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ABSTRACT
We study the possibility of obtaining power spectrum of gas velocity in the turbulent interstellar
medium from spatial correlation of velocity centroids (VCs) of optically thick emission lines.
Combining this study with the earlier studies of centroids in Esquivel & Lazarian, we conclude
that centroids are applicable for studies of subsonic/transonic turbulence for sufficiently small
line-of-sight (LOS) separations at which self-absorption does not affect correlation scalings.
At larger LOS separations where self-absorption becomes important, we find that there is a
range of scales over which VC correlation demonstrates the universal scaling, similar to the
effect found in the velocity channel analysis (VCA). In other words, for large absorptions the
VCs lose their ability to reflect the spectra of turbulence. We develop analytical formalism
that relates statistical properties of underlying magnetohydrodynamical (MHD) turbulence
to observable scaling and anisotropy of VC correlations arising from Alfvén, slow and fast
modes that constitute the compressible MHD modes, and show how the VC anisotropy can
be used to find the media magnetization as well as to identify and separate the contributions
from these MHD modes. Our study demonstrates that VCs are complementary to the VCA.
In order to study turbulent volume with insufficient resolution of single-dish telescopes, we
demonstrate how the studies of anisotropy can be performed using interferometers. We also
suggest that restricted VC can be constructed for absorption lines by integrating LOS velocity
weighted by the optical depth. We discuss the requirements for applicability of this approach.

Key words: magnetic fields – turbulence.

1 IN T RO D U C T I O N

The interstellar medium (ISM) is magnetized and turbulent. Obser-
vations of non-thermal Doppler broadening of spectral lines, fluc-
tuations of density and synchrotron emission (see reviews by Cho,
Lazarian & Vishniac 2003; Elmegreen & Scalo 2004; Mac Low &
Klessen 2004; Ballesteros-Paredes et al. 2007; McKee & Ostriker
2007; Lazarian 2009) are some cases that suggest the ubiquity of
magnetohydrodynamic (MHD) turbulence in the ISM. Moreover,
the estimated Reynolds number in the ISM is of the order of 108,
suggesting turbulent flows which are possibly driven by various
causes such as supernova explosion and magnetorotational instabil-
ities (Mac Low & Klessen 2004). Thus, MHD turbulence is of key
importance for star formation (Federrath & Klessen 2012; Federrath
2013; Salim, Federrath & Kewley 2015), propagation and accelera-
tion of cosmic rays and other fundamental astrophysical processes
(see Brandenburg & Lazarian 2013 and references therein).

� E-mail: dkandel@ualberta.ca (DK); alazarian@facstaff.wisc.edu (AL);
pogosyan@ualberta.ca (DP)

Understanding the interstellar turbulence requires one to success-
fully study the statistics of underlying turbulent field, in particular
to obtain the velocity and density spectrum of the turbulent field.
One of the frequently used techniques to obtain velocity spectra
using spectral lines is velocity centroids (VCs), which are first mo-
ments of spectral line (see Münch & Wheelon 1958; Kleiner &
Dickman 1985; O’dell & Castaneda 1987; Miesch, Scalo & Bally
1999). Esquivel & Lazarian (2005) studied the extent up to which
VCs correctly reflect the turbulence velocity spectrum. Numerical
studies (see Esquivel & Lazarian 2005; Esquivel et al. 2007) have
later shown that the spectrum can be obtained adequately correctly
for subsonic turbulence, but is significantly distorted for supersonic
turbulence. The former property of VC was found to be complemen-
tary to the properties of the two more recent techniques based on
the analytical description of turbulence, namely, velocity channel
analysis (VCA; Lazarian & Pogosyan 2000, 2004, hereafter LP00
and LP04, respectively) and velocity coordinate spectrum (VCS;
Lazarian & Pogosyan 2006, 2008, hereafter LP06 and LP08, re-
spectively). The findings of those papers suggest that studies of
subsonic turbulence are possible only for heavier species moving
with the flow, e.g. heavy ions, atoms and molecules moving together
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with atomic or molecular hydrogen. The analytical description that
was at the core of the VCA and VCS techniques made them advan-
tageous compared to VCs, which were studied only numerically.

The VCA technique has been successfully tested and elaborated
in a number of subsequent papers (Lazarian et al. 2001; Chepurnov
& Lazarian 2009; Burkhart et al. 2013) and was successfully applied
to a number of observations (see an incomplete list in Lazarian
2009). In terms of the spectra study, the VCA technique suggests
a way of disentangling velocity and density contributions to the
channel maps through varying the thickness of the corresponding
maps. This technique has been successfully applied to H I and CO
data in e.g. Padoan et al. (2009), Chepurnov & Lazarian (2010) and
Chepurnov et al. (2015) to obtain velocity spectra.

Velocity and density spectra do not provide a complete descrip-
tion of an underlying turbulent field, particularly in a magnetized
plasma. MHD turbulence is known to be anisotropic with magnetic
field defining the direction of anisotropy (Montgomery & Turner
1981; Shebalin, Matthaeus & Montgomery 1983; Higdon 1984).
In this regard, apart from spectra, the direction of magnetic field
and magnetization can also be studied with the position–position–
velocity (PPV) data. The first demonstration of this possibility of
obtaining magnetic field direction was given in Lazarian, Pogosyan
& Esquivel (2002), which was followed by the subsequent empirical
studies in this direction (e.g. Esquivel & Lazarian 2011; Burkhart
et al. 2014). The research based on analytical studies was carried out
not with spectroscopic, but synchrotron data. Lazarian & Pogosyan
(2012, 2016, hereafter LP12 and LP16, respectively) carried out
the analytical description of synchrotron intensity and polarization
fluctuation for the model of turbulence containing Alfvén, fast and
slow mode cascades (see Brandenburg & Lazarian 2013 and refer-
ences therein). The analytical description of anisotropies in LP12
and LP16 allowed us to relate the analytical predictions of magneti-
zation of the media and the observed anisotropy of the synchrotron
polarization and intensity fluctuations. The approach in these works
was used in Kandel, Lazarian & Pogosyan (2016, hereafter KLP) to
provide the analytical description of the anisotropies in PPV space,
extending the VCA in the case of anisotropic turbulence. The study
in KLP provides the foundation for our present study of anisotropy
using VC. The use of VCs for studying the turbulence anisotropy
and thus determining the direction of magnetic field with spectro-
scopic data was suggested and elaborated in Esquivel & Lazarian
(2005, 2011) and Burkhart et al. (2014). The numerical simulations
in those works showed this to be a powerful technique for studying
media magnetization. However, the technique stayed empirical in
that sense being similar to its counterpart that uses principal compo-
nent analysis (PCA; Heyer & Peter 1997). In this paper, we provide
a theoretical study of turbulence anisotropies using VCs.

In this paper, we aim to present a comprehensive study of VCs by
extending centroids to study turbulence in a self-absorbing medium,
as well as with absorption lines. We also present a formulation of
centroids anisotropy in order to study anisotropy of an underlying
MHD turbulence. The structure of our paper is as follows: in Section
2.1, we review important expressions of centroids through PPV
space formalism, which we extend in Section 3 to describe the
centroid statistics in the presence of self-absorption. In Section 4,
we describe the usefulness and limitations of centroids in the case
of absorption lines. In Section 5, we develop a general formalism to
study turbulence anisotropies through centroids, and we apply this
formalism to specific MHD modes in Section 6. In Section 7, we
show how interferometric data can be used to study turbulence using
centroids technique. The major findings of the paper are summarized
in Section 8, and comparisons between VCA and centroids are

made in Section 9. The practical issues of turbulence studies using
centroids are presented in Section 10. In Section 11, we discuss
about the foundation of our technique, the assumptions we used
and the range of applicability of centroids; and relate our study
with other existing technique. Finally, we summarize our important
findings in Section 12.

2 V E L O C I T Y C E N T RO I D S

The in situ point-wise measurements in XYZ space are not available
with spectroscopic measurements. Therefore, measurements of the
intensity of emissions are defined in PPV space or XYV volume,
where the turbulence information along the z-axis is subject to a
non-linear transformation due to the mapping to the line-of-sight
(LOS) velocity axis. Doppler shifts are affected only by the LOS
(which we assume to be aligned with z-axis) component of turbulent
velocities, which to simplify our notations, we denote as v (instead
of vz). All the relevant notations used in this paper are presented in
Table A1.

The theory of intensity fluctuations in PPV space was pioneered
in LP00 and was later extended for special cases in LP04, LP06,
LP08 as well as in the anisotropy studies in KLP. In this paper, we
work in PPV space to study how the VCs reflect velocity spectra
as well as anisotropic nature of the velocity and density statistics in
magnetized turbulence. In this section, we begin to develop frame-
work to study centroids in the presence of self-absorption. For that
we first derive the centroid correlation as well as structure function
through PPV space. The description of centroids in PPV space turns
out to be valuable to understand the effects of self-absorption on
centroids.

Before starting formal derivations, we assume turbulence to be
homogeneous and isotropic in Sections 2 and 4, while the as-
sumption of isotropy will be relaxed in Sections 5 and 6 to study
anisotropies due to magnetization of a turbulent media. Further-
more, we assume that the statistical measures such as structure
function and correlation functions of velocity and density fluctua-
tions to obey power-law behaviour on scale, i.e. ∝ r−p. Fluctuations
whose most power is on the large scales are called steep, while
those whose most power is on the small scales are called shal-
low. A major difference between correlation function and struc-
ture function is that, while the structure function at some scale r
is determined by the integrated power of fluctuations over scales
smaller than r, the correlation function is determined by the integral
of the power over scales larger than r. Therefore, the correlation
function is more appropriate to use for shallow spectra, while the
structure function is more appropriate for steep spectra (Monin, Ya-
glom & Lumley 1975). Our derivation is based for steep velocity
spectra, for which we assume LOS -projected structure function
to be of the form Dz(r) ∼ r−ν . For shallow density spectra we
use ξρ(r) ∼ 〈ρ〉2 + 〈δρ2〉(r/rc)−νρ , while for steep spectra we use
ξρ(r) ∼ 〈ρ〉2 + 〈δρ2〉 − 〈δρ2〉(r/rc)−νρ , where rc is the correlation
length of the density field. In the case of shallow spectra, the dy-
namical range exists at r > rc, for steep spectra, the dynamical range
exists at r < rc.

The centroid in PPV space is the moment of intensity defined as
(see Miesch & Bally 1994)

CN (X) =
∫

dv1 v1Iv1(X)∫
dv1 Iv1(X)

, (1)

where Iv1 is the spectral intensity and v1 is the LOS velocity. By
solving one-dimensional radiative transfer equation in the case of
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Study of velocity centroids 3619

Figure 1. Schematic showing geometrical differences between construction of VCA and of centroids. Left-hand panel: construction of thin-slice VCA. Only
channels of thin total velocity width δv need to be used to find the intensity. Central panel: construction of thick-slice VCA. Effectively, integration over the
entire line width is carried out to find intensity. Right-hand panel: construction of VCs. Velocity-weighted moment of intensity is constructed and integrated
over entire line width.

Table 1. Different types of centroids.

