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Introduction

For many optimization problems, there is a need to deal with several aspects of a solution, at the same time. In multi-objective optimization, a problem has a set of feasible solutions S and k > 1 objective functions f i : S → IR, i ∈ {1, . . . , k}. For each f i , it is also specified if the function should be minimized or maximized. Suppose every f i should be maximized and let opt i denote max s∈S f i (s), for all i ∈ {1, . . . , k}. For a given instance of a multi-objective problem, the ideal point (opt 1 , . . . , opt k ) is the image of a (not necessarily feasible) solution reaching optimality on all objective functions, at the same time.

In practice, it is unlikely that the ideal point is the image of a feasible solution. We thus need to resort to approximation. A feasible solution s is said to be a ρ-approximation of the ideal point (or, in short, a ρ-approximate solution), for ρ ∈ (0, 1], if f i (s) ≥ ρ opt i , i ∈ {1, . . . , k}.

The existence of a feasible ρ-approximate solution is not guaranteed for every possible ratio ρ ∈ (0, 1]. Therefore, it is challenging to identify, for a given problem, the best approximation factor under which the existence of a feasible ρ-approximate solution is always guaranteed. It is also relevant to have a constructive approach: what is the largest ratio ρ ∈ (0, 1] such that a feasible ρ-approximation of the ideal point can be computed in polynomial time?

In this article, we focus on matching problems, which are central in combinatorial optimization problems. In particular, we deal with a bi-objective matching problem. The set of feasible solutions is every subset of pairwise non-adjacent edges. Each edge e has a non-negative weight w(e) and a non-negative length ℓ(e), where both objectives satisfy the triangle inequality.

After a short review of the literature related to our problem (section 2), we give in section 3 a formal definition of the model, together with a motivation for restricting ourselves to two objectives satisfying the triangle inequality. Section 4 is devoted to the computational complexity of the bi-objective matching problem on complete graphs. In section 5 we give an approximation algorithm. The result is a general method which, combined with a technical lemma, provides an approximation algorithm with performance guarantee 1/3.

In section 6 we reuse the general method but we substitute the technical lemma with computational results, to give an insight about possible improvements of the previous performance guarantee of 1/3. Some upper bounds are given in section 7. We end this article with concluding remarks.

Related work

This article falls in the field of multi-objective combinatorial optimization (see [START_REF] Ehrgott | Multicriteria Optimization[END_REF] Chapter 8 in particular). A prominent solution concept in multi-objective optimization is the Pareto set P (a.k.a. Pareto curve [START_REF] Papadimitriou | On the approximability of trade-offs and optimal access of web sources[END_REF]). For every feasible solution s, P contains a feasible solution s * such that the image of s * weakly dominates1 the image of s. However, the notion of Pareto set is sometimes problematic since, for some instances, P must contain a number of solutions that is not polynomial in the input size. Therefore, no algorithm can compute P in polynomial time. Another issue comes from computational complexity because the multi-objective version of many polynomial single-objective problems is NP-hard (this is for example the case for the minimum cost spanning tree problem [START_REF] Aggarwal | Minimal spanning tree subject to a side constraint[END_REF] and for the minimum assignment problem [START_REF] Serafini | Some considerations about computational complexity for multi objective combinatorial problems[END_REF]). We can remedy to these difficulties with the help of approximation. If the maximization is retained for every f i , then we say that s ′ is a ρ-approximation of s, with ρ ∈ (0, 1], when f i (s ′ ) ≥ ρ f i (s) for all i ∈ {1, . . . , k}. An approximate Pareto set P ρ contains a ρ-approximation for every feasible solution.

Interestingly, the notion of approximate Pareto set helps to circumvent the two aforementioned difficulties. For a constant number of objectives, Papadimitriou and Yannakakis [START_REF] Papadimitriou | On the approximability of trade-offs and optimal access of web sources[END_REF] have shown that for every ρ ∈ (0, 1], there always exists an approximate Pareto set P ρ such that |P ρ | is polynomial in both the input size and (1ρ) -1 . Moreover, for the multi-objective version of some paradigmatic problems in combinatorial optimization (e.g. minimum cost spanning tree), P ρ can be computed in polynomial time.

Usually, no explicit upper bound on |P ρ | is given. However, we can be interested in fixing the size of an approximate Pareto set and try to provide the best performance guarantee. Because P ρ may contain an overwhelming number of solutions, limiting its size is useful (in a decision process for example). When the size of an approximate Pareto set is upper bounded, we cannot guarantee that every approximation factor can be achieved. Intuitively, the larger the size of the approximation set, the more accurate it can be. In fact, it is not difficult to see that a ρ-approximation of the ideal point is just a ρ-approximate Pareto set of size 1. Therefore, we interchangeably talk about ρ-approximation of the ideal point and ρ-approximate Pareto set (with a single solution).

Approximation of the ideal point has been done for the multi-objective versions of many well-studied optimization problems. In [START_REF] Stein | On the existence of schedules that are near-optimal for both makespan and total weighted completion time[END_REF][START_REF] Rasala | Existence theorems, lower bounds and algorithms for scheduling to meet two objectives[END_REF][START_REF] Angel | A note on scheduling to meet two min-sum objectives[END_REF], the authors study scheduling problems with two classical objective functions (e.g. makespan, sum of completion times, etc). They show the existence (and computation) of schedules that are approximately optimal for the objective functions, at the same time.

A 1/3-approximation of the ideal point exists for the bi-objective maximum spanning tree problem [START_REF] Escoffier | Fair solutions for some multiagent optimization problems[END_REF]. In the same article, the authors give an approximation of two other multi-objective problems: max sat and cut-complement. In [START_REF] Gourvès | Approximate tradeoffs on weighted labeled matroids[END_REF], the 1/3-approximation presented in [START_REF] Escoffier | Fair solutions for some multiagent optimization problems[END_REF] has been generalized to a bi-objective problem on simple matroids.

