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Abstract

The multi-configurational ansatz of valence-bond theory may serve as basis for calculating in-
termolecular interaction energies in a non-orthogonal basis. We look in the present contribution
at the possibility to obtain the 1st-order electrostatic interactions from breathing-orbital valence-
bond densities, and the 2nd-order dispersion energy from dipole-dipole interactions. The discus-
sion is based on numerical results for the interaction of two N2O molecules.

1. Introduction

Since the beginnings of describing electronic structure in terms of orbitals, the two pictures
of completely localized bonds or completely delocalized molecular orbitals compete [1, 2, 3].
Both pictures have their advantages and shortcomings, and obvious applications. From molec-
ular orbitals we have Hartree-Fock theory and beyond all the methods for describing dynamical
electron correlation. In cases of bond breaking, multi-reference methods have been developed,
adding non-dynamical electron correlation in situations where relying on a single reference is
not any more justified. This machinery becomes very demanding on computer resources for han-
dling immense amounts of data due to the large number of Slater determinants or Configuration
State Functions (CSF) involved, and their interactions.

In a chemist’s language this apparently brute-force approach is difficult to treat — bonds,
bond formation, bond breaking and electron rearrangement need only few electrons involved in a
picture, despite the indiscernibility of elementary particles and long-range Coulomb interactions
between them.

Valence Bond theory tries to describe these essentials of a chemist’s view on molecules and
matter. It relies on one or several Lewis structures (i.e. electron pairs assembled in bonds or lone
pairs, or left alone in singly occupied orbitals). Each of these structures may be developed in
a common (localized) orbital set, or in a more modern formulation [4], in orbital sets for each
involved structure, the Breathing Orbitals Valence Bond (BOVB) approach. The main obstacle
for routine calculations in this type of development is the inherent non-orthogonality of the orbital
sets. All expressions have to carry overlap matrix elements throughout, rendering calculations
much heavier to be executed than expansions in determinants in common orthogonal orbitals,
where today one may handle dimensions of millions or even several billions of determinants.

Preprint submitted to Elsevier March 1, 2017



  

Ground-state energies, geometries and thermochemistry may be obtained nowadays with rou-
tine calculations at experimental precision, using gradients and higher derivatives, and sophis-
ticated optimization algorithms like for instance meta-dynamics [5]. A continuation of this is
to include a chemical environment, via explicit solvatation or by implicit models of a solvata-
tion sphere [6]. The first step toward this is the study of intermolecular interactions for dimer
systems. Ideally, the interaction may be constructed from the separate monomer wavefunctions,
which gave rise to a series of developments known as symmetry-adapted perturbation theory
(SAPT) [7]. The total energy of the dimer system is constructed from a triple perturbation series,
starting from the separate Hartree-Fock orbitals (wavefunctions) of the respective monomers, in-
cluding then intermolecular interaction as one perturbation, and the dynamical, intra-molecular
correlation of the monomers as a second and third one. Recently, the latter perturbation se-
ries could be replaced with good precision via density-functional theory [8, 9]. If, however,
the monomer wavefunction is only poorly described by a single reference wavefunction, this
approach becomes again difficult to be carried out. On the other hand, treating the interaction
of several molecules with significant non-dynamical correlation in a super-molecular approach
(∆E = Edimer − Emonomers) leads immediately to very large active spaces, and thus to calculations
of immense computational effort.

Here, the VB approach may be useful in order to reduce this effort by replacing the multi-
reference expansion by only a few configurations for each monomer, and by calculating directly
the contribution of each pair of configurations to the overall interaction energy, without the need
for a super-molecular set-up. In the SAPT development, non-orthogonality of orbitals is as well
dealt with, as the monomer wavefunctions are obtained completely independently. As well anti-
symmetrization is added in a second step in the SAPT expansion (“perturb first – anti-symmetrize
later” ansatz [7]). In practice, however, a dimer-centred basis set is generally used to expand
the molecular orbitals of the monomers, and in the hybrid SAPT approach the infinite series of
induction contributions is obtained via a Hartree-Fock calculation on the complete dimer system,
abandoning partially the approach of completely independent monomer calculations.

In the present manuscript we would like to explore two terms of the SAPT development: the
electrostatic energy E100

pol and the second-order dispersion energy E200
disp. Of course, for a complete

description one needs to approximate at the same level of precision the other SAPT terms as well,
notably the first-order exchange and induction. This we will leave for further investigations.

Having set the frame, we will use the dimer of nitrogen protoxide (N2O) as example. As for
most of the nitrogen oxides the electron distribution is rather complicated due to the relatively
high local density — in a chemist’s view the concurrence of triple and double bonds around a
central nitrogen atom [10], to be cast into orbitals constructed from the four hybrid lobes of the
nitrogen 2sp valence space.