Type of centroids Definition Structure function

Normalized centroid CN (X) =
∫

dv1 v1Iv1(X)∫
dv1 Iv1(X)

Not used in this paper

Unnormalized centroid C(X) = ∫
dv1 v1Iv1(X) Equation (15)

Modified centroids Only structure function is defined Equation (69)
Restricted centroidsa Equation (32) Equation (33)

Note. aRestricted centroids are used for saturated absorption lines.

self-absorbing emission in spectral lines, one can obtain the spectral
intensity as (see LP04)

Iv(X) = ε

α

[
1 − e−αρs(X,v)

]
, (2)

where ε is the emissivity coefficient, α is the self-absorption coeffi-
cient, v is the LOS velocity, X is the sky-projected two-dimensional
position vector, ρs is the PPV space density given by

ρs(X, v) =
∫

dz ρ(x)	(v − u(x)), (3)

with x is the three-dimensional position vector of a turbulent point,
	(v − u(x)) being the Maxwell’s distribution of the thermal com-
ponent of LOS velocity, and u(x) being the LOS turbulent velocity.

Due to presence of denominator term in the definition of cen-
troids in equation (1), CM (X) is non-linear function of I, which
complicates relation between statistics of centroids and intensity.
To remedy this difficulty, Lazarian & Esquivel (2003, henceforth
LE03) introduced ‘unnormalized’ velocity centroids (UVCs) de-
fined as

C(X) =
∫

dv1 v1Iv1(X). (4)

The geometric construction of UVC is presented in the right-hand
panel of Fig. 1. A summary of different types of centroids is pre-
sented in Table 1. In all the subsequent sections, we carry out
analysis with unnormalized centroids.

2.1 Centroids for optically thin emission lines

In this section, we first review unnormalized centroids in the case
when self-absorption is negligible. In this case, equation (2) gives

Iv(X) = ερs(X, v), (5)

and, therefore equation (4) gives

C(X) = ε

∫
dv vρs(X, v). (6)

The usual approach in the study of centroids is to work in position-
position-position space rather than PPV space. This can be achieved
by writing equation (6) as

C(X) = ε

∫
dv v

∫
dz ρ(x)	(v − u(x))

= ε

∫
dz ρ(x)

∫
dv v	(v − u(x))

= ε

∫
dz u(x)ρ(x), (7)

where ρ(x) is the real space density and u(x) is the z-component of
the turbulent velocity.

However, in order to make a smooth connection between the op-
tically thin case and the optically thick case, we derive centroids
correlation function by working in the PPV space. This is straight-
forwardly achieved by utilizing the theory of fluctuations of PPV
space density ρs(X) developed in LP00 and LP04. Using equation
(4), the correlation of centroids can be written as

ξ (R) =
∫ S

−S

dz1

∫ S

−S

dz2 ξρ(r)
∫ ∞

−∞
dv1 v1

∫ ∞

−∞
dv2 v2〈	(v1 − u(x1))	(v2 − u(x2))〉, (8)

where R = X1 − X2, r ≡ (R, z) = x1 − x2 and ξρ(r) is the density
correlation function. In equation (8), 〈. . . 〉 denotes the averaging
over turbulent velocity u(x) as a random quantity. The main as-
sumption in writing equation (8) is that the density and velocity
fields are uncorrelated. This assumption has been tested in the past
papers (e.g. Esquivel et al. 2007), and seems to be sufficiently ac-
curate for subsonic turbulence with density dispersion less than the
mean density of a turbulent cloud. Assuming that the turbulent ve-
locity is a Gaussian random vector, whose variance of the pairwise
difference between two vectors is given by the structure function

Dij (x2 − x1) = 〈
(ui(x1) − ui(x2))

(
uj (x1) − uj (x2)

)〉
, (9)
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and the z-projected structure function is given by

Dz(x2 − x1) = Dij (x2 − x1)ẑi ẑj . (10)

With this, equation (8) reduces to

ξ (R) = 1

2π

∫ S

−S

dz

(
1 − |z|

2S

) ∫ ∞

−∞
dv

∫ ∞

−∞
dv+

(
v2

+ − v2

4

)

× ξρ(r)√
Dz(r) + 2βT

exp

[
− v2

2(Dz(r) + 2βT)

] √
2

D+(S, r)

× exp

[
− v2

+
D+(S, r)

]
, (11)

where

D+(S, r) ≡ βT + Dz(S) − Dz(r)/2, (12)

and Dz(r) is the z-projected velocity structure function, βT ≡ kBT/m
is the thermal broadening, m being the mass of atoms, T being the
temperature and kB being the Boltzmann constant. After performing
the integration over v, we finally obtain

ξ (R) = 1

2

∫ S

−S

dz

(
1 − |z|

2S

)
ξρ(r)(Dz(S) − Dz(r)). (13)

Note that our formalism cleanly shows how thermal effects drop out
in centroids upon carrying out the integral in equation (11) to obtain
equation (13). This shows that turbulence velocity spectrum can be
recovered with centroids regardless of the temperature,1 which is
distinct from other techniques (e.g. VCA).

The centroids structure function is defined as

D(R) = 〈
[C(X1 + R) − C(X1)]2

〉
. (14)

Utilizing equations (13) and (14), we finally obtain the centroid
structure function

D(R) ≈
∫ S

−S

dz

{
Dz(S)

(
ξρ(0, z) − ξρ(r)

) + [ξρ(r)Dz(r)

− ξρ(0, z)Dz(0, z)]

}
. (15)

With the assumption of zero correlation between density and
velocity, the above result for optically thin line is identical to that
obtained in LE03, where the same result was obtained by directly
utilizing equation (7). Working from first principles in the PPV
space, as is done in this paper, is especially useful to deal with
centroids in the presence of self-absorption.

For a constant density field and at R � S, the centroid structure
function is

D(R) ∝ R1+ν, (16)

which is the regular centroid scaling. We use this scaling further in
this paper.

3 C E N T RO I D S F O R O P T I C A L LY T H I C K
E MISSION LINES

With the introduction of centroids in PPV space, the extension of
centroids to an absorbing media is straightforward. In this case,

1 For very hot plasmas, noise levels can distort centroid statistics. See Section
10 for more clarification.

using full expression for intensity given by equation (2) in equation
(4) yields

C(R) = ε

α

∫
dv v

[
1 − e−αρs(X,v)

]
. (17)

Using equations (14) and (17) and following LP04, one can obtain

D(R) = ε2

α2

∫ ∞

−∞
dv1 v1

∫ ∞

−∞
dv2 v2

〈
e−α(ρ11+ρ12)

(
1

+ e−α(ρ22+ρ21−ρ11−ρ12) − e−α(ρ21−ρ11) − e−α(ρ22−ρ12)
)〉

, (18)

where ρij ≡ ρs(X i , vj ). Note that the exponential terms inside the
parenthesis are split in such a way that the velocity is the same for
two terms that make up a difference. As explained in LP04, the
reason for this arrangement is that at small separations R, the terms
inside are small and therefore the exponential can be expanded,
retaining only the leading order terms. This leads to

D ≈ ε2
∫ ∞

−∞
dv1 v1

∫ ∞

−∞
dv2 v2

〈
e−α(ρ11+ρ12)

× [(ρ11 − ρ21) (ρ12 − ρ22)]
〉
. (19)

The above expression is the main expression that we study further. If
one assumes density and velocity to be uncorrelated, this expression
can be sufficiently simplified. The details of this simplification are
presented in LP04. Here, we present the final result

D(R) ∝ ε2
∫ S

0
dz

∫ ∞

−∞
dv e− α2

2 d̃s (0,v)[W(R, z, v)ds(R, z, v)

−W(0, z, v)ds(0, z, v)], (20)

where

W(R, z, v) =
∫ ∞

−∞
dv+

(
v2

+ − v2

4

) √
2

D+(S, r)

× exp

[
− v2

+
D+(S, r)

]
, (21)

and

ds(R, z, v) = 1√
Dz(r) + 2βT

exp

[
− v2

2(Dz(r) + 2βT)

]
. (22)

In equation (20), ds(R, v) = dv(R, v) + dρ(R, v). We focus on the
case when velocity term is dominant. Our treatment to obtain equa-
tion (20) is valid only when α2(ds(R, v) − ds(0, v) < 1 so that
non-linear effects are negligible. A simpler, but loose, condition for
velocity term is α2dv(R, 0) < 1. This condition can be formally
written by noting that the asymptote of dv(R, 0) is given by dv(R,
0) ∼ R1 − ν/2, where we have omitted numerical pre-factors that
are of the order of unity. Restoring proper dimensionality, one can
estimate the scales for which our treatment is applicable and this is
given by

α2〈ρs〉2 <

(
S

R

)1−ν/2

. (23)

If the above condition is not fulfilled, one will see non-linear be-
haviour of the centroid structure function instead of power law
in R. Note that the expression for centroid structure function de-
rived in this paper (cf. equation 20) and intensity structure function
derived in LP04 looks similar. Closer inspection shows that the
difference comes through the factor W(v). It is also important to
note that the R dependence in the W(v) given by equation (21)
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Study of velocity centroids 3621

Figure 2. Centroid structure function for different levels of self-absorption for velocity spectrum with Kolmogorov index ν = 2/3 and for constant density field.
The left-hand panel is for βT = 0, so that rβ ≡ (βT/Dz(S))1/ν = 0, and at rα ≡ (v2

c /(Dz(S) + 2βT))1/ν = 0.2. The right-hand panel is for different parameters
defining thermal broadening and the level of self-absorption rβ and rα , that are shown clearly in the figure. These panels clearly show two asymptotes scaling
described in the text.

is weak, as βT + Dz(S) − Dz(r)/2 is nearly a constant. For strong
self-absorption, non-linear effects are important. In the case of mod-
erate self-absorption, equation (20) can be written as

W(R, z, v) =
√

π

2

(
βT + Dz(S) − Dz(r)

2
− v2

2

)
. (24)

The main effect of absorption is the introduction of an exponen-
tially suppressing factor exp[−α2d̃s(0, v)/2]. This is effectively a
window, which tells us how integration over v should be carried out.
The critical width of absorption window is given by

α2ds(0, vab) = 1. (25)

The effects of absorption become strong for v > vab. Note that
for weak self-absorption, i.e. for small α, vab is large and vice
versa. Taking into consideration, the power-law behaviour of ve-
locity structure function and density correlation function, one can
solve for asymptotes of ds(0, v) to obtain (see LP04 for details)

vab ≈ √
Dz(S) + 2βT(αρ̄)

2ν
ν−2(1−νρ ) , ν > (2/3)(1 − νρ) (26)

vab ≈ √
Dz(S) + 2βT(αρ̄)−1, ν < (2/3)(1 − νρ), (27)

where the mean density ρ̄ = 〈ρs〉(Dz(S) + 2βT)1/2/S. Equations
(26) and (27) are valid only when absorption is moderate so that
αρ̄ < 1.

At this point, we ask the following question: in the presence of
absorption, can the velocity spectra be recovered? The subsequent
analysis in this section is focused to answer this question. Before we
start, we would first like to make some remark on the VCA technique
developed in LP00 and LP04, because some of the asymptotes of the
centroid structure function in the presence of self-absorption will
be similar to that in VCA. The VCA was developed for intensity
(unlike centroids where we multiply LOS velocity and intensity).
In VCA, one can control thickness of velocity slice from which
data are analysed (see LP00 and LP04). In a thin-slice regime, the
velocity window is essentially a delta function, and one can see the
effects of turbulence velocity on intensity in this regime. In fact, a
small-scale asymptote of pure velocity contribution to the intensity
structure function follows the scaling R1 − ν/2, which is the thin-slice
asymptote. On the other hand, for thick slice in an optically thin
media, one essentially integrates over the entire range of velocity
with a flat function, and in this regime velocity effects are erased
and only density effects are manifested. It is important to note that
to produce ‘thin-slice’ asymptote, the velocity cut-off introduced
by the window has to be less than

√
Dz(R).

