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Topological determinants of self-
sustained activity in a simple model 
of excitable dynamics on graphs
Christoph Fretter1,2, Annick Lesne3,4, Claus C. Hilgetag2,5 & Marc-Thorsten Hütt1

Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay 
between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging 
from neuroscience to engineering. Here we analyze how a single excitation propagates through a 
random network as a function of the excitation threshold, that is, the relative amount of activity in the 
neighborhood required for the excitation of a node. We observe that two sharp transitions delineate 
a region of sustained activity. Using analytical considerations and numerical simulation, we show 
that these transitions originate from the presence of barriers to propagation and the excitation of 
topological cycles, respectively, and can be predicted from the network topology. Our findings are 
interpreted in the context of network reverberations and self-sustained activity in neural systems, 
which is a question of long-standing interest in computational neuroscience.

The diverse ways in which architectural features of neural networks can facilitate sustained excitable dynamics 
is a topic of interest in both the theory of complex networks and computational neuroscience. The existence of 
stable regimes of sustained network activation, for example, is an essential requirement for the representation of 
functional patterns in complex neural networks, such as the mammalian cerebral cortex. In particular, initial net-
work activations should result in neuronal activation patterns that neither die out too quickly nor rapidly engage 
the entire network. Without this feature, activation patterns would not be stable, or would lead to a pathological 
excitation of the whole brain.

A rich and diverse set of investigations has attempted to shed light on the topological prerequisites of 
self-sustained activity1–7. One mechanism extensively discussed over the last decade is the phenomenon of reen-
trant excitations4,7–10. These reentrant excitations directly couple the cycle content of a graph to properties of 
self-sustained activity4,7,10. The general phenomenon of cycles serving as dynamical ‘pacemakers’ in the graph is 
reminiscent of the cores of spiral waves in spatiotemporal pattern formation5,8,9.

Inspired by the importance of self-sustained activity in neuroscience, we here study, using a minimal discrete 
model of excitable dynamics with a relative excitation threshold, how network topology affects the propagation 
of excitations through the network. This investigation allows us to develop a mechanistic understanding of the 
conditions by which a single excitation in a graph amplifies to generate sustained activity. Our contribution with 
the present paper is two fold:

(1)	 We investigate how a relative excitation threshold (that is, the minimal fraction of excited neighbors for a 
node to be excited) affects the usage of structural components (e.g., cycles) in producing reentrant dynamics.

(2)	 We observe two sharp transitions delineating a region of self-sustained activity. The first transition point cor-
responds to the onset of excitation propagation between the input node, where a single excitation is injected, 
and the most distant nodes considered as an output layer; it is similar to the epidemic threshold in epidemic 
diseases, as observed for example in the SIR model11–13 (note that in epidemic models, this threshold is in 
the infection probability, rather than in the relative excitation threshold). The second transition point corre-
sponds to the limit of self-sustained activity and can be related to the occurrence of reentrant excitations.
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The approach developed in the present paper provides a simple heuristic to predict, for a given graph and a 
specific input node, the two transition points observed when varying the relative threshold.

Methods
Dynamical model.  We use a three-state cellular automaton model of excitable dynamics on undirected net-
works. Each node can be in an susceptible/excitable (S), active/excited (E) or refractory (R) state. The model 
operates on discrete time and employs the following synchronous update rules: For a node i with ki neighbors, the 
transition from S to E occurs, when at least κki neighbors are active. The parameter κ thus serves as a relative 
excitation threshold. In such a scenario, low-degree nodes are easier to excite (requiring a smaller number of 
neighboring excitations) than high-degree nodes. Quantitatively, κ= ⌈ ⌉n k  (smallest integer larger than or equal 
to κk) can be considered as the strength with which a node of degree k acts as a barrier for propagation, by requir-
ing at least n incoming excitations to switch to the excited state.

The model considers only excitatory connections. However, inhibition is implicitly represented in the model 
due to the automatic transition to a refractory state after excitation. Thus, rather than representing an individual 
neuron, this model may be thought of as representing a population of coupled excitatory (E) and inhibitory (I) 
elements as a single node in the network. A node could then for example represent a cortical column consist-
ing of a population of coupled E-I neurons with these populations then linked with each other by excitatory 
connections.

