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1 Introduction

The Laplacian plays a major role in the mathematical analysis of partial differential equations. Re-
cently, the work of J. Kigami [1], [2], taken up by R. S. Strichartz [3], [4], allowed the construction
of an operator of the same nature, defined locally, on graphs having a fractal character: the triangle
of Sierpiński, the carpet of Sierpiński, the diamond fractal, the Julia sets, the fern of Barnsley.

J. Kigami starts from the definition of the Laplacian on the unit segment of the real line. For a
double-differentiable function u on [0, 1], the Laplacian ∆u is obtained as a second derivative of u
on [0, 1]. For any pair (u, v) belonging to the space of functions that are differentiable on [0, 1], such
that:

v(0) = v(1) = 0

he puts the light on the fact that, taking into account:

∫ 1

0
(∆u) (x) v(x) dx = −

∫ 1

0
u′(x) v′(x) dx = − lim

n→+∞

n
∑

k=1

∫ k
n

k−1

n

u′(x) v′(x) dx

if ε > 0, the continuity of u′ and v′ shows the existence of a natural rank n0 such that, for any

integer n > n0, and any real number x of

[

k − 1

n
,
k

n

]

, 1 6 k 6 n:

∣

∣

∣

∣

∣

∣

∣

∣

u′(x)−

u

(

k

n

)

− u

(

k − 1

n

)

1
n

∣

∣

∣

∣

∣

∣

∣

∣

6 ε ,

∣

∣

∣

∣

∣

∣

∣

∣

v′(x)−

u

(

k

n

)

− v

(

k − 1

n

)

1
n

∣

∣

∣

∣

∣

∣

∣

∣

6 ε

the relation:

∫ 1

0
(∆u) (x) v(x) dx = − lim

n→+∞
n

n
∑

k=1

(

u

(

k

n

)

− u

(

k − 1

n

)) (

v

(

k

n

)

− v

(

k − 1

n

))

enables one to define, under a weak form, the Laplacian of u, while avoiding first derivatives. It thus
opens the door to Laplacians on fractal domains.

Concretely, the weak formulation is obtained by means of Dirichlet forms, built by induction on a
sequence of graphs that converges towards the considered domain. For a continuous function on this
domain, its Laplacian is obtained as the renormalized limit of the sequence of graph Laplacians.
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If the work of J. Kigami is, in means of analysis on fractals, seminal, it is to Robert S. Strichartz

that one owes its rise. Robert S. Strichartz goes further than J. Kigami : on the ground of the Sierpiński
gasket, he deepens, develops, exploits, generalizes, and reconstructs the classical functional spaces.

Strangely, the case of the graph of the Weierstrass function, introduced in 1872 by K. Weier-
strass [7], which presents self similarity properties, does not seem to have been considered anywhere,
neither by Robert S. Strichartz, neither by others. It is yet an obligatory passage, in the
perspective of studying diffusion phenomena in irregular structures.

Let us recall that, being given λ ∈ ]0, 1[, and b such that λ b > 1 +
3π

2
, the Weierstrass function

x ∈ R 7→
+∞
∑

n=0

λn cos (π bn x)

is continuous everywhere, while nowhere differentiable. The original proof, by K. Weierstrass [7], can
also be found in [8]. It has been completed by the one, now a classical one, in the case where λ b > 1,
by G. Hardy [9].

After the works of A. S. Besicovitch and H. D. Ursell [10], it is Benoît Mandelbrot [11] who partic-
ularly highlighted the fractal properties of the graph of the Weierstrass function. He also conjectured

that the Hausdorff dimension of the graph is DW = 2 +
lnλ

ln b
. Interesting discussions in relation to this

question have been given in the book of K. Falconer [12]. A proof was given by B. Hunt [13] in 1998
in the case where arbitrary phases are included in each cosinusoidal term of the summation. Recently,
K. Barańsky, B. Bárány and J. Romanowska [14] proved that, for any value of the real number b, there

exists a threshold value λb belonging to the interval

]

1

b
, 1

[

such that the aforementioned dimension is

equal to DW for every b in ]λb, 1[. In [15], G. Keller proposes what appears as a much simpler proof.

In [5], [6], we have asked ourselves the following question: given a continuous function on the

graph of the Weierstrass function u, under which conditions is it possible to associate to u
a function ∆u which is, in the weak sense, its Laplacian, so that this new function ∆u is

also defined and continuous on the graph of the Weierstrass function ?

Following our results, it was natural to consider, then, the case of the Weierstrass-Hadamard
function WH, i.e. the lacunary complex series, such that, for any complex number z, the modulus of
which is less or equal to 1:

WH(z) =

+∞
∑

n=0

λn zN
n
b , λ ∈ ]0, 1[ , b ∈ R

∣

∣λ b > 1 +
3π

2

The novelty consists in working into an entirely complex space, D× C.
We present thus, in the following, the results obtained by following the approach of J. Kigami and

R. S. Strichartz. Ours is made in a completely renewed framework, as regards, the one, affine,
of the Sierpiński gasket. First, we concentrate on Dirichlet forms, on the graph of the Weierstrass
function, which enable us the, subject to its existence, to define the Laplacian of a continuous function
on this graph. This Laplacian appears as the renormalized limit of a sequence of discrete Laplacians
on a sequence of graphs which converge to the one of the Weierstrass function. The normalization
constants related to each graph Laplacian are obtained thanks Dirichlet forms.

In addition to the Dirichlet forms, we have come across several delicate points: the building of a
self-similar measure related to the graph of the function, as well as the one of spline functions on the

2



vertices of the graph.

The spectrum of the Laplacian thus built is obtained through spectral decimation. Beautifully,
as regards to the method developed by Robert S. Strichartz in the case of the de Sierpiński gasket, our
results come as the most natural illustration of the iterative process that gives birth to the discrete
sequence of graphs.

2 Dirichlet forms, on the graph of the Weierstrass-Hadamard func-

tion

Notation. In the following, λ and b are two real numbers such that:

0 < λ < 1 , b = Nb ∈ N and λNb > 1

We consider, in the following, the function what we choose to call the Weierstrass Weierstrass-
Hadamard (or lacunary Hadamard series) function WH, such that, for any complex number z, the
modulus of which is less or equal to 1:

WH(z) =

+∞
∑

n=0

λn zN
n
b , λ ∈ ]0, 1[ , b ∈ R

∣

∣λ b > 1 +
3π

2

which can also be written as:

WH
(

ρ ei θ
)

=

+∞
∑

n=0

λn ρN
n
b ei N

n
b
θ =

+∞
∑

n=0

λn ρN
n
b {cos (Nn

b θ) + i sin (Nn
b θ)}

i.e., by identifying R
2 and the complex plane C:

WH
(

ρ ei θ
)

=

(

+∞
∑

n=0

λn ρN
n
b cos (Nn

b θ) ,

+∞
∑

n=0

λn ρN
n
b sin (Nn

b θ)

)

2.1 Theoretical point of view

We place ourselves, in the following, in the euclidian plane of dimension 3, referred to a direct or-
thonormal frame. The usual Cartesian coordinates are (x, y, z).

Property 2.1. Periodic properties of the Weierstrass-Hadamard function

For any real number θ:

WH
(

ρ ei (θ+2π)
)

= WH
(

ρ ei θ
)

The study of the restriction of the Weierstrass-Hadamard function can be restricted to the complex
closed unit disk, that we will denote by D. We will identify D with [0, 1] × [0, 2π].

By following the method developed by J. Kigami, and developed by Cl. David [5], [6], we approximate
the restriction of ΓWH to D, of the graph of the Weierstrass-Hadamard function, by a sequence of
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graphs, built through an iterative process. To this purpose, we introduce the iterated function system
of the family of C∞ functions from D× C to D× C:

{T0, ..., TNb−1}

where, for any integer k belonging to {0, ..., Nb − 1}, and any (ρ, θ, z) of [0, 1] × [0, 2π] × C:

Tk (ρ, θ, z) =

(

ρ
1

Nb ,
θ + 2 k π

Nb

, λ z + e
i θ+2 k π

Nb

)

Lemme 2.2. For any integer k belonging to {0, ..., Nb − 1}, the map Tk is a bijection of ΓWH.