In the following we will first develop the theoretical approach, then give some relevant data
for the N2O single molecule before discussing the results on the dimer. All purely technical
details will be collected in an appendix.

2. Theoretical aspects

2.1. The VB development of the wavefunction

Modern Valence Bond theory seemed to be reserved to a few experts in the field. However,
with the inclusion of VBSCF in larger program packages and notably the development of the
Xiamen VB program [11], calculations can be carried out more routinely nowadays.
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The basic idea is that the wavefunction is developed in several contributions, distinguished
by orbital occupations and Rumer-like spin couplings [12] of orbital pairs leading to an overall
singlet wavefunction:

ΨVB =
∑

I

c̃I Φ̃I

Φ̃I = A{(Closed)(Active)}

where (Closed) designates the doubly occupied closed-shell orbitals φc
i φ̄

c
i and (Active) the singlet-

coupled pairs of singly occupied orbitals
(

φ1φ̄2 − φ̄1φ2
)

/
√

2. The anti-symmetrizerA generates
from this a completely anti-symmetric sum of 2n determinants for n unpaired electrons in a con-
figuration. Even if the VB wavefunction is written in configurations Φ̃, we decompose it into
simple determinants ΦI . In the same way decompose the coefficients c̃I into coefficients of de-
terminants cI .

The wavefunction is normalized

1 = 〈Ψ|Ψ〉 =
∑

IJ

cIcJ〈ΦI |ΦJ〉 (1)

needing thus explicitly the overlap matrix elements between determinants — as well as Rumer
diagrams themselves are not orthogonal.

From the expansion in determinants a first-order (or one-particle) density matrix in atomic
orbitals can be obtained, and, of course, a second-order matrix as well. From the first-order
density matrix of either monomer in the intermolecular set-up the electrostatic interaction energy
is obtained as

E100,VB

pol =
∑

I∈1,J∈B

ZIZJ

|~RI − ~RJ |

−
∑

α,β∈A
P

A,VB

αβ 〈χα|
∑

I∈B

1

|~r − ~RI |
|χβ〉 −

∑

γ,δ∈B

P
B,VB

γδ 〈χγ |
∑

I∈A

1

|~r − ~RI |
|χδ〉

+
∑

α,β∈A
PA,VB

αβ

∑

γδ∈B

PB,VB

γδ
(αβ|γδ) (2)

with the density matrices PVB and mono- and bielectronic integrals in atomic orbitals, in the
same way as for instance in the SAPT approaches based on a density-functional description
of the monomers [9, 8]. As the VB expansion includes already some of the intramolecular
correlation energy, the calculated term should lie in between the bare E100

pol SAPT term with
Hartree-Fock density matrices and the infinite sum of including the intramolecular perturbation
series ǫ(1)

pol =
∑

i j≥0,i+ j>0

E
1i j

pol.

When addressing the dispersion energy, we will rather use each determinant separately in-
stead of the density matrix. This means that we should carry along the expansion coefficients
cI or pairs of expansion coefficients from the normalization of the wavefunction ψ as in equa-
tion (1). This is all but convenient; we resort therefore to (Coulson-Chirgwin) weights instead
of products of coefficients, in order to linearize the normalization condition, in the spirit of a
Mulliken analysis [13]:

1 =
∑

I

cI

∑

J

cI〈ΦI |ΦJ〉
︸              ︷︷              ︸

wI

=
∑

I

wI (3)
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A product of contributions from the determinants of monomer A (like 〈ΦI |M|ΦI〉) and the deter-
minants of monomer B (like 〈ΦJ |M′|ΦJ〉), as we will need it later, will reduce then to a double
sum
∑

I∈A

∑

J∈B

wIwJ MI M′J .

In this context it is irrelevant whether the molecular orbitals spanning each determinant are
common to all determinants of one monomer or not. A first VBSCF calculation yields one set
of reasonable, localized orbitals and furnishes an estimation of relative weights of the different
contributions to the wavefunction.

In second step, the BOVB step, the orbitals are varied for each configuration separately, min-
imizing the total energy of the overall wavefunction. From the BOVB calculation we obtain a
global one-particle density matrix, including all determinants, and a list of individual determi-
nants with weights and individual sets of orbitals with double and with single occupation.

2.2. The dispersion term

The key element of the present paper is the estimation of the dispersion interaction, the most
eminent contribution to intermolecular interactions with a purely quantum mechanical origin. In
textbooks one may find interacting, fluctuating dipoles for these interactions, via the simple MP2
formulation in spin orbitals

EMP2 =
1
4

∑

ia jb

((ia| jb) − (ib| ja))2

ǫi + ǫ j − ǫa − ǫb

(4)

or, for a closed-shell case in spatial orbitals

EMP2 =
∑

ia jb

(ia| jb) (2(ia| jb) − (ib| ja))
ǫi + ǫ j − ǫa − ǫb

= 4
∑

i< j,a<b

(ia| jb)2 + (ib| ja)2 − (ia| jb)(ib| ja)
ǫi + ǫ j − ǫa − ǫb

(5)

where we have the dispersion terms when having orbitals i and a on monomer A, and orbitals j

and b on monomer B. In localized orbitals this sum can be divided into six classes, as pointed
out already a while ago [14, 15] and as displayed in Figure 1. The class of intra-molecular
excitations is not meant to contribute to the interaction energy, and classes describing charge po-
larization, spin polarization and the BSSE term will become exponentially small with increasing
intermolecular distance.