A bi-objective version of max cut is studied in [START_REF] Angel | Approximation algorithms for the bi-criteria weighted max-cut problem[END_REF]: there always exists a 1/2-approximation of the ideal point whereas a 0.439-approximation can be computed in polynomial time. These results were recently generalized to the maximization of two sub-modular, symmetric and nonnegative functions2 [START_REF] Bazgan | Approximation with a fixed number of solutions of some multiobjective maximization problems[END_REF].

The ideal point approach has also been used on the bi-objective version of the traveling salesman problem [START_REF] Manthey | Deterministic algorithms for multi-criteria max-tsp[END_REF][START_REF] Manthey | On approximating multicriteria tsp[END_REF][START_REF] Bazgan | Single approximation for the biobjective max tsp[END_REF]. For the maximization version of the problem, the best ratios for the approximation of the ideal point come from [START_REF] Bazgan | Single approximation for the biobjective max tsp[END_REF]: 5/12ε if the two objectives satisfy the triangle inequality, 3/8ε if only one objective satisfies the triangle inequality, and 1+2 √ 2 14

ε without the triangle inequality.

Actually, the bi-objective maximum matching (where the triangle inequality is satisfied) has already been studied in [START_REF] Bazgan | Approximation with a fixed number of solutions of some multiobjective maximization problems[END_REF]. This article provides a general approximation method for a class of biobjective problems. An application of the general method to the bi-objective maximum matching yields a 1/6-approximation of the ideal point. In addition, the problem is shown NPhard when the instance is a collection of complete graphs in which the triangle inequality is satisfied [START_REF] Bazgan | Approximation with a fixed number of solutions of some multiobjective maximization problems[END_REF]. The case of a complete graph was left open. In the present article, we improve on the approximation result since a 1/3-approximation is provided (Corollary 1). Moreover the complexity of the problem (previously left open) is shown on complete graphs (Theorem 1).

It is noteworthy that bi-objective versions of the assignment problem (i.e. matchings in bipartite graphs) have been studied previously. Exact methods for the minimization version can be found in [START_REF] Ulungu | The two-phases method: An efficient procedure to solve bi-objective combinatorial optimization problems[END_REF] and [START_REF] Przybylski | Two phase algorithms for the bi-objective assignment problem[END_REF].

To conclude, let us mention a popular approach in multi-objective combinatorial optimization. It consists in turning all but one objective functions in budget constraints. Given a vector (B 2 , B 3 , . . . , B k ) ∈ R k-1 , a solution s ∈ S is said to be optimal if it optimizes f 1 (s) under the budget constraints f j (s) ≥ B j (or f j (s) ≤ B j ), j = 2, . . . , k. To mention a few examples, this method is used for some multi-objective network-design problems [START_REF] Ravi | Many birds with one stone: multi-objective approximation algorithms[END_REF] or shortest path [START_REF] Hassin | Approximation schemes for the restricted shortest path problem[END_REF]. The matching problem, and generalizations to matroids and independence systems are studied in [START_REF] Berger | Budgeted matching and budgeted matroid intersection via the gasoline puzzle[END_REF][START_REF] Grandoni | New approaches to multi-objective optimization[END_REF].

Model

Let G = (V, E) be a complete graph. Each edge e ∈ E has a non-negative weight w(e) and a nonnegative length ℓ(e). We assume that both w and ℓ satisfy the triangle inequality 3 . The weight and length of a set of edges M ⊂ E are defined as w(M ) = e∈M w(e) and ℓ(M ) = e∈M ℓ(e), respectively. Both w(M ) and ℓ(M ) should be maximized. Since it is unlikely that a matching reaches optimality for both objectives, our aim is to find a single matching which constitutes the best approximation of the ideal point.

Note that we have to restrict to a bi-objective matching where the two edge values fulfill the triangle inequality, otherwise there is not always a single matching which constitutes an ε-approximate Pareto set with any given positive ratio ε:

-If the triangle inequality does not hold then at least 3 solutions are required to constitute an approximate Pareto set for any given positive ratio ε. See the instance on Figure 1 which contains 3 matchings with values (1 + ε, 0), (0, 1 + ε) and (ε, ε), respectively. No solution is an ε-approximation of any other one, so the three solutions are required to provide an ε-approximate Pareto set. -If only one objective fulfills the triangle inequality, then at least 2 solutions are required to constitute an ε-approximate Pareto set with any given positive ratio ε: consider a triangle with values (0, 1), (1, 0), and (1, 0) (see Figure 2). -If we consider 3 objectives which all fulfill the triangle inequality, then at least 3 solutions are required to constitute an ε-approximate Pareto set with any given positive ratio ε: consider a triangle with values (0, 1, 1), (1, 0, 1), and (1, 1, 0) (see Figure 3). (0,1) (0,1,1) 

( 0 , 1 + ε ) (ε, ε) ( 1 + ε , 0 )
(1,0) (1,0)
(1,1,0) (1,0,1)

Complexity

We first investigate the complexity of the decision version of the biobjective maximum matching problem. This corresponds to the problem RestrictedMaxMatching defined as follows. Let (x 1 , x 2 ) ∈ N 2 , does there exist a matching M such that the weight of M is at least x 1 , and the length of M is at least x 2 ? Theorem 1. RestrictedMaxMatching is NP-complete, even in a graph in which both objectives fulfill the triangle inequality.

Proof. We will show that Partition polynomially reduces to RestrictedMaxMatching. We recall the Partition problem: an instance of Partition is a set E = {e 1 , . . . , e n } of n elements, and a cost function c : E → N such that e∈E c(e) = 2B and 0 < c(e) < B. The question is: is there a subset

E ′ ⊆ E such that e∈E ′ c(e) = e∈E\E ′ c(e) = B?
The corresponding instance of RestrictedMaxMatching is as follows: we fix x 1 = x 2 = (4n+1)B, and we consider a complete graph G composed of 4n vertices : n vertices {a 1 , . . . , a n }, n vertices {b 1 , . . . , b n }, n vertices {c 1 , . . . , c n }, and n vertices {d 1 , . . . , d n }. For each i ∈ {1, . . . , n}, the cost of edge (a i , b i ) is equal to (2B + c(e i ), 2B), and the cost of edge (b i , c i ) is equal to (2B, 2B + c(e i )). All the other edges have a cost equal to (2B, 2B). This graph satisfies the triangle inequality since on each objective the cost of each edge is at least 2B and at most 3B.