The whole point of the above review of the VCA is the following:
although centroids are for integrated lines (and thus notion of ‘slice
thickness’ does not exist), self-absorption introduces an ‘effective
slice thickness’. In fact, when self-absorption is large, both cen-
troids and VCA yield the same ‘thin-slice’ result. This can be seen
from equation (11), and noting the fact that βT + Dz(S) − Dz(r)/2
is nearly a constant. In the case when self-absorption is negligible,
centroids are defined effectively in ‘thick-slice’ limit (as there is
no window in the definition of centroids), and therefore this ‘thin-
slice’ asymptote can never be realized. The situation is different in
the presence of self-absorption, as the factor exp [−α2ds(0, v)/2] in
equation (20) introduced by self-absorption effectively acts like a
window. Therefore, it is natural to expect that there exists a regime
where even centroids produce ‘thin-slice’ regime, which was rele-
vant in the VCA.

In the case when ν ≥ 2/3, one can combine equations (26) and
(23) to obtain the condition for the validity of linear expansion
v2

ab ≥ (Dz(S) + 2βT)(R/S)ν , meaning that the critical velocity cut-
off be larger than the rms velocity Dz(S) of turbulent field. The
implication is clear: in the case ν ≥ 2/3 one cannot obtain the
‘thin-slice’ asymptote R1 − ν/2. For ν < 2/3, one might be able to
see power-law behaviour R1 − ν/2 before non-linear behaviour ap-
pears. On the other hand, at some intermediate scale R, absorption
sets the width of the velocity kernel, and as explained in LP04
is of the order of �V ∼ Rν/2. In this situation, the scaling of the
centroids is R1 − ν/2�V ∼ R, and like in the VCA, centroids show
an intermediate universal regime as well. In this regime, centroids
lose information on the spectral slope of the velocity field. If one
considers even smaller scale, then one should be able to recover
the usual centroid scaling. In fact, if the velocity cut-off vab intro-
duced by self-absorption is much larger the velocity dispersion of
the turbulent field, one should be able to recover the usual cen-
troid scaling R1 + ν . In the subsonic regime, where Dz(R) � βT,
one should again be able to recover the usual centroid scaling. This
is one of the major advantage of centroids over VCA, which loses
information about velocity spectrum at subsonic scales. These scal-
ings are summarized in Table 2, and part of the asymptotes are
shown in Fig. 2.

In the absence of absorption, centroids are obtained by inte-
grating over the entire LOS velocity, and therefore for a constant
density field, the asymptote of centroid structure function scales as
D(R) ∼ R1+ν . In the presence of absorption, although one should
formally integrate over the entire LOS velocity, the integration range
is effectively set by the extent of absorption. In this case, depending
on the extent of absorption one may or may not be able to obtain
the same scaling as in the absence of absorption. In fact, as shown
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3622 D. Kandel, A. Lazarian and D. Pogosyan

Table 2. Scaling of centroid structure function arising from pure velocity effects in the presence of absorption. The scaling R1 − ν/2 is only present for ν <

2/3. The corresponding scaling in the case of VCA is also presented for comparison.

Scale range Centroid scaling VCA scaling (integrated lines) Regime

R/S <
(

βT
Dz(S)

)1/ν D(R) ∝ R1+ν Velocity effects erased Subsonic

R/S �
(

v2
ab

Dz(S)+2βT

)1/ν D(R) ∝ R1+ν D(R) ∝ R1+ν/2a Thick slice

R/S <
(

v2
ab

Dz(S)+2βT

)1/ν D(R) ∝ R D(R) ∝ R Intermediate(
v2

ab
Dz(S)+2βT

)1/ν
< R/S <

(
v2

ab
Dz(S)+2βT

)2/(2−ν) D(R) ∝ R1−ν/2 D(R) ∝ R1−ν/2 Effectivelyb thin slice

R/S >
(

v2
ab

Dz(S)+2βT

)2/(2−ν)
Not a power law Not a power law Strong absorption

Notes. aOne will see saturation R2 of the structure function after this scaling.
bThe discussion on VCA involves integrated lines, and thus slice thickness is not set by interferometers but ‘effectively’
by the level of self-absorption.

in Fig. 2 and as summarized in Table 2, the asymptote might show
different scaling at different lags R.

The most important finding is that in the presence of absorption,
‘usual’ centroids may not be recovered at all. In fact, as shown
in Table 2, one might be able to see the usual scaling of R1 + ν

only in a very restricted range of scales. Another important find-
ing is that for sufficiently hot turbulent plasma, the centroids work
well even when self-absorption is strong. This can be understood
in the following way: if thermal effects are strong, then the ef-
fect of self-absorption is diminished. This is because for high tem-
perature ρs becomes small, and therefore the intensity obtained
from equation (2) looks more like that for an optically thin case.
Our result that centroids work well for high temperatures even in
the presence of self-absorption is a very distinct and useful result
in comparison to VCA, which works well for recovering velocity
statistics only when the velocity dispersion is larger than the thermal
broadening.

4 C E N T RO I D S F O R A B S O R P T I O N LI N E S

In the previous section (and also in the past works), emission lines
were used to obtain centroids. However, if the turbulence cloud is
between an observer and an extended emission source, one can also
measure VCs for absorption lines. The turbulent motions affect
the line profile, and thus one should be able to study turbulence
using absorption lines. An advantage of studying turbulence with
absorption lines is that multiple lines with various optical depths can
be used simultaneously (KLP). Moreover, centroids are not sensitive
to the gradients of wings of line profile, as multiplication by v (which
is odd) to even gradients in left and right wings, and upon integration
washes away the effect of these gradients. In the context of VCS,
absorption lines were studied in LP08. It was shown that even in the
presence of strong absorption line, one can obtain information on
the turbulent spectra if one uses logarithm of intensity (i.e. optical
depth) instead of intensity, and studies turbulence using the wings
of the absorption line. The connection between the study carried
out in LP08 and centroids is simple: instead of using centroids
for intensity, one needs to use optical depth to define centroids.
However, because centroids are obtained by integrating over entire
spectral line, in contrast to LP08, we focus on spatial correlations
between LOSs.

The profile of an absorption line is given by

I (X) = I0e−τ (X,v1), (28)

where τ (X, v1) is the optical depth. If intrinsic line broadening is
ignored (see LP08 for details), the optical depth is given by

τ (X, v1) = α(ν0)
∫ S

0
dz ρ(X, z)	(v1 − u(z)), (29)

The VC weighted by the optical depth can be defined as

C(X) =
∫

dv1 v1 log

(
I (X, v1)

I0

)
=

∫
dv1 v1τ (X, v1). (30)

Note that to obtain centroids, we used logarithm of intensity. Useful
property of the centroids is that one does not need to precisely know
the base-level I0, since v1log I0 is an odd function, and vanishes upon
performing the integration over v1.

If one has information on the optical depth throughout the whole
line, it is clear from equation (30) that by using logarithm of in-
tensity of an absorption line, one can obtain the centroid structure
function of the same form as that of optically thin emission lines (cf.
equation 11), and thus one can obtain the same information about
turbulence statistics.

However, real world observations have noise associated with
them and therefore, realistically the profile of an absorption line
is given by

I (X) = I0e−τ (X,v1) + N, (31)

where N is the noise. Clearly for optical depths τ > −log (N/I0),
the central part of the line is saturated below the noise level and
the useful information is restricted to the wings of the line, where
τ < −log (N/I0). For such case, we suggest to construct restricted
centroids by integrating

∫
dv1 v1τ (X, v1) just over the wings of the

line, where optical depths can be accurately determined. To maintain
the properties of centroids, one should integrate over a symmetric
pair of intervals of width � centred at v0 and −v0 for the left and
right wing (line is assumed to be centred at v = 0).

As an illustration, let us consider wings of the line to be selected
by a sharp window. In this case, the restricted centroids are given
by

C(X) =
∫ −v0+�/2

−v0−�/2
dv1 v1τ (X, v1) +

∫ v0+�/2

v0−�/2
dv1 v1τ (X, v1),

(32)

where the centre of the wing v0 is of the order of
√

Dz(S) + 2βT.
Formally, when � approaches 2v0 two wings overlap and the whole
line is available for analysis.
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Study of velocity centroids 3623

Using the usual approach (see equations 8 and 13), one obtains
the centroid correlation as

ξ (R) = 2 [ξ11(R) + ξ12(R)] , (33)

where ξ11(R) denotes correlations within the same wing, and is
given by

ξ11(R) ∝
∫ S

−S

dz

∫ v0+�/2

v0−�/2
dv1 v1

∫ v0+�/2

v0−�/2
dv2 v2

× ξρ(r)√
Dz(r) + 2βT

exp

[
− (v1 − v2)2

2(Dz(r) + 2βT)

] √
2

D+(S, r)

× exp

[
− (v1 + v2)2

4D+(S, r)

]
, (34)

and ξ12(R) denotes correlation between two wings, and is given by

ξ12(R) ∝
∫ S

−S

dz

∫ v0+�/2

v0−�/2
dv1 v1

∫ −v0+�/2

−v0−�/2
dv2 v2 . . . , (35)

where . . . denotes that the integrand in equation (35) is the same
as that in equation (34), but the integration range over v1 and v2 are
non-overlapping.

We now investigate two extreme limits: first, � → 0. In this case,
the integration over a narrow range of � can be approximated by
evaluating the integrand at central value of the integration range.
Thus, we have

ξ11(R) ∝ �2
∫ S

−S

dz v2
0

ξρ(r)√
Dz(r) + 2βT

√
2

D+(S, r)

× exp

[
− v2

0

4D+(S, r)

]
, (36)

and

ξ12(R) ∝ −�2
∫ S

−S

dz v2
0

ξρ(r)√
Dz(r) + 2βT

√
2

D+(S, r)

× exp

[
− 2v2

0

(Dz(r) + 2βT)

]
. (37)

Since v2
0 ∼ D+(S, r), it is clear that due to an exponential suppres-

sion ξ12(R) � ξ11(R), and therefore for � ∼ 0 the correlation is
given by

ξ (R) ≈ 2ξ11(R) ∝ �2
∫ S

−S

dz v2
0

ξρ(r)√
Dz(r) + 2βT

. (38)

At small scales, the factor D+(r) is close to constant, and therefore
the asymptote in equation (38) fully depends on the form of the
integrand ξρ(r)/

√
Dz(r) + 2βT. Looking at equation (38), one can

see that for Dz(R) > 2βT, one obtains an asymptote R1 − ν/2 in the
case of constant density field. This formally corresponds to the
‘thin-slice’ regime in the context of VCA. Indeed, as � and βT

become smaller, the integration channel slice becomes thinner, and
this corresponds to returning to the thin-slice regime of VCA. In the
case when � is finite, Dz(R) > 2(βT + �2) needs to be satisfied in
order to achieve thin-slice asymptote.

The second case of interest is � = 2v0, which formally cor-
responds to two wings touching each other, which selects central
section of the line of width 2�. Using equation (32), it can be shown

Figure 3. Centroid structure for broadening parameter � = 0.01 and 1, and
for a constant density field. For small �, the asymptote R1 − ν/2 is reached
fast, while for large � the asymptote R1 + ν is extended over large range of
R. The effect of increasing temperature is effectively the same as increasing
�. Example curves are produced for velocity field with Kolmogorov index
ν = 2/3.