At the end only the contribution

Einter
MP2 ≈ E

disp
MP2 = 4

∑

i,a∈A

∑

j,b∈B

(ia| jb)2

ǫi + ǫ j − ǫa − ǫb

(6)

will remain with a significant contribution to the interaction energy. If we deal as well with singly
occupied orbitals, the factor of four becomes a sum over the different contributions for different
spin settings, as

E
disp
MP2 =

∑

σA

∑

iσA
,aσA
∈A

∑

σB

∑

jσB
,bσB
∈B

(iσA
aσA
| jσB

bσB
)2

ǫiσA
+ ǫ jσB

− ǫaσA
− ǫbσB

(7)
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Figure 1: The 6 classes of di-excitations in the MP2 correlation energy of the dimer system.

and sums run over spin-orbitals, in principle different for each spin.
Developing the interaction of the two overlap densities ρA(~r) = φiσA

(~r) φaσA
(~r) and ρb(~r) =

φ jσB
(~r) φbσB

(~r) into interactions of transition multipoles at respective centres ~R of A and B

M
~R
i jk =

∫

ρ(~r) (x − X)i(y − Y) j(z − Z)k d3r =

∫

ρ(~r + ~R) xiy jzk d3r

we may use the fact that i and a are orthogonal within one Slater determinant (the “transition
charge”). Thus, the first non-zero multipole is the (transition) dipole ~µi→a = 〈φi |~r | φa〉, which we
may situate for the multipolar development on the average of the positions of the occupied and
the virtual orbital~r~µi→a

=
(

〈φi |~r | φi〉 + 〈φa |~r | φa〉
)

/2.
This leaves us then with the classical dipole-dipole interactions

Edip−dip =
~µA · ~µB

R3
AB

− 3
(~µA · ~RAB)(~µB · ~RAB)

R5
AB

(8)

as a model for the bielectronic integral of the dispersion contribution to the intermolecular inter-
action energy.

By replacing the bielectronic integral in Eq. 7 the global formula to evaluate the dispersion
interaction energy between two molecules in he VB context becomes thus a double sum over all
determinants with respective weights, orbitals and spins as

E
disp
VB ≈

∑

I∈A
wI

∑

σA

∑

iσA
,aσA
∈A

∑

J∈B

wJ

∑

σB

∑

jσB
,bσB
∈B

(Edip−dip(iσA
, aσA

, jσB
, bσB

))2

ǫiσA
+ ǫ jσB

− ǫaσA
− ǫbσB

(9)

All quantities are evaluated strictly for each monomer separately, maintaining thus the spirit of
SAPT and VB calculations. Once the dipoles and their respective positions determined, the only
intermolecular quantity to be evaluated are distance vectors and distances, allowing for a rapid
summation over the different terms.
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Figure 2: The result for the H2 dimer in a parallel setup, in the minimal STO-9G basis set. The dipole approximation re-
produces exactly the SAPT or MP2 results. For short distances orthogonality and penetration give the deviation between
dipole/SAPT and the MP2 energy. Note that the energy scale is logarithmic.

Taking as simplest possible example two hydrogen molecules in a minimal STO-9G basis

set and a parallel set-up, we may compare the MP2 dispersion −4
(σ1σ

∗
1|σ1σ

∗
1)2

2(ǫσ∗ − ǫσ)
and the SAPT

E200
Disp term with our dipole model, at different distances. As expected we recover the SAPT result

at not-too-small intermolecular distances, see Figure 2.
We may try thus our model for a more non-trivial intermolecular system as presented by the

N2O dimer.

2.3. The N2O dimer

For the interaction of two linear molecules the relative geometries may be defined in several
ways. We will use a general set-up, in two local coordinate systems the origins of which being
placed at the respective barycenters aligned with the x axis. The overall barycentre is situated at
the global origin. With respect to the global frame, the local coordinate systems may be rotated
around the three Euler angles α, θ and φ, for successive rotations around the z, the y and again
the z axis [16].

The N2O dimer has been well studied experimentally with matrix spectroscopy, see for in-
stance Hecker et al. [17]. The geometry of the ground state shows a slipped anti-parallel set-up
with a distance of 3.4225 Å between the respective barycenters, and an angle θ1 of −30.0 degrees
(and θ2 = 120 degrees, see Figure 3) [17, 18, 19, 20, 21, 22], with the two oxygen atoms lying
close to each other. Corroborated by calculation [20, 21], this is consistent with an interaction
governed by dipole (favouring anti-parallel) and quadrupole (favouring slipped) electrostatic in-
teractions.