Let us show that there is a feasible solution of RestrictedMaxMatching on this instance if and only if (E, c) is a yes instance of Partition. If (E, c) is a yes instance of Partition (i.e. there is a subset

E ′ ⊆ E such that e∈E ′ c(e) = e∈E\E ′ c(e) = B
), then there is a solution M of the corresponding instance of the RestrictedMaxMatching problem: for each i ∈ {1, . . . , n}, if e i ∈ E \ E ′ then the edges (a i , b i ) and (c i , d i ) are in M , and else, if

e i ∈ E ′ then the edges (b i , c i ) and (a i , d i ) are in M (no other edge is in M ). Since e∈E ′ c(e) = e∈E\E ′ c(e) = B, the weight of M is then x 1 = 2n(2B) + B = (4n + 1)B, and the length of M is x 2 = 2n(2B) + B = (4n + 1)B.
Conversely, let us now show that if there is a feasible solution M of RestrictedMax-Matching then (E, c) is a yes instance of Partition. We assume that M is a perfect matching, and is thus made of 2n edges; it is possible because the graph is complete, it contains an even number of nodes and any matching can be completed to become perfect without decreasing its value because all the edges have positive values for each objective. The weight of M is |M |2B + (ai,bi)∈M c(e i ). Since the weight of M is at least x 1 = (4n + 1)B, we have

(ai,bi)∈M c(e i ) ≥ B. Let E 1 = {e i ∈ E|(a i , b i ) ∈ M }. We have: ei∈E1 c(e i ) ≥ B. Likewise, the length of M is |M |2B + (bi,ci)∈M c(e i ). Since the length of M is at least x 2 = (4n+1)B, we have (bi,ci)∈M c(e i ) ≥ B. Let E 2 = {e i ∈ E|(b i , c i ) ∈ M }. We have: ei∈E2 c(e i ) ≥ B. Note that for each i ∈ {1, . . . , n}, at most one edge in {(a i , b i ), (b i , c i )} belongs to M , since M is a matching. Thus E 1 ∩E 2 = ∅. Since e∈E c(e) = 2B, we have ei∈E1 c(e i ) = ei∈E2 c(e i ) = B,
which is a solution to the (E, c) instance of Partition.

⊓ ⊔

Approximation

This section provides a general method, described in Theorem 2, which, combined with some results for small graphs, described in Lemma 2, provides an approximation algorithm with performance guarantee 1/3.

Theorem 2. Let k be a fixed integer satisfying k ≥ 2. Let ρ be a real satisfying 0 < ρ ≤ 1.

Suppose that for every q ≤ 2k and every complete graph K q of q nodes, there always exists a matching F q satisfying w(F q ) ≥ ρw(M q w ) and ℓ(F q ) ≥ ρℓ(M q ℓ ), where M q w (resp. M q ℓ ) denote a maximum weight (resp. length) matching of K q . Then, there exists a single matching which constitutes a ρ k-1 k -approximate Pareto set for the biobjective Maximum Matching problem. Proof. Let k ≥ 2. Build two maximum matchings of K n with respect to w and ℓ respectively. Denote them by M w and M ℓ . We can suppose wlog that both M w and M ℓ are maximal with respect to the inclusion and then

|M w | = |M ℓ |. The subgraph G ′ = (V, M w ∪ M ℓ
) is made of p connected components denoted by C i for i ∈ {1, . . . , p}. One C i may be one isolated node but every other connected component contains at least one edge. Each C i is a cycle of even size or a path. Note that there is at most one path with at least two edges in M w ∪M ℓ (because the graph is complete and we can assume that M w are M ℓ are of maximum size) and this path contains an even number of edges. Each path containing a single edge must be in M w ∩ M ℓ (because M w and M ℓ are of maximum size: at least one endpoint of each edge should be adjacent to one edge of M ℓ -and this is the same thing for M w ).

Consider a connected component C i with at least two edges and denote by n i its number of vertices. Thus

C i contains n i edges if C i is a cycle and n i -1 if C i is a path.
-If n i ≤ 2k, then by hypothesis, there exists in K ni (the subgraph induced by the vertices of C i ) a matching F ni such that:

w(F ni ) ≥ ρw(M ni w ) ≥ ρw(C i ∩ M w ) and ℓ(F ni ) ≥ ρℓ(M ni ℓ ) ≥ ρℓ(C i ∩ M ℓ ) (1) 
since M ni w (resp. M ni ℓ ) is an optimum weight (resp. length) matching of K ni . -Now, suppose that n i ≥ 2k +1. The edges of C i ∩M w are labeled with numbers in {1, . . . , k} as follows. If C i is a cycle, then it is explored from an arbitrarily chosen vertex that we denote v 0 . If C i is a path, then it is explored from an endpoint denoted by v 0 . During the exploration, the first edge of C i ∩ M w is labeled 1, the second edge of C i ∩ M w is labeled 2, . . . , the k + 1 edge of C i ∩ M w is labeled 1, and so on. Formally, the j-th edge of C i ∩ M w is labeled j -⌊ j-1 k ⌋k. See Figure 4 for an illustration for a cycle of length 12 and k = 3. For j ∈ {1, . . . , k}, L j (C i ∩ M w ) are the edges of C i ∩ M w with label j. Assume that j w is the index such that the matching of label j w is the lightest, i.e., w(L jw (C i ∩ M w )) = min j=1,...,k {w(L j (C i ∩ M w ))}. Thus, we deduce that

w(C i ∩ M w \ L jw (C i ∩ M w )) ≥ k -1 k w(C i ∩ M w ) (2) 
Moreover, since L jw (C i ∩ M ℓ ) = ∅ (the edges which have been labelled belong to C i ∩ M w and in a connected component C i with at least two edges