Table 3. Scaling of centroid structure function arising from
pure velocity effects in absorption line study.

Scale range Centroid scaling

R/S �
(

2(�2+βT)
Dz(S)

)1/ν
D(R) ∝ R1+ν

R/S �
(

2(�2+βT)
Dz(S)

)1/ν
D(R) ∝ R1−ν/2

that

ξ (R) ∝
∫ S

−S

dz

∫ �

−�

dv1 v1

∫ �

−�

dv2 v2
ξρ(r)√

Dz(r) + 2βT

× exp

[
− (v1 − v2)2

2(Dz(r) + 2βT)

] √
2

D+(S, r)
exp

[
− (v1 + v2)2

4D+(S, r)

]
.

(39)

It is easy to see from equation (39) that when � → ∞, the usual
centroids are recovered. A less stringent criterion to recover cen-
troids when � ∼ √

Dz(S) + 2βT is to study turbulence at small lags
R satisfying Dz(R) < 2(�2 + βT). This condition can be achieved
either for sufficiently short scales or for sufficiently large � and
βT. Physically, large � means entire line is available for centroids
statistics, and it is natural to expect to recover usual centroids in
such limit. Numerical integration confirms this, and this has been
clearly shown in Fig. 3 and Table 3, where it is shown that at small
scales R, the velocity spectrum is correctly given by the centroids.
Note that with the thermal effects included, there is a larger range
of lag R, which yields the usual centroid correlation.

5 C E N T RO I D A N I S OT RO P Y: G E N E R A L
FORMALI SM

In this section, the study of centroids will be carried out keeping
in mind that the ISM is magnetized and therefore there exists a
preferred direction, which in the global frame of reference is the
direction of the mean magnetic field. Due to the presence of this
preferred direction, turbulence is anisotropic; to be more precise,
axisymmetric. This anisotropy is built in the general tensors repre-
senting velocity, density and magnetic field correlations. The study
of magnetic correlation was carried out in LP12, and the study of ve-
locity correlation and its application to study intensity anisotropies
was carried out in KLP. In this paper, we present another way of
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3624 D. Kandel, A. Lazarian and D. Pogosyan

studying anisotropies, which is through the study of anisotropy of
centroids correlation. The main focus of this section is to develop
a general formalism to study centroid anisotropy in the presence of
constant density field.

The Fourier component of a velocity field is in general given
by v(k) = ak ξ̂ (k̂, λ̂), where k is the wavevector, ak is the random
amplitude of a mode (which in general has both real and imaginary
parts) and ξ̂ is the direction of allowed displacement in a plasma.
With this definition, the velocity correlation in Fourier space is given
by

〈vi(k)v∗
j (k′)〉 = 〈aka

∗
k′ 〉 (

ξ̂k ⊗ ξ̂ ∗
k′
)

ij

≡ A(k, k̂ · λ̂)
(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

δ(k − k′), (40)

where A(k, k̂ · λ̂) = 〈âkâ
∗
k〉 is the power spectrum, which for

anisotropic turbulence depends on the angle μk ≡ k̂ · λ̂. To obtain
velocity correlation tensor in the real space, one needs to carry out
Fourier transform of equation (40)

〈
vi(x1)vj (x1 + r)

〉 = 1

(2π)3

∫
d3k eik·rA(k, k̂ · λ̂)

(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

.

(41)

The centroid structure function in the case of constant density for
an optically thin medium is given by (cf. equation 15)

D(R) ∝
∫

dz(Dz(R, z) − Dz(0, z)). (42)

In order to evaluate the above integral, we need to evaluate integral
of the type

∫
dz〈vivj 〉. This can effectively be obtained by noting

that the integration over the entire LOS is equivalent to setting
kz = 0 in the spectral domain (LP12). Therefore, we can write∫

dz〈vivj 〉 = 1

(2π)2

∫
d2 K eiK ·RA(K, K̂ · �̂)

(
ξ̂K ⊗ ξ̂ ∗

K

)
ij

.

(43)

We use the plane wave expansion

eiK ·R = eiKR cos ζR =
∞∑

n=−∞
inJn(KR)einζR , (44)

where cos ζR = K̂ · R̂. Similarly, decomposing the two-
dimensional power spectra into series of harmonics

A(K, K̂ · �̂) =
∞∑

p=−∞
K−3−νÂpeipζ� , (45)

where cos ζ� = K̂ · �̂, we obtain∫
dz〈vivj 〉 = 1

(2π)2

∫
dK K−2−ν

∞∑
n=−∞

ineinφJn(KR)

×
∞∑

p=−∞
Âpe−i(n−p)ψ

(
ξ̂K ⊗ ξ̂ ∗

K

)
ij

, (46)

where cos ψ = K̂ · �̂. Due to the axisymmetric nature of the turbu-
lence, only even p is allowed in equation (45). With this, we finally
obtain the following form of centroid structure function

D(R) = 1

(2π)2

∫
dK K−2−ν

∞∑
n=−∞

ineinφ(Jn(0)δn0

−Jn(KR))
∞∑

p=−∞
Âpe−i(n−p)ψ

(
ξ̂K ⊗ ξ̂ ∗

K

)
zz

, (47)

where n is even due to the fact that p is even. To study anisotropy
of the structure function, it is convenient to expand the structure
function in series of two-dimensional circular harmonics

D(R, φ) =
∞∑

n=−∞
Dn(R)einφ, (48)

where Dn(R) is the multipole moment of the centroid structure
function given by (cf. equation 47)

Dn(R) = Cn(ν)
∞∑

p=−∞
ÂpWn−pR1+ν, (49)

and Wp is the spectral weight function, which is the integral of the
tensor structure of a specific mode over the two-dimensional angle
ψ , given by

Wp = 1

2π

∫ 2π

0
dψ e−ipψ

(
ξ̂K ⊗ ξ̂ ∗

K

)
zz

, (50)

and

Cn(ν) = in
∫

dK K−2−ν(Jn(0)δn0 − Jn(K))

= − in�
[

1
2 (|n| − ν − 1)

]
22+ν�

[
1
2 (|n| + ν + 3)

] . (51)

Equations (48) and (49) are the main equations that will be used
subsequently to obtain centroid structure function of each MHD
modes. A useful parameter for comparison with past numerical
work is the isotropy degree, defined as

Isotropy degree = D(R, φ = 0)

D(R, φ = π/2)
. (52)

6 C E N T RO I D S F O R D I F F E R E N T M H D MO D E S

The properties of MHD turbulence depends on the degree of mag-
netization. The Alfvén Mach number MA = VL/VA, where VL is
the injection velocity at the scale L and VA is the Alfvén velocity,
presents a useful measure of magnetization. Depending on whether
MA > 1, MA = 1 or MA < 1, turbulence can be super-Alfvénic,
trans-Alfvénic or sub-Alfvénic. For MA � 1, magnetic forces are
not important at large scales and the cascade should be similar
to ordinary hydrodynamic cascade in the vicinity of the injection
scale. The seminal paper by Goldreich & Sridhar (1995, hereafter
GS95) ushered the modern understanding of MHD turbulence. The
GS95 was formulated for trans-Alfvénic turbulence, and the gen-
eralization of GS95 for sub-Alfvénic and super-Alfvénic cases can
be found in Lazarian & Vishniac (1999). The original GS95 theory
was elaborated in further studies, in particular, the concept of local
system of reference (Lazarian & Vishniac 1999; Cho & Vishniac
2000; Maron & Goldreich 2001; Cho, Lazarian & Vishniac 2002)
was introduced. According to this concept, turbulent motions should
not be viewed in the system of reference of the mean magnetic field
as all earlier theories of MHD turbulence attempted to do, but in
the system of reference of magnetic field comparable with the size
of the eddies. However, from the point of view of the observational
studies of the turbulence in a volume when the only available statis-
tics are those averaged along the LOS, the measurements should be
carried out in the system of mean magnetic field, rather than the
local system of reference. Therefore, one has to describe Alfvénic
turbulence in the global system of reference (see the discussions
in Cho & Lazarian 2002; Esquivel & Lazarian 2005, LP12). This
modifies the available statistics. For instance, in the local system of
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Study of velocity centroids 3625

Figure 4. From left to right: spectral function of Alfvén mode WA
p (γ ) (left-hand panel), low-β fast mode WF

p (γ ) (centre) and high-β slow mode WS
p (γ )

(right-hand panel) for various index p (which is n − p in equation 49).

reference GS95 predict the existence of two different energy spec-
tra, namely, the parallel and perpendicular, in the global system of
reference only the spectrum of dominant perpendicular fluctuations
is available. Similarly, while in the local system of reference the
anisotropy increases with the decrease of size of the eddies, the
anisotropy stays constant in the global system of reference.

MHD turbulence can be presented as a superposition of inter-
acting fundamental modes, i.e. Alfvén, slow and fast. The first
theoretical considerations in favour of this were given in GS95 (see
also Lithwick & Goldreich 2001), which were extended and nu-
merically tested in Cho & Lazarian (2002, 2003) and in Kowal
& Lazarian (2010). Because the compressible and incompressible
modes weakly exchange their energy2 (Cho & Lazarian 2002), it is
possible to consider the modes separately.

With this background discussion of MHD turbulence, we are
ready to proceed to study centroids anisotropy in detail. In this
section, we will employ our previous expression to obtain centroids
for different MHD modes. We will use the tensor structures obtained
by KLP for our discussion. These expressions will be used in the
next section to specific MHD mode in order to study anisotropy due
to each MHD mode.

6.1 Alfvén mode

Alfvén modes are incompressible, and their tensor should also re-
flect this. The correlation function of Alfvén mode is obtained by
employing the condition that the displacement of this mode in a
plasma is orthogonal to the wavevector and the direction of mag-
netic field, and is given by (see KLP)(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

= (
δij − k̂i k̂j

)

− (k̂ · λ̂)2k̂i k̂j + λ̂i λ̂j − (k̂ · λ̂)(k̂i λ̂j + k̂j λ̂i)

1 − (k̂ · λ̂)2
. (53)

In LP12, the first part of the above tensor was referred to as
‘E-type’, while the second part was referred to as ‘F-type’. Both E
and F-type parts are divergence free, and therefore the velocity field
in Alfvén modes is purely solenoidal. For an isotropic power spectra
A, the E-part yields isotropic correlation tensor, while F-part still
gives rise to anisotropy. Making use of equation (53), we obtain

(
ξ̂K ⊗ ξ̂ ∗

K

)
zz

= 1 − λ̂zλ̂z

1 − (K̂ · �̂)2
= sin2 γ

sin2 ψ

1 − sin2 γ cos2 ψ
,

(54)

2 This was recently shown to be also true for relativistic MHD turbulence in
Takamoto & Lazarian (2016).

where cos γ = r̂ · λ̂, and 0 ≤ γ ≤ π/2. Note that correlation given
by equation (54) vanishes at γ = 0, which is expected as motions
are perpendicular to the magnetic field. Making use of equations
(49) and (54), the multipole moments of centroid structure function
for Alfvén mode can be written as

Dn(R) = Cn(2/3)
∞∑

p=−∞
ÂpWA

n−pR5/3, (55)

where Âp is the coefficient of two-dimensional harmonic expansion
of power spectrum, and, as suggested in (Cho & Lazarian 2002), is
given by

Âp = 1

2π

∫ 2π

0
dψ e−ipψ exp

[
−M

−4/3
A

| cos ψ | sin γ

(1 − cos2 ψ sin2 γ )2/3

]
,

(56)

and WA
n−p spectral weight defined as

WA
n−p = 1

2π

∫ 2π

0
dψ e−i(n−p)ψ sin2 γ sin2 ψ

1 − sin2 γ cos2 ψ
. (57)

An analytical form of this spectral weight exists and is given by

WA
n−p = δp,n − cos γ

(
1 − cos γ

sin γ

)|n−p|
. (58)

It is clear from equations (55) and (57) that the centroid structure
function of Alfvén mode vanishes at γ = 0, which reflects that there
is no LOS component of the Alfvén velocity when magnetic field is
along the LOS. In the opposite case γ = π/2 when magnetic field is
perpendicular to the LOS, WA

n−p = δpn, and multipole moments of
the centroid structure function Dn(R) ∝ An. It can be clearly seen
from the left-hand panel of Fig. 4. For general γ , it is also clear from
the figure that the magnitude of the function WA

n−p decays rapidly
as |n − p| increases. This means that for our practical purposes,
it is enough to just few terms near p ≈ n in the sum presented in
equation (55).