In neuroscience, there is some evidence that a relative threshold criterion is a plausible activation scenario, as 
neurons can readjust their excitation threshold according to the input14, which typically leads to spike frequency 
adaptation15, and effectively amounts to a relative input threshold. After a time step in the state E a node enters 
the state R. The transition from R to S occurs stochastically with the recovery probability p, leading to a geomet-
ric distribution of refractory times with an average of 1/p. The model (also investigated before16) does not allow 
spontaneous transitions from S to E, i.e., compared to previous investigations17–19, the probability f of spontaneous 
excitations is set to zero. Therefore, the stochasticity of the dynamics is entirely due to the stochastic recovery, 
controlled by the recovery probability p. For p =​ 1, we have a deterministic model, similar to the one discussed 
in a previous work5; there, however, a single neighboring excitation was sufficient to trigger transition to E, cor-
responding to κ →​ 0.

Details of the numerical experiment.  Our numerical experiment starts with a single, randomly chosen 
input node receiving one excitation, all the nodes being in the susceptible state S. We then observe the propaga-
tion of excitations (also termed ‘signal propagation’ in what follows) to an output node, selected at random from 
the nodes at the largest distance from the input node. We either record the excitations accumulated at this output 
node during a fixed duration T (typically T =​ 300 steps, so that the variability of the short transients is averaged 
out), or observe the absence of propagation reaching the output node. Indeed some of the barriers might not find 
the required number of active neighbors and fail to propagate the excitation signal. Determinants of successful 
excitation propagation will thus involve barrier statistics and path multiplicities.

In the present paper, we sample the considered networks in two typical models: random Erdös-Renyi (ER) 
graphs (generated by wiring M edges at random among N nodes) and scale-free Barabási-Albert (BA) networks 
(generated with preferential attachment20). For each network, of finite size N, we adopt a layered view (as in a 
previous investigation16), according to the shortest distance of the nodes to the input node: the first layer contains 
the neighbors of the input node, the second layer its second neighbors, and the final layer all the possible output 
nodes, henceforth termed the output layer. By construction, there are no shortcuts between non-adjacent layers. 
Using this layered view is motivated by the fact that, due to the refractory period, the excitation signal propagates 
layer-wise at low enough κ, moving forward in a coherent way like a front crossing sequentially each layer. This 
directionality induced by the dynamics itself should not be confused with an intrinsic directionality of the edges: 
All the networks considered here are undirected.

Some additional technical comments and side remarks for this section and the following sections are provided 
in the Supplementary Material.

Mean-field analysis of excitation propagation.  We here adapt a second-order mean-field approach 
from previous work16,19 to the present situation estimating the importance of multiple excitations concurring at 
a given node. The occurrence of such an event at a barrier, i.e. a high-degree node that fails to propagate a single 
excitation, indeed disrupts our simple prediction topological k* (maximal degree on the easiest path to the output 
node) of the value 1/κc of the onset of excitation propagation. By ‘second-order mean-field approach’, we mean 
that the computation will use the spatially and statistically average excitation density derived in the mean-field 
description of the dynamics, but contain a detailed topological analysis of the propagation through a barrier by 
means of multiple excitations. Only the excitation status of the neighbors of the barrier will be described by the 
mean-field equations.