(C i ∩ M w ) ∩ (C i ∩ M ℓ ) = ∅), we have: ℓ(C i ∩ M ℓ \ L jw (C i ∩ M ℓ )) = ℓ(C i ∩ M ℓ ) (3) 
Observe that if C i is a cycle, then all the paths in C i \ L jw (C i ∩ M w ) except one have a length 2(k -1) + 1 = 2k -1 and the last path P i 0 (containing v 0 ) has a length at most equal to 2(2(k -1)) + 1 = 4k -3. See Figure 5 for an illustration of the worst case with n i = 10 and k = 3; here edge e corresponds to matching L 3 (C i ∩ M w ). Let us focus on the path P i 0 when C i is a cycle and assume that the length of this path is at least 2k (actually, it is at least 2k + 1 because P i 0 is of odd length). This path contains at most 4k -3 edges and by construction the two end edges are in M ℓ . We label the edges of P i 0 ∩ M ℓ with numbers in {1, . . . , k} as previously starting from an end edge with label 1. See Figure 6 for an illustration with n i = 10 and k = 3; Using a similar approach, L j (P i 0 ∩ M ℓ ) denotes the set of edges of P i 0 ∩ M ℓ with label j for j ∈ {1, . . . , k}. Assume that j ℓ is the index such that the matching of label j ℓ is the lightest, i.e., ℓ(L j ℓ (P i 0 ∩ M ℓ )) = min j=1,...,k {ℓ(L j (P i 0 ∩ M ℓ ))}. Thus, we obtain:

ℓ(P i 0 ∩ M ℓ \ L j ℓ (P i 0 ∩ M ℓ )) ≥ k -1 k ℓ(P i 0 ∩ M ℓ ) (4) 
w(P i 0 ∩ M w \ L j ℓ (P i 0 ∩ M ℓ )) = w(P i 0 ∩ M w ) (5) 
If C i is a path, then all the paths in C i \ L jw (C i ∩ M w ) contain at most 2k -1 edges. In this case, we set P i 0 = ∅.

In conclusion, we have the following property: each path P of C i \ (L jw (C i ∩ M w ) ∪ L j ℓ (P i 0 ∩ M ℓ )) is contained in a complete subgraph K q ′ where q ′ ≤ 2k (in particular, it is the case of P i 0 when C i is a cycle with length at most 2k -1). By hypothesis there is a matching F q ′ of K q ′ such that:

w(F q ′ ) ≥ ρw(M q ′ w ) ≥ ρw(P ∩ M w ) and ℓ(F q ′ ) ≥ ρℓ(M q ′ ℓ ) ≥ ρℓ(P ∩ M ℓ ) (6) 
since M q ′ w (resp. M q ′ ℓ ) is optimal for w (resp. ℓ). The union of these matchings F q ′ , denoted by F i , is a matching of G induced by the vertices of C i . Moreover, using Inequalities (2), (3), ( 4), [START_REF] Stein | On the existence of schedules that are near-optimal for both makespan and total weighted completion time[END_REF], and (6) we get:

w(F i ) ≥ ρw(C i \ (L jw (C i ∩ M w ) ∪ L j ℓ (P i 0 ∩ M ℓ )) ∩ M w ) ≥ ρ k -1 k w(C i ∩ M w ) (7) ℓ(F i ) ≥ ρℓ(C i \ (L jw (C i ∩ M w ) ∪ L j ℓ (P i 0 ∩ M ℓ )) ∩ M w ) ≥ ρ k -1 k ℓ(C i ∩ M ℓ ) (8) 
By summing up previous inequalities (1), or [START_REF] Angel | A note on scheduling to meet two min-sum objectives[END_REF], or (8) according to the case and by adding the connected components made of a single edge, we get a matching F such that w(F

) ≥ ρ k-1 k i w(C i ∩ M w ) = ρ k-1 k w(M w ) and ℓ(F ) ≥ ρ k-1 k i ℓ(C i ∩ M ℓ ) = ρ k-1 k ℓ(M ℓ ). ⊓ ⊔
We show now the existence of 1 2 -approximations for graphs of small size. For this purpose, the following simple result will be useful.

Lemma 1. Let G = (V, E) be a weighted complete graph with |V | ≥ 4 and weight function h satisfying the triangle inequality. For any four vertices i, j, k, l, at least one of the following two inequalities holds :

h(i, k) + h(j, l) ≥ 1 2 (h(i, j) + h(k, l)) h(i, l) + h(j, k) ≥ 1 2 (h(i, j) + h(k, l))
Proof. Using the triangle inequality, we have h(i, k) + h(j, k) ≥ h(i, j), h(i, l) + h(j, l) ≥ h(i, j), h(i, k) + h(i, l) ≥ h(k, l), and h(j, k) + h(j, l) ≥ h(k, l). Summing up these inequalities we get h(i, k) + h(j, l) + h(i, l) + h(j, k) ≥ h(i, j) + h(k, l). The result follows. ⊓ ⊔ Lemma 2. For complete graphs with at most 6 vertices, with values on edges w and ℓ satisfying the triangle inequality, there exists a single matching M such that w(M ) ≥ 1 2 w(M w ) and ℓ(M ) ≥ 1 2 ℓ(M ℓ ), where M w and M ℓ are optimal matchings for the weight and the length, respectively.

Proof. Let n ∈ {3, 4, 5} since the case n = 2 is trivial. Build two optimal matchings on K n with respect to w and ℓ denoted respectively by M w and M ℓ . We assume wlog that the subgraph G ′ induced by M w ∪M ℓ is connected since otherwise we deal with connected components separately. Thus, the different cases are depicted in Figure 7. Let us show now that for each of these cases, there exists a matching M satisfying w(M ) ≥ 1 2 w(M w ) and ℓ(M ) ≥ 1 2 ℓ(M ℓ ).