Proof. Let k ∈ {0, ..., Nb − 1}.

Consider a point
(

ρ′ ei θ
′
,W(ρ′ ei θ

′
)
)

of ΓWH , and let us look for two real numbers ρ ∈ [0, 1] and θ

in [0, 2π] such that:

Tk

(

ρ θ,W(ρ ei θ)
)

=
(

ρ′, θ′,W(ρ′ ei θ
′
)

One has then:

ρ′ = ρ
1

Nb

and:

θ′ =
θ + 2 k π

Nb

It follows that:

ρ =
(

ρ′
)Nb , θ = Nb θ

′ − 2 k π

This enables one to obtain:

WH
(

ρ ei θ
)

= WH
(

(ρ′)Nb ei (Nb θ
′−2 k π)

)

=

+∞
∑

n=0

λn
(

ρ′
)Nn+1

b ei N
n+1

b
θ′

and:

Tk
(

ρ, θ,WH
(

ρ ei θ
))

=

(

ρ
1

Nb e
i θ+2k π

Nb , λWH
(

ρ ei θ
)

+ e
i θ+2 k π

Nb

)

=

(

ρ′ ei θ
′
, λ

+∞
∑

n=0

λn
(

ρ′
)Nn+1

b ei N
n+1

b
θ′ + ei θ

′

)

=

(

ρ′ ei θ
′
,
+∞
∑

n=0

λn+1
(

ρ′
)Nn+1

b ei N
n+1

b
θ′ + ei θ

′

)

=

(

ρ′ ei θ
′
,
+∞
∑

n=0

λn
(

ρ′
)Nn

b ei N
n
b
θ′

)

=
(

ρ′, θ′,W(ρ′ ei θ
′
)
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There exists thus a unique pair of real numbers (ρ, θ) belonging to [0, 1] × [0, 2π] such that:

Tk

(

ρ, θ,W(ρ ei θ)
)

=
(

ρ′, θ′,W(ρ′ ei θ
′
)

Property 2.3.

ΓWH =

Nb−1
⋃

k=0

Tk (ΓWH)

Remark 2.1. The family {T0, ..., TNb−1} is a family of contractions from D× C into D× C.

Proof. Let us equip D× C of the distance d
D×C

such that, for any ((ρ, θ, z) , (ρ′, θ′, z′)) of

(]0, 1]×]0, 2π] × C
⋆)2:























































































d
D×C

((ρ, θ, z) , (ρ′, θ′, z′)) =

∣

∣

∣

∣

ln
ρ θ |z|

ρ′ θ′ |z′|

∣

∣

∣

∣

d
D×C

((ρ, θ, z) , (0, θ, z)) =

∣

∣

∣

∣

ln
ρ θ |z|

θ′ |z′|

∣

∣

∣

∣

d
D×C

((ρ, θ, z) , (ρ′, 0, z′)) =

∣

∣

∣

∣

ln
ρ θ |z|

ρ′ |z′|

∣

∣

∣

∣

d
D×C

((ρ, θ, z) , (0, θ′, z′)) =

∣

∣

∣

∣

ln
ρ θ |z|

θ′ |z′|

∣

∣

∣

∣

d
D×C

((ρ, θ, z) , (0, 0, 0)) = |ln ρ θ |z||

One can easily check the triangular inequality ; for each ((ρ, θ, z) , (ρ′, θ′, z′) , (ρ, θ, z)) belonging to
(]0, 1]×]0, 2π] × C

⋆)3, one has:

d
D×C

((ρ, θ, z) , (ρ′, θ′, z′)) =

∣

∣

∣

∣

ln
ρ θ |z|

ρ′ θ′ |z′|

∣

∣

∣

∣

=

∣

∣

∣

∣

ln
ρ θ |z|

ρ′′ θ′′ |z′′|

ρ′′ θ′′ |z′′|

ρ′ θ′ |z′|

∣

∣

∣

∣

6

∣

∣

∣

∣

ln
ρ θ |z|

ρ′′ θ′′ |z′′|

∣

∣

∣

∣

+

∣

∣

∣

∣

ln
ρ′′ θ′′ |z′′|

ρ′ θ′ |z′|

∣

∣

∣

∣

= d
D×C

((ρ, θ, z) , (ρ′′, θ′′, z′′)) + d
D×C

((ρ′, θ′, z′) , (ρ′′, θ′′, z′′))
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One has then, for any ((ρ, θ, z) , (ρ′, θ′, z′)) belonging to (]0, 1]×]0, 2π] × C)2:

d
D×C

(Tk (ρ, θ, z) , Tk (ρ
′, θ′, z′)) =

∣

∣

∣

∣

∣

∣

ln
ρ

1

Nb (θ + 2 k π) |λ z + e
i θ+2 k π

Nb |

ρ′
1

Nb (θ′ + 2 k π) |λ z′ + e
i θ′+2k π

Nb |

∣

∣

∣

∣

∣

∣

Since (ρ, θ, z), et (ρ′, θ′, z′) play symmetric parts, it is natural to consider the case when:

ρ′ 6 ρ , θ′ 6 θ , |z′| 6 |z|

One has then:

θ + 2 k π

θ′ + 2 k π

|λ z + e
i θ+2 k π

Nb |

|λ z′ + e
i θ′+2 k π

Nb |
6
θ

θ′

|λ| |z| +

∣

∣

∣

∣

e
i θ+2 k π

Nb

∣

∣

∣

∣

|λ| |z′|+

∣

∣

∣

∣

e
i θ′+2 k π

Nb

∣

∣

∣

∣

=
θ

θ′
|λ| |z| + 1

|λ| |z′|+ 1
6
θ

θ′
|λ| |z|

|λ| |z′|
=
θ

θ′
|z|

|z′|

Since the logarithm is non increasing, it yields:

d
D×C

(Tk (ρ, θ, z) , Tk (ρ
′, θ′, z′)) 6

∣

∣

∣

∣

∣

ln
ρ

1

Nb θ |z|

ρ′
1

Nb θ′|z′|

∣

∣

∣

∣

∣

=
1

Nb
ln
ρ

ρ′
+ ln

θ |z|

θ′|z′|

6 K ln
ρ θ |z|

ρ′ θ′ |z′|
, 0 < K < 1

= K
1

Nb
d
D×C

(

(ρ, θ, z) ,
(

ρ′, θ′, z′
))

Enfin, comme, pour tout ((0, θ, z) , (ρ′, θ′, z′)) de ({0}×]0, 2π] × C)× (]0, 1]×]0, 2π] × C) :

d
D×C

(Tk (0, θ, z) , Tk (ρ
′, θ′, z′)) =

∣

∣

∣

∣

∣

∣

ln
(θ + 2 k π) |λ z + e

i θ+2 k π
Nb |

ρ′
1

Nb (θ′ + 2 k π) |λ z′ + e
i θ′+2k π

Nb |

∣

∣

∣

∣

∣

∣

In the same way, one shows that:

d
D×C

(Tk (0, θ, z) , Tk (ρ
′, θ′, z′)) 6 K d

D×C
((0, θ, z) , (ρ′, θ′, z′))

Definition 2.1. For any integer k belonging to {0, ..., Nb − 1}, let us denote by:

Pk =
(

ρk e
i θk , zk

)

=

(

e
i 2 k π
Nb−1 ,

1

1− λ
e
i 2 k π
Nb−1

)

and:

Qk = (0, zk) =

(

0,
1

1− λ
e
i 2 k π
Nb−1

)

the two fixed points of the contraction map Tk.
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One may note that the sequence of points (Pk)06k6Nb−1 belong to the plane ρ = 1, while the
one (Qk)06k6Nb−1 belong to the plane ρ = 0.

