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Abstract

Micromonas is a unicellular marine green alga that thrives from tropical to polar ecosystems.

We investigated the growth and cellular characteristics of acclimated mid-exponential

phase Micromonas commoda RCC299 over multiple light levels and over the diel cycle

(14:10 hour light:dark). We also exposed the light:dark acclimated M. commoda to experi-

mental shifts from moderate to high light (HL), and to HL plus ultraviolet radiation (HL+UV),

4.5 hours into the light period. Cellular responses of this prasinophyte were quantified by

flow cytometry and changes in gene expression by qPCR and RNA-seq. While proxies

for chlorophyll a content and cell size exhibited similar diel variations in HL and controls,

with progressive increases during day and decreases at night, both parameters sharply

decreased after the HL+UV shift. Two distinct transcriptional responses were observed

among chloroplast genes in the light shift experiments: i) expression of transcription and

translation-related genes decreased over the time course, and this transition occurred

earlier in treatments than controls; ii) expression of several photosystem I and II genes

increased in HL relative to controls, as did the growth rate within the same diel period. How-

ever, expression of these genes decreased in HL+UV, likely as a photoprotective mecha-

nism. RNA-seq also revealed two genes in the chloroplast genome, ycf2-like and ycf1-like,

that had not previously been reported. The latter encodes the second largest chloroplast

protein in Micromonas and has weak homology to plant Ycf1, an essential component of the

plant protein translocon. Analysis of several nuclear genes showed that the expression of
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LHCSR2, which is involved in non-photochemical quenching, and five light-harvesting-like

genes, increased 30 to >50-fold in HL+UV, but was largely unchanged in HL and controls.

Under HL alone, a gene encoding a novel nitrite reductase fusion protein (NIRFU) increased,

possibly reflecting enhanced N-assimilation under the 625 μmol photons m-2 s-1 supplied in

the HL treatment. NIRFU’s domain structure suggests it may have more efficient electron

transfer than plant NIR proteins. Our analyses indicate that Micromonas can readily respond

to abrupt environmental changes, such that strong photoinhibition was provoked by com-

bined exposure to HL and UV, but a ca. 6-fold increase in light was stimulatory.

Introduction

Plants and algae alike encounter a wide range of light conditions in nature. Damage induced

by high levels of visible spectrum light (HL) and ultraviolet (UV) radiation can cause photoin-

hibition which is manifested by decreased photosynthetic capacity. Therefore, plants and algae

have developed various photoprotection and acclimation mechanisms to reduce damage by

HL and UV radiation as well as oxidative damage caused by reactive oxygen species generated

during photosynthesis [1–3]. Photoprotective proteins are often coupled with chlorophyll a/b-
binding light-harvesting complex (LHC) proteins, which collect the photon energy needed for

photosynthesis. While LHCs and several classes of photoprotective proteins are nucleus-

encoded and targeted to the chloroplast by a transit peptide, many other components of the

photosynthetic machinery are encoded by genes in the chloroplast genome of photosynthetic

eukaryotes [4]. This machinery has strong similarities in chlorophyte algae, streptophytes (e.g.,

land plants), and prasinophyte algae, which together form the Viridiplantae [5,6]. Most of its

components have been characterized in model chlorophyte algae and plants, such as Chlamy-
domonas reinhardtii and Arabidopsis thaliana, respectively.

Several classes of proteins that are structurally related to LHCs appear to be involved in stress

responses or photoprotection. For example, the early light-inducible proteins (ELIPs) family [7]

is thought to have photoprotective roles [1,8,9]. They were first found to be produced in etio-

lated pea seedlings during the early phase of greening [10] and a transient increase in expression

was also reported during plant chloroplast maturation [11]. ELIPs are encoded on the nuclear

genome and have three transmembrane domains like the major LHCs. ELIPs are thought to

transiently bind excess chlorophyll released under light stress as a photoprotective mechanism

[8,12,13]. Another type of nucleus-encoded stress-response proteins that have homology to

chlorophyll a/b-binding proteins are LHC Stress-Related (LHCSR) proteins [14–16]. These are

present in green algae and non-vascular plants, and, similar to ELIPs, LHCSR transcripts appear

to accumulate under conditions that cause photo-oxidative stress, such as excessive light, as well

as CO2 deprivation, sulfur and iron deprivation [17–21]. In C. reinhardtii, LHCSR proteins are

responsible for thermal dissipation of excess energy (i.e., non-photochemical quenching, NPQ)

by binding and de-exciting photopigments, including chlorophyll [16], and mutants with two

of the three LHCSR genes deleted do not survive shifts to HL [14]. Orthologs of this gene are

present in many photosynthetic eukaryotes but appear to be absent from vascular plants and

red algae [14,15,22]. In the former, PSBS seems to play a role similar to LHCSR [23].

For marine algae, light fields vary dramatically as a function of season, depth, load of sus-

pended or dissolved organic material, and latitude. Penetration of UV radiation also depends

on multiple factors, including seawater characteristics and geographic location [24]. UV-B

(280–320 nm) wavelengths are absorbed more rapidly than UV-A (320–400 nm) but can be
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prevalent in the upper photic layer. For example, in the Sargasso Sea at 20 m depth, 10% of

incident surface UV-B is still present, while UV-B is effectively absent by 70 cm below the sur-

face in the more organic material rich Baltic Sea [25]. Prasinophytes are a group of marine

algae that are widespread in marine systems [26–28]. Class II prasinophytes (the Mamiellophy-

ceae) harbor several genera that are picoplanktonic (�2 μm cell diameter) and represent the

smallest photosynthetic eukaryotes. Picoplanktonic members of the Mamiellophyceae are

found in environments ranging from the coast to open-ocean [29–31]. Some, like Micromonas
and Bathycoccus, are present from tropical to polar regions, while others (e.g., Ostreococcus)
have yet to be reported in high-latitude environments. These three genera are thus far the only

genome-sequenced representatives of prasinophytes [32–34].

While the structure of the core photosystem I (PSI) and photosystem II (PSII) and of LHCI

appears to be globally similar between prasinophytes, chlorophytes and plants, the Mamiello-

phyceae lack a classical LHCII [22,34,35]. Instead, they possess a unique LHC type, named

LHCP (“P” for prasinophyte), which is likely associated with PSII. The phylogenetic position of

LHCP proteins outside the clade containing the LHCII polypeptides of plants and chlorophytes

make the Mamiellophyceae interesting models for understanding ancestral developments in the

Viridiplantae [22,34]. Additionally, the genome sequences of Micromonas commoda and Micro-
monas pusilla show that both species have ELIP and LHCSR proteins, as well as another type of

putatively photoprotective proteins, one-helix-proteins (OHPs) [13,34]. However, responses of

prasinophyte photosynthetic and photoprotective genes to light-shifts and UV-stress have not

been characterized and the present study on M. commoda (RCC299) is the first such analysis.

M. commoda is a representative of Clade A, one of the seven known Micromonas clades, and is

closely related to Clades B and C but evolutionarily distant from M. pusilla, which belongs to

Clade D [6,30]. The Micromonas ABC-lineage as a whole appears to be broadly distributed in

temperate and lower latitude oceans, but not high latitude environments where continuous

light occurs during summer [6,30,36]. Here, light:dark synchronized M. commoda RCC299 cul-

tures were investigated over a range of visible light levels. They were also subjected to environ-

mentally-relevant HL or to HL+UV shifts for which cellular and transcriptional responses were

investigated using flow cytometry, RNA-seq and qPCR. Our results indicate that this species

copes well with HL shifts, but is sensitive to UV radiation over the duration and intensities

tested here. Our study provides new insights into the phenotypic plasticity of this ecologically

important microbe with respect to light.

Materials and methods

Micromonas diel and light-shift experiments

An axenic clonal derivative of M. commoda (RCC299, deposited at the NCMA as CCMP2709)

was grown in semi-continuous batch cultures at 21˚C on a 14:10 L:D cycle in K medium [37]

prepared with artificial seawater (see http://www.mbari.org/phyto-genome/Resources.html).

Cultures were diluted daily with fresh medium (or less frequently depending on cell density)

so that concentrations never exceeded 6 x 106 ml-1 and maintained mid-exponential growth.

Cultures were regularly inoculated into organic carbon rich test medium to verify axenicity.

The relationship between irradiance and growth was studied in biological triplicates grown in

50 mL glass test tubes at ~6, 55, 150, 240, 350, 470, 620, 750 μmol photons m-2 s-1 photosyn-

thetically active radiation (PAR) as measured using a QSL-2101 light meter (Biospherical

Instruments, San Diego, CA, USA). Low light levels were obtained using neutral density filters

(Lee Filters, Burbank, CA, USA). Bulk fluorescence was measured daily at the same morning

time point using a 10-AU fluorometer (Turner Design, Sunnyvale, CA, USA). Cells were accli-

mated to each light level for�10 generations and average growth rates were calculated over 3
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to 5 consecutive transfers after acclimation by following changes in fluorescence. The latter

reflect changes in cell abundance, if measured at the same time point each day in synchronized

cultures. At the ~350 μmol photons m-2 s-1 light level data from only one transfer was available

(therefore the mean and s.d. were computed from the three biological replicates) and data

from one biological replicate at 6 μmol photons m-2 s-1 was from a single transfer. Once aver-

age growth rates were determined, diel changes in cellular characteristics were studied for cul-

tures grown at three selected irradiances with 2 h interval sampling starting at 6 a.m. (the onset

of the light period) for 20 h and 4 h interval sampling for an additional 12 h. Samples were pre-

served for analysis by flow cytometry (FCM) by adding glutaraldehyde (Tousimis, Rockville,

MD, USA, final concentration 0.25%) for 20 min at room temperature in the dark, and subse-

quently frozen in liquid nitrogen.

For light-shift experiments, axenic RCC299 was acclimated to 100 μmol photons m-2 s-1

PAR on a 14:10 hour L:D cycle and monitored daily by FCM. Cells were maintained in mid-

exponential phase for�9 generations before the experiment start by diluting cultures daily with

fresh medium to keep a concentration of 2 x 106 cells mL-1. The HL and HL+UV exposure

experiments were initiated using the above mid-exponential culture, but performed at separate

times due to the volumes required for RNA sequencing and associated incubator space limita-

tions. Controls were performed alongside each experiment. For all light-shift experiments, on

day one, 1 L glass (controls and HL treatment) or quartz (HL+UV treatment) Erlenmeyer flasks

were filled with culture within 30 min before the start time, Time zero (T0), which in all cases

occurred 4.5 h after lights-on (thus always at the same point in the diel cycle). At T0, quadrupli-

cate controls were continued in the same conditions while the quadruplicated treatments were

placed into HL (625 ± 35 μmol photons m-2 s-1), or the same HL level and UV radiation, with

an expansion of flasks numbers to accommodate large volume sampling at each time point for

shorter term light shift experiments as detailed below. UV was supplied by one UVB-313 (0.7

W m-2 at its 313 nm peak) and one UVA-340 (0.75 W m-2 at its 340 nm peak) fluorescent tube

(Q-Panel Lab Products, Cleveland, USA). Treatment flasks were shaken at ~150 rpm and con-

trol flasks were shaken at each time point upon removal from a Percival Incubator. FCM sam-

ples were taken from each flask at 0 h (T0), 2.5 h (T2.5), 6 h (T6), 9.5 h (T9.5), and 19.5 h (T19.5,

which includes the 10 hour dark period) for longer experiments. The shorter time course exper-

iments (2.5 h length) were performed separately from the longer term light shift experiments

and the flasks were sampled at 0 h (T0), 1 h (T1) and 2.5 h (T2.5) for RNA and FCM (as follows).

Because the shorter term light shift experiments were designed to generate enough material for

RNA-seq (1 L of culture) four flasks were sacrificed for RNA sampling at each time point. FCM

was sampled throughout from all flasks such that for each treatment and control FCM came

from 12 flasks at T0, from 8 flasks at T1, and from four flasks at T2.5.

Flow cytometry

Cultures were monitored live on a daily basis using an Epics XL (Beckman Coulter, Brea, CA,

USA) with data acquisition triggered by side scatter (SSC). For the light-shift experiments and

the higher resolution diel studies, samples were also analyzed using an Influx (BD Biosciences,

Franklin Lakes, NJ, USA) equipped with a 488 nm laser (200 mW output), a 70 μm diameter

nozzle and run at 25 μl min-1. FALS, SSC and red autofluorescence derived from chlorophyll

(692 ± 40 nm band-pass) were recorded for>1 x 104 cells per sample. Micromonas and yel-

low-green 0.75 μm polystyrene beads (Polysciences Inc., Warrington, PA, USA; added as nor-

malization standards) were defined based on fluorescence and SSC (Epics XL) or FALS

(Influx) characteristics. Fluorescence and scatter properties of cells were normalized to beads

(i.e., all numerical values are in bead relative units). T-tests were performed in SigmaStat

Marine eukaryotic algae under light and UV stress
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(Systat Software, San Jose, CA) to compare growth rates. One way ANOVAs were used to test

light intensity effects on normalized mean FALS cell-1 and red fluorescence cell-1 at each time

point (also implemented in SigmaStat).