-Case n = 3. G ′ is a path. We have -Case n = 4. G ′ is a cycle. We have M w = {(1, 2), (3, 4)} and M ℓ = {(1, 4), (2, 3)}. Using Lemma 1 for w, at least one of the following two inequalities holds :

M w = {(1, 2)} and M ℓ = {(2, 3)}. If ℓ(1, 2) ≥ ℓ(2, 3)/2 then M = {(1, 2)}. If w(2, 3) ≥ w(1, 2)/2 then M = {(1, 2)}. Otherwise, M = {(1, 3)} since,
w(1, 4) + w(2, 3) ≥ 1 2 (w(1, 2) + w(3, 4)) (9) w(1, 3) + w(2, 4) ≥ 1 2 (w(1, 2) + w(3, 4)) (10) 
Using Lemma 1 for ℓ, at least one of the following two inequalities holds :

ℓ(1, 2) + ℓ(3, 4) ≥ 1 2 (ℓ(1, 4) + ℓ(2, 3)) (11) ℓ(1, 3) + ℓ(2, 4) ≥ 1 2 (ℓ(1, 4) + ℓ(2, 3)) (12) 
If ( 9) holds then M = {(1, 4), (2, 3)}. If [START_REF] Bazgan | Approximation with a fixed number of solutions of some multiobjective maximization problems[END_REF] holds then M = {(1, 2), (3, 4)}. Finally, if neither ( 9) nor ( 11) hold then both ( 10) and ( 12) must be true and we have M = {(1, 3), (2, 4)}.

-Case n = 5. G ′ is a path. We have

M w = {(1, 2), (3, 4)} and M ℓ = {(2, 3), (4, 5)}. If w(1, 2) + w(4, 5) ≥ 1 2 (w(1, 2) + w(3, 4)) and ℓ(1, 2) + ℓ(4, 5) ≥ 1 2 (ℓ(2, 3) + ℓ(4, 5 
)), we have M = {(1, 2), (4, 5)}. Otherwise, we have:

• either w(1, 2)+w(4, 5) < 1 2 (w(1, 2)+w [START_REF] Aggarwal | Minimal spanning tree subject to a side constraint[END_REF][START_REF] Serafini | Some considerations about computational complexity for multi objective combinatorial problems[END_REF]). This implies w(3, 4) ≥ 1 2 (w(1, 2)+w(3, 4)) and w(3, 5) ≥ 1 2 (w(1, 2) + w(3, 4)), since otherwise the converse inequalities, summed up with the initial inequality, would lead respectively to w(1, 2) + w(4, 5) + w(3, 4) < w(1, 2) + w(3, 4) and w(1, 2) + w(4, 5) + w(3, 5) < w(1, 2) + w(3, 4) which are clearly wrong, using the triangle inequality in the second case. Moreover, using Lemma 1 for ℓ, we have either ℓ(2, 5)

+ ℓ(3, 4) ≥ 1 2 (ℓ(2, 3) + ℓ(4, 5)), in which case M = {(2, 5), (3, 4)}, or ℓ(2, 4) + ℓ(3, 5) ≥ 1 2 (ℓ(2, 3) + ℓ(4, 5)), in which case M = {(2, 4), (3, 5)}. • or ℓ(1, 2) + ℓ(4, 5) < 1 2 (ℓ(2, 3) + ℓ(4, 5)). This implies ℓ(2, 3) ≥ 1 2 (ℓ(2, 3) + ℓ(4, 5)) and ℓ(1, 3) ≥ 1 2 (ℓ(2, 3) + ℓ(4, 5 
)), since otherwise the converse inequalities, summed up with the initial inequality, would lead respectively to ℓ(1, 2)+ℓ(4, 5)+ℓ(2, 3) < ℓ(2, 3)+ℓ(4, 5) and ℓ(1, 2) + ℓ(4, 5) + ℓ(1, 3) < ℓ(2, 3) + ℓ(4, 5), which are clearly wrong, using the triangle inequality in the second case. Moreover, using Lemma 1 for w, we have either w(1, 4) + w(2, 3)

≥ 1 2 (w(1, 2) + w(3, 4), in which case M = {(1, 4), (2, 3)}, or w(1 
, 3) + w(2, 4) ≥ 1 2 (w(1, 2) + w(3, 4), in which case M = {(1, 3), (2, 4)}. 
-Case n = 6. G ′ is a cycle. We have 

M w = {(1, 2 
}. We first show that there exists i ∈ {1, 2, 3} such that ℓ(M i ) ≥ 1 2 ℓ(M ℓ ). By contradiction, assuming that ℓ(M i ) < 1 2 ℓ(M ℓ ) for all i ∈ {1, 2, 3}, we multiply by 2 each inequality and sum them up, which gives 2ℓ [START_REF] Ehrgott | Multicriteria Optimization[END_REF][START_REF] Rasala | Existence theorems, lower bounds and algorithms for scheduling to meet two objectives[END_REF] [START_REF] Serafini | Some considerations about computational complexity for multi objective combinatorial problems[END_REF][START_REF] Stein | On the existence of schedules that are near-optimal for both makespan and total weighted completion time[END_REF]. Applying the triangle inequality to each term between brackets gives values respectively larger than or equal to ℓ(1, 6), ℓ(2, 3), and ℓ(4, 5), contradicting the inequality. In the following, we assume wlog, after possibly renumbering the vertices, that ℓ(M 1 ) ≥

+ (ℓ(1, 2) + ℓ(2, 5) + ℓ(5, 6)) + 2ℓ(2, 3) + (ℓ(1, 2) + ℓ(1, 4) + ℓ(3, 4)) + 2ℓ(4, 5) + (ℓ(3, 4) + ℓ(3, 6) + ℓ(5, 6)) + ℓ(1, 4) + ℓ(2, 5) + ℓ(3, 6) < 3ℓ(1, 6) + 3ℓ(2, 3) + 3ℓ
1 2 ℓ(M ℓ ). If w(M 1 ) ≥ 1 2 w(M w ) then M = M 1 . If w(M 1 ) < 1 2 w(M w ) then, by Lemma 1, we get w(M 4 ) ≥ 1 2 w(M w ) where M 4 = {(1, 2), (3, 5), (4, 6)}. If ℓ(M 4 ) ≥ 1 2 ℓ(M ℓ ) then M = M 4 . Thus, we assume ℓ(M 4 ) < 1 2 ℓ(M ℓ ).
Consider now the two additional matchings M 5 = {(1, 5), (2, 6), (3, 4)} and M 6 = {(1, 3), (2, 4), (5, 6)}. We show that the four following conditions hold.