Property 2.4. For any integer k belonging to {0, ..., Nb − 1}, the plane ρ = 0 is invariant under the
contraction Tk. In the same way, the plane ρ = 1 is invariant under the contraction Tk.

Definition 2.2. Projection of the graph ΓWH on a plane, the equation of which is of the

form ρ = ρ0, ρ0 ∈ [0, 1]

Given a real number ρ0 of [0, 1], we will call projection, on the plane ρ = ρ0, of the graph ΓWH ,
that we will denote by:

ΓWH
|ρ=ρ0

the graph of the restriction of the function WH to the plane ρ = ρ0 ; for any θ ∈ [0, 2π]:

WH
|ρ=ρ0

(

ρ ei θ
)

= WH
(

ρ0 e
i θ
)

=

+∞
∑

n=0

λn ρ
Nn

b

0 ei N
n
b
θ

Definition 2.3. Frontier set of vertices of order m, m ∈ N

Let us denote by V0,ρ=0 the ordered set (according to increasing complex arguments), of the points:

{Q0, ..., QNb−1}

and by V0,ρ=1 the ordered set (according to increasing complex arguments), of the points:

{P0, ..., PNb−1}

since, for any integer k belonging to {0, ..., Nb − 2}:

θk 6 θk+1

We set:

V0 = V0,ρ=0 ∪ V0,ρ=1

The set of points V0,ρ=0, where, for any integer k belonging to {0, ..., Nb − 2}, the point Qk is linked
to the point Qk+1, is a connected graph (according to increasing complex arguments), that we will
denote by ΓWH

0 |ρ=0

.

In the same way, the set of points V0,ρ=1, where, for any integer k belonging to {0, ..., Nb − 2}, the
point Pk is connected to the point Pk+1, is a connected graph (according to increasing complex argu-
ments), that we will denote by ΓWH

0 |ρ=1

.

The set of points V0 = V0,ρ=0 ∪ V0,ρ=0, where, for any integer k belonging to {0, ..., Nb − 2}, the
point Qk is connected to the point Qk+1, the point Pk is connected to the point Pk+1, and where
the point Pk is connected to the point Qk, is a connected graph (according to increasing complex

7



arguments), that we will denote by ΓWH
0

. V0 will be called the set of vertices of the graph ΓWH
0

.

For any natural integer m, we set:

Vm,ρ=0 =

Nb−1
⋃

k=0

Tk (Vm−1,ρ=0)

Vm,ρ=1 =

Nb−1
⋃

k=0

Tk (Vm−1,ρ=1)

Vm−1 = Vm−1,ρ=0 ∪ Vm−1,ρ=1

Vm =

Nb−1
⋃

k=0

Tk (Vm−1)

The set of points Vm, where three consecutive points are connected, is a connected graph (according
to increasing arguments), that we will denote by ΓWm . Vm will be called frontier set of vertices of

order m, of the graph ΓWH
m

.
In the following, we will denote by:

N S
m,ρ=i , i = 0, 1

the number of frontier vertices of the oriented graph ΓWH
m |ρ=i

obtained by projection of ΓWH
m

on the
plane ρ = i, i = 0, 1. One may note that:

N S
m,ρ=0 = N S

m,ρ=1

For the sake of simplicity, we will set:

N S
m,ρ=0 = N S

m,ρ=1 = N S
m

Thus, the number of frontier vertices of the graph ΓWH
m

is:

2N S
m = N S

m,ρ=0 +N S
m,ρ=1

We will write:

Vm =
{

Sm,ρ=0
0 ,Sm,ρ=0

1 , . . . ,Sm,ρ=0
NS

m−1
,Sm,ρ=1

0 ,Sm,ρ=1
1 , . . . ,Sm,ρ=1

NS
m−1

}

where, for any integer k belonging to
{

0, ...,N S
m − 1

}

:

Sm,ρ=i
k ∈ ΓWH

m |ρ=i
, i = 0, 1

Property 2.5. For any natural integer m, Vm,ρ=0 is the projection of Vm,ρ=1 on the plane ρ = 0.

Property 2.6. For any natural integer m:

Vm ⊂ Vm+1
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Property 2.7. For any k of {0, ..., Nb − 2}:

Tk (PNb−1) = Tk+1 (P0) , Tk (QNb−1) = Tk+1 (Q0)

Proof. It is obvious, since:

ρ0 = ρNb−1 = 1 or ρ0 = ρNb−1 = 0 , θ0 = 0 , θNb−1 = 2π

and:

z0 = zNb−1 =
1

1− λ

One gets then:

Tk (PNb−1) = Tk+1 (P0) =

(

e
i 2 k π

Nb ,
λ

1− λ
+ e

i 2 k π
Nb

)

Tk (QNb−1) = Tk+1 (Q0) =

(

0,
λ

1− λ
+ e

i 2 k π
Nb

)

Definition 2.4. Mesh of order m, m ∈ N, on the graph ΓH
W

Given a natural integer m, we will call mesh of order m, on the graph ΓH
W , the sequence of graphs

(

ΓWH
m |ρ= i

Nm
b

)

06i6Nm
b

obtained as projections of the graphs ΓWH
m

on the planes, the equation of which is:

ρ =
i

Nm
b

, 0 6 i 6 Nm
b

We will denote by:

Vm =

(

Mm,j,|ρ= i
Nm
b

)

06i6Nm
b
,06j6NS

m

the family of points of the mesh

(

ΓWH
m |ρ= i

Nm
b

)

06i6Nm
b

, that we will call vertices of the graph ΓWH
m

.

Property 2.8. For any natural integer m, the number of vertices of the graph ΓWH
m

is:

Nm
b N S

m

Property 2.9. The sequence
(

N S
m

)

m∈N
is an arithmetico-geometric one, with N S

0 = Nb as first term:

∀m ∈ N : N S
m+1 = Nb N

S
m − (Nb − 2)

9



which leads to:

∀m ∈ N : N S
m+1 = Nm

b (N0 − (Nb − 2)) + (Nb − 2) = 2Nm
b +Nb − 2

Proof. This results comes from the fact that each graph ΓH
Wm

, m ∈ N
⋆, is built from its predeces-

sor ΓH
Wm−1

by applying the Nb contractions Tk, 0 6 k 6 Nb − 1, to the vertices of ΓWm−1
. Since, for

any i of {0, ..., Nb − 2}:
Tk (PNb−1) = Tk+1 (P0)

the, Nb − 2 points appear twice if one takes into account the images of the Nm−1 vertices of ΓWm−1

by the whole set of contractions Tk, 0 6 k 6 Nb − 1.

Figure 1: Cylindrical view, in the space D×R, of the fixed points P0, P1, P2, Q0, Q1, Q2, in the case

where λ =
1

2
, and Nb = 3.
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Figure 2: View, in the space (ρ, θ, z), of the initial polyhedron P0P1P2Q0 = P0P1P2Q1 = P0P1P2Q2,

in the case where λ =
1

2
, and Nb = 3.

Figure 3: View, in the space (ρ, θ, z), of the graph of the real part of ΓWH, in the case where λ =
1

2
,

and Nb = 3.

Definition 2.5. Word, on the graph ΓH
W

Let m be a strictly positive integer. We will call number-letter any integer Mi of {0, . . . , Nb − 1},
and word of length |M| = m, on the graph ΓH

W , any set of number-letters of the form:

M = (M1, . . . ,Mm)

We will write:

TM = TM1
◦ . . . ◦ TMm

11



Figure 4: Cylindrical view, in the space D × R, of the graph of the real part of ΓWH, in the case

where λ =
1

2
, and Nb = 3.