The theoretical study of Glendening and Halpern [20] documents the difficulties to obtain
reliable potential surfaces with single-reference methods [19], and the need for a multi-reference
treatment right from the beginning. Looking at the T1 term in a Coupled-Cluster calculation

6



  

θθ

R

2

x

z1

y

Figure 3: Definition of the local frames and angles. Note that the angle is measured differently in the different publica-
tions. Our angle of 30 degrees corresponds to 60 degrees in Havenith et al [17].

(CCSD), as suggested by Lee and Taylor [23], leads to a value of 0.02, close to the borderline
indicating the possible inadequacy of a single-reference calculation.

With a planar ground-state geometry obtained by all cited reports on the N2O dimer, we
will place all atoms in one single plane which is described by the distance of the barycenters
and the two rotation angles around the respective y axes (see Figure 3) and restrict the geometry
variations to three possibilities: (1) rotating one monomer only whilst the other is held fixed along
the z axis (θ1 = 0, 0 ≤ θ2 ≤ 2π), (2) rotating both monomers in parallel (0 ≤ θ1 = θ2 ≤ π/2), and
(3) rotating both monomers anti-parallel (π/2 ≤ θ2 = π + θ1 ≤ π/2). We will denote these three
variants as “T”, “P” and “AP”, respectively.

3. Actual calculations

We are interested whether the proposed idea may work out to be useful, not for quantitative
results. For being able to carry out the necessary calculations in a reasonable time, we restrict
ourselves to a “standard” aug-cc-pvdz basis set. For the reference SAPT calculations we use
a dimer-centred basis set with 5 d orbitals, whereas for VB calculations, which are conducted
only for one isolated monomer, the orbitals are expanded in a cartesian basis with 6 d orbitals,
including the spherically symmetric x2 + y2 + z2 function.
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method total energy (a.u.) total energy (a.u.)
6-31G* aug-cc-vdz (a.u.)

RHF −183.67664 −183.70972
MP2 −184.20008 −184.25582
MCSCF (8/6) −183.78782 −183.81982
MCSCF (16/12) −183.89413 −183.92521
MR-ACPF −184.20548 −184.26838
VB-SCF −183.74340 −183.77384
BOVB −183.84887 −183.92563

Table 1: Total energies for the different calculations in a nearly-minimal 6-31G* and in the aug-cc-pvdz basis set. MCSCF
(8/6) and (16/12) stand for multi-reference calculations with, respectively, 8 electrons in 6 orbitals or 16 electrons in 12
orbitals. All calculations are carried out at the experimental geometry.

3.1. The N2O monomer

3.1.1. “Standard” calculations for the monomer

If we optimize the linear geometry of a single N2O molecule (NNO), employing MP2 in an
aug-cc-pvdz or aug-cc-pvtz basis set, we find N–N bond distances of 1.174 and 1.155 Å, and
longer N–O bond distances of 1.190 and 1.181 Å, respectively. The N–N bond length is obtained
significantly longer than the experimentally documented one[24] of 1.128 Å, whereas the other
one is close to the experimental data of 1.184 Å. CCSD(T) yields about the same results with
1.149 and 1.202 Å, respectively, as reported already by Glendening and Halpern [20]. If we
optimize the geometry within a MCSCF approach, we find a better agreement, as of 1.133 and
1.190 Å for the two bonds in an aug-cc-pvtz basis set. This deviation for MP2 or CCSD(T)
results may point already to an inherent difficulty to treat the N2O molecule correctly with a
single-reference method.

The MCSCF calculation (8 electrons in 6 active π orbitals) gives indeed a main configuration
with a coefficient of 0.94, two closed-shell configurations with a coefficient of −0.13, and four
configurations with four open shells with coefficients of about 0.08. Table 1 shows the respective
total energies for the different calculations, once for a near-minimal 6-31G* basis set and once
for the basis set employed throughout. If we extend the MCSCF wavefunction to the full valence
space, i.e. 16 electrons in 12 orbitals, the expansion runs over 61677 determinants in C2v sym-
metry and about 250 000 independent variables, and the subsequent ACPF (Averaged Coupled
Pair Functional) calculation involves, in the aug-cc-pvdz basis set, a total of about 167 millions
of uncontracted intermediate configurations.

To these we compare the total energies of the VB-SCF and BOVB calculations, which we
will detail in the next section.