RNA sampling, extraction and sequencing

At each RNA time point four 1 L flasks were sacrificed and harvested by centrifugation at 21˚C

to avoid cold shock; cell pellets were cryo-frozen and then stored at -80˚C. RNA was extracted

from three of the four biological replicates harvested at each time point, resulting in a total of 24

samples (biological triplicates from: Control T0, T1, T2.5; HL T1, T2.5; HL+UV T1, T2.5 and an

additional set of T0 control samples from the HL+UV experiment). Total RNA was extracted

with the RNeasy kit after homogenization using the QIAshredder kit (Qiagen, Germantown,

MD, USA) according to the manufacturer’s instructions. 50 μL of extracted RNA was treated

with 1 μL of DNase (TURBO DNA-free™ Kit, Ambion, Austin, TX, USA) at 37˚C for 30 min

according to the manufacturer’s protocol. For further purification, a volume of 4.8 M LiCl

(LiCl:sample 1:1, v/v) was added, samples were placed at -20˚C for 4 to 6 h, and centrifuged at

16,100 x g at 4˚C for 30 min and then transferred to fresh tubes to which 400 μL 70% ethanol

was added. After 10 min on ice, samples were spun at 18,000 x g for 5 min. The last two steps

were repeated, the supernatant removed and the pellet resuspended in TE buffer. RNA integrity

was determined using a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and

total RNA was quantified on the Nano Drop system (Thermo Scientific, Waltham, MA, USA).

For short read sequencing, double stranded (ds) cDNA was synthesized using the Ovation

RNA-seq System (NuGEN Technologies Inc., San Carlos, CA) according to manufacturer’s

instructions except half the recommended amount of first-strand primer mix was used. Briefly,

RNA was reverse-transcribed to generate first-strand cDNA using oligo-dT and random hex-

amer primers. Ds-cDNA was generated using DNA polymerase, and linearly amplified with

the Ribo-SPIA method [38]. For all samples, 1 μg of the resulting ds-cDNA was used for library

preparation with half of the cDNA having been fragmented by sonication. The complete sam-

ple (fragmented and unfragmented cDNA) was electrophoresed on 2.5% agarose gel and size

selected for 100–200 bp. After elution, cDNA fragments were blunt-ended and ligated to plat-

form specific ds-bar-coded adapters (New England Biolabs, Ipswich, MA). Bar-coded sets of

12 cDNA libraries were mixed in equal amounts and sequenced on the SOLiD platform

(Applied Biosystems, Foster City, CA).

Transcriptome analyses

Reads were aligned to the RCC299 nuclear genome using BWA [39] and to the plastid genome

using Bowtie [40]. The final mapped read numbers were on average 4.08 ± 0.97 million reads

per sample, with approximately half of these being aligned to the 73 kb chloroplast genome.

For chloroplast genes, reads aligning between start and end coordinates were assigned to that

gene. Prior to assignment, chloroplast gene models were improved (primarily by CDS exten-

sion) using the transcript data. Extended gene models and those that were unchanged are

available at http://www.mbari.org/resources-worden-lab/ and two new protein-encoding

genes identified here were deposited in GenBank under accessions KX172140 (ycf2) and

KX172139 (ycf1). For nuclear genes, most reads aligned to the 30 terminus, within 8 read

lengths of the end of existing annotations (see Results and Discussion). Therefore, transcript

abundances were based on reads aligned to the last 403 nucleotides of terminal exons after

careful annotation of 30 UTRs based on directionally cloned-Sanger ESTs. Nuclear genes for

which the 30 UTR formed a convergent overlapping pair (with a gene on the opposite strand)

Marine eukaryotic algae under light and UV stress
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were excluded because gene-specific assignments were not possible for the non-directional 30

biased transcript reads generated here.

Because of the disparity of expression data recovered from chloroplast and nuclear genes

(see Results), read counts were normalized to housekeeping genes, specifically the 23S rRNA

gene and chloroplast targeted GAPDH (XP_002503470), respectively, which showed less varia-

tion across the treatments than other potential housekeeping genes (e.g. Actin). We analyzed

protein coding chloroplast genes as well as nuclear-encoded PSI- (all) and PSII-related anten-

nae proteins, putative photoprotection-related proteins and two heat shock protein genes

(HSP90.1 and HSP90.2). To avoid overestimating fold changes due to low nuclear genome

read counts, we required that�100 reads map to the respective protein-encoding gene in one

or more samples. Thus, a number of nuclear genes were excluded from differential expression

analyses due to: i.) reads assigned, if any, were below this minimum cutoff (LHCSR1, LHCSR2,

ELIP1, ELIP2, ELIP4 and ELIP6) or ii.) they overlapped with other genes in the 30 region con-

founding analyses of non-directional RNA-seq data (LHCP4, ELIP5, and ELIP3/ PSBS-like).

Additionally, LHCP2.1 and LHCP2.2 are identical in the region where RNA-seq reads mapped

and therefore data presented for LHCP2.2 also represents fold-changes for LHCP2.1 (using the

present dataset). To determine significance of differential expression analyses an ANOVA was

performed on expression data meeting the read cutoff criterion using the R programming lan-

guage [41]. Data from HL and HL+UV treatments were compared to T0 and, separately, to

controls from the corresponding time-point. For controls, time-points were also compared

two ways, to T0 and to the immediately preceding time point (T0 for T1 and T1 for T2.5). The

T0 samples from the two control experiments (associated with either the HL or the HL+UV

shift experiments, respectively) were also compared to each other. Only one gene (psbT) exhib-

ited a significant difference between these controls (S1 Table).

Quantitative polymerase chain reaction (qPCR) analyses

For qPCR, single stranded (ss) cDNA was synthesized using the SuperScript1 III First-Strand

Synthesis System (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instruc-

tions. Oligo-dT primers and 6 μL total RNA (12.5 ng μL-1) were used in total reaction volumes

of 60 μL. To check for contaminating genomic DNA, negative control reactions (RT- controls)

were also prepared by omitting the reverse transcriptase enzyme.

TaqMan primer-probe sets were designed for three genes (Table 1) using Primer Express

software 3.0 (Applied Biosystems, Brea, CA, USA). The primer-probe sequences were com-

pared to the M. commoda RCC299 genome [34] to confirm that only the genes of interest were

Table 1. Primer/probe set sequences designed and used here for three nucleus genes targeted to the chloroplast and the house-keeping gene

Actin.

Gene Accession Primer/Probe Sequence 5’-3’

LHCP1 XP_002507256 Forward CGGAGCTTGAGTTGTCAGTTACTC

Reverse TCCAGCTTCGGCAAAACC

Probe CGGCGGTCGCTTTGACCCC

LHCSR2 XP_002506555 Forward GCGACCACCGGCAACA

Reverse GACTTGACAGCCTCCTTGATGTC

Probe CAAGATCCAGCCCGGCAAGAAGTACG

OHP2 XP_002502054 Forward TCCTCGTGGGCATGATGAC

Reverse ACGGAGATGGTGAGCTTGATCT

Probe CCACCGGCGTGGACTTCATCG

Actin XP_002503091 Forward GCCCTCGTGTGCGATAAC

Reverse CCGACGATGGAGGGAAAGAC

Probe CCGGCCTTGACCATGC

doi:10.1371/journal.pone.0172135.t001
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targeted. Probes were labeled with the fluorescent reporter FAM (6-carboxyfluorescein) and a

non-fluorescent quencher at the 50 and 30 ends, respectively. The endogenous control was a

previously published MGB™ labeled actin probe [42] with a fluorescent reporter FAM (6-car-

boxyfluorescein) at the 50 end and a 30 non-fluorescent quencher (Table 1).

qPCR was performed using a 7500 Real Time PCR System (Applied Biosystems, Foster City,

CA, USA) in reaction volumes of 25 μL with 1x Taqman Gene Expression Master Mix (Applied

Biosystems, Foster City, CA, USA), 250 nM probe, 900 nM primers (final concentrations) and

2 μL (175 pg μl-1) of cDNA. Cycling parameters were 1 cycle of 50˚C for 2 min; 1 cycle of 95˚C

for 10 min and 40 cycles of 95˚C for 15 s followed by 60˚C for 1 min. Primer amplicon size was

checked by running the qPCR product on 3% agarose gel with a 50 bp Mini ladder (Fisher Sci-

entific, Pittsburgh, PA, USA). The linear dynamic range for each primer-probe set was tested

using cDNA prepared from control samples in a serial dilution of RNA. The concentration of

RNA added to the cDNA reaction fell within the linear part of the curve, equivalent to a 1:1 con-

version between RNA and cDNA. The efficiencies of primer-probe sets were determined using

a dilution series of 1) qPCR product (purified with the MinElute PCR purification kit, Qiagen,

Germantown, MD, USA) and 2) cDNA. CT values were generated for treatment and control

experiments and data were analyzed using the 2-ΔΔC
T method [43] performed using the 7500

System SDS Software v1.4 (Applied Biosystems, Foster City, CA, USA) with T0 as the calibrator.

Actin (XP_002503091) was selected as the endogenous control because, using qPCR across the

treatments herein, it showed less change in CT than GAPDH (by qPCR; in RNA-seq data from

these experiments Actin showed more variability across treatments than GAPDH). Statistical

significance was evaluated using an ANOVA implemented in SigmaStat.

Results

Growth and cellular changes in response to light and the diel cycle

M. commoda grew at�1.0 d-1 (�1.4 divisions per day) between 50 to 750 μmol photons m-2 s-1.

Growth rates were significantly slower at 6 μmol photons m-2 s-1 (μ, 0.28 ± 0.01 d-1) and the

maximum growth rate (μmax, 1.78 ± 0.03 d-1) occurred at 240 μmol photons m-2 s-1 (Fig 1).

Fig 1. Growth rate as a function of photosynthetically active radiation (PAR) for light-acclimated, mid-

exponential phase cultures of Micromonas commoda (RCC299). Cultures were grown in biological

triplicate on a 14:10 L:D cycle. Symbols represent the mean of 3 to 5 transfers starting�10 generations after

acclimation to the light level and error bars represent the standard error, except in two cases. For these two,

data from multiple transfers post-acclimation were not available, therefore one (at 6 μmol photons m-2 s-1) has

no error represented and the other (350 ± 13 μmol photons m-2 s-1) shows the mean and standard deviation of

the biological triplicates. At the maximum light level tested, 750 μmol photons m-2 s-1, the μ (0.96 ± 0.04 d-1)

was significantly lower than at 240 μmol photons m-2 s-1 where μmax occurred.

doi:10.1371/journal.pone.0172135.g001
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Cellular characteristics were tightly synchronized with the L:D cycle (Fig 2). Normalized mean

FALS cell-1 increased throughout the light period (6 a.m. to 8 p.m.), indicating increasing cell

size, and started to decrease at the light-to-dark transition, coincident with increased cell num-

bers (reflecting cell division) at all three light levels tested (Fig 2A and 2B). Like FALS, normal-

ized mean red fluorescence cell-1 (representing chlorophyll-derived fluorescence) increased

throughout the light period and decreased during night (Fig 2C). The overall amplitude of

change was positively related to the culture growth rate for FALS (Fig 2B) and inversely related

to the irradiance level for red fluorescence (Fig 2C). It must be noted that FALS values were

equivalently low for cells grown at all three irradiances at dawn when the division phase ended

(Fig 2B). Thus, the low irradiance, slow growing cultures had the smallest overall average cell

size (compared to the two faster growing/higher light level cultures) at all time points except the

point of the dark-to-light transition, suggesting that whatever the light level, cell size is the same

after the division phase for exponentially growing cells.

Cellular responses to high light and UV radiation

Experimental manipulations involved two light treatments. In the first, acclimated mid-

exponential growth cells were shifted from a control (100 μmol photons m-2 s-1) to higher

light level (HL, ~600 μmol photons m-2 s-1) and in the second they were shifted from the

control light level to HL+UV. The experiments were performed for two time-periods:

long- (19.5 h, Fig 3) and short- (2.5 h, Fig 4) exposure. In both cases, the experiments were

initiated 4.5 h into the light period by shifting cultures from the pre-experiment control

conditions to the treatment condition or maintaining them at 100 μmol photons m-2 s-1

(for controls).

In long-exposure experiments, cultures were shifted after 4.5 h at 100 μmol photons m-2 s-1

to the HL or HL+UV treatment for the remainder of the light period (9.5 h) then entered the

dark night period, which lasted 10 h (the same L:D cycle as for cells leading up to the experi-

ment; Fig 3A). At the experiment onset, the growth rate (1.19 ± 0.14 d-1) was not different

than the value interpolated for 100 μmol photons m-2 s-1 from Fig 1. Cell abundance increased

in the HL treatment more than the control by 19.5 h (Fig 3A), resulting in a significantly

higher growth rate (1.37 ± 0.03 d-1, p<0.05). Thus, within less than 24 h this HL-shifted culture

achieved a growth rate similar to the cultures that were acclimated to 610 μmol photons m-2 s-1

(1.36 ± 0.15 d-1; Fig 1). In contrast, in the shift from control to HL+UV, cell numbers

decreased relative to the control (Fig 3A), resulting in a ‘negative’ growth rate.