Property 2.10. For any natural integer m :

ΓH
W =

⋃

|M|=k>m

TM
(

ΓH
W

)

Definition 2.6. Projection of a word, on a plane ρ = ρ0, ρ0 ∈ [0, 1]

Given a real number ρ0 belonging to the interval [0, 1], and a strictly positive integer m, we will call
projection, on the plane ρ = ρ0, of the word of length |M| = m , on the graph ΓH

W , the restriction,
to the plane, the equation of which is ρ = ρ0,of :

M|ρ=ρ0 = (M1, . . . ,Mm)|ρ=ρ0

Definition 2.7. Consecutive vertices on the graph ΓH
W

Two points X and Y of ΓW will be called consecutive vertices of the graph ΓH
W if there exists a

natural integer m, a natural integer j of {0, ..., Nb − 2}, and a natural integer i of {0, ..., Nm
b }, such

that:

X = (Ti1 ◦ . . . ◦ Tim)|ρ= i
Nm
b

(Pj) et Y = (Ti1 ◦ . . . ◦ Tim)|ρ= i
Nm
b

(Pj+1) {i1, . . . , im} ∈ {0, ..., Nb − 1}m

or:

12



X = (Ti1 ◦ Ti2 ◦ . . . ◦ Tim) (PNb−1)|ρ= i
Nm
b

et Y = (Ti1+1 ◦ Ti2 . . . ◦ Tim)|ρ= i
Nm
b

(P0)

Remark 2.2. It is important to note that X and Y cannot be in the same time the images of Pj

and Pj+1, 0 6 j 6 Nb−2, by Ti1 ◦ . . . ◦ Tim , (i1, . . . , im) ∈ {0, ..., Nb − 2}, and of Pk and Pk+1, 0 6 k 6 Nb−2,
by Tp1 ◦ . . . ◦ Tpm , (p1, . . . , pm) ∈ {0, ..., Nb − 2}. This result can be proved by induction, since, for any
pair of integers (j, k) of {0, ..., Nb − 2}2 , for any im of {0, ..., Nb − 2}, and any pm of {0, ..., Nb − 2}:

(im 6= pm and j 6= k) =⇒ (Tim (Pj) 6= Tjm (Pk) and Tim (Pj) 6= Tjm (Pk))

Each contraction Tk, 0 6 k 6 Nb − 1 is indeed injective.
Since the vertices of the initial graph ΓW0

are distincts, one gets the expected result.

Definition 2.8. Opposed and connected vertices, on the graph ΓH
W

Two points X and Y of ΓWH , with the same angular coordinates θX = θY ∈ [0, 2π], will be called
opposed and connected vertices on the graph ΓH

W if there exists a natural integer m a natural
integer i, 0 6 i 6 Nm

b − 2, such that:

X ∈ ΓWH
m |ρ= i

Nm
b

and Y ∈ ΓWH
m |ρ= i+1

Nm
b

or:

X ∈ ΓWH
m |ρ= i+1

Nm
b

and Y ∈ ΓWH
m |ρ= i

Nm
b

13



Definition 2.9. Edge relation, on the graph ΓH
W

Given a natural integer m, two points X and Y of ΓH
Wm

will be called adjacents if and only if X
and Y are connected vertices, or connected and opposed vertices of ΓWm . We will write then:

X ∼
m
Y

Given two points X and Y of the graph ΓH
W , we will say that X et Y are adjacents if and only if

there exists a natural integer m such that:
X ∼

m
Y

Definition 2.10. For any natural integer m, the points

(

Mm,j,|ρ= i
Nm
b

)

06i6Nm
b
,06j6NS

m

also appear to

be the vertices of N2m
b polyhedra Pm,i,j, (i, j) ∈ {0, . . . , Nm

b − 1}2, each polyhedron having Nb+2 faces
and 2Nb vertices. For any natural integer m, and any pair of integers (i, j) of {0, . . . , Nm

b − 1}2, each

polyhedron is obtained by connecting the point number j of the plane ρ =
i

Nm
b

, i.e. the pointMm,j,|ρ= i
Nm
b

to the point j +1 of the same plane, i.e. the point Mm,j+1,|ρ= i
Nm
b

if j = imod Nb, 0 6 i 6 Nb − 2, the

point number j of the plane ρ =
i

Nm
b

to the point number j−Nb+1 of the same plane if j = −1mod Nb,

the point number j of the plane ρ =
i

Nm
b

, i.e. the point Mm,j,|ρ= i+1

Nm
b

to the point to the point number j

of the plane ρ =
i+ 1

Nm
b

, i.e. the point Mm,j,|ρ= i+1

Nm
b

, the point number j of the plane ρ =
i

Nm
b

to the

point number j − Nb + 1 of the same plane if j = −1mod Nb. These polyhedra generate a Borel set
of D× C.

Definition 2.11. Polyhedral domain delimited by the graph ΓWH
m
, m ∈ N

For any natural integer m, we will call polyhedral domain delimited by the graph ΓWH
m

, that we

will denote by D
(

ΓH
Wm

)

, the reunion of the N2m
b polyhedra Pm,i,j, (i, j) ∈ {0, . . . , Nm

b − 1}2 withNb+2
faces.

Proposition 2.11. Adresses, on the graph of the Weierstrass-Hadamard function

Given a strictly positive integer m, and a word M = (M1, . . . ,Mm) of length m ∈ N
⋆, on the

graph ΓH
Wm

, for any integer j of {1, ..., Nb − 1}, each point

X = TM
|ρ= i

Nm
b

(Pj) , 1 6 i 6 Nm
b − 2

has exactly four adjacent vertices, given by:

TM
|ρ= i

Nm
b

(Pj+1) , TM
|ρ= i

Nm
b

(Pj−1) , TM
|ρ= i+1

Nm
b

(Pj) et TM
|ρ= i−1

Nm
b

(Pj)

where:
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TM = TM1
◦ . . . ◦ TMm

Each point

X = TM|ρ=0
(Pj) , 1 6 j 6 Nb − 2

has exactly three adjacent vertices, given by:

TM|ρ=0
(Pj+1) , TM|ρ=0

(Pj−1) , TM
|ρ= 1

Nm
b

(Pj)

Each point

X = TM|ρ=1
(Pj) , 1 6 j 6 Nb − 2

has exactly three adjacent vertices, given by:

TM|ρ=1
(Pj+1) , TM|ρ=1

(Pj−1) , TM
|ρ=

Nm
b

−1

Nm
b

(Pj)

By convention, the adjacent vertices of TM(P0) are TM(P1) and TM(PNb−1), and those of TM(PNb−1),
TM(PNb−2) and TM(P0).
In the same way, the adjacent vertices of TM(Q0) are TM(Q1) and TM(QNb−1), and those of TM(QNb−1),
TM(QNb−2) and TM(Q0).

Property 2.12. The set of vertices (Vm)m∈N is dense in ΓH
W .

Definition 2.12. Measure, on the domain delimited by the graph ΓH
W

We will call domain delimited by the graph ΓH
W , that we will denote by D (ΓW), the limit:

D
(

ΓH
W

)

= lim
n→+∞

D
(

ΓH
Wm

)

which is to be understood in the following sense: given a continuous function u on the graph ΓH
W , and

a full support measure µ on D× C:

∫

D(ΓW)
u dµ = lim

m→+∞

Nm
b
−1

∑

j=0

∑

X vertex of Pm,j

u (X) µ (Pm,j)

We will say that µ is a measure, on the domain delimited by the graph ΓH
W .

Definition 2.13. Dirichlet form (we refer to the paper [19], or the book [20])

Given a measured space (E,µ), a Dirichlet form on E is a bilinear symmetric form, that we will
denote by E , defined on a vectorial subspace D dense in L2(E,µ), such that:

1. For any real-valued function u defined on D : E(u, u) > 0.
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2. D, equipped with the inner product which, to any pair (u, v) of D ×D, associates:

(u, v)E = (u, v)L2(E,µ) + E(u, v)

is a Hilbert space.

3. For any real-valued function u defined on D, if:

u⋆ = min (max(u, 0), 1) ∈ D

then : E(u⋆, u⋆) 6 E(u, u) (Markov property, or lack of memory property).

