∂tzn(t)

)
6 n, then rn(t) 6= 0 and 0 <

∫
I
rn(t, x)w(x) dx for almost every

t ∈ [0, T ]. This yields a contradiction with Lemma 16.

We are now in a position to finish the proof of Theorem 1.

Proof (End of the proof of Theorem 1.). The proof goes by contradiction (as in [3]). Assume
that there are two distinct maximizers zn and ẑn. Then 1

T qn(·) + ∂tzn(t, ·) and 1
T qn(·) + ∂tẑn(t, ·)

have both n+1 contact points for almost every t ∈ [0, T ]. Since the cost is linear, zn = 1
2 (zn + ẑn) is

another maximizer. Therefore 1
T qn(·) +∂tzn(t, ·) = 1

2

(
1
T qn(·) + ∂tzn(t, ·)

)
+ 1

2

(
1
T qn(·) + ∂tẑn(t, ·)

)
has also n+1 contact points for almost every t ∈ [0, T ]. Since the half-sum of two distinct functions
that have n+ 1 contact points for almost every t cannot have n+ 1 contact points for almost every
t, this raises a contradiction. Therefore the maximizer zn is unique. Thanks to Lemma 9, Theorem
1 is proved.
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3.4. Properties of the optimal solution for large T . The properties of the optimal
solution for T > ‖qn‖L∞(I) large are established with the notations of Problem (1) for which

un = 1
T qn + ∂tzn ∈ Kn(T, qn) is the minimizer of J , associated with the maximizer zn ∈ Sn(T, qn)

of S. Since un is a minimizer and the weight function t 7→ s′(t) increases, we expect that un(t)
vanishes if t is large enough. This is what we are going to prove.

Lemma 18. The function t 7→
∫
I
un(t, x)w(x) dx = 〈un(t), 1〉L2

w(I) is nonincreasing.

Proof. First of all, integrating by parts and noting that
∫ T
0
un(t) dt = qn for every un ∈

Kn(T, qn), we have

(17) J(un) =

∫ T

0

s′(t)〈un(t), 1〉L2
w(I) dt = s′(T )〈qn, 1〉L2

w(I) −
∫ T

0

s′′(t)

∫ t

0

〈un(τ), 1〉L2
w(I) dτ dt.

The nonincreasing rearrangement (see, e.g., [28]) of the function f(t) = 〈un(t), 1〉L2
w(I) on [0, T ] is

the nonincreasing function f∗ on [0, T ], and, by the first Hardy-Littlewood inequality, we have

(18)

∫ t

0

f(τ) dτ 6
∫ t

0

f∗(τ) dτ ∀t ∈ [0, T ].

We are now going to prove that there exists ũn ∈ Kn(T, qn) such that 〈ũn(t), 1〉L2
w(I) = f∗(t) for

almost every t ∈ [0, T ], by using a theorem due to Ryff (see [30] and comment in [5]).
There exists [30] a measurable mapping σ : [0, T ] → [0, T ], preserving the Lebesgue measure,

such that f∗ ◦ σ = f , i.e., Tσf
∗ = f , where Tσ : L2(0, T ) → L2(0, T ) is the (doubly stochastic)

operator defined by Tσg = g ◦ σ for every g ∈ L2(0, T ). Note that Tσ is an isometry which is not
necessarily surjective and that its adjoint T ∗σ is not necessarily induced by a measure-preserving
function (see once again [30]). However we have f∗ = T ∗σf . Indeed, since f = Tσf

∗ and since Tσ is
an isometry, we have 〈T ∗σf, g〉L2(0,T ) = 〈f, Tσg〉L2(0,T ) = 〈Tσf∗, Tσg〉L2(0,T ) = 〈f, g〉L2(0,T ) for any
g ∈ L2(0, T ), whence the claim.

Given any un ∈ Kn(T, qn), we write un(t, x) = a0(t) + a1(t)x + · · · + an(t)xn. This inversion
formula for the rearrangement leads us to define ãi = T ∗σai, for i = 0, . . . , n, and we define
ũn = T ∗σun ∈ L2(0, T ;Pn) by ũn(t, x) = (T ∗σun)(t, x) = ã0(t) + ã1(t)x+ · · ·+ ãn(t)xn.

First of all, by linearity, we have 〈ũn(t), 1〉L2
w(I) = (T ∗σf)(t) = f(t) for almost every t ∈ [0, T ].

Let us prove that ũn ∈ L∞(0, T ;Un). Let x ∈ I be arbitrary. Let t ∈ [0, T ] be an arbitrary
Lebesgue point of the function t 7→ ũn(t, x). Then, denoting by χ[t−ε,t+ε] the characteristic function
of the interval [t− ε, t+ ε], and noting that Tσχ[t−ε,t+ε] = χ[t−ε,t+ε] ◦ σ = χσ−1([t−ε,t+ε]), we have

ũn(t, x) = lim
ε→0+

1

2ε

∫ t+ε

t−ε
ũn(s, x) ds = lim

ε→0+

1

2ε

∫ T

0

(T ∗σun)(s, x) χ[t−ε,t+ε](s) ds

= lim
ε→0+

1

2ε

∫ T

0

un(s, x) Tσχ[t−ε,t+ε](s) ds = lim
ε→0+

1

2ε

∫
σ−1([t−ε,t+ε])

un(s, x) ds,

from which we infer that ũn(t, x) ∈ [0, 1], because un(s, x) ∈ [0, 1] and the Lebesgue measure of
σ−1([t− ε, t+ ε]) is equal to 2ε since σ is measure-preserving. The claim is proved.

Finally, we claim that ũn ∈ Kn(T, qn). Indeed we have the expansion
∫ T
0
ũn(t, x) dt =∫ T

0
ã0(t) dt + · · · +

∫ T
0
ãn(t) dt xn. Since Tσ1 = 1, we have

∫ T
0
ãi(t) dt = 〈T ∗σai, 1〉L2(0,T ) =

〈ai, Tσ1〉L2(0,T ) =
∫ T
0
ai(t) dt, for i = 0, . . . , n. It follows that

∫ T
0
ũn(t, x) dt =

∫ T
0
un(t, x) dt =

qn(x), for every x ∈ I. We have thus proved that ũn ∈ Kn(T, qn) is such that 〈ũn(t), 1〉L2
w(I) = f∗(t)

for almost every t ∈ [0, T ].
Now, it follows from (17) and (18) that J(ũn) 6 J(un) (this is also a consequence of Lemma

4 in [30]). So by uniqueness of the optimal solution un = ũn and f = f∗ is nonincreasing. The
lemma is proved.
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Let Cn > 0 the smallest constant such that ‖pn‖L∞(I) 6 Cn‖pn‖L1
w(I) = Cn

∫
I
pn(x)w(x) dx

for every pn ∈ Pn. Note that Cn
∫
I
w(x) dx > 1 because the inequality must be satisfied for the

constant polynomial pn = 1.
Hereafter, for simplicity we make the additional assumption that s(0) = 0.

Lemma 19. We have ‖un(t)‖L∞(I) 6
s(‖qn‖L∞(I))

s(t) Cn
∫
I
w(x) dx, for almost every t ∈ (0, T ].

Proof. Using Lemma 18 to obtain the first inequality below, we have

(19) s(t)

∫
I

un(t, x)w(x) dx =

∫ t

0

∫
I

un(t, x)s′(τ)w(x) dx dτ 6
∫ t

0

∫
I

un(τ, x)s′(τ)w(x) dx dτ

6
∫ T

0

∫
I

un(τ, x)s′(τ)w(x) dx dτ.

Defining the function gn(τ, x) = qn(x)
‖qn‖L∞(I)

if 0 < τ < ‖qn‖L∞(I) and gn(τ, x) = 0 if τ > ‖qn‖L∞(I),

we have 0 6 gn 6 1 and
∫ T
0
gn(t) dt = qn, and thus gn ∈ Kn(T, qn). Since un is the minimizer of

J , we infer that the right-hand side member of (19) is estimated by∫ T
0

∫
I
un(τ, x)s′(τ)w(x) dx dτ 6

∫ T
0

∫
I
gn(τ, x)s′(τ)w(x) dx dτ

=
∫ ‖qn‖L∞(I)

0
s′(τ) dτ

∫
I
qn(x)w(x)
‖qn‖L∞(I)

dx

= s
(
‖qn‖L∞(I)

) ∫
I
qn(x)w(x) dx

‖qn‖L∞(I)
6 s

(
‖qn‖L∞(I)

) ∫
I
w(x) dx.