Fig. 5 shows some important properties of Alfvén mode. First,
looking at this figure one can clearly see that this mode becomes
more isotropic with increasing Alfvén Mach number MA, as char-
acterized by the decreasing level of quadrupole to monopole and
octupole to monopole ratio and increasing level of isotropy degree
with increasing MA. It is also quite clear from the left-hand and cen-
tral panel of the figure that this mode becomes highly anisotropic
at γ = π/2, which is expected. Note that the finite quadrupole
to monopole ratio at γ = 0 is misleading in a sense that both
quadrupole and monopole vanish at γ = 0. In the case when one
considers the mixture of modes, this problem is remedied as slow
modes and high-β fast modes have non-vanishing monopole at
γ = 0.

MNRAS 464, 3617–3635 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/464/3/3617/2514569 by C
N

R
S - ISTO

 user on 09 August 2022



3626 D. Kandel, A. Lazarian and D. Pogosyan

Figure 5. Alfvén mode. Left-hand panel and centre: quadrupole to monopole and octupole to monopole ratio for various γ . Solid line is for MA = 0.1, dotted
line for MA = 0.4 and dashed line for MA = 0.7. Right-hand panel: isotropy degree for various MA at γ = π/2.

Figure 6. High-β slow mode. Left-hand panel and centre: quadrupole to monopole and octupole to monopole ratio for various γ . Solid line is for MA = 0.1,
dotted line for MA = 0.4 and dashed line for MA = 0.7. Right-hand panel: isotropy degree for various MA at γ = π/3.

6.2 Slow mode

Slow modes in high-β plasma are similar to pseudo-Alfvén modes in
incompressible regime, while at low β they are density perturbations
propagating with sonic speed parallel to magnetic field (see Cho &
Lazarian 2003). The power spectrum of this mode is the same as
that of Alfvén mode. Slow modes in high β are purely F-type and
therefore, the correlation is given by (see KLP)

(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

= (k̂ · λ̂)2k̂i k̂j + λ̂i λ̂j − (k̂ · λ̂)
(
k̂i λ̂j + k̂j λ̂i

)
1 −

(
k̂ · λ̂

)2 . (59)

With this, we can write

(
ξ̂K ⊗ ξ̂ ∗

K

)
zz

= λ̂zλ̂z

1 − (K̂ · �̂)2
= cos2 γ

1 − sin2 γ cos2 ψ
. (60)

Using equations (49) and (60), one can obtain the multipole mo-
ments of the centroid structure function as

Dn(R) = Cn(2/3)
∞∑

p=−∞
ÂpWS

n−pR5/3, (61)

where the spectral weight function WS
p is given by

WS
n−p = 1

2π

∫ 2π

0
dψ e−i(n−p)ψ cos2 γ

1 − cos2 ψ sin2 γ

= cos γ

(
1 − cos γ

sin γ

)|n−p|
. (62)

The spectral weight function of slow modes, given by equation (62),
is plotted in the left-hand panel of Fig. 4. It is clear from Fig. 4 that
WS

n−p vanishes at γ = π/2 for all n − p, and therefore the structure
function vanishes at this angle. In the opposite case, γ = 0, WS

n−p

vanishes for all non-zero n − p and equal to 1 for n = p, but Âp = 0
for p > 0; therefore, no anisotropy is present. For general γ , WS

n−p

decays very rapidly with increasing |n − p|, which implies that for

practical purposes, it is enough up to just a few terms near p ≈ n in
the sum presented in equation (61).

Slow modes in low β have their correlation function as 〈vivj 〉 ∝
λ̂i λ̂j and therefore, it can be straightforwardly shown that

Dn(R) = Cn(2/3) cos2 γ ∧AnR
5/3. (63)

Slow modes in both high- and low-β plasma are highly
anisotropic at small MA and become more isotropic with increasing
MA. This is clearly shown in Figs 6 and 7. Moreover, the anisotropy
level of both high- and low-β slow modes are similar. This is
because the dominant term in equation (61) is the diagonal term
n = p, while the cos 2γ term in equation (63) cancels upon taking
ratio of multipole moments, thus the ratio of multipole moments
in both cases yield similar results. It is important to note that the
anisotropy of slow modes at γ = π/2 cannot be measured as both
quadrupole and monopole vanish at γ = π/2.

6.3 Fast mode

Fast modes in high β are purely compressible modes with a velocity
tensor structure given by(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

= k̂i k̂j . (64)

The power spectrum of fast modes is isotropic, and therefore the
velocity correlation tensor is isotropic as well.

On the other hand, low-β fast mode is anisotropic with the
anisotropy built in the tensor (see KLP)

(
ξ̂k ⊗ ξ̂ ∗

k

)
ij

= k̂i k̂j − (k̂.λ̂)
(
k̂i λ̂j + k̂j λ̂i

) + (k̂.λ̂)2λ̂i λ̂j

1 − (k̂.λ̂)2
. (65)

Making use of equation (65), we obtain

(
ξ̂K ⊗ ξ̂ ∗

K

)
zz

= (sin γ cos γ )2 cos2 ψ

1 − sin2 γ cos2 ψ
. (66)
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Figure 7. Low-β slow mode. Left-hand panel and centre: quadrupole to monopole and octupole to monopole ratio for various γ . Solid line is for MA = 0.1,
dotted line for MA = 0.4 and dashed line for MA = 0.7. Right-hand panel: isotropy degree for various MA at γ = π/3.

Figure 8. Low-β fast mode. Left-hand panel to right-hand panel: quadrupole to monopole, octupole to monopole ratio and isotropy degree for various γ .

Figure 9. Mixture of modes. Left-hand panel: quadrupole to monopole ratio for a mixture of 85 per cent Alfvén and 15 per cent high-β slow modes. Right-hand
panel: same for a mixture of 50 per cent Alfvén and 50 per cent low-β slow modes. Solid line is for MA = 0.1, dotted line for MA = 0.4 and dashed line for
MA = 0.7.

Keeping in mind that fast modes have isotropic power spectrum so
that only Â0 in non-vanishing, we have

Dn(R) = Cn(1/2)A0WF
n R3/2, (67)

where the spectral weight function WF
n is defined as

WF
n = 1

2π

∫ 2π

0
dψ e−inψ (sin γ cos γ )2 cos2 ψ

1 − sin2 γ cos2 ψ

= − cos2 γ δn0 + cos γ

(
1 − cos γ

sin γ

)|n|
. (68)

This spectral weight function of fast mode is plotted in the central
panel of Fig. 4, which shows that this function vanishes both at
γ = 0 and γ = π/2. The left-hand panel of Fig. 8 shows that the
quadrupole to monopole ratio of low-β fast mode is ∼0.3 throughout
the entire range of γ . The quadrupole to monopole ratio somewhat
increases with increasing γ to its maximum value ≈0.4 at γ = π/2;
however, the amplitude of both monopole and quadrupole is ∼0 at
γ ∼ π/2. In fact, the optimal signal is obtained at γ ∼ π/3.

Note that since C2(1/2) > 0, the quadrupole moment of fast mode
is positive, which is also distinct from Alfvén mode. We found that
this is due to the fact that anisotropy of fast mode comes from its
anisotropic tensor structure and not from its power spectrum.

6.4 Mixture of modes

Real world setting of MHD turbulence involves superposition of the
different MHD modes. Therefore, we consider the effect of mixtures
of different MHD modes in the observed centroids anisotropy. In
the case of mixture between Alfvén and slow modes, Fig. 9 clearly
shows that the observed anisotropy is unaffected by this mixture in
different regimes. For instance at γ � π/4, the observed anisotropy
of the mixture is the same as that of Alfvén mode alone while at
γ � π/4, the anisotropy level is similar to that of slow modes alone.
This is again due to the fact that at γ ≈ π/2 signal from Alfvén mode
is dominant, while at γ ≈ 0 signal from slow mode is dominant.
On the other hand, we expect the mixture of fast mode with other
two modes to decrease the level of anisotropy. This is because the
quadrupole moment (which is the measure of anisotropy) of fast
mode is opposite in sign than that of other modes.

6.5 Density effects

The main aim of using VCs is to obtain information about velocity
spectrum. Looking at equation (15), one can see that the centroid
structure function contains not only the contribution from velocity
effects but also from density effects. In this regard, separating ve-
locity contribution from density contribution is not always possible.
In particular, if the density spectrum is shallow, as is the case for
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Figure 10. First panel: MVC structure function for various σρ/ρ0 for steep velocity field of Kolmogorov index 2/3 and density fields of index νρ = 1/2.
The solid line is the expected power law of R5/3, the dotted line is for σρ/ρ0 = 0.5 and the dashed line for σρ/ρ0 = 1. One can see some deviation from the
power-law behaviour already at σρ/ρ0 = 1. This deviation is expected to be stronger with increasing σρ/ρ0. Second panel: the same but for shallow density
with νρ = −1/2. The dotted line is for σρ/ρ0 = 0.5 and dashed line is for σρ/ρ0 = 1. Solid line is the power-law R5/3 from pure velocity effects.

Figure 11. Plot showing comparison of MVC with UVC at σρ/ρ0 = 0.5 at short scales R < S. The dashed line in both the panels are for MVC, dotted line
is for UVC and solid line shows the power-law R5/3 from pure velocity effects. In both figures, a steep velocity spectrum of Kolmogorov index is assumed,
whereas density spectrum is assumed to be steep (with νρ = 1/2) in the first panel and shallow (with νρ = −1/2) in the second. It is clear that MVC works
well for both steep and shallow spectra.

supersonic turbulence, one might not be able to obtain the velocity
spectra from the centroids. On the other hand, for a steep density
spectra the velocity spectra can be extracted if the density disper-
sion in a turbulent field is less than the mean density (Esquivel et al.
2007). This has been clearly illustrated in the left-hand panel of the
Fig. 10, where the centroid structure function is plotted for various
ratios of σρ/ρ0. It is clearly shown in the figure that the velocity
spectra can be obtained when σρ/ρ0 < 1, while the spectra are
corrupted by the density–velocity cross-term when σρ/ρ0 > 1.