Definition 2.14. Dirichlet form, on a finite set ([21])

Let V denote a finite set V , equipped with the usual inner product which, to any pair (u, v) of functions
defined on V , associates:

(u, v) =
∑

p∈V

u(p) v(p)

A Dirichlet formon V is a symmetric bilinear form E , such that:

1. For any real valued function u defined on V : E(u, u) > 0.

2. E(u, u) = 0 if and only if u is constant on V .

3. For any real-valued function u defined on V , if:

u⋆ = min (max(u, 0), 1)

i.e. :

∀ p ∈ V : u⋆(p) =







1 if u(p) > 1
u(p) si 0 < u(p) < 1
0 if u(p) 6 0

then: E(u⋆, u⋆) 6 E(u, u) (Markov property).

Remark 2.3. In order to understand the underlying theory of Dirichlet forms, one can only refer to the
work of A. Beurling and J. Deny [19]. The Dirichlet space D of fonctions u, complex valued functions,
infinitely differentiable, the support of which belongs to a domain ω ⊂ R

p, p ∈ N
⋆, is equipped with

the hilbertian norm:

u 7→ ‖u‖D =

∫

ω

|grad u(x)|2 dx

If the complement set of ω is not "too small", the space D can be completed by adding functions
defined almost everywhere in ω. The space thus obtained Dω, equipped with the Lebesgue measure ξ,
satisfies the following properties:
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i. For any compact K ⊂ ω, there exists a positive constant CK such that, for any u of Dω:

∫

K

|u(x)| dξ(x) 6 CK ‖u‖Dω

ii. If one denotes by C the space of complex-valued, continuous functions with compact support,
then: C ∩ Dω is dense in C and in Dω.

iii. For any contraction of the complex plane, and any u of Dω:

T u ∈ Dω et ‖T u‖Dω 6 ‖u‖Dω

The Dirichlet space Dω is generated by the Green potentials of finite energy, which are defined in a
direct way, as the functions u of Dω such that there exists a Radon measure µ such that:

∀ϕ ∈ C ∩ Dω : (u, ϕ) =

∫

ω

ϕ̄ dµ

Such a map u will be called potential generated by µ.
The linear map ∆ which, to any potential u of Dω, associates the measure µ that generates this po-
tential, is called generalized Laplacian for the space D.

It is interesting to note that the original theory of Dirichlet spaces concerned functions defined on a
Hausdorff space (separated espace ), with a positive Radon measure of full support (every non-empty
open set has a strictly positive measure).

Remark 2.4. One may wonder why the Markov property is of such importance in our building of a
Laplacian ? Very simply, the lack of memory - or the fact that the future state which corresponds, for
any natural integer m, to the values of the considered function on the graph ΓH

Wm+1
, depends only of

the present state, i.e. the values of the function on the graph ΓH
Wm

, accounts for the building of the
Laplacian step by step.

Definition 2.15. Energy, on the graph ΓWH
m
, m ∈ N, of a pair of functions

Let m be a natural integer, and u and v two real-valued, continuous functions, on the mesh of order m
(

ΓWH
m |ρ= i

Nm
b

)

06i6Nm
b

of ΓH
Wm

.

The energy, on the graph ΓH
Wm

, of the pair of functions (u, v), is:

EΓH
Wm

(u, v) =

Nm
b
∑

i=0

NS
m−2
∑

j=0

(

u

(

Mm,j,ρ= i
Nm
b

)

− u

(

Mm,j+1,ρ= i
Nm
b

)) (

v

(

Mm,j,ρ= i
Nm
b

)

− v

(

Mm,j+1,ρ= i
Nm
b

))

+

Nm
b
−1

∑

i=0

NS
m−1
∑

j=0

(

u

(

Mm,j,ρ= i
Nm
b

)

− u

(

Mm,j,ρ= i+1

Nm
b

)) (

v

(

Mm,j,ρ= i
Nm
b

)

− v

(

Mm,j,ρ= i+1

Nm
b

))

For the sake of simplicity, we will write it under the form:
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EΓH
Wm

(u, v) =
∑

X∼
m
Y

(u(X)− u(Y )) (v(X)− v(Y ))

Property 2.13. Given a natural integer m, and a real-valued function u, defined on the set of vertices
of ΓH

Wm
, the map, which, to any pair of real-valued, continuous functions (u, v) defined on the set Vm

of vertices of ΓH
Wm

, associates:

EΓH
Wm

(u, v) =
∑

X∼
m
Y

(u(X)− u(Y )) (v(X)− v(Y ))

is a Dirichlet form on ΓH
Wm

.
Moreover:

EΓH
Wm

(u, u) = 0 ⇔ u is constant

Proposition 2.14. Harmonic extension of a function, on the graph of the Weierstrass

function

For any strictly positive integer m, if u is a real-valued function defined on Vm−1, its harmonic

extension, denoted by ũ, is obtained as the extension of u to Vm which minimizes the energy:

EΓH
Wm

(ũ, ũ) =
∑

X∼
m
Y

(ũ(X)− ũ(Y ))2

The link between EΓH
Wm

and EΓH
Wm−1

is obtained through the introduction of two strictly positive con-

stants rm and rm+1 such that:

rm
∑

X∼
m
Y

(ũ(X) − ũ(Y ))2 = rm−1

∑

X ∼
m−1

Y

(u(X) − u(Y ))2

In particular:

r1
∑

X∼
1
Y

(ũ(X) − ũ(Y ))2 = r0
∑

X∼
0
Y

(u(X) − u(Y ))2

For the sake of simplicity, we will fix the value of the initial constant: r0 = 1. One has then:

EΓH
Wm

(ũ, ũ) =
1

r1
EΓH

W0

(ũ, ũ)

Let us set:

r =
1

r1

and:

Em(u) = rm
∑

X∼
m
Y

(ũ(X)− ũ(Y ))2
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Since the determination of the harmonic extension of a function appears to be a local problem, on the
graph ΓH

Wm−1
, which is linked to the graph ΓH

Wm
by a similar process as the one that links ΓH

W1
to ΓH

W0
,

one deduces, for any strictly positive integer m:

EΓH
Wm

(ũ, ũ) =
1

r1
EΓH

Wm−1

(ũ, ũ)

By induction, one gets:

rm = rm1 r0 = r−m

If v is a real-valued function, defined on Vm−1, of harmonic extension ṽ, we will write:

Em(u, v) = r−m
∑

X∼
m
Y

(ũ(X)− ũ(Y )) (ṽ(X)− ṽ(Y ))

For further precision on the construction and existence of harmonic extensions, we refer to [18].

Definition 2.16. Dirichlet form, for a pair of continuous functions defined on the graph ΓH
W

We define the Dirichlet form E which, to any pair of real-valued, continuous functions (u, v) defined
on the graph ΓH

W , associates, subject to its existence:

E(u, v) = lim
m→+∞

Em
(

u|Vm
, v|Vm

)

= lim
m→+∞

∑

X∼
m
Y

r−m
(

u|Vm
(X) − u|Vm

(Y )
) (

v|Vm
(X)− v|Vm

(Y )
)

Definition 2.17. Normalized energy, for a continuous function u, defined on the graph ΓH
W

Taking into account that the sequence
(

Em
(

u|Vm

))

m∈N
is defined on

V⋆ =
⋃

i∈N

Vi

one defines the normalized energy, for a continuous function u, defined on the graph ΓH
W , by:

E(u) = lim
m→+∞

Em
(

u|Vm

)

Property 2.15. The Dirichlet form E which, to any pair of real-valued, continuous functions defined
on the graph ΓH

W , associates:

E(u, v) = lim
m→+∞

Em
(

u|Vm
, v|Vm

)

= lim
m→+∞

∑

X∼
m
Y

r−m
(

u|Vm
(X) − u|Vm

(Y )
) (

v|Vm
(X)− v|Vm

(Y )
)

satisfies the self-similarity relation:

E(u, v) = r−1
Nb−1
∑

k=0

E (u ◦ Tk, v ◦ Tk)
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Proof.