Using (19), we get ‖un(t)‖L1
w(I) 6

s(‖qn‖L∞(I))
s(t)

∫
I
w(x) dx. The lemma follows.

We define what we call the critical time T∗ = T∗(n, qn) by

(20) s(T∗) = s
(
‖qn‖L∞(I)

)
Cn

∫
I

w(x) dx.

It depends on qn and n but not on T .

Proposition 20. If T > T∗ then un(t) = 0 for t ∈ (T∗, T ).

Proof. By using the inequality given in Lemma 19, and by definition of the critical time, we
have ‖un(t)‖L∞(I) < 1 for T∗ < t. Besides, by Proposition 17, we have toc(un(t)) > n + 1.
Therefore all contact points of un(t) occur at the lower value 0, hence un(t) ∈ Pn has a number of
roots that is greater or equal to n+ 1 (counted with their multiplicity). Therefore un(t) vanishes
identically if t > T∗.

The next result establishes that the optimal solution un is actually independent of T if T∗ < T .
To state it, we consider the minimizer ũn of J over the set Kn(T∗, qn): it is well defined because
‖qn‖L∞(I) 6 T∗.

Corollary 21. If T > T∗ then un = ũn.

Proof. Since un(t) = 0 for T∗ < t < T , with a slight abuse of notation we have un ∈ Kn(T∗, qn),
and hence J(ũn) 6 J(un). Similarly, we extend ũn by 0 for T∗ < t < T , and with a slight abuse of
notation we have ũn ∈ Kn(T, qn), and thus J(un) 6 J(ũn). Therefore J(ũn) = J(un), whence the
conclusion by uniqueness.

4. Proof of Theorem 2. Recalling that Problem (1) can be equivalently formulated as the
optimal control problem (2), in this section we analyze it by means of optimal control theory,
and in particular we study the first-order optimality system resulting from the application of
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the Pontryagin maximum principle, which characterizes the unique optimal solution in terms of
Lagrange multipliers.

For simplicity, throughout the section we take I = [0, 1], w(x) = 1 and s′(t) = t, but all our
results readily extend to more general entropy functions and weights, as stated in Theorem 2.

4.1. Application of the Pontryagin maximum principle. We denote by yn the optimal
trajectory, solution of Problem (2), associated with the optimal control un. We have seen that
un ∈ L∞(0, T ;Un) is the unique optimal solution. In the sequel, we extend it by 0 for t > T , so
that we have un ∈ Kn(T, qn).

The Hamiltonian H : IR× Pn × Pn × IR× Pn → IR of the optimal control problem (2) is

H(t, yn, λn, λ
0, pn) = 〈λn, pn〉L2(I) + tλ0〈pn, 1〉L2(I)

= 〈λn + λ0t, pn〉L2(I) =

∫ 1

0

(λn(x) + λ0t)pn(x) dx.

According to the Pontryagin maximum principle (see [21, 26, 33]) which is a first-order necessary
condition for optimality, since un is optimal, there must exist λ0 ∈ {0,−1} and λn ∈ Pn (note
indeed that the adjoint equation gives that λn does not depend on t), with (λn, λ

0) 6= (0, 0), such
that

(21) un(t) = argmax
pn∈Un

∫ 1

0

(
λn(x) + λ0t

)
pn(x) dx = argmax

pn∈Un

〈
λn + λ0t, pn

〉
L2(I)

,

for almost every t ∈ [0, T ]. The quadruple (yn, λn, λ
0, un) is called an extremal lift of the optimal

trajectory. The couple (λn, λ
0) is a Lagrange multiplier. If λ0 = −1 then the extremal lift (and

the Lagrange multiplier) is said to be normal, and if λ0 = 0 it is said to be abnormal.
By the way, here, it is interesting to note that, by convexity of the optimal control problem,

the first-order optimality condition given by the Pontryagin maximum principle is also sufficient:

If there exists a multiplier (λn, λ
0) such that un(t) = argmaxpn∈Un

∫ 1

0

(
λn(x) + λ0t

)
pn(x) dx for

almost every t ∈ [0, T ], and if
∫ T
0
un(t) dt = qn, then un = un is the (unique) optimal solution of

Problem 2.

Remark 4. It is interesting to note that, for almost every t ∈ [0, T ], the maximization problem
(21) is of the form of Problem (9) studied in Section 2.4, with rn(x) = λn(x)+λ0t (here, t is fixed),
for which we have seen that uniqueness of the maximizer is not ensured.

Anyway, thanks to Theorem 1, we know that the optimal control un ∈ L∞(0, T ;Un) is unique,
which implies that the solution un(t) at time t of the maximization problem (21) must be unique
for almost every t ∈ [0, T ]. This is not contradictory with the fact that, for exceptional values of
t, the maximization problem (21) may have several distinct maximizers. This is well known in
optimal control, and such times may typically correspond to switching times.

Now, let us infer the expression of the optimal control un(t) at time t from the maximization
condition (21). Following what has been said in Section 2.4, since the function t 7→ λn(x) + λ0t is
nonincreasing on [0, T ] for any fixed x, at this stage what we can say is that there exist (t1, t2) ∈
[0, T ]2 such that, for almost every t,

(22)
un(t) = 1 if 0 6 t 6 t1,
un(t) ∈ Extr(Un) if t1 6 t 6 t2,
un(t) = 0 if t2 6 t 6 T.

For instance if λn(·) > 0 on [0, 1] then t1 > 0, and if λn(·) + λ0T < 0 on [0, 1] then t2 < T . What
happens inbetween t1 and t2 depends on the geometric position of λn(x) + λ0t with respect to the
convex set Un.
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Remark 5. It may happen that the optimal control un have several extremal lifts.
Actually, we are going to prove that un always admits a normal extremal lift, without any

assumption on qn ∈ P+
n . But in some situations it may also have an abnormal extremal lift.

Before studying normal extremals, let us comment on the abnormal case.

Abnormal case. Let us assume that un has an abnormal extremal lift, i.e., a Lagrange multiplier
(λn, λ

0) with λ0 = 0. Then

(23)

∫ 1

0

λn(x)un(t, x) dx = max
pn∈Un

∫ 1

0

λn(x)pn(x) dx.

According to the remarks done Section 2.4, if the Lagrange multiplier λn is in a “generic” position
with respect to Un then there is a unique maximizer, and thus un(t, x) = un(x) does not depend
on t. Since ∂tyn = un, it follows that yn(t, x) = tun(x), and since yn(T ) = qn, we get that
un = 1

T qn (note that this is the control used in Remark 1 to show that Kn(T, qn) is nonempty
if and only if T > ‖qn‖L∞(0,1)). But then, since un ∈ Extr(Un), we must have 1

T qn ∈ Extr(Un).

Using Remark 3, it follows that 1
T qn must have contact points with 0 and with 1: taking into

account that T > ‖qn‖L∞(I), this may occur only if T = ‖qn‖L∞(I). This argument shows that,
if T > ‖qn‖L∞(I) and if we are in the abnormal case, then λn is not in a “generic” position with
respect to Un, in the sense of Section 2.4, i.e., λn is orthogonal to a nontrivial flat stratum F of

∂Un; and then we must have un(t) = 1
T qn + rn(t) ∈ F with

∫ T
0
rn(t) dt = 0.1

Actually, abnormal extremals are easy to construct if qn vanishes at some point x? ∈ I = [0, 1].
Indeed, then, we first note that, given any admissible solution, satisfying ∂tyn(t, x) = un(t, x) ∈
[0, 1], with yn(0, x) = 0 and yn(T, x) = qn(x), we must have un(t, x?) = 0 for almost every t ∈ [0, T ].