Mean-field computation of the excitation probability of a barrier.  The concept of barrier simply amounts to con-
sider the number κ= ⌈ ⌉n k  (smallest integer larger than or equal to κk) of excited neighbors required for the 
excitation of this node of degree k. It describes the strength with which the node acts as a barrier to excitation 
propagation. In the layered view we have adopted, what matters for a layer-wise excitation propagation is not only 
the strength of a barrier but also the number kin of incoming links from the next upper layer, described through 
the conditional probability ρ(kin|k) given the degree k of the barrier. The probability that a node is a barrier of 
strength n, but does not act as an obstacle to signal propagation, is thus
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where α(n|kin) is the probability to have n active nodes among the kin neighbors of the barrier in the next upper 
layer. This probability can be computed in a mean-field approximation. Considering that a node get excited if its 
average number kcE of active neighbors is larger than kκ, leading to the mean-field evolution equations (where H 
is the Heaviside function): cE(t +​ 1) =​ cS(t)H[cE(t) −​ κ], together with cS(t) =​ 1 −​ cE(t) −​ cR(t) and cR(t) =​ cE(t)/p. 
This yields a steady-state activity density = +⁎c p p/(2 1)E  (provided κ <​ p/(2p +​ 1))16. It comes:
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Mean-field computation of the probability Pm of multiple excitations.  The previous computation is based on the 
assumption that the propagation is consistent with the layered view, moving forward in a coherent way, like a 
front crossing as a whole each layer. What then matters to get concurrent excitations is the presence of diamond 
motifs along the paths. We may alternatively consider that the excitations wander along complicated paths. 
Indeed, we expect that numerous excitation holes (susceptible nodes failing to get excited) exist for κ near κc, 
which totally destroys the image of an excitation front propagating layer-wise. In this new view, the network 
around the barrier is well described by an homogeneous activity density ⁎cE, and the excitations could reach a 
barrier of degree k by any of the k edges, not only those coming from the next upper layer. This amounts to replace 
kin by k in Eqs (1) and (2). The probability that a node is a barrier of strength n, but does not act as an obstacle to 
excitation propagation is now simply written ρ α∑ κ

κ
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node is such a barrier). This latter probability has to be summed over all barrier strengths n ≥​ 2, to get the probability 
Pm that multiple concurring excitations at barriers allow the excitation signal to propagate up to the output node:
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The related expression 1 −​ Pm will be used to estimate the reliability of our topological prediction k* (largest 
degree on the easiest path to the output node) of the onset 1/κc of excitation propagation, which relies on estimat-
ing barrier strengths based on single excitations.

Results
Generic properties of the response curve.  The outcome of our numerical experiment produces response 
curves with very similar features, when plotting the excitation level observed at an output node as a function of 
1/κ. An example is given in Fig. 1, displaying the three generic features that will be discussed in the following sec-
tions: the onset of excitation propagation (point A, value 1/κc); the limit of self-sustained activity (point B, value 
1/κm) beyond which the excitation signal propagates sequentially through the layers and yields a single record 
at each output node notwithstanding the duration T of the experiment; and the height of the response curve 
between these two transition points (level C) which increases with the duration T.

We chose as a control parameter the inverse of the relative threshold κ because 1/κ gives the maximal degree a 
susceptible node can have to be excited by a single excited neighbor. Any node of degree higher than 1/κ appears 
as a barrier, that is, a node for which having a single excited neighbor is not sufficient to be excited. With the 
choice of 1/κ as a control parameter, the transition values can be interpreted in terms of a degree.

The purpose of Fig. 1 is also to show that the transition points of the stochastic model and the deterministic 
model (i.e. the model with p =​ 1) coincide. When p <​ 1, the stochasticity of the recovery makes possible both 
propagation failure or non-zero output (for the same network and the same input and output nodes) in the range 
1/κc <​ 1/κ <​ 1/κm, as seen in the heat map in Fig. 1. However, the average over a large enough number of runs  
(30 runs in Fig. 1) yields an average output curve (blue full curve in Fig. 1) displaying the same sharp transitions 
as the deterministic response curve (red dashed curve in Fig. 1). In fact the deterministic case delimits the pos-
sibility space of the stochastic case: All excitation levels that are possible for the deterministic dynamics are in 
principle achievable in the stochastic case, if the right nodes have recovered at the right moment.

We verified that these various features are generic for any ER graph and any choice of input and output node 
by extensive simulation, and present in Fig. 2 four more examples obtained with other ER graphs. BA graphs 
behave in a similar way, and this ensemble of networks will be also considered in the systematic and quantitative 
study of the response curve features presented in the following sections.

Prediction of the onset of excitation propagation (point A).  All response curves display a transition value 1/κc for 
the propagation of a single excitation from the input node to the output layer (point A in Fig. 1). This threshold 
behavior in the absence of spontaneous excitations is analogous to an epidemic threshold: 1/κ can be roughly 
interpreted as a transmission probability. It does not depend on the value of p. For a finite network, the transition 
value 1/κc is a random variable depending on the realization of the network, the choice of the input node and an 
output node in the output layer, and the initial conditions.