3.1.2. VB calculation on N2O

Harcourt and Schulz [10], and later Braı̈da et al. [25] published VB calculations on several
1,3-dipoles which as well comprise the NNO molecule. In both publications the VB structures
of the π systems were elucidated, putting forward that open-shell VB structures are the most
important ones in the expansion of the wavefunction. All calculations for these more pedagogical
articles were carried out in minimal (STO–6G) or near-minimal (6-31G*) basis sets. As we
would like to make interact two molecules, we push the VB calculations farther by using the
aug-cc-pvdz basis.

8



  

N N O
x

y

N N O
x

y

Figure 4: The distribution of 8 electrons among 6 atom-centred p orbitals results in a leading contribution of 4 singly
occupied orbitals on the nitrogen p orbitals.

To this end we define as contributing orbitals the respective p orbitals of the three atoms,
which makes thus again 8 electrons in 6 orbitals to distribute as in the previous MCSCF calcula-
tions.

In total the valence-bond program used, xmvb, creates 105 possible structures or 225 deter-
minants. Open shells are spin-adapted in a Rumer scheme, coupling pairs of orbitals in singlets.
In our case we may have at most four open shells, making it thus 4 determinants for produc-

ing
1
2

(α1β2 − β1α2) (α3β4 − β3α4) =
1
2

(α1β2α3β4 − β1α2α3β4 − α1β2β3α4 + β1α2β3α4) or 2 for

having
1
√

2
(α1β2 − β1α2) With the trivial expansion of a doubly occupied molecular orbital on

two sites
σσ̄ = (s1 + s2)(s̄1 + s̄2) = s1 s̄1 + s1 s̄2 + s2 s̄1 + s2 s̄2

we see that the open-shell VB contributions in atomic p orbitals may be important whereas the
closed-shell ionic components may seem negligible, in apparent, but obvious contrast to the
MCSCF results.

From the 105 generated structures we have in a simple VB calculation (all orbitals are com-
mon to all structures) about half of them with coefficient > 10−4 (precisely 57), and all remaining
structures are found with weights < 10−15 due to numerical precision and symmetry. The num-
bers of 105 and 57 correspond as well to the number of configurations generated when restricting
the MCSCF space to 8 electrons in 6 orbitals, without and with symmetry respected in the calcu-
lation. Of course, 57 structures do not allow simple interpretations — however, we can see some
trends. Of the 57 structures we find 45 with evenly distributed electrons in x and y, the other 12
structures having 6 electrons in one direction and 2 in the other.

The most important VB configuration with representing 4 determinants, is that of doubly
occupied px and py on oxygen, and otherwise singly occupied p orbitals of the nitrogen atoms,
in perfect agreement with chemical intuition, see Figure 4.
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The next step is to set up a BOVB calculation, in order to add some (more) dynamical corre-
lation. Looking at the relative importance of the coefficients, we may use the 45 VB structures
having 4 electrons in the πx and 4 electrons in the πy system, as the remaining 12 ones drop to
zero in their relative importance in the BOVB expansion. Among the 45 configurations are three
configurations with closed shells and completely ionic atoms, which seem non-physical, but
are necessary for generating the MO picture with completely delocalized closed-shell orbitals.
Therefore the coefficients of these configurations are not at all vanishing.

Overlap of structures is maximally 67 %, showing convergence to a reasonable minimum.
We see some small and negative Coulson-Chirgwin weights, astonishing at first glance, but nu-
merically possible due to the Mulliken-like symmetric distribution of cross terms.

The BOVB calculation in the aug-cc-pvdz basis set includes about 13500 independent vari-
ables to optimize recovering 0.21 a.u. of correlation energy, which is about 40 % with respect to
the MP2 result (see Table 1). We see as well that the converged BOVB energy is about the same
as that from the MCSCF calculation in the full valence space, even though the BOVB function
includes only determinants with active p orbitals. Relaxing orbitals for different occupations
included thus some electron correlation, and generates a description of the full valence space by
significant configurations only.

We still have a singlet wavefunction which allows to construct an average Fock matrix as in
Dewar’s half-electron method [26]. However, as the active orbitals are restricted on the respec-
tive atoms, they are non-orthogonal with respect to each other and with respect to the doubly
occupied orbitals. An open-shell determinant resembles thus more an UHF wavefunction, as the
α and the β part span different orbital spaces. Therefore we have to generate separately for each
determinant of each configuration or Rumer diagram an α and a β orbital space and correspond-
ing Fock matrices in the atomic-orbital basis (see appendix).

3.1.3. Excitations

As we are interested in intermolecular interactions, we will ignore terms of spin polarization
between the two moieties. In our terms this means that we look only at mono-excitations con-
serving the spin on each monomer. Since we are in an UHF context, it is quite improbable that
a zero-gap situation arrives. Occupied and virtual orbitals should be separated energetically for
each spin type.

Each excitation creates in our picture a transition dipole. As the calculation runs only over
one single monomer, the ensemble of dipoles for the interaction geometry may be easily obtained
not by rotating the whole molecule and the VB calculation (which will make the definition of the
active space difficult), but only the transition dipoles, and their respective localization in space
with respect to the molecular barycentre. The energy denominators remain, of course, invariant.