Now, we consider the polynomial λn ∈ Pn enjoying the property2
∫ 1

0
λn(x)pn(x) dx = −pn(x?)

for every pn ∈ Pn. Since un(t, x?) = 0 for any time t, it is clear that λn satisfies (23). Indeed,∫ 1

0
λn(x)un(t, x) dx = −un(t, x?) = 0, and maxpn∈Un

∫ 1

0
λn(x)pn(x) dx = maxpn∈Un(−pn(x?)) = 0.

We conclude that, if qn vanishes at some point x? ∈ I, then the optimal control un has (at least)
an abnormal extremal lift.

By the way, this argument shows that, if qn has several distinct zeros on I then un has several
(independent) abnormal extremal lifts.

We have thus obtained the following result.

Lemma 22. If qn vanishes k times on I then the optimal control un has at least k linearly
independent abnormal extremal lifts.

This does not exclude that un have also a normal extremal lift, and this is indeed the case as
we are going to see next.

4.2. Existence of a normal extremal lift. Let us introduce several notations. Given any
control un ∈ L∞(0, T ;Un), we define the end-point mapping ET (this notion is classical in optimal

control, see [33, 34]) by ET (un) = yn(T ) =
∫ T
0
un(t) dt, where yn is the solution of the Cauchy

problem ∂tyn = un, yn(0) = 0. Given a target qn ∈ P+
n , we define the value function at qn by

VT (qn) = min {JT (un) | un ∈ L∞(0, T ;Un), ET (un) = qn} = JT (un),

1Indeed, searching un(t) in the form un(t) = vn(x) + wn(t, x) ∈ F with vn ∈ F , we must have Tvn(x) +∫ T
0 wn(t, x) dt = qn(x), whence un(t) = 1

T
qn(x) + wn(t, x)− 1

T

∫ T
0 wn(t, x) dt.

2We consider the closed subspace En = {pn ∈ Pn | pn(x?) = 0} of Pn. Its orthogonal E⊥n in Pn (for
the scalar product of L2(I)) is of dimension 1 and is spanned by some λn ∈ Pn \ {0} (satisfying necessarily
λn(x?) 6= 0). Multiplying by an appropriate scalar, we assume that λn(x?) = −‖λn‖2L2(I)

. Now, any pn ∈ Pn

can be written in a unique way as pn = qn + sλn for some qn ∈ En and s ∈ IR. By definition, qn(x?) = 0, hence
pn(x?) = sλn(x?) = −s‖λn‖2L2(I)

. It follows that
∫
I λn(x)pn(x) dx = 〈λn, qn + sλn〉 = s‖λn‖2L2(I)

= −pn(x?).
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where un ∈ L∞(0, T ;Un) is an optimal control minimizing J over all controls un ∈ L∞(0, T ;Un)
such that ET (un) = qn. We have VT (qn) < +∞ if ‖qn‖L∞(I) 6 T , and by convention we set
VT (qn) = +∞ when qn is not reachable in time T . Accordingly, we also extend VT to the whole
space Pn by setting VT (rn) = +∞ for every rn ∈ Pn \ P+

n .

Lemma 23. The value function VT is convex.

Proof. The proof is obvious. Let q1n and q2n in P+
n be such that ‖qin‖L∞(I) 6 T for i = 1, 2, and

let τ ∈ [0, 1]. Let uin ∈ L∞(0, T ;Un) be the unique optimal control such that VT (qin) = JT (uin),
for i = 1, 2. Setting uτn = τu1n + (1 − τ)u2n ∈ L∞(0, T ;Un), we have ET (uτn) = τq1n + (1 − τ)q2n.
Hence uτn is an admissible control steering the control system from 0 to τq1n + (1− τ)q2n in time T .
Therefore we must have VT (τq1n+(1−τ)q2n) 6 JT (uτn). Since JT (uτn) = τJT (u1n)+(1−τ)JT (u2n) =
τVT (q1n) + (1− τ)VT (q2n), the convexity property follows.

Since VT is convex, its subdifferential ∂VT (qn) at any qn ∈ P+
n such that VT (qn) < +∞ is a

convex nonempty subset.

Proposition 24. Let qn ∈ P+
n and let T > ‖qn‖L∞(I). For every λn ∈ ∂VT (qn), the quadruple

(yn, λn,−1, un) is a normal extremal lift of the (unique) optimal control un solution of Problem 2.

Proof. We follow an argument developed in [29, Proposition 2]. Let λn ∈ ∂VT (qn). Since
un ∈ L∞(0, T ;Un) minimizes the functional JT over all un ∈ L∞(0, T ;Un) satisfying ET (un) = qn,
we have ET (un) = qn and VT (qn) = JT (un). Besides, by definition of the subdifferential, for every
qn ∈ P+

n , there exists a smooth function φ : Pn → IR such that VT −φ reaches a (global) minimum
at qn

VT (qn)− φ(qn) 6 VT (rn)− φ(rn) ∀rn ∈ Pn,
Taking rn = ET (un), we have VT (qn) − φ(qn) 6 VT (ET (un)) − φ(ET (un)) for every un ∈
L∞(0, T ;Un). Since VT (ET (un)) 6 JT (un) by definition, we infer that

JT (un)− φ(ET (un)) + φ(qn) = JT (un) = VT (qn) 6 JT (un)− φ(ET (un)) + φ(qn),

and hence un ∈ L∞(0, T ;Un) minimizes the functional JT − φ ◦ ET + φ(qn) over L∞(0, T ;Un).
Therefore, un is also an optimal solution of the auxiliary optimal control problem:

∂tyn(t) = un(t), for a.e. t ∈ [0, T ],

yn(0) = 0,

un(t) ∈ Un, for a.e. t ∈ [0, T ],

min (JT (un)− φ(ET (un)) + φ(qn)) =

∫ T

0

t

∫ 1

0

un(t, x) dx dt− φ(yn(T )) + φ(qn).

Compared with Problem 2, this optimal control problem (which has a different minimization
functional) is now with a free final point: there is no constraint on ET (un) = yn(T ). Applying
the Pontryagin maximum principle, the transversality condition on the adjoint vector implies
immediately that the extremal lift must be normal (the argument is classical in optimal control,
see [33, 34]), and moreover the normal Lagrange multiplier (λn,−1) is given by λn = ∇φ(yn(T )) =
∇φ(qn). The proposition is proved.

Remark 6. We claim that VT is continuous on the set of qn ∈ P+
n such that ‖qn‖L∞(I) 6 T .

Indeed, it suffices to follow the proof of [32, Theorem 4.6]. We sketch the proof. Considering
a sequence of qkn ∈ P+

n converging to qn as k → +∞, we assume that ukn ∈ L∞(0, T ;Un) is an
optimal control reaching qkn, i.e., VT (qkn) = JT (ukn) and ET (ukn) = qkn. Up to some subsequence,
and since Un is convex, we have ukn ⇀ u for some un ∈ L∞(0, T ;Un) in weak-star topology. Since
JT and ET are linear and continuous, we have JT (ukn)→ JT (un) and ET (ukn)→ ET (un), and thus
ET (un) = qn and un is optimal, i.e., VT (qn) = JT (un).
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Remark 7. According to Proposition 24, the dimension of the cone generated by normal La-
grange multipliers of the optimal control un is equal to the dimension of the convex subset ∂VT (qn)
of Pn. In particular if VT is Fréchet differentiable at qn then un has a unique normal extremal lift.
However, due to the nonsmoothness of the boundary of Un, even in the interior of P+

n , VT may
happen to be not differentiable.

To see this, it suffices to take qn = c with c > 0 and T = c. We claim that un(t) = 1 on I for
every t ∈ [0, T ]. Indeed, this fact is obviously true for every fixed x, without taking into account the
polynomial constraint (absolute optimal solution); now this un is indeed polynomial in x for every
t. Obviously, any λn ∈ Pn satisfying λn(x) > c for every x ∈ I is a normal Lagrange multiplier,
for which (21) holds true with λ0 = −1. Hence, in this case, un(t, x) has an infinite number of
normal Lagrange multipliers, and VT is not Fréchet differentiable at qn.