As explained in LE03, centroids can trace the velocity spec-
trum if the centroid structure function is much larger than the first
term of equation (15). If this condition is not fulfilled, the veloc-
ity spectrum can be obtained by subtracting the first term (product
of velocity dispersion and density correlation) of equation (15) as
long as the density correlation can be measured independently3 and
density–velocity correlation is not strong. A potential challenge is
the determination of velocity dispersion in the case when thermal
broadening is large. However, one can circumvent this by using
emission lines of heavier species. In this regard, LE03 introduced a
notion of ‘modified’ velocity centroids (MVCs), where the first term
of equation (15) was subtracted. Formally, the structure function of
MVC in the absence of density–velocity correlation is

DMVC(R) ≈
∫ S

−S

dz[ξρ(r)Dz(r) − ξρ(0, z)Dz(0, z)]. (69)

It was explained in LE03 that MVCs can trace the velocity spec-
trum better than the UVCs if the lag R under study be smaller than
the saturation scale of the velocity structure function as well as

3 Note that one can obtain this contribution from the density term observa-
tionally by measuring intensity fluctuations. For instance, in the language of
VCA this term can be obtained through intensity statistics in the ‘thick-slice’
limit (see LP00 for more details).

the LOS extent S of the turbulent cloud. We find that the MVC is
able to trace the velocity spectra even for a shallow spectrum, as
illustrated in Fig. 10. In fact, Fig. 11 clearly shows that modified
centroids work better than UVC at smaller lags R. Note that for
shallow density field, density–velocity cross-term yields a scaling
R1+νρ+ν , while pure velocity term yields R1 + ν , and since νρ < 0 for
a shallow density spectra, this cross-term scaling can dominate the
MVC scaling extremely small scale. Although, we see that MVCs
work well even for shallow density spectra, there are two impor-
tant points to make. First, we require σρ/ρ0 < 1 to obtain velocity
spectra correctly, otherwise density–velocity correlation (which we
ignored) becomes important (Esquivel et al. 2007). However, shal-
low density often does not fulfil this criterion. Secondly, shallow
density is often associated with high sonic Mach number Ms where
non-Gaussian features are often prominent, significantly affecting
the statistics. To sum up, one needs to know if σρ/ρ0 to conclude
if MVCs work for shallow spectra.

Our study of anisotropy was for constant density field. In the case
when density field is anisotropic, one should also account for the
anisotropy due to density effects as well. For MVC, the anisotropy
is dominated by velocity effects as long as the density dispersion
is less than the mean density. On the other hand, both density and
velocity effects contribute to the UVC anisotropy.

6.6 Comparisons with earlier numerical works

The numerical study of anisotropies with centroids has been car-
ried out in the past in LE03, Esquivel & Lazarian (2011, hereafter
EL11) and Burkhart et al. (2014, hereafter BX14). Here, we com-
pare our findings with the findings of EL11 and BX14. EL11 studied
anisotropies at γ = π/2, while BX14 studied anisotropy at varying
γ as well. Both of these studies found out a clear dependence of
anisotropy with Alfvén Mach number MA. They reported that the
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anisotropy increases with decreasing MA, which coincides with our
result. As an example, at MA = 0.7 and Ms = 2.3, the degree of
isotropy in both the papers was reported to be ∼0.3, while our results
show that in the case when Alfvén and slow modes are dominant,
the isotropy degree at MA = 0.7 is around ∼0.25, which is close to
their results. Our finding that the degree of anisotropy is highest at
γ = π/2 matches with the findings in BX14, where it was stated that
at γ = π/2 the anisotropy is highest regardless of the sonic Mach
number Ms. It is clear from our finding that the isotropy degree of
centroid is clearly dependent on MA. However, it was discussed in
EL11 and BX14 that besides a dependence of isotropy degree of
MA, there exists a weak dependence on Ms as well. Although there
is no direct role of Ms in determining the degree of isotropy in our
formalism, this weak dependence can be explained by noting that
with an increasing Ms, there is an increasing contribution from fast
mode, thus decreasing the level of anisotropy. This is consistent
with the results in EL11 and BX14.

6.7 Effects of self-absorption in anisotropy studies

In Sections 5 and 6, we studied anisotropy for an optically thin
medium. With the theory developed in Section 3, it is straightfor-
ward to extend the study of anisotropy to optically thick media.

The extent of self-absorption sets an effective cut-off in velocity
difference beyond which signals do not contribute to the correlation,
and thus we may expect changes in anisotropy level as this extent
changes. Our study in Section 3 suggests that in the case of weak
self-absorption, the centroid structure function behaves similar to
that of optically thin regime, while at stronger self-absorption it
behaves as thin-slice regime of VCA (see LP00). Naturally, in this
case of weak self-absorption one should see the level of anisotropy
similar to the optically thin case of usual centroids, while at stronger
self-absorption the anisotropy level will decrease to the level of thin-
slice regime of VCA. For example, the isotropy degree of Alfvén
mode at MA = 0.7 and at γ = π/2 changes from 0.25 at weak
absorption to 0.68 at strong absorption.

Interesting is the dependence of anisotropy level on the scale R.
As shown in Table 2, in the presence of self-absorption structure
function of centroids goes through different regimes as R changes.
Thus, the anisotropy level is expected to behave differently at dif-
ferent lags R. In particular, at small R in thick-slice regime, the
anisotropy level will be similar to the optically thin case of usual
centroids, and this level will decrease with increase of R as one
passes through the universal regime towards the thin-slice regime.
This is demonstrated in Fig. 12. Thus, the isocorrelation contours

Figure 12. Expected change of isotropy degree at various scales R in the
presence of self-absorption for Alfvén mode at MA = 0.7 and at γ = π/2.
The curve is produced by using three theoretically predicted values of
isotropy degree at thick slice (usual centroids), universal regime and thin
slice while intermediate values were obtained by interpolation.

are more elongated at small R and becomes more circular at large R.
Anisotropies in absorption line studies also show similar features.

If absorption line is not saturated and the entire line is available for
analysis, anisotropy level of centroid correlations will be similar
to that of optically thin centroids. However, if absorption line is
strong and only narrow portion of the wing is available for analysis,
the anisotropy level will decrease reaching its minimum when the
width of wing is essentially a delta function, and this minimum
corresponds to the anisotropy level of thin-slice regime in VCA.

7 C E N T RO I D S A N D I N T E R F E RO M E T R I C
DATA

Interferometric output can be used to directly measure spectra
and anisotropy of the UVC statistics using the Fourier spatial
components of the intensity distribution that are available with
interferometers. With interferometer, one can obtain spectral in-
tensity and multiply this with the LOS velocity, and integrate this
product over the entire frequency range to obtain centroid infor-
mation. The study of centroids in Fourier domain is carried out in
Dutta (2016), where potential of centroids to recover the turbulent
velocity spectrum from radio interferometric observations is studied
numerically.

To study anisotropies using centroids, one can also use raw in-
terferometric data. Anisotropic feature needs information of two-
dimensional maps, and therefore it is important to sample the fluc-
tuations from different directions of the two-dimensional K space.
The turbulence anisotropy is manifested as the anisotropy of the
power spectrum of interferometric data, and thus we write the power
spectrum as

P (K ) =
∞∑

n=−∞
Pn(K)e−inφK . (70)

Let us determine what information the measured Pn coefficients can
provide. Utilizing equations (48) and (70), one can clearly write

Pn(K) =
∫

d2 R Dn(R)e−iK ·R, (71)

which upon carrying out the angular integral yields

Pn(K) =
∫

dR RDn(R)Jn(KR), (72)

where Jn(KR) is the Bessel function of the first kind. In the case of
K � R−1, the multipole moment in Fourier space has an asymptotic
form

Pn(K) = Dn(ν)
22+ν�

(
1
2 (|n| − ν + 3)

)
�

(
1
2 (|n| + ν − 1)

) (KS)3+ν, (73)

where Dn(ν) is the real space centroid structure moment after ex-
plicitly factoring out R dependence, which for a constant density
field is given by (cf. equation 49)

Dn(ν) = Cn(ν)
∞∑

p=−∞
ÂpWn−p. (74)

It is clear from equation (73) that the centroid multipole mo-
ment in real space has one to one correspondence with that in
the Fourier space, and the ratio of multipole moments in Fourier
space is the same as that in real space. Therefore, by obtaining cen-
troid anisotropy in Fourier space through interferometric data, one
should be able to construct what that anisotropy corresponds to in
real space. It should be stressed that this technique can also be used
to obtain spectra of the velocity field.
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The study in Esquivel & Lazarian (2005) suggests that MVCs
might better reflect velocity statistics than UVCs. Thus, we believe
that interferometric studies might also benefit by using MVCs. Since
MVCs are defined only through the centroid structure function,
MVCs in interferometric studies are equivalently defined through
modified power spectrum by subtracting the product of velocity
dispersion and power spectrum of column-density fluctuations. An
elaborate technique equivalent to MVC would be to use fitting
procedure with a supplied power spectrum of density fluctuations at
sufficiently large K to determine the velocity spectra. The advantage
of the fitting procedure is one does not need to know the velocity
dispersion.

8 MA J O R F I N D I N G S O F TH I S PA P E R

The focus of this paper is the description of unnormalized centroids
for turbulence studies. The novel part of the paper is the description
of the marked effects of absorption on the unnormalized centroids,
and the description of centroid anisotropy based on the decompo-
sition of MHD turbulence into different modes. As discussed in
Section 3, it is clear that one might not be able to recover the usual
centroids in the presence of absorption. As presented in Table 2,
there is a range of scale where usual centroid asymptote can be ob-
tained, and this range is set by the temperature of the turbulent cloud.
Our results suggest that centroids work better for warm clouds than
for cold ones in the presence of absorption. This can also be un-
derstood from equations (2) and (3). With increasing temperature
(i.e. increasing βT), the intensity Iv of an optically thick medium
matches closer to that of an optically thin medium. Therefore, the
usual centroids can be recovered for larger βT. Moreover, as shown
in Fig. 3, there exist regimes of different scaling on R, and at some
intermediate regime, the asymptote loses its dependence on veloc-
ity spectral index ν, thus entering a ‘universal’ regime. Note that
Bertram et al. (2015) carried out the numerical simulations to study
gas dynamics in molecular clouds using VCs. They observed a sat-
uration of the spectral slope to value of −3, which corresponds to
a scaling ∼K−3 or equivalently R. Although their explanation was
loosely based on VCA (LP04), our results show that this saturation
exists not only in VCA, but also in centroids. It is also important to
note that in the presence of self-absorption, the column density gets
affected the same way as velocity, and therefore, obtaining MVC is
still possible.

Originally, the centroids were developed for emission lines. How-
ever, our study in Section 4 extends UVC technique to study turbu-
lence using absorption lines, which could be from the collection of
point sources or from a spatially extended source. It is clear from
our analysis that study of turbulence with absorption lines is pos-
sible with centroids if one considers the centroids of logarithm of
intensity instead of intensity. Our results clearly show that if one
considers sufficiently small lag, then one can still obtain the usual
centroids scaling R1 + ν . The range of lag R for which the usual
centroid is obtained is set by width of the absorption window � and
the thermal broadening βT. For larger βT, larger range of R shows
the usual centroids scaling.