For 1/κ <​ 1/κc (before point A) the relative number of excited neighbors needed to propagate the excitation 
signal is so large that each possible path from the input node to the output node contains a barrier stopping the 
propagating excitation signal before it could reach the output node. A single excitation propagating fails to reach 
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Figure 1.  Accumulated output excitations during a fixed duration T = 40 steps, for a given ER graph 
(N = 80 nodes; M = 320 edges), a single (randomly chosen) input node and a single output node (randomly 
chosen among the most distant nodes from the input node), as a function of the inverse 1/κ of the relative 
threshold. The plot displays both the deterministic dynamics (p =​ 1, red dashed curve) and the case where 
the recovery is stochastic (p =​ 0,5; heat map overlay of 30 curves, and as a blue full curve the average over the 
30 simulation runs entering the heat map. Initially all nodes were susceptible. Transition points A, B and level 
reached, C, are indicated, and their prediction in terms of network features is discussed in the corresponding 
sections below.

Figure 2.  Some examples of response curves for the deterministic (red dashed curve, p = 1) and the 
stochastic dynamics (blue full curve, p = 0.5, 30 runs, each displayed as a blue full curve) for an ER graph 
with N = 80, M = 320 in the left column and N = 80, M = 800 in the right column. For each graph, two 
randomly chosen input nodes (top and bottom panels) have been considered.
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the output node if there exists a node of degree k >​ 1/κ along the path. We thus predict the onset of excitation 
propagation to arise for a value 1/κc =​ k* equal to the smallest (over all linear paths from the input to the output 
node) of the maximal degree encountered along the path, that is, the largest degree encountered on the easiest 
path to the output node.

The quantity k* is determined by considering a randomly chosen node in the output layer. A refined prediction 
for 1/κc is provided by the largest degree k** encountered on the easiest path to the output layer, that is, by consid-
ering all linear paths to any node in the output layer. However, the condition becomes less stringent, if the signal 
propagation activates redundant paths of the same length, so that more than one excitation may spontaneously 
arrive at a given node. We thus expect that k* and k** would give only an upper bound on 1/κc, as seen in Fig. 3.

The quality of our prediction is visualized as a scatter plot comparing the topologically predicted transition 
value k* and the numerically observed value 1/κc, Fig. 3. In order to compare the latter value, obtained by a binary 
search algorithm, with the prediction k*, we round the numerical result to the nearest integer. Exact matches after 
rounding are then considered a successful prediction. Note that, as we have observed that the transition value 
does not depend on the value of the recovery probability p, we used p =​ 1 (the deterministic dynamics) to make 
the binary search reliable.

We computed the quality of our prediction over a large sample of networks and input nodes as the percentage 
of cases, where 1/κc is predicted correctly. In Fig. 4 this prediction quality is shown as a function of the number 
of edges. As expected, the prediction k** improves the simpler prediction k* in a systematic way. The prediction 
quality decreases when the graphs become denser. As mentioned above, multiple excitations concurring at a given 
node, would invalidate our prediction, in allowing this node to be excited even if it were a barrier to the prop-
agation of a single excitation. The probability that a barrier may be passed, because two concurrent excitations 
reach it, cannot be computed exactly. However we could obtain a mean-field estimate Pm, derived in Eq. (3) (see 
Methods), of the probability of multiple excitations.

As seen on Fig. 1, the critical value 1/κc does not depend on the value of p. It thus makes sense to look for a 
purely topological prediction of this value. To check our interpretation that the decrease in quality of our predic-
tion k* is due to concurring excitations alleviating the barrier associated with the node of degree k*, we computed 
the probability of multiple excitations using a mean-field approach. We chose a value p =​ 0.5 of the recovery 
probability in the range where the mean-field approach gives the most robust and reliable approximation of the 
actual dynamics. The plot of 1 −​ Pm (dashed green curve in Fig. 4) demonstrates that the quality of our prediction 
k* fails in the way we expected when the link density of the graph increases. Curves of 1 −​ Pm computed for higher 
values of p similarly match the decrease of the prediction quality, supporting our explanation that the failure of 
our prediction in dense networks originates in the occurrence of multiple excitations (the more frequent the 
denser the networks).

The plots presented here have been obtained with networks of N =​ 80 nodes. The most interesting phenom-
enon regarding size dependence is the quality reduction for larger BA graphs due to many hubs distorting the 
propagating front by imposing dynamical directionality5 (see Supplementary Material).