At this step, Theorem 2 is proved. Hereafter and in the next subsection, we provide more
results on normal extremals and we comment on the shooting method.

4.3. Study of normal extremals. According to Proposition 24, given any qn ∈ P+
n and

any T > ‖qn‖L∞(I), the unique optimal control un solution of Problem 2 has at least one normal
extremal lift, with a normal Lagrange multplier (λn,−1) (which may not be unique).

In this section, we study all normal extremals, by letting λn vary in Pn. It is then useful, here,
to change a bit notations: in what follows, given any λn ∈ Pn, we denote by(yλn , λn,−1, uλn) the
normal extremal associated on the time interval [0,+∞) with the Lagrange multiplier λn. It is
well defined according to the next result.

Lemma 25. Let λn ∈ Pn be arbitrary.
• There exists a unique control uλn ∈ L∞(0,+∞;Un) such that

(24)

∫ 1

0

(λn(x)− t)uλn(t, x) dx = max
pn∈Un

∫ 1

0

(λn(x)− t)pn(x) dx,

for almost every t ∈ [0,+∞).
• There exist (t1,λn , t2,λn) ∈ [0,+∞)2, satisfying

t1,λn > max

(
0, min
x∈[0,1]

λn(x)

)
and t2,λn 6 max

x∈[0,1]
λn(x),

such that uλn(t) = 1 if 0 6 t 6 t1,λn and uλn(t) = 0 if t > t2,λn .
• Denoting by yλn the trajectory generated on [0,+∞) by the control uλn , i.e., satisfying
∂tyλn = uλn and yλn(0) = 0, for every T > t2,λn the control uλn ∈ L∞(0, T ;Un) is the
unique optimal control steering the control system to the target yλn(T ) = yλn(t2,λn) =
yλn(+∞).

Note that, with respect to the statement of Theorem 2, with a slight ambiguity of notation, we
have un = uλn and yn = yλn (the optimal solution of Problem (2)) if T > t2,λn . For ‖qn‖L∞(I) 6
T 6 t2,λn , the equality un = uλn may fail.

Of course, making λn vary, the corresponding final point yλn(+∞) = yλn(t2,λn) varies as well
(we have a parametrization of all normal extremals), and in the shooting method we will want to
tune λn such that yλn(T ) = qn for a given qn ∈ P+

n . This equation can always be solved when
T > t2,λn .

Proof (Proof of Lemma 25.). A key ingredient is the uniqueness result stated in Theorem 1.
Let un(t) be a maximizer of (24) for almost every t ∈ [0, T ]. Integrating by parts, we have∫ T

0

∫ 1

0

(λn(x)− t)un(t, x) dx dt =

∫ T

0

∫ 1

0

yn(t, x) dx dt+

∫ 1

0

(λn(x)− T )yn(T, x) dx.
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Since un(t) is a maximizer of (24), the function yn maximizes the functional

Q(yn) =

∫ T

0

∫ 1

0

yn(t, x) dx dt+

∫ 1

0

(λn(x)− T )yn(T, x) dx

under the constraint ∂tyn ∈ Un. In particular it maximizes Q over a subset of all such states,
which is defined conveniently as the set of ŷn such that ∂tŷn = ûn ∈ Un and ŷn(T ) = yn(T ). By
Theorem 1, yn is unique, un is unique, and by Lemma 17, un is such that toc(un(t)) > n + 1 for
almost every t ∈ [0, T ]. Now, let us consider the set A of all times t ∈ [0, T ] at which (21) has two
distinct solutions with order of contact > n + 1. If the Lebesgue measure of A is positive, then
there exist two different solutions u1n(t) and u2n(t) with total order of contact n+ 1 or more. The
half-sum u3n = 1

2 (u1n+u2n) has a total order of contact which is less than n+1 over a set of times of
positive measure. But its primitive y3n is also a maximizer of Q(y3n). This contradicts the previous
point, and therefore the measure of A is zero. The first item of the lemma follows.

To prove the second item, it suffices to make the same reasoning as the one done to obtain
(22).

This third item follows by uniqueness, and by using the fact that the first-order condition given
by the Pontryagin maximum principle is sufficient since the optimal control problem is convex.

Remark 8. Note that the uniqueness of uλn proved in Lemma 25 is quite subtle. Not only it
follows from a complicated result (the proof of uniqueness in Theorem 1 is the difficult part), but
also, we do not necessarily have uniqueness of the maximizer for the following static maximization
problem (9) studied in Section 2.4. Here, the difference in (24) is that we deal with a dynamic max-
imization problem, where the term rn of (9) is replaced with λn(x)−t. Then, for a particular given
time t ∈ [0, T ], the maximizer uλn(t) may not be unique, but the maximizer uλn ∈ L∞(0,+∞;Un)
such that (24) is satisfied for almost every t ∈ [0,+∞) is unique.

Lemma 26. Given any λn ∈ Pn, the function t 7→ uλn(t) ∈ Un is piecewise continuous, with a
finite number of discontinuities along [0,+∞).

Proof. Recall that uλn(t) ∈ Extr(Un) for almost every t. By Remark 8, the set of times t for
which the maximizer uλn(t) is not unique is of Lebesgue measure zero (otherwise uniqueness of the
optimal control would fail). This set corresponds to switching times, i.e., to possible discontinuities
of t 7→ uλn(t). Now, noting that the curve t 7→ λn(x)− t is algebraic and that the set Un is semi-
algebraic by Lemma 7, the finiteness property follows.

Lemma 27. Given any λn ∈ Pn, the maximizer uλn of (24) is also the unique maximizer of

the functional vn 7→
∫ +∞
0

∫ 1

0
(λn(x)− t)vn(t, x) dx dt over all possible vn ∈ L∞(0,+∞;Un), that is,∫ +∞

0

∫ 1

0

(λn(x)− t)uλn(t, x) dx dt = max
vn∈L∞(0,+∞;Un)

∫ +∞

0

∫ 1

0

(λn(x)− t)vn(t, x) dx dt.

Proof. It suffices to notice that

max
vn∈L∞(0,+∞;Un)

∫ +∞

0

∫ 1

0

(λn(x)− t)vn(t, x) dx dt =

∫ +∞

0

max
pn∈Un

∫ 1

0

(λn(x)− t)pn(t, x) dx dt,

where this equality follows by applying a measurable selection lemma (see, e.g., [21, Lemmas 2A
and 3A page 161]).

4.4. Case T = +∞. We have seen that uλn(t) = 0 if t > t2,λn . In other words, given some
λn ∈ Pn, the corresponding normal control is zero when t is large enough, but t2,λn depends on
λn. In order to establish results that do not depend on λn, in this section we take T = +∞.

We have the following homogeneity property for the controls uλn .
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Lemma 28. Given any α > 0, we have

uαλn(αt) = uλn(t) for a.e. t > 0, yαλn(αt) = αyλn(t) ∀t > 0.

Proof. By uniqueness of the maximizer in Lemma 25, given any α > 0, we know that uαλn is the

unique control in L∞(0,+∞;Un) such that
∫ 1

0
(αλn(x)− t)uαλn(t, x) dx = maxpn∈Un

∫ 1

0
(αλn(x)−

t)pn(x) dx for almost every t > 0. Replacing t with αt and by uniqueness, the result follows.

We consider the maximized Hamiltonian defined on [0,+∞)× Pn by

(25) Hr(t, λn) = max
pn∈Un

∫ 1

0

(λn(x)− t)pn(x) dx =

∫ 1

0

(λn(x)− t)uλn(t, x) dx,

where uλn ∈ L∞(0,+∞;Un) is the unique maximizer given by Lemma 25. We also set

(26) K(λn) =

∫ +∞

0

Hr(t, λn) dt =

∫ +∞

0

∫ 1

0

(λn(x)− t)uλn(t, x) dx dt,

for every λn ∈ Pn. The time integral is well defined because uλn(t) = 0 if t > maxx∈[0,1] λn(x) by
Lemma 25. Note also that K(λn) > 0 (take pn = 0 in (25)).