In terms of discussion on anisotropy, there are several important
aspects that one can infer from our results. One of the important as-
pect is the issue of mode separation, i.e. identifying the composition
of different MHD modes in a turbulent medium. With our result, it
is clear that fast modes are easy to distinguish from Alfvén and slow
modes due to two main reasons. First, fast modes show scaling in
R different from Alfvén and slow modes. Secondly, the quadrupole
to monopole ratio of fast mode is positive, while that of Alfvén and

slow modes is negative. This means that iso-correlation contours are
elongated along sky-projected magnetic field direction for Alfvén
and slow modes, and orthogonal to it for fast modes. Note that KLP
had similar findings on the distinctiveness of fast modes. With the
present analysis, it is also clear that the separation of Alfvén and
slow modes is challenging for two main reasons. First, the scaling
on R shown by the two modes is the same, and secondly both modes
have the same anisotropic power spectrum, which implies similar
level of anisotropy of centroid structure.

As a novel suggestion, we presented study of centroids through
interferometric data. The prime objects of study using centroids are
turbulence in diffuse ISM of the Milky Way and other galaxies and
in intergalactic gas in clusters of galaxies using multiwavelength
single-dish and interferometric measurements. The advantage of
interferometric study is that one just needs a few measurements
rather than restoring the entire PPV cubes to be able to perform the
studies.

9 C O M PA R I S O N B E T W E E N V C A , V C S A N D
C E N T RO I D S

The VCA introduced in LP00 provided a new foundation for study-
ing velocity and density turbulence by studying the changes of
spectral slope of intensity fluctuations within velocity slices of PPV
cubes. It was shown in LP00 that by choosing a sufficiently thin
slice, one might be able to recover the velocity spectrum, whereas
for sufficiently thick slice the velocity effects get washed away
and only density spectrum can be recovered. The VCA was later
extended in LP04 to account for the effects of self-absorption of
emission lines. The results of LP04 suggest that in the presence of
self-absorption, one might not be able to recover velocity spectrum,
especially if the absorption is strong or the thermal broadening βT

is larger than the dispersion of the velocity field. In fact, it was
shown in LP04 that one might observe a universal spectrum P(K) ∼
K−3 at some intermediate lag R, which corresponds to the spectrum
measured in a number of studies (see examples in Lazarian 2009).
The original formulation of VCA dealt only with power spectra, and
this technique was further extended in KLP to study the anisotropies
induced by magnetic field in a plasma. This study showed how the
anisotropy of an underlying turbulent field maps to anisotropy of
intensity fluctuations, and showed how the level of anisotropy de-
pends on the Alfvén Mach number as well as the angle between
LOS and mean magnetic field.

VC is another powerful technique to study turbulence. We believe
that our extension of centroids to study turbulence in a media with
self-absorption, as well as for absorption line significantly improves
the value and power of this technique. In fact, we have also demon-
strated how UVC can be used to study anisotropies of underlying
turbulent field. The geometrical differences in construction of VCA
and UVC are presented in Fig. 1.

We now compare the two techniques. The first important differ-
ence between the VCA and centroids is how thermal broadening βT

affects them. While VCA cannot recover velocity spectrum at scales
R where Dz(R) < βT, centroids still work in this regime. This means
that VCA does not work well for subsonic turbulence unless we use
emission lines from subdominant slow massive species. Centroids,
on the other hand, are not reliable for supersonic turbulence (see
Esquivel et al. 2007). This is in contrast with VCA, which works
well in this regime.

In the presence of self-absorption, the VCA and the UVC share
some similarities. As shown in Section 3, in an optically thick
medium one should expect a universal regime at some intermediate

MNRAS 464, 3617–3635 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/464/3/3617/2514569 by C
N

R
S - ISTO

 user on 09 August 2022



Study of velocity centroids 3631

Table 4. Comparison between centroids and VCA.

Velocity centroids VCA

Uses LOS velocity-weighted intensity Intensity
Best for Subsonic turbulence Supersonic turbulence

Scaling R1 + ν R1 − ν/2 or R1+νρ−ν/2 (thin slicea)
R1+νρ (thick sliceb)

Notes. aFor steep density R1 − ν/2 dominates at small scales, while for shallow density R1+νρ−ν/2 dominates at
small scales,
which allows one to get information about velocity spectrum in thin-slice limit.
bVelocity effects are washed away in the thick-slice limit, and only density spectrum can be recovered.

scales, where UVCs lose their ability to trace the underlying velocity
field, same as in the VCA. Similarly, for ν < 2/3 one should expect
to see a thin-slice asymptote R1 − ν/2 at some larger scales even in
centroids as in the VCA. All the expected scaling from velocity
effects in the presence of self-absorption is presented in Table 2 for
both UVC and VCA. A brief comparison between VCA and UVC
is also presented in Table 4.

Although the spectral index of a velocity field is an important
parameter, it does not provide a complete picture of an underlying
turbulent field. In fact, for a magnetized plasma, anisotropies are
important descriptors of the underlying field. We have shown in
Section 6 how the anisotropies of UVC structure function can be
used to study the anisotropy of underlying turbulent field. This
provides a complimentary tool to study anisotropies. As shown in
this paper and in KLP, both VCA and UVC show similar traits in
terms of anisotropy. First, the observed anisotropy in the thin-slice
regime in VCA and in UVC both show a clear dependence on both
Alfvén Mach number and the angle between the magnetic field and
the LOS. Secondly, both studies demonstrate that the anisotropy
due to fast modes is opposite to that due to Alfvén and slow modes.
However, to obtain complete understanding of anisotropies, one still
needs to correctly obtain the angle between magnetic field and the
LOS, and the Alfvén Mach number and understand the characteristic
difference between Alfvén and slow modes. We believe that these
understandings can be significantly enhanced by combining VCA
and centroids and through model fittings.

Besides VCA and centroids, VCS is another powerful technique
to study turbulence. Unlike VCA and centroids, VCS exclusively
uses data along the velocity coordinate (in particular in the Fourier
space), and one does not need to spatially resolve the scale of
turbulence under study. A major advantage of VCS is that only few
independent measurements are enough to obtain information about
the underlying velocity field (Chepurnov & Lazarian 2009).

We stress the importance of using different techniques such as
VCA, VCS and centroids when studying multiphase ISM, e.g. H I

and Hα. While VCA and VCS do not work well for gas components
with large thermal broadening βT due to thermal dampening of the
fluctuations,4 centroids work well for both hot and cold components
at least as long as the turbulence is subsonic. Therefore, synergy of
different techniques is advantageous, as these techniques have their
own advantages.

1 0 P R AC T I C A L A S P E C T S O F ST U D I E S O F
T U R BU L E N C E U S I N G C E N T RO I D S

In this section, we discuss some of the practical aspects of study-
ing turbulence with centroids. First, when centroids are used to

4 One strategy to use VCA and VCS in a hot medium is to use emission
lines from heavy species such as Fe.

study turbulence in external galaxy, one must consider the contri-
bution from galactic rotation to the LOS velocity, and thus to the
centroids. Several methods are available to remove this contribu-
tion through the estimation of galactic rotation curve (see for e.g.
Miesch & Bally 1994; Miesch et al. 1999; Dutta 2016). In this
paper, we have assumed that coherent motions such as rotations
have been subtracted from the PPV data. Our approach has ben-
efited from the formulation of centroids in PPV space which can
assume that such cleaning steps have been done before correlation
studies.

Centroids are most suitable for subsonic turbulence. One of the
candidates for objects of study for such turbulence is the clusters
of galaxies. An example of a cluster suitable for turbulence stud-
ies would be a nearby Coma cluster, where a potential cause of
turbulence is an ongoing merger activity (ZuHone, Markevitch &
Zhuravleva 2016). The observational study of turbulence could be
carried out with the data using new-generation X-ray observatories
such as Astro-H (Takahashi et al. 2012). Some of the practical as-
pects of studying turbulence have been presented in ZuHone et al.
(2016), where they use normalized centroids to numerically test the
ability of Astro-H to constrain various parameters (such as injection
scale, Mach number). Astro-H, for instance, has capability to obtain
LOS velocities as well as velocity dispersion with a spectral reso-
lution of the order of km s−1. Centroids are suitable when a good
spatial coverage is available, otherwise a complimentary technique
to study turbulence when such coverage is unavailable is VCS. VCS
can be used with heavier species (such as Fe) in clusters, for which
the thermal broadening βT is small. The advantage of VCS is that
only few spectral measurements are enough to obtain turbulence
spectra, and one does not even need a good spectral resolution to
study turbulence.

X-ray observations are used to measure velocity and intensity
profiles in such clusters, but X-ray observatories often have limited
spectral resolution. None the less, one should still be able to use
centroids as long as the dynamical range width �Vi of an instru-
ment over which they are sensitive to signal is larger than the spread
�V0 = √

Dz(S) + 2βT of the signal. Zhuravleva et al. (2012, here-
after ZX12) commented that with an energy resolution of 5 eV and
angular resolution of 1.7 arcmin, one should be able to measure
the line profiles in Perseus cluster (where rms velocity of gas mo-
tions is ∼300 km s−1) with 90 per cent confidence level with the
measurement time of ∼4 × 105s.

Thermal broadening can put an important limitation on one’s
ability to obtain velocity dispersion, as the measured width of the
line is affected by thermal motions of emitters. However, as noted
in ZX12, thermal broadening is not important especially when one
considers heavy species such as Fe. It was discussed in ZX12 that
for instruments such as Astro-H with energy resolution of 7 eV at
6.7 keV line width of Fe, and at gas motions of speed ∼400 km s−1,
thermal broadening is unlikely to be significant.
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An important limitation of an instrument is its finite spatial reso-
lution. A finite diagram θ0 of an instrument introduces uncertainty
δR ∼ θ0 in the scales. Therefore, one should study centroids at
scales R > θ0. Moreover, if the spatial resolution of the telescope
is not good enough, then in the presence of self-absorption, one
cannot see the turbulence induced statistics, but only the universal
∼R regime. To put this in perspective, we take a specific example
of an instrument with 1.7 arcmin angular resolution, which is used
to study Perseus cluster, which is at a distance of 72 Mpc. With this
resolution, only lags R > 20 kpc can be studied to obtain turbulence
spectra.

The effect of instrumental noise has been discussed in detail in
Dickman & Kleiner (1985, hereafter DK85) and Miesch & Bally
(1994), where it was shown that actual correlations are underes-
timated in the presence of instrumental noise. DK85 suggested to
apply a constant multiplicative factor to account for noise contribu-
tions at non-zero lag.

The studies of the effects of noise in DK85 were carried out for
normalized centroids. Here, we apply their study for unnormalized
centroids. In the presence of noise, the centroids structure function
can be written as

DN (R) = D(R) + 2σ 2
N, (75)

where D(R) ≡ 〈
[C(X1 + R) − C(X1)]2

〉
, σ 2

N is the variance due
to noise. Since D(R) ∝ Rn, where n > 0 is some index, it is clear
that at extremely short scales, the centroid structure function can be
corrupted by the noise. To estimate σ N, we decompose the measured
spectral intensity Iv, i in a velocity channel i into contributions from
true emissions I s

v,i and contributions from noise δIv, i, so that the
centroids can be written as

C =
N∑

i=1

I s
v,ivi +

N∑
i=1

δIv,ivi . (76)

The noise in two different spectroscopic channels is uncorrelated,
and thus satisfies the constraints 〈δIv, iδIv, j〉 = δI2 for i = j and 0
otherwise. From equation (76), it is clear that the error in centroids
due to noise is δC = ∑N

i=1 δIv,ivi , and therefore the dispersion due
to noise is given by

σ 2
N = δI 2

N∑
i=1

v2
i . (77)

As shown in DK85, for large N,
∑N

i=1 v2
i ≈ �2N3/12, where � is

the width of the spectroscopic channel. Using equation (77), one
finally obtains

σ 2
N ≈ �2N3δI 2

12
. (78)

With this, the lags at which turbulence can be studied in the presence
of noise can be estimated by considering scales for which D(R) >

2σ 2
N. Restoring dimensional pre-factors in the expression for D(R),

we obtain

R

S
>

(
�2N3

6Dz(S)

δI 2

Ī 2

) 1
1+ν

, (79)

where Ī is the mean spectral intensity in a spectroscopic channel.
In the case when background count per second in a spectral bin is
given by nb, the actual emission count per second in a spectral bin
by na, one can write

δI 2

Ī 2
= na + nc

n2
a t

, (80)

where t is the measurement time. Equations (79) and (80) tell us
that in the presence of noise, we can still study turbulence albeit
not at extremely short scales. Moreover, the effect of noise can be
reduced by increasing instrument time, as seen from equation (80).
It is important to note that to reduce the effects of noise, one should
use a velocity window which is just wide enough to account for
major signals.