Prediction of the limit of sustained activity (point B).  The transition observed in point B is better described when 
approaching 1/κm from above. For large values of 1/κ, all nodes have a degree smaller than 1/κ. All nodes are 
thus able to propagate the activity. Starting from the input node, the excitation propagates layer-wise, as a front 

Figure 3.  Density histogram of the prediction k* for the onset of excitation propagation (point A in Fig. 1)  
as a function of the observed transition value 1/κc. The basis of this prediction is that the node with the 
highest degree on the easiest path (path along which the maximal degree is minimal) from the input node to 
the output node is limiting, with degree k*. Scanning different values of κc is obtained by running the dynamics 
on networks having N =​ 80 nodes and M =​ 100...1900 edges (in steps of 100), considering 10 realizations for 
each values of M and for each network all the possibilities for the input node, while observing the topological 
quantity k*. Data are aggregated into a heat map (color bar on the right, in %) representing the probability 
density (normalized histogram) of values of k* for each value of 1/κc.
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propagating sequentially across the layers. Each excited layer is followed by a refractory layer, hence no cycling 
excitations can establish themselves. The only signal amplification comes from the possible branching of paths 
and an ensuing increase in the number of nodes between one layer and the following one. The single input excita-
tion thus yields a single output excitation per output node, whatever the duration of the observation. Note that the 
directionality here comes from the dynamics itself (the network is undirected).

When decreasing 1/κ, a jump arises in the output signal at some value 1/κm. Typically a high-degree node, 
acting as a barrier, is not excited when the excitation front reaches its layer and leaves a susceptible ‘hole’ in a layer 
of refractory nodes. Such a hole allows an excitation to travel upward, reaching the hole from an excited neighbor 
belonging the next layer. The surrounding nodes could be no longer in a refractory state, and complex paths are 
now available for excitation propagation, possibly including cycling excitations if the network is dense enough to 
contain suitable topological cycles.

At transition point B we observe a strong amplification of excitations. As was discussed previously5,7,10, such an 
amplification requires the activation of topological cycles in the graph. We suggest that the transition in 1/κm can 
be explained by the appearance of the first active cycle. The amplification observed at point B is sharp. This means 
that the cycle is traveled several times, or that other cycles can be excited after the first one has stored excitation 
long enough for some refractory nodes to recover and provide substrate for further cycling excitations.

The analysis of the simulated dynamics in its layered representation for several network realizations shows that 
as soon as a hole appears in the first layer, other holes rapidly appear in subsequent layers, thus supporting the 
possibility of numerous cycling excitations, explaining the sharp increase of the output signal (data not shown).

An estimate of the transition point is 1/κm =​ kmax, where kmax is the maximal degree encountered in the net-
work. The degree distribution being layer-biased, it can be expected that with a high probability the first hole 
appears in the first layer. Accordingly, another prediction is 1/κm =​ kmax,1, where kmax,1 is the maximal degree 
encountered in the first layer.

Figure 4.  Prediction quality for the onset 1/κc of excitation propagation (point A) when increasing the 
edge density. The data are obtained by scanning graphs having a fixed number N =​ 80 of nodes and a varying 
number M =​ 150...2000 of edges (steps of 30), considering 50 realizations for each value of M, and for each 
network all the possibilities for the input node. The plot displays the quality of the predictions 1/κc =​ k* 
(maximal degree on the easiest path to one randomly chosen output node, red full curve) and 1/κc =​ k** 
(minimum value of k* over all the possible output nodes, blue dashed curve) compared to the numerical value 
of 1/κc (rounded to the nearest integer). Each point in these curves is the number of successful predictions over 
4000 trials, normalized so that a perfect prediction would get a score of 100. The dashed green line indicates 
our confidence in the prediction k*, by representing an analytical estimate of the probability 1 −​ Pm (see 
Equation (3)) of having no multiple excitations (expected to invalidate the prediction). Upper panel: ER graphs; 
lower panel: BA graphs.
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We compare our prediction kmax,1 with the numerical value observed for 1/κm in Fig. 5 (for ER graphs). Again, 
as we have observed in Figs 1 and 2 that the point B does not depend on the value of the recovery probability p, 
we used p =​ 1 (the deterministic case) to determine 1/κm. Next, we compare our two predictions 1/κm =​ kmax and 
1/κm =​ kmax,1 for ER and BA graphs in Fig. 6 as a function of the number of edges.