Nb−1
∑

k=0

E (u ◦ Tk, v ◦ Tk) = lim
m→+∞

Nb−1
∑

k=0

Em
(

u|Vm
◦ Tk, v|Vm

◦ Tk
)

= lim
m→+∞

∑

X∼
m
Y

r−m

Nb−1
∑

i=0

(

u|Vm
(Tk(X)) − u|Vm

(Tk(Y ))
)

(v (Tk(X)) − v (Tk(Y )))

= lim
m→+∞

∑

X ∼
m+1

Y

r−m

Nb−1
∑

i=0

(

u|Vm
(X)− u|Vm

(Y )
)

(v(X) − v(Y ))

= lim
m→+∞

r Em+1

(

u|Vm+1
, v|Vm+1

)

= rE(u, v)

Notation. We will denote by dom E the subspace of continuous functions defined on ΓH
W , such that:

E(u) < +∞

Notation. We will denote by dom0 E the subspace of continuous functions defined on ΓH
W , which take

the value zero on V0, such that:

E(u) < +∞

3 Laplacian of a continuous function, on the graph of the Weierstrass-

Hadamard function

3.1 Theoretical aspect

Definition 3.1. Self-similar measure, for the graph of the Weierstrass-Hadamard function

A mesure µ on D × C is said self-similar for the domain delimited by the graph of the Weierstrass-
Hadamard function if there exists a family of strictly positive pounds (µk)06k6Nb−1, such that:

µ =

Nb−1
∑

k=0

µk µ ◦ T−1
k ,

Nb−1
∑

k=0

µk = 1

For further precisions on self-similar measures, we refer to the works of J. E. Hutchinson (see [25]).
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Property 3.1. Building of a self-similar measure, for the domain delimited by the graph

of the Weierstrass-Hadamard function

The Dirichlet forms mentioned in the above require a positive Radon measure with full support. The
choice of a self-similar measure, which is, mots of the time, built with regards to a reference set, of
measure 1, appears, first, as very natural. R. S. Strichartz (cite [3], [26]) showed that one can simply
consider auto-replicant measures µ̃, i.e. measures µ̃ such that:

µ̃ =

Nb−1
∑

k=0

µ̃k µ̃ ◦ T−1
k (⋆)

where (µ̃i)06k6Nb−1 denotes a family of strictly positive pounds.

This latter approach appears as the best suited in our study, since, in the case of the graph ΓW , the ini-
tial set consists of the polygon P0, the measure of which, equal to its surface, is not necessarily equal to 1.

Let us assume that there exists a measure µ̃ satisfying (⋆). Relation (⋆) yields, for any set of polyhe-
dra Pm,i,j, m ∈ N, 0 6 i, j 6 Nm

b − 1 with 2Nb vertices and Nb + 2 faces :

µ̃





⋃

06i,j6Nm
b
−1

Pm,i,j



 =

Nb−1
∑

k=0

µ̃k µ̃



T−1
k





⋃

06i,j6Nm
b
−1

Pm,i,j









and, in particular:

µ̃ (T0 (P0) ∪ T1 (P0) ∪ T2 (P0) ∪ . . . ∪ TNb−1 (P0)) =

Nb−1
∑

k=0

µ̃k µ̃ (P0)

i.e.:

Nb−1
∑

k=0

µ̃ (Tk (P0)) =

Nb−1
∑

k=0

µ̃k µ̃ (P0)

The convenient choice, for any k of {0, . . . , Nb − 1} , is :

µ̃k =
µ̃ (Tk (P0))

µ̃ (P0)

If µL is the Lebesgue measure on D× C, the choice µ̃ = µL yields the expected result.

One can, from the measure µ̃, build the self-similar measure µ, such that:

µ =

Nb−1
∑

k=0

µk µ ◦ T−1
k

where (µk)06k6Nb−1 is a family of strictly positive pounds, the sum of which is equal to 1.

One has simply to set, for any k de {0, . . . , Nb − 1} :

µk =
µ̃ (Tk (P0))

Nb−1
∑

j=0

µ̃ (Tj (P0))

The measure µ is such that:
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µ (P0) = 1

The choice µ =
µL

µL (P0)
=

µ̃

µ̃ (P0)
yields the expected result.

The measure µ is self-similar, for the domain delimited by the graph of the Weierstrass-Hadamard
function.

Definition 3.2. Laplacian of order m ∈ N
⋆

For any strictly positive integer m, and any real-valued function u, defined on the set Vm of the vertices
of the graph ΓH

Wm
, we introduce the Laplacian of order m, ∆m(u), by:

∆mu(X) =
∑

Y ∈Vm, Y∼
m
X

(u(Y )− u(X)) ∀X ∈ Vm \ V0

Definition 3.3. Harmonic function of order m ∈ N
⋆

Let m be a strictly positive integer. A real-valued function u,defined on the set Vm of the vertices of
the graph ΓH

Wm
, will be said to be harmonic of order m if its Laplacian of order m is null:

∆mu(X) = 0 ∀X ∈ Vm \ V0

Definition 3.4. Piecewise harmonic function of order m ∈ N
⋆

Given a strictly positive integer m, a real valued function u, defined on the set of vertices of ΓH
W , is

said to be piecewise harmonic function of order m if, for any word M of length m, u ◦ TM is
harmonic of order m.

Definition 3.5. Existence domain of the Laplacian, for a continuous function on the

graph ΓWH (see[19])

We will denote by dom∆ the existence domain of the Laplacian, on the graph ΓH
W , as the set of

functions u of dom Esuch that there exists a continuous function on ΓWH, denoted ∆u, that we will
call Laplacian of u, such that :

E(u, v) = −

∫

D(ΓWH)
v∆u dµ for any v ∈ dom0 E

Definition 3.6. Harmonic function

A function u belonging to dom∆ will be said to be harmonic if its Laplacian is equal to zero.
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Notation. In the following, we will denote by H0 ⊂ dom∆ the space of harmonic functions, i.e. the
space of functions u ∈ dom∆ such that:

∆u = 0

Given a natural integer m, we will denote by S (H0,Vm) the space, of dimension Nm
b , of spline functions

" of level m", u, defined on ΓWH, continuous, such that, for any word M of length m, u ◦ TM is
harmonic, i.e.:

∆m (u ◦ TM) = 0

Property 3.2. For any natural integer m:

S (H0,Vm) ⊂ dom E

Property 3.3. Let m be a strictly positive integer, X /∈ V0 a vertex of the graph ΓH
W , and ψm

X ∈ S (H0,Vm)
a spline function such that:

ψm
X (Y ) =

{

δXY ∀ Y ∈ Vm

0 ∀ Y /∈ Vm
, where δXY =

{

1 if X = Y
0 else

Then, since X /∈ V0: ψ
m
X ∈ dom0 E.

For any function u of dom E, such that its Laplacian exists, definition (3.5) applied to ψm
X leads to:

E(u, ψm
X ) = Em(u, ψm

X ) = −r−m∆mu(X) = −

∫

D(ΓW)
ψm
X ∆u dµ ≈ −∆u(X)

∫

D(ΓH
W)

ψm
X dµ

since ∆u is continuous on ΓH
W , and the support of the spline function ψm

X is close to X:

∫

D(ΓH
W)

ψm
X ∆u dµ ≈ −∆u(X)

∫

D(ΓH
W)

ψm
X dµ

By passing through the limit when the integer m tends towards infinity, one gets:

lim
m→+∞

∫

D(ΓH
W)

ψm
X ∆mu dµ = ∆u(X) lim

m→+∞

∫

D(ΓH
W)

ψm
X dµ

i.e.:

∆u(X) = lim
m→+∞

r−m

(

∫

D(ΓH
W)

ψm
X dµ

)−1

∆mu(X)

3.2 Explicit determination of the Laplacian of a function u of dom∆

The explicit determination of the Laplacian of a function u de dom∆ requires to know:
∫

D(ΓH
W)

ψm
X dµ
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As it is explained in [24], one has just to reason by analogy with the dimension 1, more particulary,
the unit interval I = [0, 1], of extremities X0 = (0, 0), and X1 = (1, 0). The functions ψX1

and ψX2

such that, for any Y of R2 :

ψX1
(Y ) = δX1Y , ψX2

(Y ) = δX2Y

are, in the most simple way, tent functions. For the standard measure, one gets values that do not
depend on X1, or X2 (one could, also, choose to fix X1 and X2 in the interior of I) :

∫

I

ψX1
dµ =

∫

I

ψX2
dµ =

1

2

(which corresponds to the surfaces of the two tent triangles.)