1 1 D I S C U S S I O N

11.1 Foundations of the technique

In this paper, we improve the understanding of centroids by studying
unnormalized centroids in the presence of self-absorption, carrying
out absorption line study and studying the effects of anisotropies
in MHD turbulence. Unlike the past works, we explicitly use PPV
space for absorption line study and study of self-absorption. This
work shows the strength and usefulness of the PPV space formalism
developed in LP00.

In the view of modern understanding of MHD turbulence (see
Beresnyak & Lazarian 2015 for a review), we study anisotropy of
centroid correlation through explicit calculations in mode-by-mode
basis. Theoretical and numerical research (GS95; Lithwick & Gol-
dreich 2001; Cho & Lazarian 2002, 2003; Kowal & Lazarian 2010)
suggest that the MHD turbulence can be viewed as a superposi-
tion of the cascades of Alfvén, slow and fast modes. The statistical
properties of these cascades in the global frame of reference were
obtained in LP12 for the magnetic fields, while similar study was
carried out in KLP for the velocity field. In particular, KLP studied
turbulence anisotropies by making use of the VCA technique.

The variations of spectral indexes m of power spectrum for the
velocity field, P(k) ∼ k−m, are rather limited. The range of m is
likely to be between m = 3/2 and m = 2, with m = 3/2 expected for
acoustic turbulence and m = 2 for shocks. Numerical simulations in
Kritsuk et al. (2009) and Kowal & Lazarian (2010) indicate that this
range might be even more restrictive from approximately m = 5/3 to
somewhat shallower than m = 2. The latter is present for high sonic
Mach numbers. Non-ideal MHD effect such as partial ionization
is not expected to change the velocity spectral index down to the
ion–neutral damping scales. The reported spectral index m = 4 in
the viscosity-damped regime of turbulence (see Lazarian, Vishniac
& Cho 2004) is probably too steep to be seen observationally. On
the other hand, spectral index of density changes from 5/3 to much
more shallow values as discussed in Kowal, Lazarian & Beresnyak
(2007). Again, partial ionization is not expected to significantly
affect the results at scales where the ions and neutrals are coupled.

11.2 Model assumptions

In this paper, we adopted several model assumptions to make our
analysis possible. One of the main assumptions is that the fluctua-
tions are Gaussian. This assumption is satisfied by the velocity field
to an appreciable degree (see Monin et al. 1975). We do not make
any assumption about Gaussianity of density field in the case when
the turbulent medium is optically thin, as well as for absorption line
studies, but we use Gaussian approximation for PPV space density
to understand the main effects of self-absorption.

While LE03 derived a general expression for centroid structure
function keeping in mind that velocity and density might be corre-
lated, we assumed that they are not. In fact, Esquivel et al. (2007)
investigated the effects of density velocity correlation and showed
that this correlation is not important if σρ/ρ0 � 1. If this condition
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is not fulfilled, one should develop a model of density–velocity,
perhaps basing on numerical simulation, correlation to retrieve full
information from the centroids.

Our analysis of centroid anisotropy was based on the decompo-
sition of MHD turbulence into Alfvén, slow and fast modes. This
decomposition is reasonable only when the coupling between the
modes is marginal. Cho & Lazarian (2002) showed that the degree
of coupling between different modes to be moderate as long as the
sonic Mach number is not very high. Since the main regime where
centroids are reliable is subsonic turbulence, this condition may not
be restrictive for our purpose.

11.3 New power of centroids

This paper improves the usefulness of the UVC technique by pro-
viding an analytical description of the technique in the presence of
self-absorption as well as for the absorption line study. We believe
that our study will be complimentary to the study in LP04, where
effects of self-absorption were studied in the context of VCA. We
also extend the ability of the centroids technique to study mag-
netization of a media and direction of the magnetic field, and ex-
plored the possibility of separating contributions of Alfvén, slow
and fast modes. The separation of mode is important because dif-
ferent modes have different astrophysical impacts. As an example,
Alfvén modes are essential for magnetic field reconnection (Lazar-
ian & Vishniac 1999, see also Lazarian et al. 2015 and references
therein), superdiffusion of cosmic rays (Lazarian & Yan 2014), etc.
On the other hand, fast modes are important for resonance scatter-
ing of cosmic rays (Yan & Lazarian 2002). The possible ability of
centroids to obtain the relative contribution of these different modes
complements this ability for the techniques introduced in LP12 and
LP16 for synchrotron data and in KLP for spectroscopic data.

11.4 Centroids and other techniques

In this paper, we studied centroids by extensively making use of
PPV space formalism. We have also discussed and compared cen-
troids with the VCA and VCS, the techniques that were developed
also by using PPV space formalism. Centroids have been used
to analytically study anisotropies in this paper, while anisotropies
were studied using VCA in KLP. Another technique called PCA
(see Brunt & Heyer 2002) can also be used to study turbulence
anisotropies. However, unlike the centroids and VCA, it is not easy
to quantify PCA using PPV data. Nevertheless, recent studies have
shown the sensitivity of PCA to the phase information (Correia et al.
2016), although the trend is not yet clear.

Another important technique to study turbulence using velocity
slice of PPV space is the spectral correlation function (SCF; see
Rosolowsky et al. 1999). The SCF is very similar to VCA if one
removes the adjustable parameters from SCF. In fact, both SCF and
VCA measure correlations of intensity in velocity slices of PPV,
but the SCF treats outcomes empirically. There also exist numerous
techniques identifying and analysing clumps and shells in PPV (see
Stutzki & Guesten 1990; Houlahan & Scalo 1992; Williams, De
Geus & Blitz 1994; Pineda et al. 2006; Ikeda, Sunada & Kitamura
2007).

Besides the VCA and centroids, there are also some other tech-
niques to study sonic and Alfvén Mach numbers. Some of these
techniques include the so-called Tsallis statistics (see Esquivel &
Lazarian 2010; Tofflemire, Burkhart & Lazarian 2011), bi-spectrum
(see Burkhart et al. 2009), genus analysis (see Chepurnov et al.

2008), etc. Using different available techniques allows one to ob-
tain a comprehensive picture of MHD turbulence.

1 2 S U M M A RY

On the basis of the analytical theory of the intensity fluctuations in
the PPV space developed in the earlier works (LP00, LP04, LP08,
KLP), we provided the analytical description of the statistics of fluc-
tuations measured by VCs. Our definition of centroids follows that
in LE03 and differs from the traditionally used by the absence of
the normalization by intensity. While the normalization makes ana-
lytical studies really prohibitive, it was shown in numerical studies
in Esquivel & Lazarian (2005) to be of no significance for restoring
underlying velocity statistics. Therefore, we use UVCs (Esquivel &
Lazarian 2005, see Table 1). Our results can be briefly summarized
as follows.

(i) We proved the complementary nature of turbulence studies
with VCs and the VCA. Both techniques can measure turbulence
spectra and anisotropy. While centroids are reliable for study of
subsonic turbulence statistics, one has to use only heavier species,
e.g. metals in hydrogen gas, to study subsonic turbulence using
VCA. We showed how one can use centroids to study anisotropies
of different MHD modes.

(ii) Analytical expressions for UVC structure function are ob-
tained in the presence of emission lines and self-absorption as well
as for the absorption lines. In the presence of self-absorption, new
scalings of correlation of fluctuations measured by UVC at different
scales are reported. Similar to the VCA, for a range of scales, the
UVC correlations are shown to exhibit universal scaling, thus losing
the information of the velocity spectra.

(iii) For absorption line, we suggest to construct UVC as LOS-
velocity-weighted logarithm of intensity, and focus on the wings
where absorption lines are not saturated. We termed thus defined
centroid as restricted velocity centroid (RVC) (see equation 32) and
showed that at sufficiently small lags it exhibits the usual centroids
scaling. RVCs open a new way of probing astrophysical turbulence.
Both turbulence statistics and turbulence anisotropies can be studied
using RVCs.

(iv) Analytical expression of UVC structure function and
anisotropy level for sub-Alfvénic turbulence are derived. These ex-
pressions are used to study the anisotropy arising from three MHD
modes: Alfvén, fast and slow. It is shown that the quadrupole to
monopole ratio of fast mode is positive, while it is negative for
Alfvén and slow modes. In other words, isocorrelation contours are
elongated along sky-projected magnetic field direction for Alfvén
and slow modes, and orthogonal to it for fast modes, which is the
same as what VCA predicts (see KLP).

(v) Self-absorption of the radiated emission does not preclude
anisotropy studies with UVCs, MVCs and RVCs. Our study sug-
gests that at sufficiently short lag R, one will observe the same level
of anisotropy as that of optically thin centroids, while at larger scales
the anisotropy level decreases to the level of thin-slice regime of
VCA.

(vi) Interferometric output can be used to directly measure spec-
tra and anisotropy of the UVC statistics using the Fourier compo-
nents of the intensity distribution that are available with interferom-
eters. This considerably simplifies such measurements, as there is
no necessity to restore the image of the turbulent volume. Instead,
having a few of these Fourier components is sufficient to get both
spectra and anisotropy of turbulence.
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APPENDIX

Table A1. List of notations used in this paper.

Parameter Meaning First appearance

x 3D position vector Equation (3)
X 2D position vector Equation (1)
r 3D separation x2 − x1 Equation (8)
R 2D separation X2 − X1 Equation (8)
ρs(X, v) Density of emitters in the PPV space Equation (2)
	(v) Maxwell’s distribution function Equation (3)
βT Thermal broadening Equation (11)
ξρ (x) Density correlation function Equation (8)
Dz(r) LOS-projected velocity structure function Equation (11)
dρ (r) Density structure function Equation (15)
S Size of a turbulent cloud Equation (8)
vab Velocity cut-off introduced by self-absorption Equation (25)
τ (X, v) Optical depth Equation (28)
� Characteristic width of the window in the absorption line study Equation (32)
λ̂ Direction of the mean magnetic field Equation (40)
ak Random amplitude of a mode Equation (40)
ξ̂k Direction of allowed displacement in a plasma Equation (40)
A(k, k̂ · λ̂) Power spectrum of a mode Equation (40)
cos φ 2D angle between sky-projected r and sky-projected λ̂ Equation (46)
cos γ Angle between LOS and symmetry axis Equation (54)
Dn(R) Multipole moment of centroid structure function Equation (48)
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