For dense networks the prediction kmax,1 has a 100% quality, meaning that a hole in the first layer is what con-
ditions, directly or indirectly, the onset of a significant amplification of the excitation signal.

In contrast, for sparse graphs, the prediction quality for kmax outperforms the one based on kmax,1. When 1/κ 
is small enough for holes to appear in the first layer and be involved in cycling excitation, the signal amplification 
is already working, due to a hole located in a deeper layer and having a degree kmax >​ kmax,1. Indeed in a sparse 
graph the occurrence of multiple excitations has a low probability Pm and holes in deep layers are more frequent 
than in dense graphs.

Prediction of the height of the response curve (level C).  From the analysis of the topological determinants of 
self-sustained activity above, it follows that the activity level at point C in Fig. 1 is linked to the presence of cycling 
excitations, feeding directly or indirectly the output node. The maximal output excitation level would be reached 
when the output node is periodically excited due to the activity of a set of cycles, with an average period 2 +​ 1/p 
prescribed by p. This simple argument describing a saturation of the output node yields a prediction of the maxi-
mum excitation level amax at point C depending on p and the length T of the recording:

=
+

.a T
p2 1/ (4)max

Figure 7 shows the maximal level reached by the response curve for various values of p as a function of the 
edge density. As more and more cycles are wired in the network by added edges, the output node excitation level 
saturates to a p-dependent value, whose maximum is reached for p =​ 1, equal to amax =​ 100 for T =​ 300.

The maximal excitation level of the output node as a function of the recovery probability p is shown in Fig. 8, 
for both ER and BA graphs with N =​ 80 nodes and a sufficient number of edges (M =​ 640) to be in the satura-
tion regime (plateaus in Fig. 7). The agreement between the theoretical prediction, Eq. (4) (black line) and the 
simulation result for p >​ 0.2 supports our explanation in terms of a complex pattern of active cycles ensuring the 
recurrent excitation of the output node. For p <​ 1, the stochasticity of the recovery could allow re-excitation faster 
than predicted by the average period 2 +​ 1/p, accounting for the slight excess of the numerical values compared 
to amax. When p =​ 1, the dynamics is deterministic and sustained activity originating from robust pacemakers 
becomes possible5, such as the triangle ESR or the square ESSR. The minimum period of 3 is actually observed for 
p =​ 1, and prediction and simulation perfectly match.

The marked discrepancy between the prediction and the simulation at low values of p is expected since the 
mean-field-like approximation underlying Eq. (4) is less reliable in the regime of very low excitation densities 
obtained at low p; here the prediction amax provides only an upper bound on the maximum output excitation level. 

Figure 5.  Density histogram of the prediction kmax,1 for the limit of sustained activity (transition point B in 
Fig. 1) as a function of the observed transition value 1/κm. This prediction corresponds to the maximal degree 
in the first layer. Scanning different values of κm is achieved by running the dynamics on networks having 
N =​ 80 nodes and M =​ 100...1900 edges (in steps of 100), considering 10 realizations for each values of M and 
for each network all the possibilities for the input node, while observing the topological quantity kmax,1. Data 
are aggregated into a heatmap (color bar on the right, in %) representing the probability density (normalized 
histogram) of values of kmax,1 for each value of 1/κm.
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The kink for small p observed in the actual behavior is due to an inability to sustain the activity due to small graph 
size combined with many refractory nodes. This finite-size effect is further investigated in Fig. 9, confirming its 
disappearance for larger graphs. This point emphasizes again the importance of studying small or medium-sized 

Figure 6.  Prediction quality for the limit 1/κm of sustained activity (transition point B) when increasing 
the edge density. The data are obtained by scanning graphs having a fixed number N =​ 80 of nodes and a 
varying number M =​ 150...2000 of edges (steps of 30), considering 50 realizations for each value of M, and for 
each network all the possibilities for the input node. The plot displays the quality of the predictions 1/κm =​ kmax 
(maximal degree, blue dashed curve) and 1/κm =​ kmax,1 (maximal degree in the first layer, red full curve) 
compared to the numerical value of 1/κm (rounded to the nearest integer). Each point in these curves is the 
number of successful predictions over 4000 trials, normalized so that a perfect prediction would get a score of 
100. Upper panel: ER graphs; lower panel: BA graphs.