Lemma 29. The functional K defined by (26) has the following properties:
• K is convex on Pn.
• K is Fréchet differentiable at any λn ∈ Pn, and dK(λn).hn =

∫ +∞
0

∫ 1

0
hn(x)uλn(t, x) dt.

Identifying dK(λn) with the gradient ∇K(λn) at λn with the scalar product of L2(I), we
have

(27) ∇K(λn) =

∫ +∞

0

uλn(t) dt = yλn(+∞) ∈ P+
n ,

i.e., ∇K(λn) is the final point yλn(+∞) ∈ P+
n reached (in large enough time) by the

trajectory yλn generated by the control uλn (solution of the Cauchy problem ∂tyλn = uλn ,
yλn(0) = 0).

• K is positively 2-homogeneous, i.e., K(αλn) = α2K(λn), for every α > 0 and for every
λn ∈ Pn. Additionally ∇K is positively 1-homogeneous, i.e., ∇K(αλn) = α∇K(λn).

• for every λn ∈ Pn, we have

(28) K(λn) =
1

2

∫ +∞

0

∫ 1

0

λn(x)uλn(t, x) dx dt =

∫ +∞

0

t

∫ 1

0

uλn(t, x) dx dt = J(uλn).

Proof. It suffices to prove that Hr is convex with respect to λ. Given any (λ1n, λ
2
n) ∈ P2

n and
any α ∈ [0, 1], we have, for almost every t ∈ [0, T ],

Hr(t, αλ
1
n + (1− α)λ2n) =

∫ 1

0

(αλ1n(x) + (1− α)λ2n(x)− t)uαλ1
n+(1−α)λ2

n
(t, x) dx

= α

∫ 1

0

(λ1n(x)− t)uαλ1
n+(1−α)λ2

n
(t, x) dx+ (1− α)

∫ 1

0

(λ2n(x)− t)uαλ1
n+(1−α)λ2

n
(t, x) dx

6 α

∫ 1

0

(λ1n(x)− t)uλ1
n
(t, x) dx+ (1− α)

∫ 1

0

(λ2n(x)− t)uλ2
n
(t, x) dx

= αHr(t, λ
1
n) + (1− α)Hr(t, λ

2
n),

where we have used (24) to obtain the above inequality. The convexity property of K (first item)
follows.
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Let us establish the differentiability property (second item). Applying the Danskin theorem
(see [1, 10]) to the function Hr defined by (25), it follows that, for almost every t ∈ [0, T ], the
function λn 7→ Hr(t, λn) is directionally differentiable at any λn ∈ Pn, and

∂Hr

∂λn
(t, λn).hn = max

{∫ 1

0

hn(x)p̂n(x) dx | p̂n ∈ Ûn(t, λn)

}
,

where Ûn(t, λn) is the set of all p̂n ∈ Pn maximizing the functional pn 7→
∫ 1

0
(λn(x)−t)pn(x) dx (with

t fixed). Note that Ûn(t, λn) contains the element uλn(t) for almost every t ∈ [0, T ], but may not be
a singleton (see Remark 8). But since the maximizer uλn is unique in L∞(0, T ;Un), it follows that

the functional K is directionally differentiable, and dK(λn).hn =
∫ +∞
0

∫ 1

0
hn(x)uλn(t, x) dx dt =∫ +∞

0
〈uλn(t), hn〉L2(I) dt. Since K is convex and thus locally Lipschitz, and since Pn is finite-

dimensional, Gâteaux differentiability implies Fréchet differentiability (see [9]).
The 2-homogeneity property of K (third item) obviously follows by making the change of

variable t 7→ t/α in the integral and by using Lemma 28. The 1-homogeneity property of ∇K is
then obtained by differentiating K(αλn) = α2K(λn) with respect to λn.

It remains to prove the fourth item. Since K(αλn) = α2K(λn), derivating in α and taking
α = 1 gives 〈∇K(λn), λn〉L2(I) = 2K(λn) (Euler equation), which yields (28) by using (27).

Remark 9. We can notice that, given any λn ∈ P−n , i.e., λn ∈ Pn such that λn(x) 6 0
for every x ∈ [0, 1], we have uλn = 0 (this follows from Lemma 25), and thus, by Lemma 29,
K(λn) = J(uλn) = 0 and ∇K(λn) = 0. In other words, the convex functional K is identically zero
on the convex subset P−n of Pn, as well as its gradient.

Moreover, as an easy consequence of Lemma 29, we have:

K(λn) = 0 ⇔ ∇K(λn) = 0 ⇔ uλn = 0.

Another remark is that, if λn(x) > 0 for every x ∈ I = [0, 1], then ∇K(λn) =
∫ +∞
0

uλn(t) dt > 0 on

I, and if
∫ 1

0
λn(x) dx > 0 (or more generally, if there exists pn ∈ Un such that

∫ 1

0
λn(x)pn(x) dx >

0), then K(λn) > 0 and ∇K(λn) ∈ P+
n \ {0}.

Remark 10. Using (28), it is interesting to note that, for the optimal control un solution of
Problem 2, if T > t2,λn where (λn,−1) is a normal Lagrange multiplier (whose existence follows
from Proposition 24), then un = uλn and

VT (qn) = JT (un) = J(un) = K(λn),

qn = ∇K(λn) =

∫ +∞

0

un(t) dt = ET (un) = yn(T ) = yn(+∞).

In particular we have obtained the relation VT (∇K(λn)) = K(λn), for every λn ∈ Pn and every
T > t2,λn , and thus,

V+∞ ◦ ∇K = K,

where V+∞(λn) is defined as the limit of VT (λn) as T → +∞ (the limit is reached in finite time,
for T > t2,λn). We have also obtained that, given any qn ∈ P+

n , for every λn ∈ ∂VT (qn) and every
T > t2,λn we have qn = ∇K(λn), which we can write in the form

∇K ◦ ∂V+∞ = idPn .

It can also be noted that VT is positively 2-homogeneous.
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Shooting method. We have seen how to parametrize the “normal extremal flow”, i.e., all possi-
ble normal extremals, by the (n+ 1)-parameter λn ∈ Pn. The shooting method consists of finding
λn ∈ Pn such that ∇K(λn) = qn. Note that, as planned by the theory, the shooting problem
consists of n + 1 unknowns for n + 1 equations (see [34] for a survey on well-posedness and im-
plementation issues of the shooting method). Proposition 24 shows that this is always possible: it
suffices to pick some λn ∈ ∂V+∞(qn); and thus that the mapping ∇K : Pn → P+

n is surjective.
Given that ∇K = 0 on P−n (see Remark 9), and given that ∇K is positively 1-homonegenous (see
Lemma 29), we even have a more precise result: the mapping ∇K : Pn \ P−n → SP+

n is surjective
(where SP+

n is the quotient of P+
n by positive homotheties).

However, a given qn ∈ P+
n may have several preimages λn ∈ ∂V+∞(qn) under ∇K, i.e., several

normal Lagrange multipliers. This is so as soon as the subdifferential ∂V+∞(qn) is not reduced to
a singleton, which is equivalent to say that V+∞ is not Fréchet differentiable at qn.

In particular, we have seen in Lemma 22 that, if qn ∈ P+
n vanishes at some point of I, then

the optimal control un such that E+∞(un) = qn has an abnormal Lagrange multiplier (µn, 0)
(actually, as many as qn has zeros on I). Since un has also, according to Proposition 24, a
normal Lagrange multiplier (λn,−1), it follows that un has an infinite number of normal Lagrange
multipliers (λn + βµn,−1), for any β > 0. In particular, V+∞ is not Fréchet differentiable at qn.

However, we think (but we do not know how to prove) that V+∞ is Fréchet differentiable at
any qn ∈ Pn such that qn > 0 on I. This is not contradictory with what is stated in Remark 7.

5. Convergence with respect to n. In this section, we investigate some convergence prop-
erties as n → +∞. The question is natural in the context of polynomial approximation (see
[13, 31]). As in Section 4, to simplify we assume that I = [0, 1], that w = 1 and that s(t) = t2/2.