As expected, changes in bead normalized mean FALS cell-1 (expressed as % increase or

decrease from T0) were similar for the long-exposure experimental controls (Fig 3B and 3C)

and cells acclimated to the corresponding light-level in the diel study (Fig 2B). FALS cell-1

increased during the remaining part of the light period (9.5 h) by between 120–152% (relative

to T0 FALS) in the controls of the HL and HL+UV experiments and was at a minimum at T19.5

(Fig 3B and 3C). Note that with respect to cell cycle stages, the %-changes in FALS at T19.5 rela-

tive to T0 are most similar to calculating the %-change between the 24 hr and 12 hr time points

in the diel (Fig 2B). In the HL treatment, FALS also increased over time (Fig 3B) and did not

differ significantly from controls. In contrast, FALS cell-1 was significantly lower by T2.5 in the

HL+UV treatment than the control at the same time point and was lower than the T0 value by

T6 (Fig 3C). Similarly, changes in mean red fluorescence cell-1 in the controls (Fig 3D and 3E)

were of the same amplitude as in the diel study. This parameter also increased in the HL treat-

ment, but less than in the controls (Fig 3D, p<0.05). Under HL+UV exposure, mean red fluo-

rescence cell-1 decreased rapidly and was lower than controls by T2.5 (Fig 3E). As seen for
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Fig 2. Cellular characteristics over the diel cycle for cultures acclimated to three light levels. (A) Cell abundance, (B) mean FALS in bead

relative units (i.e., normalized to beads), and (C) mean chlorophyll-derived red fluorescence in bead relative units. The light (white) and dark (black)

periods are indicated in horizontal bars at the top of the graph (14:10 h L:D cycle) and the x-axis is labeled in time of day, with 6 a.m. being lights on.

M. commoda growth rates were 1.10 d-1, 1.76 d-1 and 1.12 d-1 at 55, 240 and 630 μmol photons m-2 s-1, respectively. These growth rates were

similar to those of biological triplicates shown in Fig 1, specifically, 1.04 ± 0.04 d-1, 1.78 ± 0.03 d-1, and 1.22 ± 0.02 d-1, respectively, for similar light

levels. Values and error bars for the 6, 10 and 14 h time points in (B, C) reflect the mean and standard deviation of measurements taken during the

first diel period and those taken every 4 h until 2 p.m. of the following diel period. Because cell numbers increased with the passage of time, error

was not computed from cell abundances in the first and (partial) second diel periods. Note that the HL sample for 6 a.m. on day two was lost due to

instrument issues.

doi:10.1371/journal.pone.0172135.g002
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FALS, T6 values were lower than T0 and continued to decrease throughout the HL+UV experi-

ment, reaching -93 ± 5% of T0 at T19.5, without apparent recovery during the dark period.

Changes in cellular characteristics were similar for the controls in the short exposure (2.5 h;

Fig 4A and 4B) and longer duration (Fig 3B–3E) experiments at the single comparable time

point, T2.5. Normalized mean FALS cell-1 did not change significantly between the control and

HL treatment (Fig 4A), whereas HL mean red fluorescence cell-1 was significantly lower than

in the control by T2.5 (Fig 4B, p<0.05). In the HL+UV treatment mean FALS and red fluores-

cence cell-1 were significantly lower by 1 h (Fig 4B), indicating they were no longer progressing

through the typical increases that occur across the day period as cells move towards division.

Fig 3. Micromonas commoda abundance and cellular characteristics in long-exposure light shift

experiments. Cells were in acclimated, mid-exponential growth at 100 μmol photons m-2 s-1 on a 14:10 L:D

cycle for�9 generations prior to the shift to 625 ± 35 (SD) μmol photons m-2 s-1 at the first time point of the

experiment, T0, which occurred 4.5 h after lights-on. (A) Cell abundance, with light (white) and dark (black)

periods indicated by the horizontal bar along the top of graph, treatments and controls are colored as

indicated on graph. (B-C) Percent change in bead normalized mean FALS cell-1 from the T0 value after a shift

to (B) HL and (C) HL+UV treatments, as well as the respective controls. Vertical bar coloring is as indicated in

(A). (D-E) Percent change in bead normalized mean red fluorescence cell-1 in the (D) HL and (E) HL+UV

treatments and their respective controls. Cells at T0 were 4.5 h into the light period, where red fluorescence

and FALS is higher than at lights-on (see Fig 2), hence the negative percent changes at T19.5 (the point of

lights-on/the end of the dark period) are expected. Data represent the average of biological triplicates and

error bars represent the standard deviation. P-values <0.05 (*) and <0.001 (+, Fig 3A only) are indicated for

significant differences from controls at the same time point (HL vs. control 1, HL+UV vs. control 2).

doi:10.1371/journal.pone.0172135.g003
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Notably, there were no significant differences in FALS or red fluorescence cell-1 at T1 in the

HL possibly reflecting the capacity of cells to buffer variations over short exposure, while in

HL+UV large adjustments had already occurred.

Gene model improvement and RNA-seq analyses

RNA-seq was used to assess M. commoda responses to light shifts and UV exposure during the

short-term experiments. Prior to comparing gene expression levels in the different treatments

we observed reads mapped to unannotated regions of the chloroplast genome. Using this data

we extended open reading frames (ORFs) for psbE, psbF, and psbB and for the 23S ribosomal

RNA (rrl). We also identified and deposited two previously unrecognized genes, ycf2-like
(ftsH, orf1577) and ycf1-like (orf603). The products of these genes are far more diverged from

Ostreococcus homologs (ORF1260/YP_717220 and ORF537/YP_717209, respectively) than

Fig 4. Cellular characteristics of M. commoda during short-exposure light shift experiments and

qPCR analysis of three genes. Percent change in (A) mean normalized FALS cell-1 and (B) mean bead

normalized red fluorescence for controls and the HL and HL+UV treatments. Data represent the percent

change relative to T0, which occurred 4.5 h after lights-on, and the x-axis units are time from the experiment

start (in hours). Cells were grown at 100 μmol photons m-2 s-1 for�9 generations prior to manipulation. On the

day of the experiment, cultures were sampled at T-4.5, transferred to flasks and placed in their respective

treatments at T0. Data represent the average of four to twelve flasks as detailed in materials and methods,

and error bars represent standard deviations of these flasks. (C-E) Fold-changes in gene expression for

select genes by qPCR. Values >1 increased relative to the T0 control, while those <1 decreased. Note

differences in y-axis scales. Samples that were significantly different (p<0.01) from the control (*) and HL+UV

samples that were significantly different from HL at the same time point (^) are denoted. Data represent the

average of four biological replicates and error bars represent the standard deviation.

doi:10.1371/journal.pone.0172135.g004
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other proteins encoded by chloroplast genes that are shared by Ostreococcus and Micromonas.
For example, the former protein aligned to just 605 of the 1260 amino acids (a.a.) comprising

Ostreococcus tauri ORF1260/Ycf2/FtsH (with 30% identity) and blastp to NCBI’s non-redun-

dant database only otherwise recovered a Bathycoccus prasinos protein (30% a.a. identity). In

contrast, the RNA polymerase beta subunits (RpoB) of these two genera share 68% a.a. iden-

tity, and the photosystem I P700 chlorophyll a apoproteins A1 (PsaA) are 97% identical. Over-

all, we identified 60 protein-encoding genes, 26 tRNAs and 6 rRNAs (two copies each of the

16S, 5S and 23S genes) in the chloroplast genome (92 total); these numbers include the 58 pro-

tein-encoding, 26 tRNA genes and 3 rRNAs reported previously [34].

Approximately half the RNA-seq reads generated mapped to the chloroplast genome

(Table A in S1 File). Chloroplast gene transcripts are not poly-adenylated and are recov-

ered well by random hexamers (as used here; Table A in S1 File). Organellar genomes are

also typically present in high copy numbers and show elevated levels of expression such

that chloroplast transcripts often represent a significant proportion of data generated in

RNA-seq experiments involving algae or plants [44]. Additionally, in our study, the reads

assigned to nuclear genes generally came from the 3’ region, creating issues for analyzing

overlapping gene pairs because the reads were non-directional. Due to these biases,

expression levels were normalized to housekeeping genes from the respective genome,

instead of using standard RNA-seq normalization procedures [45], and a number of

nuclear genes of interest had to be excluded from differential expression analysis (see

methods). Differential expression patterns were generally similar when treatments were

compared to the T0 control (Fig A in S1 File) or when they were compared to the control

at the same time point (Fig 5, S1 Table). However, the latter allow a more direct assessment

of the effects of the treatment, rather than an assessment of the combined effects of diel (as

cells progress through the cell cycle) and treatment changes that are represented by com-

parison to T0.

Expressional responses of protein-encoding chloroplast genes

Fifty-six of 60 protein-encoding genes present in the chloroplast genome were analyzed for

expression changes in the short-exposure experiments, while four (psbN, psbZ, psaM and

rpl20) did not meet the minimum mapped-read number criterion and were excluded from dif-

ferential analyses. Overall, forty-seven genes showed�1.5-fold change (p<0.01) relative to the

control at the same time point (Fig 5) or to T0 (Fig A in S1 File) and nine did not exhibit signif-

icant changes (S1 Table).

Chloroplast gene expression between control and HL-shifted cells in the short-exposure treat-

ments exhibited three main patterns (Fig 5, Fig A in S1 File, S1 Table). The first corresponded to

genes encoding ATP synthase subunits (atpA, atpB, atpE, atpF, atpH, atpI) and cytochrome b6f
complex subunits (petA, petB, petG), which showed no significant changes (p<0.01) between

controls and HL, except for the ATP synthase CF0 subunit B (atpF) that showed a moderate

under-expression in HL at T1. The second pattern involved half the chloroplast genes related to

photosystem II (PSII). In HL, genes encoding the PSII reaction center proteins D1 and D2 (psbA
and psbD, respectively) and the PSII core antennae CP43 and CP47 (psbC and psbB, respectively)

showed small but statistically significant increases in expression at both time points, and two

other PSII-related genes, psbH and psbT, also showed modest increases at T2.5 (Fig 5). When

compared to T0, moderate expression increases were observed in the HL treatment for four other

PSII-genes (psbF, psbJ, psbL) (Fig A in S1 File). Most other photosystem genes, notably PSI genes,

including ycf3 which encodes the PSI assembly factor Ycf3, did not change significantly under

HL relative to both the control at the same time point and to T0 (except psaA at T1 in the latter).
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Fig 5. Expression changes for protein-encoding genes from the chloroplast genome and a subset of nuclear genes. HL

and HL+UV data represent fold changes relative to controls at the same time point, while each control time point is compared to

the preceding control time point. Only genes that met coverage criteria and that displayed significant changes (p<0.01)�1.5-fold

across the biological triplicates in at least one time point, relative to controls at the same time point (this figure), or relative to T0

(Fig A in S1 File), are shown. Note that all LHCs and LIL as well as HSP90.2 (XP_002507383) and NIRFU (XP_002507511)

proteins have transit peptides targeting them to the chloroplast, as predicted using TargetP.

doi:10.1371/journal.pone.0172135.g005
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The third pattern, observed in both the controls and HL treatments, involved genes related

to transcription and translation machinery (RNA polymerase subunits, SSU-rps (30S) and

LSU-rpl (50S) proteins of the chloroplast 70S ribosome, translation initiation factor 1 (infA)

and elongation factor Tu (tufA). For a large number of these genes expression levels decreased

significantly from T1 to T2.5 (7 hours after the onset of light) in the control (Fig 5). In the HL

treatment, expression of RNA polymerase alpha subunit (rpoA), many ribosomal transcripts

and infA decreased by 4 to 10-fold relative to both the control at the same time point (Fig 5)

and at T0 (Fig A in S1 File).

The HL+UV treatment induced a massive reduction in transcripts from chloroplast genes

involved in the PSII and PSI reaction centers as well as other categories. Although generally

unchanged in the controls and HL, ATP synthase genes encoding the F0 and F1 subunits were up

to 50-fold lower in expression under HL+UV. In contrast, neither petB nor petG changed signifi-

cantly and petA (cytochrome f) levels were lower than the control (2–4 fold) only at T1 (Fig 5).