Figure 7.  Maximum output signal (level C in Fig. 1) as a function of the number of edges M = 100... 700 
(steps of 5) for different values of the recovery probability p. The number of nodes is constant (N =​ 80). For 
each value of M, 500 network realizations are considered and one input node selected at random. The output 
excitations are accumulated over T =​ 300 steps, so that the variability of shorter transients is smoothed out. For 
each network, the maximum value of the output signal is determined by running the dynamics for each value 
of 1/κ between 1 and 50 (step of 1), then the observed maximum is averaged over the 500 network realizations 
with M edges, normalized so that 100 corresponds to the maximal capacity of the output node at p =​ 1. The 
plot shows that the sustained activity saturates at large M (dense graphs) to a value dependent on p, with a 
theoretical maximum value amax|p =​ 1 =​ 100 reached for the deterministic dynamics (p =​ 1).
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graphs, rather than just the asymptotic limit of infinite graphs, as real-world graphs across all domains of appli-
cation (from biological to social and technological networks) tend to be comparatively small (with numbers of 
nodes mostly in the hundreds). In small networks, the topological details like the arrangement of cycles and the 
barrier structure are of importance for qualitative features of the dynamics, while for infinite graphs these details 
can be expected to average out.

Discussion
The observed phenomena can be classified as ‘path-driven’ (for the transition in A; κ =​ κc) or ‘cycle-driven’ 
(for the transition in B; κ =​ κm). The onset of excitation propagation in A is due to the appearance of the first 
barrier-free path. The transition in B between simple signal propagation and signal amplification (onset of sus-
tained activity) is due to topological cycles and the possibility of cycling excitation that occurs as soon as some 
nodes are not excited in the first stage of signal propagation.

Threshold dynamics have been observed in multiple regions of the brain21,22. Computational modeling also 
demonstrated the power of threshold dynamics in predicting empirical neural activity23. The present model, 
which uses a global threshold parameter, in line with similar work24, provides a highly simplified representation of 
threshold mechanisms, which in reality may vary by location as well as in time. However, it is such simplifications 
that allow the study of the impact of thresholds on network dynamics in the first place, while models that imbue 
each element with an individual threshold cannot be systematically explored.

Strikingly, the problem of threshold behaviors, which has been investigated in much detail in infectious dis-
eases (e.g., in the SIR model12), has not yet been studied extensively for its impact on global neural dynamics. 
Only a few studies have contributed to a qualitative understanding of the topological and dynamical prerequisites 
for self-sustained activity4,7,10 (see also the discussion of reentrant excitations in the introduction). While the 
control of excitation in neural systems may be due to a variety of mechanisms based on cellular properties as well 
network features25, we here focused intentionally on the latter aspect, notwithstanding the existence or impor-
tance of cellular mechanisms.

Figure 8.  Output excitation saturation level (see Fig. 7 for details) as a function of the recovery probability 
p (steps of Δp = 0.01), for dense ER and BA graphs (N = 80, M = 640). ER graphs (red full curve) and BA 
graphs (dashed blue curve) behave very similarly. The black curve displays the mean-field prediction amax =​ 300/
(2 +​ 1/p).

Figure 9.  Output excitation saturation level (see Fig. 7 for details) as a function of the recovery probability 
p (steps of Δp = 0.01, 100 runs for each values of p) for dense ER graphs of different sizes N and a large 
enough number of edges to be located in the saturation plateau in Fig. 7, e.g. M = 640 for N = 80. The black 
curve displays the prediction amax =​ 300/(2 +​ 1/p).
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To our knowledge the deterministic cellular automaton model with a relative excitation threshold considered 
here has not been investigated before. Previously16 a stochastic version of this model was discussed. A simi-
lar model24 emphasizes that such dynamics can serve as a strategy for exploring the relationship of excitable 
dynamics and network architecture. It has furthermore been studied16 how noise facilitates the propagation of 
excitations (and in particular can lead to an amplification of excitations in a graph). The gradual change of signal 
propagation with noise intensity is not related to the sharp, topologically determined transition points discussed 
in our present investigation. The focus of the previous investigation16 was to investigate how the interaction of 
‘signal’ excitations (excitations correlated with an input signal) with noise (random excitations) enhances – at 
intermediate noise levels – the signal recorded at the output nodes. While in the previous work16 this stochastic 
resonance phenomenon could be observed numerically, we are still lacking a deep mechanistic understanding of 
it. An important prerequisite along this way is to understand how the propagation of a single excitation through 
the network depends on the network’s topological features and the excitation threshold.