We assume that qn ∈ P+
n converges uniformly on I to a nonnegative continuous function q as

n → +∞. We first address the convergence of J(un). The indicatrix function (4) gives the lower
bound

(29) J(un) >
∫ qn(x)

0

t

∫
I

dx dt =
1

2

∫
I

qn(x)2 dx −→
n→+∞

1

2

∫
I

q(x)2 dx.

The main point is then to obtain an upper bound for J(un). We make use of a polynomial convo-
lution kernel Fn? : C0([0, 1]) → Pn such that ‖q − Fn ? q‖L∞(I) 6 εn(q) with limn→+∞ εn(q) = 0

(see [12, 13]), such as the Fejer kernel or the Jackson kernel (for the latter, one has εn(q) 6
C‖q′′‖L∞(I)/n

2). These kernels are nonnegative with mass 1 on I = [0, 1]; more precisely, we have
Fn ? 1 = 1 and Fn ? p > 0 for p ∈ C0([0, 1]) such that p > 0 (see [13]).

Lemma 30. We assume that q ∈ C0(I) and that q > 0 on I. Then:
• limn→+∞ J(un) = 1

2

∫
I
q(x)2 dx.

• The optimal control un converges to the indicatrix function 1I{0<t<q(x)} for the weak-star
topology of L∞(I).

Proof. Writing qn = (qn − Fn ? q + µn) + Fn ? (q − µn) with µn = ‖q − qn‖L∞(I) + εn(q) and
‖q − Fn ? q‖L∞(I) 6 εn(q), we have qn−Fn ?q+µn = (q−qn)+(q−Fn ?q)+‖q−qn‖L∞(I) +εn(q),
and thus 0 6 qn − Fn ? q + µn 6 2µn on I. Defining

vn(t, x) =
1

2µn

(
qn − Fn ? q + µn︸ ︷︷ ︸

∈Pn

)
(x)1I{0<t<2µn} + Fn ? 1I{2µn<t<q(x)+µn}︸ ︷︷ ︸

∈Pn

(x),

by construction we have vn ∈ L∞(0,+∞;Un) for T > ‖q‖L∞(I) + supn µn and∫ +∞

0

vn(t, x) dt = (qn − Fn ? q + µn) (x) + Fn ?

(∫ +∞

0

1I{2µn<t<q(x)+µn}dt

)
(x)

= (qn − Fn ? q + µn) (x) + Fn ? (q − µn)(x) = qn(x).
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Therefore vn ∈ Kn(T, qn) is admissible and

J(un) 6 J(vn) =

∫ +∞

0

t

∫
I

vn(t, x) dx dt

= µn

∫
I

(qn − Fn ? q + µn) (x) dx+

∫
I

Fn ?

(∫ ∞
0

1I{2µn<t<q(x)+µn}t dt

)
dx

6 2µ2
n +

1

2

∫
I

Fn ?
(
(q(x) + µn)2 − 4µ2

n

)
dx 6

1

2

∫
I

Fn ? (q(x) + µn)2 dx.

Using that limn→+∞
1
2

∫
I
Fn ? (q(x) +µn)2dx = 1

2

∫
I
(q(x)2) dx (see [13]) and the lower bound (29),

the first item follows.

Since 0 6 un 6 1, up to some subsequence un converges in weak-star topology to some

u ∈ L∞(IR+ × I) satisfying 0 6 u 6 1. Defining wn(t, x) = qn(x)
‖qn‖L∞(I)

1I{0<t<‖qn‖L∞(I)}, we have

wn ∈ Kn(T, qn), and thus J(un) 6 J(wn) = 1
2‖qn‖L∞(I)‖qn‖L1(I) 6 C uniformly with respect

to n since qn converges to q pointwise. Hence J(un) → J(u). Using the first item, we get that

J(u) = 1
2

∫
I
q(x)2 dx. Since 0 6 u 6 1 and

∫ +∞
0

u(t, x) dt = q(x) for almost every x, the Brenier
principle (see [4]) yields that u(t, x) = 1I{0<t<q(x)}. Now since the limit is unique, the whole
sequence converges to u in weak-star topology. The second item is proved.

6. Numerical illustration. To implement the minimization problem 1 (equivalent to Prob-
lem 2), we use the modeling language AMPL language (see [15]) combined with the optimization
routine IpOpt (see [36]). An example is provided where the time-space domain [0, 5] × [0, 1] is
discretized with a finite differences. The number of cells in t (resp., in x) is Nt (resp. Nx). We
take q3(x) = 1 + x+ x2 + x3.

We see on Figures 2 and 3 that un(t) = 0 t approximately greater that max qn = 4. Taking
into account the errors brought by the discretization, the cuts of un show that toc(un) > n+ 1 for
almost any time. Indeed, on Figure 2 (right), one sees 4 contact points (counted with multiplicity),
in accordance with the theory.

The parameters are doubled in Figure 3, but the target q6(x) = q3(x) is the same. Convergence

results are given in Table 1. The asymptotic value of the cost is K∞ = 1
2

∫ 1

0
(1 +x+x2 +x3)2 dx ≈

2.54, and we indeed observe convergence to this optimal value, in accordance with Lemma 30.
We have seen in Lemma 26 that the number of switching times is finite, and indeed we observe

that the function t 7→ un(t) has discontinuities (jumps) for a finite number of times (see Figures
2 and 3). This is a reminiscence of the bang-bang principle in optimal control theory. Numerical
simulations suggest that this number is less than n+ 1, but establishing such a property is open.

Note that implementation of polynomials in Un with a new technique developed in [11] is under
study.

n = 3 6 12 ∞
Nx = 40 80 60 ∞
Nt = 100 200 400 ∞

K(un) = 2.73 2.61 2.57 2.54
Table 1

Convergence table of the cost function with respect to the polynomial degree: the target is the same: q3(x) =
q6(x) = q12(x) = 1 + x+ x2 + x3. The parameters n, Nx and Nt are doubled from one test to the other. The last
column is the exact solution.

7. Conclusion, further comments and perspectives. The combination on the one hand
of L1 optimization techniques à la Bojanic and DeVore extended to space-time formulations and on
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Fig. 2. Parameters: Nx = 40, Nt = 100, n = 3, q3 = 1 + x + x2 + x3. The function (x, t) 7→ un(x, t) is
represented on the left as a surface, and is represented on the right as many curves x 7→ u(x; t) parametrized by t.
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Fig. 3. Parameters: Nx = 80, Nt = 200, n = 6, q6 = 1 + x + x2 + x3. The function (x, t) 7→ un(x, t) is
represented on the left as a surface, and is represented on the right as many curves x 7→ u(x; t) parametrized by t.

the other hand of optimal control techniques yields powerful tools for space-time L1 optimization
of polynomial problems. The reason is that the rigid algebraic polynomial structure is compatible
with the Pontryagin maximum principle. Based on these tools, it has been possible to derive
in Lemma 16 a characterization of optimal solutions which is a key for the proof of uniqueness.
The compatibility is evidenced with the notion of total order of contact of polynomial which is
the number of points (counted with multiplicity) where the graph of a polynomial fn between 0
and 1 touches the bounds 0 and 1. A key result is that a polynomial fn is an extremal point
in the convex set Un if and only if its total order of contact is greater or equal to deg(fn) + 1.
Probably more research is needed to fully understand the Bojanic and DeVore theorem in relation
with the geometry of Un. A still open problem is to explain why the optimal solution has a finite
number of switching times that is uniformly bounded for a given n, as evidenced by the numerical
illustrations.

Extending our results to multivariate polynomials (see [19]) is a completely open issue which is
probably quite difficult. We expect huge obstructions because the structure of positive polynomials
is delicate to establish. We also notice that we are not aware of any multivariate extension of
Bojanic and DeVore results.

Among natural perspectives, firstly, we mention the existence and uniqueness result of Theorem
1 which justifies the theory of kinetic polynomials (see [12]) by providing the missing piece that
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was the uniqueness of un. Secondly, we mention the possibility to use the new parametrization of
Un proposed in [11] in order to accelerate computations.

Appendix A. Proof of Theorem 5. Theorem 5 is the technical cornerstone in order to
establish uniqueness in Theorem 1. To prove it, we derive interesting features of polynomial L1

minimization. We will use the notations of Section 2.1. The starting point is the following seminal
result, due to Bojanic and DeVore.