If we used eq. 7, we would have to calculate all bielectronic integrals of the dimer system,
first in atomic orbitals and the four-index-transformed over molecular orbitals, for each pair of
determinants, and for each relative orientation and distance.

3.2. The N2O dimer

Having a density matrix and excitations (dipoles) at hand for one molecule, we may assem-
ble these data for the dimer by rotating the local frames, recalculating mono- and bi-electronic
integrals to be contracted with the density matrices, and set up the SAPT calculations for the
different geometries, as these were carried out in a dimer-centred basis set.
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Figure 5: Difference of the interactions of the Hartree-Fock densities and the SAPT E
(100)
pol interaction (left), and the

difference of VB density interactions to the SAPT E
(1)
pol term (circles), the “response” term E

(1)
pol,r (triangles), and the bare

E100 interaction term (squares), for the T geometry variation. Full symbols are for an intermolecular distance of 7.0 bohr,
whereas hollow symbols represent the corresponding calculations for 10 bohr.

3.3. Electrostatic interactions

For having an estimation of the effect of the different basis sets we compare first the Hartree-
Fock electrostatic interaction of the two unrelaxed monomers to the SAPT E

(100)
pol term, for the “T”

set-up with one molecule rotated with respect to the other (Figure 5, left panel). The effect of the
slight differences in basis sets is indeed negligible with about 0.1 kcal/mol at the intermolecular
distance of 7 bohr (3.69 Å, close to the experimentally observed equilibrium distance). On the
other panel we trace the difference of the corresponding VB density interaction to the HF density
interactions and the E

(1)
pol energy, i.e. including intra-monomer correlation, in the present case up

to second order.
The intra-molecular correlation can be added to the SAPT polarization term in two different

ways as the MP2 density is not a uniquely defined object. Either the expectation value may be
calculated as a sum over the contributions of all determinants of the first-order wavefunction,
or the response of the density to an infinitely small external charge may be considered [7]. The
former will be denoted with E

(1)
pol, and the latter with E

(1)
pol,r, both including second- and third-order

intra-molecular corrections.
Augmenting slightly the intermolecular distance from 7 to 10 bohr reduces consistently the

differences between the different methods to evaluate the electrostatic interaction of the monomers.
In Figure 6 we give then the absolute energies, as well for corresponding MCSCF densities,

for all three geometry variations. As found for the comparison of total energies, the MCSCF
and the VB electrostatic interactions are very close, pointing again toward the idea that with
the restricted expansion into 45 configurations with non-orthogonal and individual orbitals we
arrive at a wavefunction of the same quality as for the MCSCF expansion with its about 60 000
determinants.

3.4. The dispersion terms

Having generated UHF-like orbitals for each VB determinant and spin, we obtain excitations
and and their location for the N2O monomer as depicted in Figure 7 for the single-determinant
Hartree-Fock case. We see several orbital barycenters of virtual orbitals, and dipole centres, far
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NNO

Figure 7: The barycenters along the z axis of the molecular HF orbitals (upper panel), of the HF transition dipoles (middle
series) and all the VB transition dipoles (lower series) for one N2O molecule. In the upper row occupied orbitals are
designated by full circles and virtual ones by hollow circles. The position of the three nuclei is indicated by the larger
circles for setting the scale of the z-axis common to all three parts of the figure.

beyond the nitrogen end of the molecule, whereas at the opposite end orbitals and transition
dipoles lie close to the oxygen nucleus in the HF case, but not for the VB configurations.

This indicates that our dipole model will behave differently for a parallel rotation and an
anti-parallel rotation for fixed intermolecular distance as some dipoles will come closer when the
two N ends point to each other than when the oxygen ends meet, even if numerators may remain
small.

For the inter-molecular separation of 7 bohr we trace in Figure 8 the different approaches to
the dispersion interaction, for the three geometry variations. For following the distance depen-
dence of the calculated dispersion terms, we collect in Figure 9 for selected angles and distances
in a double-logarithmic plot, for highlighting the power law of our model, and the dispersion
term calculated with the other methods. Indeed, we observe in the limit a close coincidence of
all approaches, but only our model follows the ideally expected R−6 power law. In Figure 10 we
give at last the difference of the dispersion models with respect to our VB-dipole-approximation.
We do not distinguish explicitly the three geometry variations, and of course, for 90 degrees the
differences become much larger than for 30 degrees, where the ends of the molecules remain
well separated even at moderate intermolecular distances.