Figure 5: The graphs of the spline functions ψX1
and ψX2

.

In our case, we have to build the pendant, we no longer reason on the unit interval, but on our poly-
hedra with 2Nb vertices and Nb + 2 faces.
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Given a strictly positive integer m, and a vertex X of the graph ΓH
Wm

, three configurations can occur:

i. the vertex X belongs to one and only one polyhedron with 2Nb vertices and Nb+2 faces, Pm,i,j ,
0 6 i, j 6 Nm

b − 1.

In this case, if one considers the spline functions ψm
Z which correspond to the 2Nb − 1 distinct

vertices X of this polyhedron:

∑

Z vertex of Pm,i,j

∫

D(ΓH
W)

ψm
Z dµ = µ (Pm,i,j)

i.e., by symmetry:

2Nb

∫

D(ΓH
W)

ψm
X dµ = µ (Pm,j)

Thus:

∫

D(ΓH
W)

ψm
X dµ =

1

Nb

µ (Pm,j)

ii. the vertex X is the intersection point of two polyhedra with 2Nb vertices and Nb+2 faces, Pm,i,j

and Pm,i+1,j , 0 6 i, j 6 Nm
b − 2.

On has then to take into account the contributions of both polyhedra, which leads to:

∫

D(ΓW)
ψm
X dµ =

1

4Nb
{µ (Pm,i,j) + µ (Pm,i+1,j)}

iii. the vertex X is the intersection point of four polyhedra with 2Nb vertices and Nb + 2 faces,
Pm,i,j , Pm,i,j+1, Pm,i+1,j, Pm,i+1,j+1, 0 6 i, j 6 Nm

b − 2.

On has then to take into account the contributions of the four polyhedra, which leads to:

∫

D(ΓW )
ψm
X dµ =

1

8Nb

{µ (Pm,i,j) + µ (Pm,i,j+1) + µ (Pm,i+1,j) + µ (Pm,i+1,j+1)}

Theorem 3.4. Let u be in dom∆. Then, the sequence of functions (fm)m∈N such that, for any natural
integer m, and any X of V⋆ \ V0 :

fm(X) = r−m

(

∫

D(ΓH
W)

ψm
X dµ

)−1

∆m u(X)

converges uniformly towards ∆u, and, reciprocally, if the sequence of functions (fm)m∈N converges
uniformly towards a continuous function on V⋆ \ V0, then:

u ∈ dom∆
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Proof. Let u be in dom∆. Then:

r−m

(

∫

D(ΓH
W)

ψm
X dµ

)−1

∆m u(X) =

∫

D(ΓH
W)

∆uψm
X dµ

∫

D(ΓH
W)

ψm
X dµ

Since u belongs to dom∆, its Laplacian ∆u exists, and is continuous on the graph ΓH
W . The uniform

convergence of the sequence (fm)m∈N follows.

Reciprocally, if the sequence of functions (fm)m∈N converges uniformly towards a continuous function
on V⋆ \ V0, then, for any natural integer m, and any v belonging to dom0 E :

Em(u, v) =
∑

(X,Y )∈V2
m,X∼

m
Y

r−m
(

u|Vm
(X)− u|Vm

(Y )
) (

v|Vm
(X)− v|Vm

(Y )
)

=
∑

(X,Y )∈V2
m,X∼

m
Y

r−m
(

u|Vm
(Y )− u|Vm

(X)
) (

v|Vm
(Y )− v|Vm

(X)
)

= −
∑

X ∈Vm\V0

r−m
∑

Y ∈Vm, Y∼
m
X

v|Vm
(X)

(

u|Vm
(Y )− u|Vm

(X)
)

−
∑

X ∈V0

r−m
∑

Y ∈Vm, Y∼
m
X

v|Vm
(X)

(

u|Vm
(Y )− u|Vm

(X)
)

= −
∑

X ∈Vm\V0

r−m v(X)∆m u(X)

= −
∑

X ∈Vm\V0

v(X)

(

∫

D(ΓH
W)

ψm
X dµ

)

r−m

(

∫

D(ΓH
W)

ψm
X dµ

)−1

∆m u(X)

Let us note that any X of Vm \V0 admits exactly two adjacent vertices which belong to Vm \V0, which
accounts for the fact that the sum

∑

X ∈Vm\V0

r−m
∑

Y ∈Vm\V0, Y∼
m
X

v(X)
(

u|Vm
(Y )− u|Vm

(X)
)

has the same number of terms as:

∑

(X,Y )∈ (Vm\V0)2,X∼
m
Y

r−m
(

u|Vm
(Y )− u|Vm

(X)
) (

v|Vm
(Y )− v|Vm

(X)
)

For any natural integer m, we introduce the sequence of functions (fm)m∈N such that, for any X
of Vm \ V0:

fm(X) = r−m

(

∫

D(ΓH
W)

ψm
X dµ

)−1

∆m u(X)

The sequence (fm)m∈N converges uniformly towards ∆u. Thus:

Em(u, v) = −

∫

D(ΓW )







∑

X ∈Vm\V0

v|Vm
(X)∆u|Vm

(X)ψm
X







dµ
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4 Normal derivatives

Let us go back to the case of a function u twice differentiable on I = [0, 1], that does not vanish in 0
and :

∫ 1

0
(∆u) (x) v(x) dx = −

∫ 1

0
u′(x) v′(x) dx+ u′(1) v(1) − u′(0) v(0)

The normal derivatives:

∂nu(1) = u′(1) et ∂nu(0) = u′(0)

appear in a natural way. This leads to:

∫ 1

0
(∆u) (x) v(x) dx = −

∫ 1

0
u′(x) v′(x) dx +

∑

∂ [0,1]

v ∂n u

One meets thus a particular case of the Gauss-Green formula, for an open set Ω of Rd, d ∈ N
⋆:

∫

Ω
∇u∇ v dµ = −

∫

Ω
(∆u) v dµ+

∫

∂Ω
v ∂n u dσ

where µ is a measure on Ω, and where dσ denotes the elementary surface on ∂ Ω.

In order to obtain an equivalent formulation in the case of the graph ΓH
W , one should have, for a pair

of functions (u, v) continuous on ΓH
W such that u has a normal derivative:

E(u, v) = −

∫

Ω
(∆u) v dµ +

∑

V0

v ∂n u

For any natural integer m :

Em(u, v)

=
∑

(X,Y )∈V2
m,X∼

m
Y

r−m
(

u|Vm
(Y )− u|Vm

(X)
) (

v|Vm
(Y )− v|Vm

(X)
)

= −
∑

X ∈Vm\V0

r−m
∑

Y ∈Vm, Y∼
m
X

v|Vm
(X)

(

u|Vm
(Y )− u|Vm

(X)
)

−
∑

X ∈V0

r−m
∑

Y ∈Vm, Y∼
m
X

v|Vm
(X)

(

u|Vm
(Y )− u|Vm

(X)
)

= −
∑

X ∈Vm\V0

v|Vm
(X) r−m ∆m u|Vm

(X)

+
∑

X ∈V0

∑

Y ∈Vm, Y∼
m
X

r−m v|Vm
(X)

(

u|Vm
(X)− u|Vm

(Y )
)

We thus come across an analogous formula of the Gauss-Green one, where the role of the normal
derivative is played by:

∑

X ∈V0

r−m
∑

Y ∈Vm, Y∼
m
X

(

u|Vm
(X)− u|Vm

(Y )
)

Definition 4.1. For any X of V0, and any continuous function u on ΓW , we will say that u admits a
normal derivative in X, denoted by ∂n u(X), if:

lim
m→+∞

r−m
∑

Y ∈Vm, Y∼
m
X

(

u|Vm
(X)− u|Vm

(Y )
)

< +∞
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We will set:

∂n u(X) = lim
m→+∞

r−m
∑

Y ∈Vm, Y∼
m
X

(

u|Vm
(X)− u|Vm

(Y )
)

< +∞

Definition 4.2. For any natural integer m, any X of Vm, and any continuous function u on ΓH
W , we

will say that u admits a normal derivative in X, denoted by ∂n u(X), if:

lim
k→+∞

r−k
∑

Y ∈Vk, Y∼
k
X

(

u|Vk
(X) − u|Vk

(Y )
)

< +∞

We will set:

∂n u(X) = lim
k→+∞

r−k
∑

Y ∈Vk, Y∼
k
X

(

u|Vk
(X)− u|Vk

(Y )
)

< +∞

Remark 4.1. One can thus extend the definition of the normal derivative of u to ΓH
W .