Transcript levels for many other genes decreased dramatically by T1 and T2.5 relative to the corre-

sponding controls (e.g., 30 to 50-fold lower; Fig 5, Fig A in S1 File). Interestingly, psbC increased

slightly after 2.5 h as did the RNA polymerase beta chain (rpoC2) in HL+UV, while psbA, psbB
and psbD showed no or little change although they had increased in HL (Fig 5). Other exceptions

were for tufA which did not change significantly in HL+UV. Finally, although the Rubisco large

subunit (rbcL) showed expression, no changes were observed in controls or any treatments.

Nuclear-genome gene expression by RNA-seq

We also analyzed genes involved in the photosynthetic antennae (chlorophyll a/b binding pro-

teins) and photoprotection. Several LHCA and LHCP proteins, two OHPs, one LIL (LHL) and

two ELIPs that are encoded on the nuclear genome, and targeted to the chloroplast by a transit

peptide, could be analyzed. Of these, changes in LHC and LIL gene expression were minor in

the controls and the HL treatment. Just three (LHCP2.4, LHCP2.5, LHCP2.6) of the 15 LHC
genes evaluated increased significantly between T1 and T2.5 in the control, exhibiting fold

changes between 1.5 to 4 fold (Fig 5, S1 Table). In the HL treatment, expression of most genes

was not different from controls at either time point, except for a slight decrease in the one-helix-

protein 2 gene (OHP2) at 1 h as well as LHCB5.1 and LHCP2.4 at 2.5 h (Fig 5). This indicates

that at T2.5 in HL LHCP2.5 and LHCP2.6 had increased to the same extent as the diel-related

changes observed in the control. Different from the HL shift, the HL+UV shift caused a signifi-

cant decrease in the expression of most LHC genes relative to the control, with a 4 to 50-fold

drop by the 2.5 h time point (Fig 5). In contrast, LHL, FAS-ELIP and CBR-ELIP, the two OHPs,
as well as two genes coding heat shock proteins, HSP90.1 and HSP90.2, were all highly expressed

in HL+UV relative to both the control at the same time point (Fig 5) and at T0 (Fig A in S1 File).

Lastly, a gene coding a putative ferredoxin-nitrite reductase protein in M. commoda
(named here NIRFU, XP_002507511) showed increased expression under HL but decreased

dramatically in HL+UV relative to the controls at the same time point and at T0 (Fig 5). This

nuclear gene-encoded protein has a predicted chloroplast transit peptide at the N-terminus

and showed homology to ferredoxin-nitrite reductases of plants [46], e.g. 53% identity to NIR

in Solanum lycopersicum. However, M. commoda’s NIRFU also contains a C-terminal rubre-

doxin (a non-heme iron binding domain with an iron-sulfur center known to be involved in

electron transfer) and a domain belonging to the Ferredoxin NADP+ reductase superfamily.

Gene expression by qPCR

We developed qPCR primer-probe sets for three nuclear LHC/LIL-related genes, including

one of two LHCSR genes in M. commoda. The product of the LHCSR2 (XP_002506555) gene
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assayed here shows 63% amino acid identity with LHCSR1 (XP_002501722). By comparison,

identity between the three Chlamydomonas LHCSR homologs is 82% and 100% (two are identi-

cal copies). LHCSR genes did not meet the mapped read number criterion for RNA-seq differ-

ential expression analysis and by qPCR less than 1.5-fold changes were observed for LHCSR2 in

the controls and HL, except for HL 1 h (Fig 4C). The expression levels did not differ signifi-

cantly between controls and HL at either time point. Under HL+UV, LHCSR2 expression

increased 33-fold (T1) and 42-fold (T2.5) relative to T0 and was significantly different (p<0.01)

than control and HL treatments at the same time point (Fig 4C).

The other two nuclear genes analyzed by qPCR did meet the mapped read number criterion

for RNA-seq. Different housekeeping genes and normalization methods were used for qPCR

[43] and RNA-seq analyses (see methods), making trends comparable, but not exact fold

changes. By qPCR, LHCP1 expression in the control showed minimal (-1.7, T1; -1.6, T2.5 when

converted from decimal values) fold changes from T0 and the most comparable RNA-seq anal-

ysis did not exhibit significant changes (Fig A in S1 File). In HL, -2.7 to -3.2-fold changes from

T0 were observed by qPCR, and expression was lower than the controls at the same time point,

but again changes were not visible in the RNA-seq analysis. The largest changes occurred

under HL+UV (Fig 4D), with -3.9 (T1) and -3.7 (T2.5) fold changes from T0 by qPCR, and

-3.1-fold (T1) and -7.0-fold (T2.5) by RNA-seq relative to T0 (Fig A in S1 File, S1 Table). Under

HL+UV, LHCP1 expression was significantly lower than controls for both data types. For

OHP2, the magnitude of response was much greater than LHCP1 (Fig 4D and 4E). Trends

were the same for OHP2 by qPCR and RNA-seq in the HL, where expression decreased relative

to T0. QPCR again showed larger decreases than RNA-seq and also showed a moderate nega-

tive fold-change in the control. OHP2 expression increased dramatically under HL+UV, and

the qPCR (Fig 4E) and RNA-seq data were within the same range at both time points (RNA-

seq category 10 to<30-fc; Fig A in S1 File). Because OHP2 expression declined under the shift

to HL (and in the control), the massive induction of OHP2 in the HL+UV treatment appears

to have been triggered by UV exposure.

Discussion

Responses to the diurnal cycle and experimental light manipulations

We show that M. commoda grows under a broad range of light intensities, including irradi-

ances higher than those generally encountered in the upper 40 m of the photic zone where this

alga appears to thrive [25,47,48]. Micromonas commoda-like strain CCMP489, another Clade

A member [6,30,36], and several Ostreococcus strains including O. tauri, reportedly grew

slower [49–51] than RCC299 at equivalent light levels. Differences in growth conditions, such

as a shorter light period (12 h) and the medium used may however have contributed to offsets

between our study and prior research. Indeed, when O. tauri was grown under the same irradi-

ances and photoperiod as used here, it displayed comparable growth rates as M. commoda, i.e.,

0.29 ± 0.01 d-1 at low irradiance (6 μmol photon m-2 sec-1) and a μmax of 1.74 ± 0.06 d-1 [52].

Growth data also exist for other prasinophytes, e.g. [53], and the chlorophyte C. reinhardtii
[14,54]. However, even more extensive differences in culturing conditions make comparisons

difficult, urging further comparative studies that use standardized handling, photoperiod and

medium.

FALS values have previously been shown to relate to cell size and carbon content in M. com-
moda-like strain CCMP489 [51]. Our flow cytometry data on M. commoda strain RCC299

showed that the maximum normalized mean FALS and chlorophyll-derived red fluorescence

cell-1 occurred just prior to the end of the light period, regardless of the light level (Fig 2). This

indicates that cell size is the same at dawn, regardless of the light level (also likely reflecting
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cells being in the G1 cell cycle phase), but deviates over the remainder of the diel cycle at the

different irradiances. Overall differences in chlorophyll-derived red fluorescence in cultures

acclimated to different irradiances are consistent with prior work on C. reinhardtii showing

that chlorophyll cell-1 is inversely proportional to irradiance level in light-acclimated cells

[14,54,55]. The variations we observed over the L:D cycle for red fluorescence and FALS cell-1

are similar to those in M. pusilla CCMP490 [56], M. pusilla CCMP1545 [57] and O. tauri [58].

These patterns correlate with cell division and highlight the critical nature of light as a regula-

tor for synchronizing photoautotrophic growth, with timing that varies according to the L:D

program.

Exponentially growing M. commoda cells responded to the HL shift with a rapid increase in

growth rate, that was already manifested 19.5 h after the shift by higher cell abundances than

in controls (Fig 3A). Mean FALS cell-1 increased in a similar way to the control, while mean

red fluorescence cell-1 was significantly lower (by 11.2 ± 4.6%) within 2.5 h of HL exposure

indicating that photoacclimation processes were underway (Fig 3B and 3D). By comparison,

continuous-light grown C. reinhardtii cultures transferred from 75 μmol photons m-2 s-1 to

750 μmol photons m-2 s-1 increased in growth rate from 0.87 d-1 to 2.22 d-1 8 to 12 h after the

shift [59]. In other studies on Chlamydomonas, red fluorescence cell-1 decreased by 20 to 60%,

depending on experiments, during the first 6 h of HL exposure for cultures in continuous light

[60,61] and on a L:D cycle [54]. In the latter study, decreased red fluorescence was associated

with a decline in chlorophyll content, which started as early as 30 min after HL exposure.

Indeed, down-regulation of light-harvesting in response to increased light is the basis of the

current model of photoacclimation and growth in phytoplankton [62–65]. This model involves

a quick acclimation of metabolic processes, especially growth and photosynthesis, the speed of

this process being likely critical for taxa that reside in highly variable aquatic environments.

While the ~6-fold increase of visible light in our HL treatment was beneficial for M. com-
moda growth, the concomitant shift to HL plus UV radiation was detrimental. The UV used

here included UV-A, which is the more abundant species in natural sunlight, and UV-B which

is increasing in some regions due to depletion of the ozone layer [66]. HL+UV had a dramatic

effect on both growth and cell characteristics, i.e. FALS and red fluorescence cell-1 (Fig 4A and

4B). The spectral output of the UV-A bulb used matches the output levels of natural sunlight

between 300 and 340 nm and at higher wavelengths declines to 0 W m-2 [67]. The UV-B out-

put of the bulb used was about 3.5 fold-higher than that in natural sunlight. Both UV types will

have been reduced from the bulb-output level by seawater attenuation in the experimental

quartz flasks as would occur in the surface ocean conditions. Typical wind mixing of ocean

surface waters causes similarly rapid shifts as those performed here. However, it is unlikely

that UV exposure would be of the duration (and UV-B dose, [25]) studied here, which were

designed to trigger physiological and gene expressional changes that could be unambiguously

assigned to the HL+UV treatment. Micromonas populations that are in the upper photic layer

for long periods prior to being shifted even closer to the surface, may be better acclimated for

increased UV exposure than our cultures. Indeed, in C. reinhardtii, pre-acclimation to low lev-

els of UV-B increases survival rates upon a shift to higher UV-B compared to cells that are not

pre-acclimated [68]. Collectively, such studies are important for understanding phytoplankton

responses to life in increasingly stratified water columns, a predicted outcome of global warm-

ing for some oceanic regions [69].

Expression changes associated with the diel cycle and light shifts

Several studies have addressed prasinophyte growth over the diel cycle with respect to timing

of division and cellular characteristics [56–58,70]. Fewer have investigated diel transcriptional
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changes of chloroplast and nuclear genes [57,71], and to our knowledge none have yet

addressed expressional responses in M. commoda or prasinophyte responses to light shifts.

Such studies are important for understanding basic biology of these cells and for future analy-

ses of field metatranscriptome data. Our study followed just 2.5 h of the midday period of L:D

synchronized cells, and therefore primarily addresses how cells respond to a rapid shift into

HL or HL+UV. Caveats remain on the extent to which transcriptional data reflects protein

level data and this affects interpretation of results. For example, rbcL expression levels did not

change between treatments and controls at the same time point or at T0 (S1 Table), and this

gene is known to be regulated at the translational level in C. reinhardtii [72]. More generally,

several Chlamydomonas studies have not found clear diel changes in chloroplast gene expres-

sion [73,74], leading to the proposal that many are under translational control, in sharp con-

trast with patterns in cyanobacteria where nearly all genes are expressed rhythmically (see e.g.

[75,76]). In addition, a comparative proteomic/transcriptomic study of M. pusilla found a sig-

nificant number of hypothetically post-transcriptionally regulated (HPTR) genes, although the

focus was not on chloroplast genes [77]. Finally, the UV exposure used here was clearly inhibi-

tory to growth of M. commoda. Thus, it is important to consider that inhibition of growth

removes an important carbon and energy sink that could influence the acclimation potential

of the cells in our HL+UV treatment. The changes observed in the HL+UV treatment could

therefore reflect more indirect effects of the stressor, short-circuiting acclimation mechanisms

for accommodating UV stress, rather than direct effects. With these caveats in mind, we dis-

cuss the more notable gene expression patterns observed in our study.

Acclimative changes in genes for photosynthesis and light-harvesting

machinery

We investigated a suite of photosynthetic antenna-related proteins, encoded by genes on the

nuclear genome, as well as chloroplast encoded genes involved in photosynthesis. A study on

M. pusilla showed that many components of the photosynthetic machinery encoded on the

nuclear genome that are associated with the structure of PSII and PSI have clear diurnal

expression patterns, with peak expression at the dark-to-light transition [57]. But that study

did not investigate changes in LHC genes or genes on the chloroplast genome. Additionally,

M. pusilla differs from M. commoda in having phytochrome, a light sensor regulatory protein,

which has been implicated in timing of the dawn expression of photosynthetic machinery [57].