4. Discussion

4.1. The electrostatic term

From the figures in section 3.3 we recognize that the SAPT E100
pol term and our HF model

are, by construction the same, as expected, modulo the slight basis set difference due to the use
of 5 or 6 d functions, and the monomer- or dimer-centred basis sets. Including intra-molecular
correlation in the SAPT approach via the two possible density models (expectation value or
response) results in two opposite trends. Including intra-molecular correlation via the valence-
bond approach or a multi-configurational calculation gives about the same effect, and lies in
the present case on average closer to the response SAPT calculation than the evaluation of the
density expectation value with the first- and 2nd-order wavefunctions. The VB approach gives
thus a unique answer with a shorter expansion in determinants as the comparable MCSCF wave-
function. However, a MCSCF calculation in orthogonal orbitals still remains computationally
advantageous with respect to the BOVB approach if only a first-order density matrix is required.
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4.2. The dispersion term

Concerning our model for the dispersion energy, we see from Figure 8 that globally some
trends are reproduced, in particular the asymmetry of the angular dependence for the “T” geom-
etry variation. If we keep in mind that we model a bi-electronic integral (ia| jb) by two interacting
dipoles 〈φi |~r | φa〉 and 〈φ j |~r | φb〉, we see that the bielectronic integral has a different behaviour
with respect to orbital symmetry than the dipoles. For instance for a pair ia of orbitals of the
same symmetry, the corresponding transition dipole may become exactly zero, whereas the com-
plete integral does not at all vanish if the jb part does not disappear. Transition quadrupoles and
higher moments may as well be non-zero, and contribute thus to the expansion of the bielectronic
integral if the components lie in the irreducible representation of totally symmetric objects. Thus
the reproduction of the trends of the angular dependence of the calculated dispersion interaction,
despite this inherent systematic difference of approaches, is already a result to be noted. Us-
ing dipoles from a Hartree-Fock calculation or from a valence-bond calculation seems, alas, of
secondary importance, or result in a systematic deviation from the SAPT values.

The dipole model follows strictly, by construction, a 1/R6 power law, as seen from Figure
9, whereas SAPT and the MP2 dispersion in localized orbitals deviate from this power law for
smaller distances. In particular the significant inflection of the MP2 dispersion is due to the use
of orthogonal dimer orbitals, difficult to remain sufficiently localized for representing monomer
wavefunctions. We may, on the other hand, extract reasonable asymptotic informations like C6

coefficients, even for intermolecular distances where the other methods do not yet give a simple
power law.

Figure 10 shows again that the model in the present form is not, alas, reliable for interesting
situations.

5. Conclusions

In the present contribution we explored the use of transition dipoles, generated from the dif-
ferent configurations in a Breathing-Orbital Valence-Bond context for describing some elements
of intermolecular interactions. The non-orthogonality of orbitals belonging to different config-
urations is circumvented by using the underlying determinants one by one. In that sense the
VB approach may present an alternative to recent developments in symmetry-adapted pertur-
bation theory, even including non-dynamic correlation of the monomer wavefunctions. Indeed,
for the electrostatic interaction energy results lie close to those employing MCSCF densities of
the monomers, with a much more compact form of the wavefunction. Were it not that the opti-
mization of the BOVB wavefunction, even in the moderate basis set used here for intermolecular
interactions, demands already a computational effort beyond routine applications.

The dipole model to the dispersion energy reproduces qualitatively the trends of other ways
to estimate this interaction component, and coincides asymptotically with SAPT and the MP2
estimation for large intermolecular distances, despite its inherently wrong angular dependence
for reproducing a bielectronic integral by the interaction of transition dipoles. For a quantita-
tive reproduction in the region of interest for studying potential surfaces close to an equilibrium
geometry, our model reveals to be too crude an approximation, mostly due to the eccentric po-
sitions of the transition dipoles, exaggerating thus dipole-dipole interactions through very short
distances.

For the interaction of two N2O molecules the dispersion term is not significantly modified
by the multi-reference character of the monomer wavefunction. Including thus intra-molecular
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correlation in the SAPT second-order dispersion term makes not a qualitative difference. Never-
theless, our dipole model comes closer to the SAPT results when employing the VB-generated
orbitals in the multi-determinantal ansatz. The electrostatic term confirms that the mostly closed-
shell MCSCF wavefunction in delocalized molecular orbitals is of the same quality as the VB
wavefunction expanded in mainly open-shell configurations in localized orbitals.

For further investigations the more complicated exchange contributions to the SAPT expan-
sion may be studied towards a more complete description of intermolecular interaction between
multi-configurational monomer wavefunctions.
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6. Technical details

The VB calculations are carried out with the program xmvb [11], version 2.1, in a 6-31G*
and an aug-cc-pvdz basis set. The starting orbitals are generated with the preint tool of xmvb.

The version of 1996 of SAPT [27] is coupled to the Dalton program package [28] which
serves as integral generator. For the MCSCF calculations we employed Molpro, as of version
2008.2 [29].