Theorem 31 ([3]). Let f be a function on I, continuous and differentiable in the interior of
I. We assume that

∫
I
w(x) dx > 0. Then there exists a unique maximizer

pn = argmax

{∫
I

pn(x)w(x) dx | pn ∈ Pn, pn 6 f on I

}
.

The polynomial pn is the solution of a one-sided polynomial optimization problem. We recall
hereafter the main ideas of the proof of this result. Existence of a maximizer pn is straightforward,
but we sketch the main arguments to establish uniqueness since we are going to extend them to
our context (where the optimization problem is two-sided). By the way, it is interesting to note
that uniqueness fails in general if f is only continuous.

Proof. (Sketch of proof) First, [3, Lemma 3 page 145] is proved by showing that there exists
at least bn2 c + 1 contact points in I of pn with f . The argument goes by contradiction. Assume
that there exist k < bn2 c + 1 contact points x1 < · · · < xk in I, i.e., pn(xi) = f(xi), and consider
the polynomial Qε ∈ Pn defined by

(30) Qε(x) = (x− (x1 − ε))(x− (x1 + ε)) . . . (x− (xk − ε))(x− (xk + ε)),

where ε > 0 is a small enough so that
∫
I
Qε(x)w(x) dx > 0. Setting I = ∪ki=1(xi−ε, xi+ε)∩G ⊂ G,

we have the following properties:

(31)
f(x)− pn(x) > d > 0 ∀x ∈ I − I,
ηQε(x) 6 d 6 f(x)− pn(x) ∀x ∈ I − I, η = d/maxGQε(x) > 0,
ηQε(x) 6 0 6 f(x)− pn(x) ∀x ∈ I.

Hence pn+ηQε ∈ Qn(f) and
∫
I
pn(x)w(x) dx <

∫
I
(pn(x)+ηQε(x))w(x) dx. This is a contradiction.

Second, [3, Lemma 4 page 147] consists of proving that, if n is odd, then all bn2 c + 1 contact
points belong to the interior I, and if n is even, then at least bn2 c contact points belong to the
interior of I. The proof is similar to the one above.

Finally, [3, Theorem 3 page 149] consists of counting the number of contact points: assume
for example that n is odd and assume that there are two maximizers p1n and p2n. Both must have
bn2 c + 1 contact points in common inside I. Indeed, otherwise, consider p3n = 1

2 (p1n + p2n). The
maximizers coincide at these points as well as and their derivatives. If n is odd, then we have
2(bn2 c+1) = n+1 independent equality constraints and thus p1n = p2n. If n is even, the maximizers
coincide at bn2 c + 1 contact points and their derivatives coincide at least at bn2 c interior contact
points, hence we have bn2 c+ 1 + bn2 c = n+ 1 equality constraints and thus p1n = p2n.

We use for our purposes a reformulation with two bounds. Uniqueness for one-sided L1 ap-
proximations of differentiable functions is treated in generality in [25] and our results are similar.
However we deal hereafter with two-sided problems, which in general may not be C1 (see (5)).
This is why we need to make a complete proof.

Proposition 32. Let f and g be two differentiable functions on I, satisfying g < 0 < f . We
assume that

∫
I
w(x) dx > 0. Then there exists a unique maximizer

pn = argmax

{∫
I

pn(x)w(x) dx | pn ∈ Pn, g 6 pn 6 f

}
.
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Proof. We follow the arguments of the previous proof. Existence is obvious.
We claim that, if pn is a maximizer, then there exist at least bn2 c+ 1 contact points in I of pn

with f . The proof goes by contradiction. We denote by x1 < · · · < xk the contact points with f .
Consider the polynomial Qε ∈ Pn defined by (30). Using (31), we have pn+ηQε 6 f . It remains to
show that g 6 pn+ηQε. We have Qε(x) > 0 for x ∈ I−I, and thus g(x) 6 pn(x) 6 pn(x)+ηQε(x)
for x ∈ I − I.

If x ∈ I, then Qε(x) 6 0 by construction. But at the same time we have pn(xi) = f(xi). Since
f > 0 > g on I, it follows that pn(x) > α > 0 for x ∈ I. Hence if ε, d, η > 0 are taken sufficiently
small, then g(x) < 0 < pn(x) + ηQε(x) for x ∈ I. Therefore g 6 pn + ηQε in I. This shows that
the lower bound g 6 pn does not change the structure of the proofs in the one-sided case provided
g < 0 < f in I. Therefore [3, Lemma 3] is still valid in this two-sided case.

It is straightforward to extend [3, Lemma 4 and Theorem 3]. The result follows.

We are now in a position to prove Theorem 5. We set f = min(1− fn, fn) and g = −min(1−
fn, fn). If 0 < fn < 1 on I, Theorem 5 follows from Proposition 32. But since fn ∈ Un, the
function fn may touch the bounds 0 or 1: for example assume that there exists x∗ ∈ I such that
fn(x∗) = 0. In this case, we have g(x∗) = −min(1−fn, fn)(x∗) = 0 = min(1−fn, fn)(x∗) = f(x∗).
Hereafter, we address this case with a convenient polynomial factorization at the contact points.

Lemma 33. If fn = 0 or fn = 1 then the unique solution of Theorem 5 is pn = 0. Otherwise,
we have toc(fn) 6 2n.

Proof. The first statement is obvious. Let us prove the second one. With the notations of
Section 2.1, we define W (x) =

∏p
i=0 |x − xi|ai ×

∏q
j=0 |x − yj |bj . Since fn 6= 0 and fn 6= 1, W

is well defined and we have to prove that deg(W ) 6 2n. By contradiction, if deg(W ) > 2n + 1,
then either

∑p
i=0 ai > n + 1 or

∑q
j=0 bj > n + 1. In the first case, the factorization (7) with∏p

i=0 |x − xi|ai of degree > n + 1 shows that a = 0, and thus fn = 0. The second case yields
similarly that fn = 1. In both cases we have a contradiction.

We define the continuous function

(32) Z(x) = min

(
1− fn(x)

W (x)
,
fn(x)

W (x)

)
= min

(
b(x)∏p

i=0 |x− xi|ai
,

a(x)∏q
j=0 |x− yj |bj

)
.

By construction, there exists α > 0 such that Z(x) > α > 0 for every x ∈ I. The polynomial
pn ∈ Qn considered in Theorem 5 satisfies −W (x)Z(x) = g 6 pn(x) 6 f = W (x)Z(x) for every
x ∈ I. This shows that the polynomial W factorizes pn.

Lemma 34. Assume that fn 6= 0 and fn 6= 1, and that toc(fn) > n+ 1. Then pn = 0.

Proof. All roots of W are also roots of fn or of 1−fn, and thus are also roots of pn. Therefore
pn is a polynomial with n+ 1 roots, and thus pn = 0. More precisely, Qn = {0}.

The last case is when toc(fn) 6 n. The idea is to factorize pn = Wrm, with rm ∈ Pm such that
deg(W ) + m = n. With these notations, the maximization problem (6) consider in Proposition 5
is equivalent to:

Find rm ∈ Qm = {sm ∈ Pm | −Z 6 sm 6 Z on I} such that

(33) rm = argmax
sm∈Qm

∫
I

sm(x)W (x)w(x) dx.

The proof of Theorem 5 is done with the formulation (33), thanks to Proposition 32 applied
with g = −Z and f = Z. We have g < 0 < f on I. The point is that f and g are differentiable
everywhere except maybe at some points in the interior of I, which we denote generically by
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z∗, where the two rational fractions in (32) have the same value, i.e., fn(z∗) = 1 − fn(z∗), thus
fn(z∗) = 1

2 . Two cases occur.
If f ′n(z∗) = 0, then Z is differentiable at z∗ with Z ′(z∗) = 0.
If f ′n(z∗) 6= 0, then Z(x) = fn(z∗) − |f ′n(z∗)| |x − z∗| + O

(
|x− z∗|2

)
for z∗ − ε < x < z∗ + ε.