In addition to furthering our understanding of the previous numerical observations16, we believe that the 
mechanisms outlined here are instrumental to the onset of self-sustained activity in a network. On a more general 
level, we here advocate the view that, from the perspective of an input node, an excitation ‘sees’ the network as a 
pattern of paths and barriers.

The layer representation starting from a given input node provides a node-centered view that a node may have 
of the network in which it is embedded. This view is relevant in several applications, such as the local probing of a 
network with no possibility to have an overall and external view, e.g. probing the internet, propagation of signals 
in neural networks, or social networks in which an individual has only a subjective view of the network.

At intermediate values of 1/κ, the excitation dynamics is sensitive to the hierarchical layer representation of 
the network. In this sense, we have a process-induced layering, which could also happen in real networks, accord-
ing to a few input nodes have been specifically selected and evolved to match suitable topological features (or a 
barrier pattern) for the relevant dynamics.

We restrict ourselves to the analysis of comparatively small networks, as many real-world networks (including 
the cortical area networks, which serve as a source of inspiration for this investigation) are rather small (a few 
tens up to a few hundreds of nodes). Moreover, the infinite-size limit would give no clue on the impact, investi-
gated here, of specific topological features on activity propagation. In general, we can expect that the differences 
between network realizations discussed here (i.e. the variation of 1/κc and 1/κm from network realization to net-
work realization) become much smaller with increasing network size.

Our investigation is inspired by the phenomenon of self-sustained activity in biological neural networks. 
However, we would like to again emphasize that our results are based on a simple model of excitable dynamics 
with a relative activation threshold operating on an abstract (random) graph. This minimal setup allowed us 
to understand some generic mechanisms of how network topology influences the propagation of excitations 
through a graph and how self-sustained activity sets in. However, in spite of the simplicity of the model, we regard 
these generic results to be valid in more realistic versions of excitable dynamics and, hence, to be of relevance to 
collective behaviors in the brain.

The feature of our model that certainly requires some scrutiny is the relative threshold. One mechanism 
potentially leading to such a relative threshold in the modeling of excitable dynamics is spike threshold adapta-
tion that has been described widely for populations of neurons26–28. This phenomenon results in a reduction of the 
firing rate of highly active neural populations, as resulting from a large number of inputs (i.e., for hub regions). 
While, admittedly, this adaptation mechanism is not identical to the relative threshold mechanism employed in 
our paper, it points in the same direction: regions with many inputs may become inhibitory barriers in the path 
of network activation, at least after a transient phase of high activity.

It should further be noted that the emergence of self-sustained activity has also been addressed using different 
types of models, for instance, where activation and inhibition are taken into account explicitly29.

The transient sustained activity seen in our excitable model is reminiscent of a biological phenomenon termed 
network reverberation, that is, the temporarily sustained activity induced by a specific stimulation of a neural 
circuit. The concept is related to that of neural assemblies introduced by Hebb30. One intuitive application of such 
reverberations may be in dynamic memory circuits, that is, short-term (working) memory based on dynamic pat-
terns. This is in contrast to long-term memory that may be encoded in the synaptic weight distribution of the net-
work. Indeed, one can see transiently sustained activity in specific cortical regions (e.g., prefrontal and posterior 
parietal cortex) related to working memory tasks, such as a delayed matching-to-sample task. The predominant 
idea is that reverberations are expressed as dynamic attractors of transiently stable increased activity, particularly 
due to locally increased synaptic strength31. This idea provides a link between the dynamic patterns encoding 
short-term (working) memory and the synaptic weight changes underlying long-term memory. However, there 
exists an extensive debate on the specific circuitry and parameters underlying the reverberations32–34.
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