Supporting Information

Atomic Insights into Nanoparticles Formation of Hydroxy-Fluorinated Anatase featuring Titanium Vacancies

Wei Li,[†] Monique Body,[§] Christophe Legein,[§] Olaf J. Borkiewicz,^{\perp}and Damien Dambournet^{*,†}

[†] Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8234, PHENIX, F-75005 Paris, France

§ Université Bretagne Loire, Université du Maine, UMR CNRS 6283, Institut des Molécules et des Matériaux du Mans (IMMM), Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

 \perp X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, USA

Figure S1.High-resolution TEM images of the samples synthesized after 1, 2 and 5 h.

Figure S2.Peak positions and FWHM obtained from fitting (using a Gaussian function) the 1st peak of the PDF. The average Ti-O/F bond distances in reference (taken from the $ICSD^1$) anatase (d_{Ti-O} in TiO_2^2) and in bulk TiOF_2 ($d_{\text{Ti-O/F}}$ in TiOF_2^3) are pointed by black circles for comparison purposes.

¹ Inorganic Crystal Structure Database (ICSD), Version 1.9.5, FIZ Karlsruhe and NIST, Germany and Maryland, 2007.

²Weirich, T.E.; Winterer, M.; Seifried, S.; Mayer, J. Acta Crystallogr. A 2002, 58, 308-315.
³Vorres, K.; Donohue, J. Acta Crystallogr. 1955, 8, 25-26.

Figure S3. Comparison between time-dependent PDFs and reference $TiOF_2^3$ (ICSD¹ # 38132) and TiO_2^2 (ICSD¹ # 94566) as well as their calculated partial PDFs.

Figure S4.Evolution of the PDFs for the samples prepared at different reaction time.

Figure S5.Quantitative phase analysis obtained by PDF refinements.

Fig. S6. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of the sample prepared at 1hour reaction time. The individual resonances used for the fit are shown below (see Table S1).

Table S1. Isotropic chemical shifts (δ_{iso} , ppm), line widths (LW, ppm) and relative intensities (I, %) of the NMR resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of the sample prepared at 1hour reaction time and assignment of these NMR resonances.

δ_{iso}	LW	I	Assignment
-104.5	27.0	1.4	FTi₃
3.9	31.2	62.4	FTi₂□, FTi₂
13.0	88.8	18.2	FTi₂□, FTi₂
105.6	52.8	7.7	FTi□₂, FTi□
144.2	81.7	10.3	FTi□,FTi□₂

Fig. S7. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of the sample prepared at 2 hours reaction time. The individual resonances used for the fit are shown below (see Table S2).

Table S2. Isotropic chemical shifts (δ_{iso} , ppm), line widths (LW, ppm) and relative intensities (I, %) of the NMR resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of the sample prepared at 2hours reaction time and assignment of these NMR resonances.

δ_{iso}	LW	I	Assignment
-89.3	19.0	0.9	FTi ₃
4.7	36.1	72.4	FTi₂□, FTi₂
14.3	13.8	3.5	FTi₂□, FTi₂
88.5	99.0	23.2	FTi□ _{2′} , FTi□ (?)

Fig. S8. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of the sample prepared at 3 hours reaction time. The individual resonances used for the fit are shown below (see Table S3).

Table S3. Isotropic chemical shifts (δ_{iso} , ppm), line widths (LW, ppm) and relative intensities (I, %) of the NMR resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of the sample prepared at 3hours reaction time and assignment of these NMR resonances.

δ_{iso}	LW	I	Assignment
-88.3	19.0	1.5	FTi ₃
3.5	36.8	72.5	FTi₂□, FTi₂
14.2	16.3	5.5	FTi ₂ , FTi ₂
97.7	92.0	20.5	FTi□ _{2′} , FTi□ (?)

Fig. S9. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of the sample prepared at 4 hours reaction time. The individual resonances used for the fit are shown below (see Table S4).

Table S4. Isotropic chemical shifts (δ_{iso} , ppm), line widths (LW, ppm) and relative intensities (I, %) of the NMR resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of the sample prepared at 4hours reaction time and assignment of these NMR resonances.

δ_{iso}	LW	I	Assignment
-87.6	13.5	2.1	FTi ₃
0.9	37.2	70.3	FTi₂□, FTi₂
14.4	15.7	4.2	FTi₂□, FTi₂
81.1	82.7	23.4	FTi□ ₂ , FTi□ (?)

Fig. 10. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of the sample prepared at 6 hours reaction time. The individual resonances used for the fit are shown below (see Table S5).

Table S5. Isotropic chemical shifts (δ_{iso} , ppm), line widths (LW, ppm) and relative intensities (I, %) of the NMR resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of the sample prepared at 6hours reaction time and assignment of these NMR resonances.

δ_{iso}	LW	I	Assignment
-87.6	13.6	3.5	FTi ₃
-4.1	36.7	67.7	FTi₂□
80.0	82.4	28.8	FTi□ ₂

Fig. S11. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of the sample prepared at 8 hours reaction time. The individual resonances used for the fit are shown below (see Table S6).

Table S6. Isotropic chemical shifts (δ_{iso} , ppm), line widths (LW, ppm) and relative intensities (I, %) of the NMR resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of the sample prepared at 8hours reaction time and assignment of these NMR resonances.

δ_{iso}	LW	I	Assignment
-87.5	13.7	3.5	FTi ₃
-4.3	36.6	68.7	FTi₂□
79.2	78.2	27.8	FTi□ ₂

Fig. S12. Experimental (blue) and fitted (red) ¹⁹F MAS (64 kHz) NMR spectra of the sample prepared at 10 hours reaction time. The individual resonances used for the fit are shown below (see Table S7).

Table S7. Isotropic chemical shifts (δ_{iso} , ppm), line widths (LW, ppm) and relative intensities (I, %) of the NMR resonances used for the fit of the ¹⁹F MAS (64 kHz) NMR spectrum of the sample prepared at 10hours reaction time and assignment of these NMR resonances.

δ_{iso}	LW	I	Assignment
-87.4	13.4	3.2	FTi ₃
-3.7	36.1	67.3	FTi₂□
81.7	84.0	29.5	FTi□ ₂