there exists i ∈ {4, 5, 6} such that ℓ(M i ) ≥ 1 2 ℓ(M ℓ ) (13) 
there exists i ∈ {2, 3, 4} such that ℓ(M i ) ≥ 1 2 ℓ(M ℓ ) (14) 
there exists i ∈ {2, 4, 6} such that ℓ(

M i ) ≥ 1 2 ℓ(M ℓ ) (15) 
there exists i ∈ {3, 4, 5} such that ℓ(

M i ) ≥ 1 2 ℓ(M ℓ ) (16) 
Regarding [START_REF] Manthey | On approximating multicriteria tsp[END_REF], the real condition is: there exists i ∈ {4, 5, 6, w} such that ℓ(M i ) ≥ 1 2 ℓ(M ℓ ). Obviously, if i = w then M = M w , and therefore we can assume [START_REF] Manthey | On approximating multicriteria tsp[END_REF], provided that the real condition is true. Assume by contradiction that ℓ(M i ) < 1 2 ℓ(M ℓ ) for all i ∈ {4, 5, 6, w}. Then, adding up these four inequalities, we obtain (ℓ(1, 2) + ℓ(2, 6)) + (ℓ(1, 5) + ℓ(5, 6)) + (ℓ(1, 2) + ℓ(1, 3))+(ℓ(2, 4)+ℓ [START_REF] Aggarwal | Minimal spanning tree subject to a side constraint[END_REF][START_REF] Serafini | Some considerations about computational complexity for multi objective combinatorial problems[END_REF])+(ℓ(3, 4)+ℓ [START_REF] Aggarwal | Minimal spanning tree subject to a side constraint[END_REF][START_REF] Stein | On the existence of schedules that are near-optimal for both makespan and total weighted completion time[END_REF])+(ℓ(4, 6)+ℓ [START_REF] Stein | On the existence of schedules that are near-optimal for both makespan and total weighted completion time[END_REF][START_REF] Rasala | Existence theorems, lower bounds and algorithms for scheduling to meet two objectives[END_REF]) < 2ℓ(1, 6)+2ℓ(2, 3)+2ℓ [START_REF] Serafini | Some considerations about computational complexity for multi objective combinatorial problems[END_REF][START_REF] Stein | On the existence of schedules that are near-optimal for both makespan and total weighted completion time[END_REF]. Applying the triangle inequality to each term between brackets leads to contradict the inequality. Regarding [START_REF] Bazgan | Single approximation for the biobjective max tsp[END_REF], we proceed again by contradiction, assuming that ℓ(M i ) < 1 2 ℓ(M ℓ ) for all i ∈ {2, 3, 4}. Multiplying by two the inequality for i = 4 and adding the two other inequalities, we obtain ℓ(1, 6) + (ℓ(1, 4) + ℓ(4, 6)) + ℓ(2, 3) + (ℓ(2, 5) + ℓ(3, 5)) + (ℓ(3, 4) + ℓ(3, 5)) + (ℓ(4, 6) + ℓ(5, 6)) + 2ℓ(1, 2) < 2ℓ(1, 6) + 2ℓ(2, 3) + 2ℓ [START_REF] Serafini | Some considerations about computational complexity for multi objective combinatorial problems[END_REF][START_REF] Stein | On the existence of schedules that are near-optimal for both makespan and total weighted completion time[END_REF]. Applying the triangle inequality to each term between brackets leads to contradict the inequality. Conditions ( 15) and ( 16) are established similarly (each time multiplying by 2 the inequality for i = 4).

Since ℓ(M 4 ) < 1 2 ℓ(M ℓ ), by [START_REF] Manthey | On approximating multicriteria tsp[END_REF] we have either ℓ(M 5 ) ≥ 1 2 ℓ(M ℓ ) or ℓ(M 6 ) ≥ 1 2 ℓ(M ℓ ). We conclude the proof by examining these two cases:

• Consider the case ℓ(M 5 ) ≥ 1 2 ℓ(M ℓ ). If w(M 5 ) ≥ 1 2 w(M w ) then M = M 5 . Otherwise, if w(M 5 ) < 1 2 w(M w ) then by Lemma 1, we get w(M 2 ) ≥ 1 2 w(M w ). If ℓ(M 2 ) ≥ 1 2 ℓ(M ℓ ) then M = M 2 . If ℓ(M 2 ) < 1
2 ℓ(M ℓ ) then, by ( 14) and ( 15) we get respectively ℓ(M 3 ) ≥

1 2 ℓ(M ℓ ) and ℓ(M 6 ) ≥ 1 2 ℓ(M ℓ ). If w(M 3 ) ≥ 1 2 w(M w ) then M = M 3 . If w(M 3 ) < 1
2 w(M w ) then, by Lemma 1, we have w(M 6 ) ≥ 1 2 w(M w ) and thus M = M 6 . • Consider finally the case ℓ(M 6 ) ≥ 1 2 ℓ(M ℓ ). If w(M 6 ) ≥ 1 2 w(M w ) then M = M 6 . Otherwise, if w(M 6 ) < 1 2 w(M w ) then by Lemma 1, we get w(M 3 ) ≥ 1 2 w(M w ). If ℓ(M 3 ) ≥ 1 2 ℓ(M ℓ ) then M = M 3 . If ℓ(M 3 ) < 1 2 ℓ(M ℓ ) then, by ( 14) and ( 16) we get respectively ℓ(M 2 ) ≥ 

A computer-aided approach

Lemma 2 establishes the existence of 1/2-approximate matchings for complete graphs with at most n = 6 nodes. It seems difficult to establish a general result, and our proofs become more and more tedious as n grows. In order to test the existence of a single 1/2-approximate matching for larger values of n, we propose a mixed 0-1 linear programming formulation. Actually, this formulation provides, for any value of n, the best possible approximation ratio ρ * .