The nuclear genomes of both M. pusilla and M. commoda contain genes for chloroplast-tar-

geted PSI-associated LHCs (LHCA1-4, LHCA5-like), minor polypeptides of PSII (LHCB4,

LHCB5.1 also known as CP29 and CP26, respectively; CP24 is absent) and prasinophyte-spe-

cific LHCs (LHCP1, LHCP2.1–2.7, LHCP3, LHCP4) that are likely analogous to the PSII-associ-

ated major LHCB proteins of plants [34,35,78]. Most LHC protein-encoding genes analyzed

here did not change significantly in the control or HL treatment apart from small increases

associated with the diel cycle in LHCP2.4, 2.5 and 2.6 (Fig 5). Exceptions in the HL-shift were

for LHCA1, LHCP2.5, and LHCP3 which showed 2 to 4-fold increases relative to T0 2.5 h after

the shift (Fig A in S1 File), suggesting a central role in adjusting photon collection to a stimula-

tory light-shift. The minimal responses observed for the LHC genes may in part be due to the

midday period investigated. In M. pusilla, nucleus-encoded photosynthesis-related genes

exhibited highest expression early in the day with lower levels at time points similar to those

sampled here (later in the light-period) [57]. Furthermore, as observed here for LHCB5.1,

under HL Arabidopsis, Chlamydomonas and Ostreococcus showed more notable effects on the

minor polypeptides of the PSII antenna, which channel energy towards the reaction centers by

linking the outer LHCII antennae to reaction centers [22,79,80]. In Chlamydomonas,
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significant transcriptional downregulation has been documented for both LHCB4 (CP29), e.g.

by 75–80% within 1 h of HL exposure, and LHCB5 (CP26) under HL stress [59,61,81,82].

Changes in expression levels of M. commoda chloroplast photosynthesis genes were also

minor in HL relative to controls (Fig 5, Fig A in S1 File).

Chloroplast genes involved in translation responded differently in the control and HL than

those directly involved in photosynthetic machinery. No translation-related genes increased in

expression in the control along the time course (which started 4.5 h into the light period), and

most showed diel-based reductions (Fig 5). The same was observed for the HL treatment but

with an earlier onset (Fig 5). Likewise, in O. tauri, the expression of genes encoding chloroplast

ribosomal proteins was shown to be co-regulated during the photoperiod, and to decrease

starting about 3 h after the onset of the light period [71]. Furthermore, O. tauri nuclear- and

chloroplast- ribosomal genes were expressed at different times of the day (i.e., the nucleus

genes were more highly expressed at the end of the dark period) [71], speaking to the funda-

mentally different roles these two gene suites have, and to aspects of autonomy retained by the

plastid.

Finally, the general lack of change in expression of genes coding for energy metabolism pro-

teins in the HL treatment (only atpF declined; Fig 5) indicated that levels of ATP synthase and

cytochrome b6f per chlorophyll were higher in cultures shifted to HL. In C. reinhardtii, only

slight and non-significant changes were observed after a shift to HL in the relative amount of

most proteins coded for by these genes [55]. Moreover, when protein content was normalized

to chlorophyll content, cytochrome b6f and ATP synthase over-accumulated in HL [55]. M.

commoda cells in the HL treatment may therefore have had higher capacity in linear electron

transport which could have produced the increase in ATP production necessary for facilitating

the observed increase in growth rate. Overall, M. commoda transcriptional responses to the HL

treatment were small (Fig 5, Fig A in S1 File) and this is consistent with the 6-fold increase in

light intensity being stimulatory, not photoinhibitory. These results suggest that M. commoda
is well adapted for growth under high light levels as well as rapid shifts in irradiance, as com-

monly encountered in the upper sunlit layer of oceans, and is able to immediately translate

light-availability into increased growth rate.

HL+UV induced responses of photosynthesis and antennae genes

In contrast to results for the controls and HL shift, dramatic reductions were observed for mul-

tiple genes in the HL+UV treatment. Decreases in expression of translation-related genes were

of a larger magnitude in HL+UV than in the HL treatment or the control. Additionally, in HL

+UV most of the six ATP synthase genes showed significantly decreased expression, while the

expression of genes coding for cytochrome b6f were little or un-affected. Cytochrome f is also

considered a stable protein [83–85], potentially explaining the slight decrease of petA gene

expression with regard to the other two pet genes (Fig 5). These results suggest that in M.

commoda cells, UV radiation induces a dramatic reduction of the de novo synthesis of ATP

synthase but not of the b6f complex, possibly implying that ATP production is more strongly

affected by UV. HL+UV also induced an immediate reduction in all major components of the

PSII and PSI associated antennae (all LHCA, LHCB and LHCP genes) even though several PSI

and PSII associated genes were not strongly effected at the transcriptional level (Fig 5). The lat-

ter included psbA which codes for the D1 protein (Fig 5) and is considered the most rapidly

turned-over chloroplast protein, with even faster turn over than nucleus-encoded LHC pro-

teins [86,87]. Our expression data on M. commoda suggest that UV did not significantly alter

D1 synthesis and repair, but could still strongly affect PSII activity, given the large apparent

decrease in chlorophyll-derived red fluorescence cell-1. In C. reinhardtii, UV causes 25% lower
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D1 protein levels after 1.5 h of exposure and also lower levels (to a lesser extent) of the D2 pro-

tein while neither was significantly degraded in controls [88]. PSII activity under UV was also

reduced dramatically (by 72%) compared to the control. Reduction in C. reinhardtii D1 and

D2 protein levels are most severe for non-UV acclimated cells. Cells first acclimated to low lev-

els of UV-B show higher levels and faster re-synthesis of D1 and D2 protein, and greater sur-

vival rates after being shifted to a higher UV-B dose [68]. Our goal here was to identify for the

first time genes involved in the biological responses of M. commoda to HL+UV. The signifi-

cant reduction in chlorophyll-derived red fluorescence cell-1 that accompanied these expres-

sional changes is suggestive of pigment photobleaching, and M. commoda did not divide

during the experiment, even though UV exposure ceased at the end of the light period. These

changes to cell characteristics, growth and transcription are indicative of a massive initial

reprogramming to compensate for the UV dose but nevertheless the changes failed to support

continued growth.

Molecular evidence for LHCSR-based NPQ in Micromonas

Considerable attention has been given to the LHCSR protein [14–16,55,89]. This protein is

responsible for one of the key NPQ mechanisms that allow excess light energy to be dissipated

as heat. Although our RNA-seq data did not meet the criteria for differential expression analy-

sis, the qPCR results suggest that M. commoda’s LHCSR2 is triggered similarly to LHCSR3 in

Chlamydomonas. We observed a modest, transient increase in LHCSR2 expression after 1 h

and a subsequent reduction at T2.5 in HL in M. commoda (Fig 4). Likewise, in Chlamydomonas,
LHCSR3 expression increased within 30 min of transfer to HL and then declined within 1 to 3

h of exposure to HL [20]. LHCSR and a number of other photoprotective LIL genes (PSBS1,

PSBS2, ELIP1, ELIP5 and LHL4) also increased by>10-fold in C. reinhardtii following 1 h

UV-B exposure [68]. Here, HL+UV induced an increase of over 30-fold at T1 and 40-fold by

T2.5 (Fig 5). Our results constitute the first experimental evidence that LHCSR-genes are tran-

scriptionally activated in Micromonas by HL and HL+UV. This suggests that LHCSR-mediated

NPQ plays a role in accommodating increased light-energy (HL treatment) and photoinhibi-

tory stress (HL+UV) in M. commoda and likely prasinophytes as a whole.

Stress-related, lesser known and unique genes exhibiting significant

changes

Nuclear encoded LIL proteins in Micromonas primarily belong to the OHP and ELIP families,

which have different numbers of helices [13,34,78]. In plants and algae, OHPs have one helix

while ELIPs have three helices and are thought to have photoprotective functions involving

potential binding of chlorophylls released during HL stress [1,13,61]. Multiple ELIP genes (six

ELIPs and one FAS-ELIP) are present in the M. commoda genome, raising the question of pos-

sible redundant functions. Here, only M. commoda’s CBR-ELIP7 and FAS-ELIP could be ana-

lyzed (see methods). Both proteins have the three helix structures known from most ELIPs

[13,34] plus additional domains. They exhibited large significant increases in the shift to HL

+UV, but not in the controls or HL. The magnitude of response was lower for the FAS-ELIP,

that encodes a unique protein found thus far only in the Mamiellophyceae based on available

genomic data. It combines the chlorophyll a/b binding domain (at the C-terminus, three heli-

ces) with a Beta-Ig-H3/fasciclin domain (at the N-terminus, following the predicted transit

peptide). Other proteins containing the latter domain are present in M. commoda, but not in

this fused arrangement. In plants and animals, this domain appears to be involved in cell adhe-

sion and development, but a function in single celled organisms has not been described. Neil-

son and Durnford hypothesized that the domain has been co-opted to facilitate protein-
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protein interactions or act as part of a signaling pathway [13]. The responses observed here

constitute the first report of differential expression of a gene encoding a fusion protein with

these domains.

The LHL gene of M. commoda has homology with the LHL4 gene of Chlamydomonas which

encodes a three-helix protein whose expression is thought to be mediated by a blue/UV-A

light receptor [90]. This LIL protein is present in other chlorophytes and prasinophytes but,

unlike ELIPs and OHPs, does not have known homologs in vascular plants [61]. High M. com-
moda LHL expression under the shift to HL+UV (Fig 5) corresponds to responses in C. rein-
hardtii under UV exposure. We also observed a transient increase in expression relative to T0

for the HL treatment. In general, the response of this gene mirrored that of the ELIPs and

OHPs analyzed here in M. commoda.

OHPs are thought to be more strictly related to light stress than ELIPs [12,91]. Here, the

only change observed in the control and HL for the two Micromonas OHP genes was a tran-

sient slight (but significant) decrease in OHP2 1 h into the HL shift. This change was evident

in both the RNA-seq (Fig 5) and qPCR (Fig 4E) data. Thus, it appears that the growth stimula-

tory HL used during our experiments does not induce increased expression of either OHP
gene. However, in the HL+UV treatment we observed large increases in OHP1 (in RNA-seq)

and OHP2 (10- to 50-fold within 2.5 h) transcript levels by both RNA-seq and qPCR. In A.

thaliana, homologs of the M. commoda’s OHP2 are localized in the thylakoid membranes and

the accumulation of OHP2 transcripts (and protein) has so far been associated with HL shifts,

since other stresses such as UV-A, heat, cold, desiccation or oxidative stress did not result in

expressional changes [92]. Other studies have reported up-regulation of the Arabidopsis OHP1
gene under HL [93] and in C. reinhardtii OHP1 (LHL2) was induced within 1 h after a shift

from LL to HL, and then decreased to initial levels within 6 h [61]. While cyanobacteria lack

ELIPs, they do have one-helix proteins (termed HLIPs), and these hli genes increase in expres-

sion under both HL and UV-B stress [11,94,95]. Our results indicate that in M. commoda the

induction of OHP2 is more sensitive to UV radiation than the stimulatory HL used here. Our

data supports the proposal that in eukaryotes OHPs are essential for photoprotection against

UV radiation, which is also thought to activate specific receptors in plants [92].

Changes were also observed for M. commoda genes that have recently described or unchar-

acterized functions. Among chloroplast genes, the protein encoded by ycf12 (Psb30) has now

been demonstrated to serve as a PSII reaction center subunit in C. reinhardtii [96]. We saw a

transient increase in ycf12 expression when cells were shifted to HL and a large reduction in

the HL+UV treatment. These results fit with Ycf12 being required for optimal PSII functioning

under HL. The Ycf1 protein of M. commoda is highly divergent from those of plants, making

assignment of function more tentative than for Ycf12. Ycf1 decreased in expression in associa-

tion with the diel cycle in the control, and this decrease was accelerated in the HL treatment

(transient; Fig 5). These patterns were most similar to those of tufa, which codes for an elonga-

tion factor (Fig 5). In A. thaliana, Ycf1 encodes Tic214, part of the “translocon at the inner

envelope membrane of chloroplasts” (TIC) complex that facilitates transiting of proteins

encoded on the nuclear genome into the chloroplast [97,98]. TIC is necessary for viability in A.

thaliana and presumably other plants and green algae. If Ycf1 does have the same function in

M. commoda, then the fact that its response is similar to that of an elongation factor further

emphasizes the strong diurnal patterns connected to the L:D cycle, timing of translocation to

the chloroplast, and resulting synchronized growth in photosynthetic organisms.

Finally, the N-terminal region of the novel NIRFU fusion protein is homologous to plant

NIR proteins (nitrite reductase). Six electrons in total are required to reduce nitrite to ammo-

nia which can then be used in downstream steps of the nitrogen assimilation pathway of pho-

tosynthetic organisms [99,100]. The electron accumulation in plant NIR occurs in one-
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electron steps because ferredoxin is a one electron donor and the enzyme contains just one fer-

redoxin binding site [99,100]. However, the full NIRFU protein contains NIR fused to pre-

dicted domains for rubredoxin, which can act as an electron transfer protein [101], and the

ferredoxin reductase superfamily domain (FNR, cytochrome b5 reductase-like). Apart from M.

commoda, this fusion protein only appears to be present in O. tauri, B. prasinos and M. pusilla
based on blastp queries against available plant and algal genomes (GenBank nr database).