Theorem 4.1. Let u be in dom∆. The, for any X of ΓH
W , ∂n u(X) exists. Moreover, for any v

of dom E, et any natural integer m, the Gauss-Green formula writes:

E(u, v) = −

∫

ΓW

(∆u) v dµ+
∑

V0

v ∂n u

5 Spectrum of the Laplacian

In the following, let u be in dom∆. We will apply the spectral decimation method déveloped
by R. S. Strichartz [24], in the spirit of the works of M. Fukushima et T. Shima [27]. In order to
determine the eigenvalues of the Laplacian ∆u built in the above, we concentrate first on the eigen-
values (−Λm)m∈N of the sequence of graph Laplacians (∆m u)m∈N, built on the discrete sequence of
graphs

(

ΓH
Wm

)

m∈N
. For any natural integer m, the restrictions of the eigenfunctions of the continu-

ous Laplacian ∆u to the graph ΓH
Wm

are, also, eigenfunctions of the Laplacian ∆m, which leads to
recurrence relations between the eigenvalues of order m and m+ 1.

We thus aim at determining the solutions of the eigenvalue equation:

−∆u = Λu on ΓH
W

as limits, when the integer m tends towards infinity, of the solutions of:

−∆m u = Λm u on Vm \ V0

Let m > 1. We consider an eigenfunction um−1 on Vm−1 \ V0, for the eigenvalue Λm−1. The aim
is to extend um−1 on Vm \ V0 in a function um, which will itself be an eigenfunction of ∆m, for the
eigenvalue Λm, and, thus, to obtain a recurrence relation between the eigenvalues Λm and Λm−1.

28



Given five vertices of ΓH
Wm−1

, denoted respectively by Xk,i, Xk+1,i+1, Xk,i+1 Xk+2,i+1 Xk+1,i+2

where k denotes a generic natural integer, we will denote by:

i. Yk+1,i+1, . . ., Yk+1,i+Nb−1, the points of Vm \ Vm−1 such that: Yk+1,i+1, . . ., Yk+1,i+Nb−1 are
between Xk+1,i and Xk+1,i+1 ;

ii. Yk+1,i+Nb+1, . . ., Yk+1,i+2Nb−1, the points of Vm \ Vm−1 such that: Yk+1,i+Nb1, . . ., Yk+1,i+2Nb−1

are between Xk+1,i+1 and Xk+1,i+2 ;

iii. Yk+1,i+Nb
, . . ., Yk+Nb−1,i+Nb

, the points of Vm \ Vm−1 such that: Yk+1,i+Nb
, . . ., Yk+Nb−1,i+Nb

are between Xk,i+1 and Xk+1,i+1 ;

iv. Yk+Nb+1,i+Nb
, . . ., Yk+2Nb−1,i+Nb

, the points of Vm \ Vm−1 such that: Yk+Nb+1,i+Nb
, . . ., Yk+2Nb−1,i+Nb

,
are between Xk+1,i+1 and Xk+2,i+1.

For consistency, let us set:

Yk+1,i = Xk+1,i , Yk+Nb,i+1 = Xk+1,i+1 , Yk+Nb,i+Nb
= Xk+1,i+2

Yk,i+Nb
= Xk,i+1 and Yk+2Nb,i+Nb

= Xk+1,i+1

Figure 6: The points Yk+1,i = Xk+1,i, Yk+Nb,i+1 = Xk+1,i+1, Yk+Nb,i+Nb
= Xk+1,i+2 , Yk,i+Nb

= Xk,i+1,
Yk+2Nb,i+Nb

= Xk+1,i+1.
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The eigenvalue equation in Λm leads to the following systems, for any integer j, 1 6 j 6 Nb − 3:







{Λm − 2} um (Yk+1,i) = −um−1 (Xk,i)− um (Yk+2,i)− um (Yk+1,i+1)− um (Yk+1,i−1)
{Λm − 2} um (Yk+j,i) = −um (Yk+j−1,i)− um (Yk+j+1,i)− um (Yk+j,i+1)− um (Yk+j,i−1)

{Λm − 2} um (Yk+Nb−1,i) = −um−1 (Xk+1,i)− um (Yk+Nb−2,i)− um (Yk+Nb−1,i+1)

Let us concentrate on the relation:

{Λm − 2} um (Yk,i) = −um (Yk+1,i)− um (Yk−1,i)− um (Yk,i+1)− um (Yk,i−1)

By analogy with the one-dimensional case (we hereby refer to [5], [6]), we first look for the um (Yk+1,i)
under the form:

um (Yk,i) = rk1m r
i
2m

where r1m are r2m are scalars. One has then:

{Λm − 2} rk1m r
i
2m = −rk+1

1m ri2m − rk−1
1m ri2m − rk1m r

i+1
2m − rk1m r

i−1
2m

which yields:
{Λm − 2} r1m r2m = −r21m r2m − r2m − r1m r

2
2m − r1m

Let us denote by I5 the 5× 5 identity matrix. The vectors













rk−1
1m ri2m
rk1m r

i−1
2m

rk1m r
i
2m

rk1m r
i−1
2m

rk1m r
i+1
2m













belong to the kernel of the matrix:

{Λm − 2} I5−













0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0













−













0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0













−













0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0













−













0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0













the spectra of which is:

{5− Λm, 5 − Λm, 5− Λm, 5− Λm,−Λm}

The eigenspaces are generated by the vectors:



































1
1
1
1
1













,













−1
0
0
0
1













,













−1
0
0
1
0













,













−1
0
1
0
0













,













−1
1
0
0
0
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Thus,













r2m
r1m

rk1m r
i
2m

rk1m r
i1
2m

rk1m r
i+1
2m













is a linear combination of:

{−2− Λm}













1
1
1
1
1













, {3− Λm}













−1
0
0
0
1













, {3− Λm}













−1
0
0
1
0













, {3− Λm}













−1
0
1
0
0













, {3− Λm}













−1
1
0
0
0













The roots r1m, r2m may thus take the following values:

r1m = −2− Λm or r1m = 3− Λm

r2m = −2− Λm or r2m = 3− Λm

From this point, the following compatibility conditions have to be satisfied:

um (Yk,i) = um−1 (Xk,i) = rk1,m−1 r
i
2,m−1

um (Yk+Nb,i) = rk+Nb
1,m ri2,m = um−1 (Xk+1,i) = rk+1

1,m−1 r
i
2,m

um (Yk,i+Nb
) = rk1,m r

i+Nb
2,m = um−1 (Xk,i+1) = rk1,m−1 r

i+1
2,m

For the specific values i = k = 0, one obtains:

r1,m−1 = rNb
1m , r2,m−1 = rNb

2m

This leads to:
{3− Λm}Nb = 3− Λm−1

{−2− Λm}Nb = −2− Λm−1
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