To introduce this formulation, we need to consider, for a given n:

the set M n of all maximal (perfect or nearly perfect) matchings which can be defined on a complete graph of size n. Note that the number of such maximal matchings is n!! when n is odd and (n -1)!! when n is even4 . -the set I ∆ n of all possible instances corresponding to a complete valued graph G = (V, E) with |V | = n where each edge e ∈ E has two values w(e) and ℓ(e) which satisfy the triangle inequality. We assume wlog that 0 ≤ w(e) ≤ 1 and 0 ≤ ℓ(e) ≤ 1 for each edge e ∈ E. Moreover, we impose that M w and M ℓ , which are optimal matchings for w and ℓ respectively, are such that w(M w ) = ℓ(M ℓ ) = 1. If these conditions are not met, then compute w(M w ) and ℓ(M ℓ ), and for each edge e, replace w(e) by w(e)/w(M w ) and ℓ(e) by ℓ(e)/ℓ(M ℓ ). This transformation has no incidence on the approximation guarantee because it is a ratio. We also assume the worst case situation where the subgraph induced by M w ∪ M ℓ is connected since otherwise we deal with connected components separately. Therefore, M ∪M ℓ is either a cycle or a path which alternates edges of M w and M ℓ and covers all vertices (see Figure 7 for the cases n = 3, 4, 5, 6).

Our formulation aims at identifying an instance I ∈ I ∆ n minimizing a variable ρ such that for all matchings M ∈ M n we have w(M ) ≤ ρ or ℓ(M ) ≤ ρ. Let ρ * n be the optimal value for variable ρ. Therefore, for any ρ < ρ (with at least one equality).

The mixed 0-1 linear program corresponding to the previous formulation is given by:

(P n )                                        min ρ s.t. w ij ≤ w ik + w kj and ℓ ij ≤ ℓ ik + ℓ kj , ∀(i, j, k) ∈ V 3 (17) 
e∈Mw w e = 1 and e∈M ℓ ℓ e = 1 [START_REF] Hassin | Approximation schemes for the restricted shortest path problem[END_REF] e∈M w e ≤ 1 and

e∈M ℓ e ≤ 1 ∀M ∈ M n ( 19 
) e∈M w e ≤ ρ + z M , ∀M ∈ M n ( 20 
) e∈M ℓ e ≤ ρ + 1 -z M , ∀M ∈ M n (21) 0 ≤ w ij ≤ 1 and 0 ≤ ℓ ij ≤ 1, ∀(i, j) ∈ E, i < j (22) z M ∈ {0, 1}, ∀M ∈ M n (23) 0 ≤ ρ ≤ 1 (24) 
where continuous decision variables w ij and ℓ ij , defined in (22), represent an instance satisfying the triangle inequality through constraint [START_REF] Ravi | Many birds with one stone: multi-objective approximation algorithms[END_REF], and 0-1 variables, defined in (23), are used to model the disjunctive constraints w(M ) ≤ ρ or ℓ(M ) ≤ ρ imposed by ( 20) and (21), whereas constraints ( 18) -( 19) define matchings M w and M ℓ as optimal matchings.

Owing to the quickly growing cardinality of M n , we were able to solve (P n ) for n up to 10, using CPLEX 12.6. The results are reported in Table 1. It is worth noting that these values coincide, up to the last (15th) computed decimal digit, with simple fractions larger than or equal to 1/2 (see last row of Table 1 1. The ratios obtained with the computational approach for 3 ≤ n ≤ 10.

These computational results cannot be considered as totally valid owing to the limited precision of the computations. They suggest, however, the existence of 1/2-approximate matchings for complete graphs satisfying the triangle inequality, up to 10 nodes. Admitting this and using again Theorem 2, this improves the result of Corollary 1 about the approximation ratio from 1/3 to 2/5. More generally, these results tend to confirm that the best approximation could be 1/2.

Some upper bounds

In this section, we describe instances which give upper bounds on the ratio ρ such that a ρ-approximate matching is guaranteed to exist. In particular, we show that there is no ( 12 + ε)approximate algorithm, for all ε > 0, and that there is is no ( 23 + ε)-approximate solution if we restrict ourselves to large graphs.

Let us define a family of instances containing n = 4k nodes for any positive integer k (see Figure 8 for an illustration with k = 2), such that each instance does not admit any ( 12 + ε)approximate matching, for all ε > 0. The nodes are denoted by {1, . . . , 2k} ∪ {1 ′ , . . . , 2k ′ }. The graph is complete and the edges are partitioned as follows :

-E w = {{i, i ′ }|i ∈ {1, . . . , 2k} and i ′ ∈ {1 ′ , . . . , 2k ′ }}. Each edge of E w has value (1/2k, 1/4k).

-E l = {{i, i + 1}|i ∈ {1, . . . , 2k} and i is odd}. Each edge of E l has value (0, 1/2k).

-E l ′ = {{i ′ , i ′ + 1}|i ′ ∈ {1 ′ , . . . , 2k ′ } and i ′ is odd}. Each edge of E l ′ has value (0, 1/2k). -E 0 the set containing the remaining edges. Each edge of E 0 has value (0, 1/4k).

We can take the 2k edges (i, i ′ ) and have a matching of maximal weight. We can take the 2k edges with value (0, 1/2k) and have a matching with maximal length. The maximal weight and length are both equal to 1. It is not difficult to see that the triangle inequality is satisfied on both coordinates.

A Pareto optimal matching consists in picking x ≤ k edges of value (0, 1/2k) in E l , x edges of value (0, 1/2k) in E l ′ and 2(kx) edges of value (1/2k, 1/4k) in E w . The resulting matching has weight k-x k and length k+x 2k . If k/3 is integral, then x = k/3 gives min{ k-x k , k+x 2k } = 2/3; we have an upper bound of 2/3. If k/3 is not integral, then taking x = 0 when k < 3 and x = ⌈k/3⌉ when k ≥ 3 allows us to maximize min{ k-x k , k+x 2k }. This gives an upper bound of max{1/2, 2/3 -1/k}.