Although the three-dimensional structure and function of NIRFU is not known, some aspects

of the combination of domains have similarities to bacterial nitrite reductase operons. The

cytochrome c nitrite reductase (nrfA) operon of several non-photosynthetic bacteria contains

not only nrfA (which encodes the catalytic subunit), but also nrfH, encoding a tetraheme cyto-

chrome c [102]. Together, these form a complex that optimizes the efficiency of electron trans-

fer to nitrite, the terminal acceptor [102]. We hypothesize that the additional domains in

NIRFU enhance the efficiency of electron transfer over classical plant NIR proteins, potentially

with both ferredoxin and NAD(P)H dependent nitrite reduction in the chloroplast. The cul-

ture medium used for our M. commoda experiments had nitrate as the primary nitrogen

source. While NIRFU expression went down in HL+UV, consistent with a cessation of growth

and the associated demand for ammonia, NIRFU expression increased dramatically by 1 h in

the HL treatment (note that expression of nitrate reductase could not be evaluated). This may

indicate that these picoprasinophytes use NIRFU to rapidly increase the supply of ammonia to

the nitrogen assimilation pathway, fueling enhanced rates of growth under sudden changes in

light availability.

Conclusions

Our results suggest that M. commoda is well adapted for growth under HL levels encoun-

tered in surface waters of aquatic environments. Photoinhibitory processes due to UV may

be counteracted in part by increased synthesis of LHCSR2, which exhibited >30-fold higher

gene expression, and upregulation of other potential compensatory mechanisms (e.g., prod-

ucts of HSP and LIL genes) that did not change significantly with HL alone. It appears that

M. commoda responds to HL by transient dissipation of excess energy, then by launching

changes in the antennae complex that were manifested in decreased levels of chlorophyll-

derived red-fluorescence per cell within 2.5 hours. Despite a six-fold increase in light inten-

sity, no adjustment was apparent at the transcriptional level in the HL treatment relative to

controls for chloroplast genes (apart from a few components of PSII, including D1 protein,

and translation related proteins), or most antennae related proteins encoded on the nuclear

genome. These results may indicate that post-translational controls act on the gene suites

that did not exhibit expressional changes, such that the RNA-seq was not reflective of down-

stream protein modifications. Overall, we observed an immediate capacity of M. commoda
to accommodate the rapid shift in light level, resulting in increased growth rate on the same

day as the shift in these diel studies. Although further comparative studies with other taxa

are needed, these findings translate to a level of environmental flexibility that may contrib-

ute to the success of M. commoda, and possibly the entire genus, in a variable marine water

column.

Abbreviations

Gene and protein abbreviations are indicated in the following styles: Nuclear encoded pro-

teins: all caps (YCF1); Chloroplast encoded proteins: title case (Ycf1); Nuclear genes: uppercase

italic (YCF1); Chloroplast genes: lowercase italic (ycf1).

Marine eukaryotic algae under light and UV stress

PLOS ONE | DOI:10.1371/journal.pone.0172135 March 9, 2017 21 / 27



Supporting information

S1 File. Supporting Information. This file contains supplementary Fig A and Table A.

(DOCX)

S1 Table. Micromonas commoda (RCC299) chloroplast genes as well as select chloroplast-

targeted and light-harvesting related genes that could be analyzed herein.

(XLS)

Acknowledgments

We thank C. Bachy, C. Berthiaume, E. Demir-Hilton, A. Engman, J. Lake, S. McDonald, M. P.

Simmons, R. M. Welsh and H. M. Wilcox for help with experiments, qPCR design, and/or dis-

cussion of analysis approaches. We are grateful to V. Shankey and Beckman-Coulter Corpora-

tion for loaning us the Epics XL instrument, Pierre Sétif for discussing NIRFU and the

reviewers of the manuscript for constructive comments. This research was supported by a Gor-

don and Betty Moore Foundation Investigator Award (GBMF3788), NSF-IOS0843119 and

DOE-DE-SC0004765 grants to A.Z.W.

Author Contributions

Conceptualization: MLC AZW.

Data curation: MLC MJvB AZW.

Formal analysis: JG MLC MJvB AZW.

Funding acquisition: AZW.

Investigation: MLC ACO MAT.

Methodology: MLC ACO AZW.

Project administration: MLC AZW.

Supervision: MLC AZW.

Validation: JG MLC MJvB.

Visualization: JG MLC AZW.

Writing – original draft: MLC JG AZW FP.

Writing – review & editing: FP ACO MJvB.

References
1. Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, Havaux M (2003) Early light-induced proteins

protect Arabidopsis from photooxidative stress. Proc Natl Acad Sci U S A 100: 4921–4926. doi: 10.

1073/pnas.0736939100 PMID: 12676998

2. Norén H, Svensson P, Stegmark R, Funk C, Adamska I, Andersson B (2003) Expression of the early

light-induced protein but not the PsbS protein is influenced by low temperature and depends on the

developmental stage of the plant in field-grown pea cultivars. Plant, Cell & Environment 26: 245–253.

3. Niyogi KK (1999) Photoprotection revisited: Genetic and molecular approaches. Annu Rev Plant Phy-

siol Plant Mol Biol 50: 333–359. doi: 10.1146/annurev.arplant.50.1.333 PMID: 15012213

4. Green BR (2011) Chloroplast genomes of photosynthetic eukaryotes. Plant J 66: 34–44. doi: 10.1111/

j.1365-313X.2011.04541.x PMID: 21443621

5. Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. American Journal of Botany

91: 1535–1556. doi: 10.3732/ajb.91.10.1535 PMID: 21652308

Marine eukaryotic algae under light and UV stress

PLOS ONE | DOI:10.1371/journal.pone.0172135 March 9, 2017 22 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172135.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0172135.s002
http://dx.doi.org/10.1073/pnas.0736939100
http://dx.doi.org/10.1073/pnas.0736939100
http://www.ncbi.nlm.nih.gov/pubmed/12676998
http://dx.doi.org/10.1146/annurev.arplant.50.1.333
http://www.ncbi.nlm.nih.gov/pubmed/15012213
http://dx.doi.org/10.1111/j.1365-313X.2011.04541.x
http://dx.doi.org/10.1111/j.1365-313X.2011.04541.x
http://www.ncbi.nlm.nih.gov/pubmed/21443621
http://dx.doi.org/10.3732/ajb.91.10.1535
http://www.ncbi.nlm.nih.gov/pubmed/21652308


6. van Baren MJ, Bachy C, Reistetter EN, Purvine SO, Grimwood J, Sudek S, et al. (2016) Evidence-

based green algal genomics reveals marine diversity and ancestral characteristics of land plants. BMC

Genomics 17.

7. Heddad M, Adamska I (2002) The evolution of light stress proteins in photosynthetic organisms. Comp

Funct Genomics 3: 504–510. doi: 10.1002/cfg.221 PMID: 18629257

8. Montane MH, Kloppstech K (2000) The family of light-harvesting-related proteins (LHCs, ELIPs,

HLIPs): was the harvesting of light their primary function? Gene 258: 1–8. PMID: 11111037

9. Heddad M, Noren H, Reiser V, Dunaeva M, Andersson B, Adamska I (2006) Differential expression

and localization of early light-induced proteins in Arabidopsis. Plant Physiol 142: 75–87. doi: 10.1104/

pp.106.081489 PMID: 16829586

10. Meyer G, Kloppstech K (1984) A rapidly light-induced chloroplast protein with a high turnover coded

for by pea nuclear DNA. Eur J Biochem 138: 201–207. PMID: 6692824

11. Dolganov NA, Bhaya D, Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll

a/b binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci U S A 92: 636–640.

PMID: 7831342

12. Adamska I, Kruse E, Kloppstech K (2001) Stable insertion of the early light-induced proteins into etio-

plast membranes requires chlorophyll-alpha. Journal of Biological Chemistry 276: 8582–8587. doi:

10.1074/jbc.M010447200 PMID: 11114311

13. Neilson JA, Durnford DG (2010) Evolutionary distribution of light-harvesting complex-like proteins in

photosynthetic eukaryotes. Genome 53: 68–78. doi: 10.1139/g09-081 PMID: 20130750

14. Peers G, Truong TB, Ostendorf E, Busch A, Elrad D, Grossman AR, et al. (2009) An ancient light-har-

vesting protein is critical for the regulation of algal photosynthesis. Nature 462: 518–U215. doi: 10.

1038/nature08587 PMID: 19940928

15. Bailleul B, Rogato A, de Martino A, Coesel S, Cardol P, Bowler C, et al. (2010) An atypical member of

the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc

Natl Acad Sci U S A 107: 18214–18219. doi: 10.1073/pnas.1007703107 PMID: 20921421

16. Bonente G, Ballottari M, Truong TB, Morosinotto T, Ahn TK, Fleming GR, et al. (2011) Analysis of

LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii.

PLoS Biol 9: e1000577. doi: 10.1371/journal.pbio.1000577 PMID: 21267060

17. Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, et al. (2004) Expression profiling-

based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating

mechanism in Chlamydomonas reinhardtii. Plant Physiology 135: 1595–1607. doi: 10.1104/pp.104.

041400 PMID: 15235119

18. Zhang Z, Shrager J, Jain M, Chang C, Vallon O, Grossman AR (2004) Insights into the survival of

Chlamydomonas reinhardtii during sulfur starvation based on microarray analysis of gene expression.

Eukaryotic Cell 3: 1331–1348. doi: 10.1128/EC.3.5.1331-1348.2004 PMID: 15470261

19. Naumann B, Busch A, Allmer J, Ostendorf E, Zeller M, Kirchhoff H, et al. (2007) Comparative quantita-

tive proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in Chla-

mydomonas reinhardtii. Proteomics 7: 3964–3979. doi: 10.1002/pmic.200700407 PMID: 17922516

20. Ledford HK, Baroli I, Shin JW, Fischer BB, Eggen RIL, Niyogi KK (2004) Comparative profiling of lipid-

soluble antioxidants and transcripts reveals two phases of photo-oxidative stress in a xanthophyll-defi-

cient mutant of Chlamydomonas reinhardtii. Molecular Genetics and Genomics 272: 470–479. doi:

10.1007/s00438-004-1078-5 PMID: 15517390

21. Schmollinger S, Muhlhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, et al. (2014) Nitrogen-sparing

mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabo-

lism. Plant Cell 26: 1410–1435. doi: 10.1105/tpc.113.122523 PMID: 24748044

22. Koziol AG, Borza T, Ishida K, Keeling P, Lee RW, Durnford DG (2007) Tracing the evolution of the

light-harvesting antennae in chlorophyll a/b-containing organisms. Plant Physiol 143: 1802–1816. doi:

10.1104/pp.106.092536 PMID: 17307901

23. Niyogi KK, Truong TB (2014) Evolution of flexible non-photochemical quenching mechanisms that reg-

ulate light harvesting in oxygenic photosynthesis. Current Opinion in Plant Biology 16: 307–314.

24. Castenholz RW, Garcia-Pichel F (2000) Cyanobacterial responses to UV-radiation. In: Whitton BA,

Potts M, editors. Ecology of cyanobacteria: their diversity in time and space. Dordrecht, the Nether-

lands: Kluwer Academic Publishers. pp. 591–611.

25. Kirk JTO (1994) Optics of UV-B radiation in natureal waters. Archiv fur Hydrobiologie Beiheft Ergeb-

nisse der Limnologie 43: 1–16.