The p orbitals on each atom are taken as active orbitals, defining the σ skeleton as closed
shells. We have thus a space of 6 atom-centered localized orbitals, carrying 8 electrons.
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6.1. Transformation of VB information to excitations

Several interface programs have been written, in order to transfer information between the
different codes, using a Fortran preprocessor [30].

From the BOVB run of xmvb [11] we take from the output the section containing the struc-
tures, and a second section containing the orbitals. From this information we create for each
structure an orbital file with occupation numbers and the expansion coefficients of the corre-
sponding orbitals. The density is written already to file by xmvb.

The geometry, orbitals and density matrix are translated and rotated for the positions of the
two monomers, in order to calculate the SAPT interaction energy, and to recalculate the electro-
static interaction directly from the density matrix.

From the positions and the basis sets we generate input for the ORTHO suite of experimental
ab-initio programs [31] – here in order to calculate mono-electronic and bi-electronic integrals
as well as dipole- and overlap integrals. The actual calculation of integrals is again left to Dalton
[28], but may be carried out as well with other integral generators.

Once the integrals and orbitals at hand, the unrestricted Fock matrices are constructed and
diagonalized, leading to canonical orbitals, orbital energies and transition dipole moments, which
are collected for each determinant separately.

6.2. Generating UHF molecular orbitals for the monomers

In UHF a separate Fock matrix is constructed for α and β spins [32]. From the two orbital
sets φα and φβ we construct two density matrices

Pα
γδ =

∑

i∈α
cγ icδ i

P
β
γδ =

∑

i∈β
cγ icδ i

The two Fock matrices are coupled through the electrostatic interaction, leading to

Fα
ρσ = hρσ +

∑

k∈α
((ρσ|kk) − (ρk|kσ)) +

∑

k∈β
(ρk|kσ)

= hρσ +
∑

γδ

Pα
γδ ((ρσ|γδ) − (ργ|δσ)) +

∑

γδ

P
β
γδ(ρσ|γδ)

︸                                                      ︷︷                                                      ︸

=Ξαρσ

F
β
ρσ = hρσ +

∑

k∈β
((ρσ|kk) − (ρk|kσ)) +

∑

k∈α
(ρk|kσ)

= hρσ +
∑

γδ

P
β
γδ

((ρσ|γδ) − (ργ|δσ)) +
∑

γδ

Pα
γδ(ρσ|γδ)

︸                                                      ︷︷                                                      ︸

=Ξ
β
ρσ

F φi = ǫi φi

We may then diagonalize each Fock matrix separately, for obtaining orbitals and corresponding
orbital energies, even if the VB orbitals are not self-consistent solutions of the UHF equations
(or Pople-Nesbet-Berthier equations). In order to keep the orbital spaces invariant, despite the
diagonalization of the respective Fock matrices, elements coupling occupied and virtual orbitals
are set to zero, i.e. the Fock matrices are diagonalized only within the occupied or virtual orbitals
without any mixing. Of course, orbital energies are then not strictly ordered: energies belonging
to occupied orbitals may appear higher in energy than those corresponding to unoccupied ones.
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Figure 11: Comparison of the dispersion terms calculated via the Hylleraas functional (full circles) and the straight-
forward application of equation (4) (hollow circles). In the upper panels only the difference of the latter with the former
is traced.

6.3. Monomer-localized dimer orbitals via CI of single excitations

In order to evaluate the MP2 energy in localized orbitals, we first perform a Hartree-Fock
calculation on each monomer separately, generating canonical orbitals. These serve as starting
orbitals for the dimer step, where we use the iteration on the coefficients of the configuration
interaction of singly excited determinants to correct occupied and virtual orbitals [33, 34], main-
taining the localization of the orbitals spaces (occupied and virtual) on the respective monomers
as much as possible. The MP2 energy may be evaluated using equation (4), neglecting thus
the effect of non-zero off-diagonal Fock matrix elements. For including these we minimize the
Hylleraas functional [35], leading to CEPA-like equations with the Fock matrix instead of the
full Hamilton matrix. The correlation energy is evaluated at the end as a sum over amplitudes tab

i j

multiplied with appropriate (anti-symmetrized) bi-electronic integrals

ECorr =
∑

i jab

tab
i j (ia| jb) (10)

which again may be decomposed into the six excitation classes mentioned above (Figure 1).
As we started with canonical monomer orbitals which are only slightly perturbed during the

dimer SCF procedure, the impact of the remaining Fock-matrix elements is expected to be small.
Computer time, however, is significantly increased when solving the linear system of equations
instead of the straight-forward evaluation of the perturbation terms. For two situations (the T
geometry variation at R = 7.0 a.u. and different angles, and for 90 degrees and variable R) we
show in Figure 11 the difference of the two variants.
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- exploring non-dynamical correlation for intermolecular interactions 

- using non-orthogonal molecular orbitals 

- simple dipole-dipole interaction for dispersion 

- development of SAPT for MCSCF functions 
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