We 

Fig. 1 .

 1 Fig. 1. At least 3 solutions are required if the edge valuations do not fulfill the triangle inequality.

Fig. 2 .

 2 Fig. 2. At least 2 solutions are required if one edge valuation does not fulfill the triangle inequality.

Fig. 3 .

 3 Fig. 3. At least 3 solutions are required with 3 edge valuations fulfilling the triangle inequality.

Fig. 4 .

 4 Fig. 4. The labels of the edges when ni = 12 and k = 3. Bold edges belong to Mw and dashed edges belong to M ℓ .

Fig. 5 .

 5 Fig. 5. On the left, the labels of the edges of Ci when ni = 10 and k = 3 (Bold edges belong to Mw and dashed edges belong to M ℓ ). On the right, the path P0 when the edges with label 3 for matching L3(Ci ∩ Mw) have been deleted.

Fig. 6 .

 6 Fig.6. The labels of the edges of P i 0 ∩ M ℓ when ni = 10 and k = 3 (Bold edges belong to Mw and dashed edges belong to M ℓ ) for the example described in Figure5.

Fig. 7 .

 7 Fig. 7. The four cases n = 3, 4, 5, 6. Bold edges belong to Mw and dashed edges belong to M ℓ .

  by the triangle inequality on ℓ and w, ℓ(1, 2) < ℓ(2, 3)/2 and w(2, 3) < w(1, 2)/2 give ℓ(1, 3) ≥ ℓ(2, 3)/2 and w(1, 3) ≥ w(1, 2)/2, respectively.

  ),[START_REF] Aggarwal | Minimal spanning tree subject to a side constraint[END_REF][START_REF] Serafini | Some considerations about computational complexity for multi objective combinatorial problems[END_REF],[START_REF] Stein | On the existence of schedules that are near-optimal for both makespan and total weighted completion time[END_REF][START_REF] Rasala | Existence theorems, lower bounds and algorithms for scheduling to meet two objectives[END_REF]} and M ℓ = {(1, 6), (2, 3), (4, 5)}. Consider the three following matchings M 1 = {(1, 2), (3, 6), (4, 5)}, M 2 = {(1, 6), (2, 5), (3, 4)}, and M 3 = {(1, 4), (

1 2 ℓCorollary 1 .

 21 (M ℓ ) and ℓ(M 5 ) ≥ 1 2 ℓ(M ℓ ). If w(M 2 ) ≥ 1 2 w(M w ) then M = M 2 . If w(M 2 ) < 1 2 w(M w ) then, by Lemma 1, we have w(M 5 ) ≥ 1 2 w(M w ) and thus M = M 5 . ⊓ ⊔ We can build in polynomial time a single matching which constitutes a 1/3approximate Pareto set for the biobjective Maximum Matching problem satisfying the triangle inequality on each objective. Proof. By using Theorem 2 with ρ = 1/2, k = 3 and Lemma 2 the result follows.⊓ ⊔

  * n , for any instance I ∈ I ∆ n , there exists M ∈ M n such that w(M ) > ρ and ℓ(M ) > ρ. Moreover, ρ * n , corresponding to a feasible solution, is such that w(M ) ≤ ρ * n or ℓ(M ) ≤ ρ * n for all matchings M ∈ M n . It follows that ρ * n is the largest value such that, for any instance I ∈ I ∆

n , there exists M ∈ M n such that w(M ) ≥ ρ * n and ℓ(M ) ≥ ρ * n

  ).Table

	n	3	4	5	6	7	8	9	10
	ρ * n	0.5	0.5	0.5 0.5556 0.5714 0.5 0.5714 0.6
		1/2	1/2	1/2	5/9	4/7	1/2	4/7	3/5

Table 2 .

 2 get the upper bounds (UB) provided in table 2 when the number of nodes n is equal to 4k. Upper bounds on the best approximation ratio for a tradeoff when n = 4k.

	k	1	2	3	4	5	6	7
	n	4	8	12	16	20	24	28
	UB 1/2	1/2	2/3	1/2	1/2	2/3 11/21

For k objectives functions to be maximized, s * weakly dominates s when fi(s * ) ≥ fi(s) for all i ∈ {1, . . . , k}.

This bi-objective problem generalizes max cut.

For every triple of edges a, b and c forming a triangle, we have that w(a) + w(b) ≥ w(c) and ℓ(a) + ℓ(b) ≥ ℓ(c).

The double factorial r!! is the factorial r! restricted to numbers of the same parity as r, e.g.

5!! = 5 * 3 * 1 and 8!! = 8 * 6 * 4 * 2.

) (0, 1 8 )

Fig. 8. An 8-node instance where no (1/2 + ǫ)-approximate matching exists. Dotted edges have value (0, 1 8 ), bold edges have value (0, 1 4 ) and dashed edges have value ( 1 4 , 1 8 ).

Concluding remarks

In this article we were interested in determining, and computing, an approximate tradeoff for the bi-objective matching problem. We focused on the case where each objective satisfies the triangle inequality. We proposed a general method which, combined with results stating the existence of a good tradeoff in graphs of small size, implies the existence and computation of a good tradeoff in a graph of any size. For the existence of a good tradeoff in graphs of small size, we followed two approaches. The first one is analytical but it is limited to graphs containing at most 6 nodes. We believe that such an analysis can be conducted for slightly larger graphs. The second approach is a computer-aided determination of an approximation ratio ρ * n , such that any complete graph on n nodes must admit a ρ * n -approximate matching. The values manipulated in the computational approach have a limited precision so we cannot pretend that the given ratios hold in any case. However, they provide an insight in what ρ * n should be equal to. More generally, we conjecture that a 1/2-approximate matching exists in any bi-objective instance. We followed a constructive path but an interesting future direction is to consider this question, but only under an existential approach.

Our last observation deals with how ρ * n depends on the number of nodes n. From the results given in sections 6 and 7, we observe that ρ * n is surprisingly non-monotone with n.