26. Massana R (2011) Eukaryotic picoplankton in surface oceans. Annu Rev Microbiol 65: 91–110. doi:

10.1146/annurev-micro-090110-102903 PMID: 21639789

Marine eukaryotic algae under light and UV stress

PLOS ONE | DOI:10.1371/journal.pone.0172135 March 9, 2017 23 / 27

http://dx.doi.org/10.1002/cfg.221
http://www.ncbi.nlm.nih.gov/pubmed/18629257
http://www.ncbi.nlm.nih.gov/pubmed/11111037
http://dx.doi.org/10.1104/pp.106.081489
http://dx.doi.org/10.1104/pp.106.081489
http://www.ncbi.nlm.nih.gov/pubmed/16829586
http://www.ncbi.nlm.nih.gov/pubmed/6692824
http://www.ncbi.nlm.nih.gov/pubmed/7831342
http://dx.doi.org/10.1074/jbc.M010447200
http://www.ncbi.nlm.nih.gov/pubmed/11114311
http://dx.doi.org/10.1139/g09-081
http://www.ncbi.nlm.nih.gov/pubmed/20130750
http://dx.doi.org/10.1038/nature08587
http://dx.doi.org/10.1038/nature08587
http://www.ncbi.nlm.nih.gov/pubmed/19940928
http://dx.doi.org/10.1073/pnas.1007703107
http://www.ncbi.nlm.nih.gov/pubmed/20921421
http://dx.doi.org/10.1371/journal.pbio.1000577
http://www.ncbi.nlm.nih.gov/pubmed/21267060
http://dx.doi.org/10.1104/pp.104.041400
http://dx.doi.org/10.1104/pp.104.041400
http://www.ncbi.nlm.nih.gov/pubmed/15235119
http://dx.doi.org/10.1128/EC.3.5.1331-1348.2004
http://www.ncbi.nlm.nih.gov/pubmed/15470261
http://dx.doi.org/10.1002/pmic.200700407
http://www.ncbi.nlm.nih.gov/pubmed/17922516
http://dx.doi.org/10.1007/s00438-004-1078-5
http://www.ncbi.nlm.nih.gov/pubmed/15517390
http://dx.doi.org/10.1105/tpc.113.122523
http://www.ncbi.nlm.nih.gov/pubmed/24748044
http://dx.doi.org/10.1104/pp.106.092536
http://www.ncbi.nlm.nih.gov/pubmed/17307901
http://dx.doi.org/10.1146/annurev-micro-090110-102903
http://www.ncbi.nlm.nih.gov/pubmed/21639789


27. Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ (2015) Environmental

science. Rethinking the marine carbon cycle: factoring in the multifarious lifestyles of microbes. Sci-

ence 347: 1257594. doi: 10.1126/science.1257594 PMID: 25678667

28. Marin B, Melkonian M (2010) Molecular phylogeny and classification of the Mamiellophyceae class.

nov. (Chlorophyta) based on sequence comparisons of the nuclear- and plastid-encoded rRNA oper-

ons. Protist 161: 304–336. doi: 10.1016/j.protis.2009.10.002 PMID: 20005168

29. Not F, Latasa M, Marie D, Cariou T, Vaulot D, Simon N (2004) A single species, Micromonas pusilla

(Prasinophyceae), dominates the eukaryotic picoplankton in the Western English Channel. Applied

and Environmental Microbiology 70: 4064–4072. doi: 10.1128/AEM.70.7.4064-4072.2004 PMID:

15240284

30. Simmons MP, Bachy C, Sudek S, van Baren MJ, Sudek L, Ares M Jr., et al. (2015) Intron invasions

trace algal speciation and reveal nearly identical Arctic and Antarctic Micromonas populations. Mol

Biol Evol 32: 2219–2235. doi: 10.1093/molbev/msv122 PMID: 25998521

31. Treusch AH, Demir-Hilton E, Vergin KL, Worden AZ, Carlson CA, Donatz MG, et al. (2012) Phyto-

plankton distribution patterns in the northwestern Sargasso Sea revealed by small subunit rRNA

genes from plastids. The ISME Journal 6: 481–492. doi: 10.1038/ismej.2011.117 PMID: 21955994

32. Moreau H, Verhelst B, Couloux A, Derelle E, Rombauts S, Grimsley N, et al. (2012) Gene functionali-

ties and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the

green lineage. Genome Biol 13: R74. doi: 10.1186/gb-2012-13-8-r74 PMID: 22925495

33. Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A, Putnam N, et al. (2007) The tiny eukaryote

Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U

S A 104: 7705–7710. doi: 10.1073/pnas.0611046104 PMID: 17460045

34. Worden AZ, Lee JH, Mock T, Rouze P, Simmons MP, Aerts AL, et al. (2009) Green evolution and

dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:

268–272. doi: 10.1126/science.1167222 PMID: 19359590

35. Six C, Worden AZ, Rodriguez F, Moreau H, Partensky F (2005) New insights into the nature and phy-

logeny of prasinophyte antenna proteins: Ostreococcus tauri, a case study. Mol Biol Evol 22: 2217–

2230. doi: 10.1093/molbev/msi220 PMID: 16049197

36. Slapeta J, Lopez-Garcia P, Moreira D (2006) Global dispersal and ancient cryptic species in the small-

est marine eukaryotes. Molecular Biology and Evolution 23: 23–29. doi: 10.1093/molbev/msj001

PMID: 16120798

37. Keller MD, Selvin RC, Claus W, Guillard RRL (1987) Media for the culturing of oceanic ultraplankton.

Journal of Phycology 23: 633.

38. Kurn N, Chen P, Heath JD, Kopf-Sill A, Stephens KM, Wang S (2005) Novel isothermal, linear nucleic

acid amplification systems for highly multiplexed applications. Clin Chem 51: 1973–1981. doi: 10.

1373/clinchem.2005.053694 PMID: 16123149

39. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioin-

formatics 25: 1754–1760. doi: 10.1093/bioinformatics/btp324 PMID: 19451168

40. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short

DNA sequences to the human genome. Genome Biol 10: R25. doi: 10.1186/gb-2009-10-3-r25 PMID:

19261174

41. R-Core-Team (2015) R: A language and environment for statistical computing. 3 ed. Vienna, Austria:

R Foundation for Statistical Computing

42. McDonald SM, Plant JN, Worden AZ (2010) The mixed lineage nature of nitrogen transport and assim-

ilation in marine eukaryotic phytoplankton: a case study of Micromonas. Mol Biol Evol 27: 2268–2283.

doi: 10.1093/molbev/msq113 PMID: 20457585

43. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative

PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408. doi: 10.1006/meth.2001.1262

PMID: 11846609

44. Smith DR (2013) RNA-Seq data: a goldmine for organelle research. Brief Funct Genomics 12: 454–

456. doi: 10.1093/bfgp/els066 PMID: 23334532

45. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. (2012) Differential gene and transcript

expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7: 562–578. doi:

10.1038/nprot.2012.016 PMID: 22383036

46. Terada Y, Aoki H, Tanaka T, Morikawa H, Ida S (1995) Cloning and nucleotide sequence of a leaf fer-

redoxin-nitrite reductase cDNA of rice. Biosci Biotechnol Biochem 59: 2183–2185. PMID: 8541663

47. Foulon E, Not F, Jalabert F, Cariou T, Massana R, Simon N (2008) Ecological niche partitioning in the

picoplanktonic green alga Micromonas pusilla: evidence from environmental surveys using

Marine eukaryotic algae under light and UV stress

PLOS ONE | DOI:10.1371/journal.pone.0172135 March 9, 2017 24 / 27

http://dx.doi.org/10.1126/science.1257594
http://www.ncbi.nlm.nih.gov/pubmed/25678667
http://dx.doi.org/10.1016/j.protis.2009.10.002
http://www.ncbi.nlm.nih.gov/pubmed/20005168
http://dx.doi.org/10.1128/AEM.70.7.4064-4072.2004
http://www.ncbi.nlm.nih.gov/pubmed/15240284
http://dx.doi.org/10.1093/molbev/msv122
http://www.ncbi.nlm.nih.gov/pubmed/25998521
http://dx.doi.org/10.1038/ismej.2011.117
http://www.ncbi.nlm.nih.gov/pubmed/21955994
http://dx.doi.org/10.1186/gb-2012-13-8-r74
http://www.ncbi.nlm.nih.gov/pubmed/22925495
http://dx.doi.org/10.1073/pnas.0611046104
http://www.ncbi.nlm.nih.gov/pubmed/17460045
http://dx.doi.org/10.1126/science.1167222
http://www.ncbi.nlm.nih.gov/pubmed/19359590
http://dx.doi.org/10.1093/molbev/msi220
http://www.ncbi.nlm.nih.gov/pubmed/16049197
http://dx.doi.org/10.1093/molbev/msj001
http://www.ncbi.nlm.nih.gov/pubmed/16120798
http://dx.doi.org/10.1373/clinchem.2005.053694
http://dx.doi.org/10.1373/clinchem.2005.053694
http://www.ncbi.nlm.nih.gov/pubmed/16123149
http://dx.doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://www.ncbi.nlm.nih.gov/pubmed/19261174
http://dx.doi.org/10.1093/molbev/msq113
http://www.ncbi.nlm.nih.gov/pubmed/20457585
http://dx.doi.org/10.1006/meth.2001.1262
http://www.ncbi.nlm.nih.gov/pubmed/11846609
http://dx.doi.org/10.1093/bfgp/els066
http://www.ncbi.nlm.nih.gov/pubmed/23334532
http://dx.doi.org/10.1038/nprot.2012.016
http://www.ncbi.nlm.nih.gov/pubmed/22383036
http://www.ncbi.nlm.nih.gov/pubmed/8541663


phylogenetic probes. Environ Microbiol 10: 2433–2443. doi: 10.1111/j.1462-2920.2008.01673.x

PMID: 18537812

48. Simmons MP, Sudek S, Monier A, Limardo AJ, Jimenez V, Perle CR, et al. (2016) Abundance and bio-

geography of picoprasinophyte ecotypes and other phytoplankton in the Eastern North Pacific Ocean

Applied and Environmental Microbiology 82: 1693–1705. doi: 10.1128/AEM.02730-15 PMID:

26729718

49. Rodriguez F, Derelle E, Guillou L, Le Gall F, Vaulot D, Moreau H (2005) Ecotype diversity in the marine

picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environmental Microbiology 7: 853–

859. doi: 10.1111/j.1462-2920.2005.00758.x PMID: 15892704

50. Six C, Finkel ZV, Rodriguez F, Marie D, Partensky F, Campbell DA (2008) Contrasting photoacclima-

tion costs in ecotypes of the marine eukaryotic picoplankter Ostreococcus. Limnology and Oceanogra-

phy 53: 255–265.

51. DuRand M, Green R, Sosik H, Olson R (2002) Diel variations in optical properties of Micromonas

pusilla (Prasinophyceae). Journal of Phycology 38: 1132–1142.

52. Demir-Hilton E, Sudek S, Cuvelier ML, Gentemann C, Zehr JP, Worden AZ (2011) Global distribution

patterns of distinct clades of the photosynthetic picoeukaryote Ostreococcus. The ISME Journal 5:

1095–1107. doi: 10.1038/ismej.2010.209 PMID: 21289652

53. Iriarte A, Purdie DA (1993) Photosynthesis and growth response of the oceanic picoplankter Pycno-

coccus provasolii Guillard (clone a48-23) (Chlorophyta) to variations in irradiance, photoperiod and

temperature J Exp Mar Biol Ecol 168: 239–251.

54. Davis M, Fiehn O, Durnford DG (2013) Metabolic acclimation to excess light intensity in Chlamydomo-

nas reinhardtii. Plant, Cell & Environment 36: 1391–1405.

55. Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M (2012) Acclimation of Chlamydomonas rein-

hardtii to different growth irradiances. J Biol Chem 287: 5833–5847. doi: 10.1074/jbc.M111.304279

PMID: 22205699

56. Jacquet S, Partensky F, Lennon J-F, Vaulot D (2001) Diel patterns of growth and division in marine

picoplankton in culture Journal of Phycology 37: 357–369.

57. Duanmu D, Bachy C, Sudek S, Wong CH, Jimenez V, Rockwell NC, et al. (2014) Marine algae and

land plants share conserved phytochrome signaling systems. Proc Natl Acad Sci U S A 111: 15827–

15832. doi: 10.1073/pnas.1416751111 PMID: 25267653

58. Farinas B, Mary C, Manes CLD, Bhaud Y, Peaucellier G, Moreau H (2006) Natural synchronisation for

the study of cell division in the green unicellular alga Ostreococcus tauri. Plant Molecular Biology 60:

277–292. doi: 10.1007/s11103-005-4066-1 PMID: 16429264

59. Durnford DG, Price JA, McKim SM, Sarchfield ML (2003) Light-harvesting complex gene expression is

controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in

Chlamydomonas reinhardtii. Physiologia Plantarum 118: 193–205.

60. Baroli I, Gutman BL, Ledford HK, Shin JW, Chin BL, Havaux M, et al. (2004) Photo-oxidative stress in

a xanthophyll-deficient mutant of Chlamydomonas. J Biol Chem 279: 6337–6344. doi: 10.1074/jbc.

M312919200 PMID: 14665619

61. Teramoto H, Itoh T, Ono T (2004) High-intensity-light-dependent and transient expression of new

genes encoding distant relatives of light-harvesting chlorophyll-a/b proteins in Chlamydomonas rein-

hardtii. Plant Cell Physiology 45: 1221–1232. doi: 10.1093/pcp/pch157 PMID: 15509845

62. Geider RJ, MacIntyre HL, Kana TM (1998) A dynamic regulatory model of phytoplanktonic acclimation

to light, nutrients, and temperature. Limnology and Oceanography 43: 679–694.

63. Anning T, MacIntyre HL, Pratt SM, Sammes PJ, Gibb S, Geider RJ (2000) Photoacclimation in the

marine diatom Skeletonema costatum. Limnology and Oceanography 45: 1807–1817.

64. MacIntyre HL, Kana TM, Anning T, Geider RJ (2002) Photoacclimation of photosynthesis irradiance

response curves and photosynthetic pigments in microalgae and cyanobacteria. Journal of Phycology

38: 17–38.