Since z∗ cannot be a contact point between a polynomial sm and Z, this case never occurs.
Hence the contact points between rm and ±Z are points where ±Z is differentiable. A regu-

larization of Z near non-differentiable points suffices to apply Proposition 32 and prove the claim.
Proposition 5 follows.

Note that if the function Z defined by (32) is defined with a maximum instead of a minimum,
then the result fails because Y (x) = fn(z∗) + |f ′n(z∗)| |x− z∗|+ O

(
|x− z∗|2

)
may have the contact

point z∗ between a polynomial and Y , even if f ′n(z∗) 6= 0.

Appendix B. Construction of exact solutions for n = 2. We use the Pontryagin
maximum principle to determine an explicit analytical solution of Problem 2 for n = 2. We take
I = [0, 1], s′(t) = t and w(x) = 1. We define the set

S =
{

(a, b, r) | a = cos θ, b = cosψ, r2 6 2(1− cos(θ − ψ)), θ, ψ ∈ IR
}
.

Lemma 35. Let v2 ∈ P2. Then v2 ∈ U2 if and only it can be written either as v2(x) =
(ax+ b(1−x))2 + r2x(1−x) for some (a, b, r) ∈ S, or as v2(x) = 1− (ax+ b(1−x))2− r2x(1−x)
for some (a, b, r) ∈ S.

Proof. From the Lukács theorem (see [31]), nonnegative polynomials of degree 2 can be written
as w(x) = (ax + b(1 − x))2 + r2x(1 − x). Since v2 > 0 and 1 − v2 > 0, we get v2(x) = (ax +
b(1− x))2 + r2x(1− x) and 1− v2(x) = (ax+ b(1− x))2 + r2x(1− x). Therefore 1 = (ax+ b(1−
x))2 + r2x(1− x) + (ax+ b(1− x))2 + r2x(1− x), i.e., x2 + 2x(1− x) + (1− x)2 = (a2 + a2)x2 +

(2ab + 2ab + r2 + r2)x(1 − x)(b2 + b
2
)(1 − x)2. Identifying the coefficients yields 1 = a2 + a2,

2 = 2ab+ 2ab+ r2 + r2 and 1 = b2 + b
2
. The result follows.

According to our results, we must have u2(t) = argmax{
∫ 1

0
(λ2(x)− t) p2(x) dx | p2 ∈ U2}

for almost every t, for some normal Lagrange multiplier λ2 ∈ P2 which can be defined by its

moments k1 = 3
∫ 1

0
λ2(x)x2 dx, k2 = 6

∫ 1

0
λ2(x)x(1 − x) dx and k3 = 3

∫ 1

0
λ2(x)(1 − x)2 dx. We

propose hereafter a method to construct the solution represented by either (a, b, r) or (a, b, r). We
distinguish between several cases:
a) Assume that

(34) t < k2,

and write u2(t) with the second representation of Lemma 35 (if k2 < t we take the other represen-
tation). We define

(35) M(a, b, r) ≡
∫ 1

0

(λ2(x)− t) (v2(x)− 1) dx =
1

3
(t− k1)a2 +

1

6
(t− k2)(2ab+ r2) +

1

3
(t− k3)b

2
.

Since M(a, b, r) must reach its maximum, we have r = 0. We set A(a, b) = M(a, b, 0) = 1
3 (t −

k1)a2 + 1
6 (t − k2)2ab + 1

3 (t − k3)b
2
. Since t − k2 > 0, the optimal solution is such that ab 6 0.

Moreover A(a, b) > A(b, a), i.e., (k1 − k3)(b
2 − a2) > 0.

b) Assume that k1 < k3, then a = λb with −1 6 λ 6 0 and A(a, b) = 1
3b

2
h(λ) with

(36) h(λ) = A(λ, 1) = (t− k1)λ2 + (t− k2)λ+ (t− k3).

The function h is quadratic and h′(0) = t− k2 < 0. The discussion is now made according to the
sign of h′(−1) = 2k1 − k2 − t.
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c) If h′(−1) 6 0, then max−16µ60 h(µ) = h(−1) = −k1+k2−k3+t. Noting that −k1+k2−k3+t <
−2k1+k2+t 6 0, we get (a, b) = (−1, 1), and u2(t, x) = 1−(−x+(1−x))2 = 1−(1−2x)2 = 4x(1−x).
Since t < k2, the condition 2k1 − k2 − t 6 0 makes sense only if 2k1 − k2 < k2 i.e., k1 < k2 and if
2k1 − k2 6 t < k2.
d) If h′(−1) > 0, then h reaches its maximum at h′(λ) = 0, that is λ = − t−k2

2(t−k1) . Then

max−16µ60 h(µ) = h(λ) = (t−k3)− (t−k2)2
4(t−k1) . If this number is negative then b = 0 and maxA(a, b) =

0. If it is nonnegative then b = 1. Summing up, we have maxA(a, b) = 1
3 max((t− k3)− (t−k2)2

4(t−k1) , 0)

and (a, b) = (λ(t), 1). It yields u2(t, x) = 1 − (λ(t)x + 1 − x)2 if (t − k3) − (t−k2)2
4(t−k1) > 0 and then

u2(t, x) = 1 if (t− k3)− (t−k2)2
4(t−k1) < 0. Let us define two thresholds T±th. as the solutions of

(37) (T±th. − k3)−
(T±th. − k2)2

4(Tth. − k1)
= 0⇐⇒ 3(T±th.)

2 + (2k2 − 4k1 − 4k3)T±th. + 4k1k3 − k22 = 0.

The product is 3T−th.T
+
th. = 4k1k3 − k22.

e)All other cases can be deduced from the above discussion.
Example of an exact solution. We take (k1, k2, k3) = (2.5, 3, 5/3). Then T−th. = 1 is solution

of (37), and T+
th. = 50/9. Since T+

th. > k2 = 3 does not satisfies the bound (34), it does not enter
in the discussion. It yields u2(t, x) = 4x(1 − x) for 2 < t < 3, u2(t, x) = 1 − (λ(t)x + 1 − x)2 for
1 < t < 2 and u2(t, x) = 1 for t < 1. One checks with (35) also that u2(t, x) = 0 for 3 < t. We

have q2(x) =
∫ +∞
0

u2(t, x) dt = 1 +
(
7− 1

2 ln 3
)
x+

(
− 19

3 + 3
4 ln 3

)
x2.

Lemma 36. For the above example, the last switching time is different from the maximum of
qn, i.e., Tlast switch > maxx∈I q2(x).

Proof. The maximum of the convex polynomial q2 is reached at q′2(x∗) = 0, and we have

q2(x∗) = 1 +
(
7− 1

2 ln 3
)2
/4
(
19
3 −

3
4 ln 3

)
≈ 2.88. This numerical value is different from the last

switching time Tlast switch = 3 where un(t) switches from a non zero polynomial to 0.

Another property also observed in numerical simulations is the dependence of the optimal
solution on the entropy function (see Proposition 3). Let us finally prove Proposition 3.

Proof. (of Proposition 3.) Take w = 1 and a general entropy function s(t) (not necessarily equal
to t2/2). Using that

∫
I
(λn(x)−s′(t))un(t, x) dx >

∫
I
(λn(x)−s′(t))vn(x) dx for every vn ∈ Un, then

(36) becomes h(λ) = (s′(t)− k1)λ2 + (s′(t)− k2)λ+ (s′(t)− k3) and λ(t) = − s′(t)−k2
2(s′(t)−k3) . Therefore

the optimal solution u2(t, x) = (λ(t)x+ (1− x))
2

depends on the entropy.

Another possibility to understand the influence of the entropy s on the solution is to consider
the critical time T∗, defined in (20), above which the optimal solution un(t) vanishes identically.
Let us decide of an entropy s(t) = tm where m > 2. One obtains a critical time function of m

T∗(m) = ‖qn‖L∞(I)

(
Cn

∫
I

w(x)dx

) 1
m

.

Let m → 0, then T∗(m) → ‖qn‖L∞(I) = maxI qn(x) which is asymptotically different of course
from the threshold enlighted in Lemma 36 for m = 2.
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