65. Post AF, Dubinsky Z, Wyman K, Falkowski PG (1984) Kinetics of light-intensity adaptation in a marine

planktonic diatom. Marine Biology 83: 231–238.

66. Kataria S, Jajoo A, Guruprasad KN (2014) Impact of increasing Ultraviolet-B (UV-B) radiation on pho-

tosynthetic processes. J Photochem Photobiol B 137: 55–66. doi: 10.1016/j.jphotobiol.2014.02.004

PMID: 24725638

67. (2012) Technical Bulletin LU-8160. internet: Q-Lab Corporation.

68. Tilbrook K, Dubois M, Crocco CD, Yin R, Chappuis R, Allorent G, et al. (2016) UV-B Perception and

Acclimation in Chlamydomonas reinhardtii. Plant Cell 28: 966–983. doi: 10.1105/tpc.15.00287 PMID:

27020958

Marine eukaryotic algae under light and UV stress

PLOS ONE | DOI:10.1371/journal.pone.0172135 March 9, 2017 25 / 27

http://dx.doi.org/10.1111/j.1462-2920.2008.01673.x
http://www.ncbi.nlm.nih.gov/pubmed/18537812
http://dx.doi.org/10.1128/AEM.02730-15
http://www.ncbi.nlm.nih.gov/pubmed/26729718
http://dx.doi.org/10.1111/j.1462-2920.2005.00758.x
http://www.ncbi.nlm.nih.gov/pubmed/15892704
http://dx.doi.org/10.1038/ismej.2010.209
http://www.ncbi.nlm.nih.gov/pubmed/21289652
http://dx.doi.org/10.1074/jbc.M111.304279
http://www.ncbi.nlm.nih.gov/pubmed/22205699
http://dx.doi.org/10.1073/pnas.1416751111
http://www.ncbi.nlm.nih.gov/pubmed/25267653
http://dx.doi.org/10.1007/s11103-005-4066-1
http://www.ncbi.nlm.nih.gov/pubmed/16429264
http://dx.doi.org/10.1074/jbc.M312919200
http://dx.doi.org/10.1074/jbc.M312919200
http://www.ncbi.nlm.nih.gov/pubmed/14665619
http://dx.doi.org/10.1093/pcp/pch157
http://www.ncbi.nlm.nih.gov/pubmed/15509845
http://dx.doi.org/10.1016/j.jphotobiol.2014.02.004
http://www.ncbi.nlm.nih.gov/pubmed/24725638
http://dx.doi.org/10.1105/tpc.15.00287
http://www.ncbi.nlm.nih.gov/pubmed/27020958


69. Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, et al. (2013) Present and future

global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl

Acad Sci U S A 110: 9824–9829. doi: 10.1073/pnas.1307701110 PMID: 23703908

70. Moulager M, Monnier A, Jesson B, Bouvet R, Mosser J, Schwartz C, et al. (2007) Light-dependent reg-

ulation of cell division in Ostreococcus: evidence for a major transcriptional input. Plant Physiol 144:

1360–1369. doi: 10.1104/pp.107.096149 PMID: 17535824

71. Monnier A, Liverani S, Bouvet R, Jesson B, Smith JQ, Mosser J, et al. (2010) Orchestrated transcrip-

tion of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles.

BMC Genomics 11: 192. doi: 10.1186/1471-2164-11-192 PMID: 20307298

72. Cohen I, Knopf JA, Irihimovitch V, Shapira M (2005) A proposed mechanism for the inhibitory effects

of oxidative stress on Rubisco assembly and its subunit expression. Plant Physiology 137: 738–746.

doi: 10.1104/pp.104.056341 PMID: 15681660

73. Kucho K, Okamoto K, Tabata S, Fukuzawa H, Ishiura M (2005) Identification of novel clock-controlled

genes by cDNA macroarray analysis in Chlamydomonas reinhardtii. Plant Molecular Biology 57: 889–

906. doi: 10.1007/s11103-005-3248-1 PMID: 15952072

74. Lee J, Herrin DL (2002) Assessing the relative importance of light and the circadian clock in controlling

chloroplast translation in Chlamydomonas reinhardtii. Photosynth Res 72: 295–306. doi: 10.1023/

A:1019881306640 PMID: 16228528

75. Zinser ER, Lindell D, Johnson ZI, Futschik ME, Steglich C, Coleman ML, et al. (2009) Choreography of

the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, Prochlorococcus.

PLoS ONE 4: e5135. doi: 10.1371/journal.pone.0005135 PMID: 19352512

76. Ito H, Mutsuda M, Murayama Y, Tomita J, Hosokawa N, Terauchi K, et al. (2009) Cyanobacterial daily

life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elon-

gatus. Proc Natl Acad Sci U S A 106: 14168–14173. doi: 10.1073/pnas.0902587106 PMID: 19666549

77. Waltman PH, Guo J, Reistetter EN, Purvine S, Ansong CK, van Baren MJ, et al. (2016) Identifying

aspects of the post-transcriptional program governing the proteome of the green alga Micromonas

pusilla. PLoS One 11: e0155839. doi: 10.1371/journal.pone.0155839 PMID: 27434306

78. Neilson JA, Durnford DG (2010) Structural and functional diversification of the light-harvesting com-

plexes in photosynthetic eukaryotes. Photosynth Res 106: 57–71. doi: 10.1007/s11120-010-9576-2

PMID: 20596891

79. Swingley WD, Iwai M, Chen Y, Ozawa S, Takizawa K, Takahashi Y, et al. (2010) Characterization of

photosystem I antenna proteins in the prasinophyte Ostreococcus tauri. Biochim Biophys Acta 1797:

1458–1464. doi: 10.1016/j.bbabio.2010.04.017 PMID: 20457235

80. Andersson B, Aro EM (2001) Photodamage and D1 protein turnover in photosystem II. In: Andersson

B, Aro EM, editors. Photosynthesis and Respiration-Regulation of Photosynthesis. Dordrecht, The

Netherlands: Kluwer Academic Publishers. pp. 377–393.

81. Teramoto H, Nakamori A, Minagawa J, Ono TA (2002) Light-intensity-dependent expression of Lhc

gene family encoding light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas

reinhardtii. Plant Physiol 130: 325–333. doi: 10.1104/pp.004622 PMID: 12226512

82. McKim SM, Durnford DG (2006) Translational regulation of light-harvesting complex expression during

photoacclimation to high-light in Chlamydomonas reinhardtii. Plant Physiol Biochem 44: 857–865. doi:

10.1016/j.plaphy.2006.10.018 PMID: 17097295

83. Choquet Y, Stern DB, Wostrikoff K, Kuras R, Girard-Bascou J, Wollman FA (1998) Translation of cyto-

chrome f is autoregulated through the 5 ’ untranslated region of petA mRNA in Chlamydomonas chlo-

roplasts. Proceedings of the National Academy of Sciences of the United States of America 95: 4380–

4385. PMID: 9539745

84. Kuras R, Wollman FA (1994) The assembly of cytochrome b6/f complexes: an approach using genetic

transformation of the green alga Chlamydomonas reinhardtii. EMBO J 13: 1019–1027. PMID:

8131736

85. Wostrikoff K, Girard-Bascou J, Wollman FA, Choquet Y (2004) Biogenesis of PSI involves a cascade

of translational autoregulation in the chloroplast of Chlamydomonas. EMBO J 23: 2696–2705. doi: 10.

1038/sj.emboj.7600266 PMID: 15192706

86. Shapira M, Lers A, Heifetz PB, Irihimovitz V, Osmond CB, Gillham NW, et al. (1997) Differential regula-

tion of chloroplast gene expression in Chlamydomonas reinhardtii during photoacclimation: light stress

transiently suppresses synthesis of the Rubisco LSU protein while enhancing synthesis of the PS II D1

protein. Plant Mol Biol 33: 1001–1011. PMID: 9154982

87. Yoshioka-Nishimura M (2016) Close relations between the PSII repair cycle and thylakoid membrane

dynamics. Plant Cell Physiol.

Marine eukaryotic algae under light and UV stress

PLOS ONE | DOI:10.1371/journal.pone.0172135 March 9, 2017 26 / 27

http://dx.doi.org/10.1073/pnas.1307701110
http://www.ncbi.nlm.nih.gov/pubmed/23703908
http://dx.doi.org/10.1104/pp.107.096149
http://www.ncbi.nlm.nih.gov/pubmed/17535824
http://dx.doi.org/10.1186/1471-2164-11-192
http://www.ncbi.nlm.nih.gov/pubmed/20307298
http://dx.doi.org/10.1104/pp.104.056341
http://www.ncbi.nlm.nih.gov/pubmed/15681660
http://dx.doi.org/10.1007/s11103-005-3248-1
http://www.ncbi.nlm.nih.gov/pubmed/15952072
http://dx.doi.org/10.1023/A:1019881306640
http://dx.doi.org/10.1023/A:1019881306640
http://www.ncbi.nlm.nih.gov/pubmed/16228528
http://dx.doi.org/10.1371/journal.pone.0005135
http://www.ncbi.nlm.nih.gov/pubmed/19352512
http://dx.doi.org/10.1073/pnas.0902587106
http://www.ncbi.nlm.nih.gov/pubmed/19666549
http://dx.doi.org/10.1371/journal.pone.0155839
http://www.ncbi.nlm.nih.gov/pubmed/27434306
http://dx.doi.org/10.1007/s11120-010-9576-2
http://www.ncbi.nlm.nih.gov/pubmed/20596891
http://dx.doi.org/10.1016/j.bbabio.2010.04.017
http://www.ncbi.nlm.nih.gov/pubmed/20457235
http://dx.doi.org/10.1104/pp.004622
http://www.ncbi.nlm.nih.gov/pubmed/12226512
http://dx.doi.org/10.1016/j.plaphy.2006.10.018
http://www.ncbi.nlm.nih.gov/pubmed/17097295
http://www.ncbi.nlm.nih.gov/pubmed/9539745
http://www.ncbi.nlm.nih.gov/pubmed/8131736
http://dx.doi.org/10.1038/sj.emboj.7600266
http://dx.doi.org/10.1038/sj.emboj.7600266
http://www.ncbi.nlm.nih.gov/pubmed/15192706
http://www.ncbi.nlm.nih.gov/pubmed/9154982


88. Chaturvedi R, Shyam R (2000) Degradation and de novo synthesis of D1 protein and psbA transcript

levels in Chlamydomonas reinhardtii during UV-B inactivation of photosynthesis and its reactivation.

Journal of Biosciences 25: 65–71. PMID: 10824200

89. Pinnola A, Cazzaniga S, Alboresi A, Nevo R, Levin-Zaidman S, Reich Z, et al. (2015) Light-harvesting

complex stress-related proteins catalyze excess energy dissipation in both photosystems of Physco-

mitrella patens. The Plant Cell 27: 3213–3227. doi: 10.1105/tpc.15.00443 PMID: 26508763

90. Teramoto H, Ishii A, Kimura Y, Hasegawa K, Nakazawa S, Nakamura T, et al. (2006) Action spectrum

for expression of the high intensity light-inducible Lhc-like gene Lhl4 in the green alga Chlamydomonas

reinhardtii. Plant Cell Physiol 47: 419–425. doi: 10.1093/pcp/pcj009 PMID: 16418228

91. Kimura M, Yamamoto YY, Seki M, Sakurai T, Sato M, Abe T, et al. (2003) Identification of Arabidopsis

genes regulated by high light-stress using cDNA microarray. Photochemistry and Photobiology 77:

226–233. PMID: 12785063

92. Andersson U, Heddad M, Adamska I (2003) Light stress-induced one-helix protein of the chlorophyll a/

b-binding family associated with photosystem I. Plant Physiol 132: 811–820. doi: 10.1104/pp.102.

019281 PMID: 12805611

93. Jansson S, Andersson J, Jung Kim S, Jackowski G (2000) An Arabidopsis thaliana protein homolo-

gous to cyanobacterial high-light-inducible proteins. Plant Molecular Biology 42: 345–351. PMID:

10794534

94. He Q, Dolganov N, Bjorkman O, Grossman AR (2001) The high light-inducible polypeptides in Syne-

chocystis PCC6803. Expression and function in high light. J Biol Chem 276: 306–314. doi: 10.1074/

jbc.M008686200 PMID: 11024039

95. Huang L, McCluskey MP, Ni H, LaRossa RA (2002) Global gene expression profiles of the cyanobac-

terium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J Bac-

teriol 184: 6845–6858. doi: 10.1128/JB.184.24.6845-6858.2002 PMID: 12446635

96. Inoue-Kashino N, Kashino Y, Takahashi Y (2011) Psb30 is a photosystem II reaction center subunit

and is required for optimal growth in high light in Chlamydomonas reinhardtii. J Photochem Photobiol

B 104: 220–228. doi: 10.1016/j.jphotobiol.2011.01.024 PMID: 21356599
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