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Abstract. The SECHIBA module of the ORCHIDEE land
surface model describes the exchanges of water and energy
between the surface and the atmosphere. In the present paper,
the adjoint semi-generator software called YAO was used as
a framework to implement a 4D-VAR assimilation scheme of
observations in SECHIBA. The objective was to deliver the
adjoint model of SECHIBA (SECHIBA-YAO) obtained with
YAO to provide an opportunity for scientists and end users to
perform their own assimilation. SECHIBA-YAO allows the
control of the 11 most influential internal parameters of the
soil water content, by observing the land surface tempera-
ture or remote sensing data such as the brightness temper-
ature. The paper presents the fundamental principles of the
4D-VAR assimilation, the semi-generator software YAO and
a large number of experiments showing the accuracy of the
adjoint code in different conditions (sites, PFTs, seasons).
In addition, a distributed version is available in the case for
which only the land surface temperature is observed.

1 Introduction

Land surface models (LSMs) simulate the interactions be-
tween the atmosphere and the land surface, which directly
influence the exchange of water, energy and carbon with

the atmosphere. They are important tools for understanding
the main interaction and feedback processes simulating the
present climate and making predictions of future climate evo-
lution (Harrison et al., 2009). Such predictions are subject to
considerable uncertainties, which are related to the difficulty
in modeling the highly complex physics with a limited set
of equations that does not account for all the interacting pro-
cesses (Pipunic et al., 2008; Ghent et al., 2011). Understand-
ing these uncertainties is important in order to obtain more
realistic simulations.

A key challenge of a dynamical model is to adjust the out-
put of the model considering an appropriate source of infor-
mation. One source of information can be given by measure-
ments (or more generally observations) that contribute to the
understanding of the system evolution (Lahoz et al., 2010).
Data assimilation merges these observations with the dynam-
ical model in order to obtain a more accurate estimate of the
current and future states of the system, given the uncertain-
ties of the model and of the observations. Two basic method-
ologies can be used for that purpose: the sequential approach
(Evensen, 2003), based on the statistical estimation theory of
the Kalman filter, and the variational approach, the so-called
4D-VAR (Le Dimet et al., 1986), built from the optimal con-
trol theory (Robert et al., 2007). It can be proven that both
approaches provide the same solution at the end of the assim-
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ilation period, for Gaussian errors (not correlated in time) and
linear models. This property does not stand if the processes
under study are nonlinear. The main advantage of 4D-VAR
comes from its integration in time achieved during the assim-
ilation of the observations, giving rise to a global trajectory
of the model optimized over the assimilation time window.

Variational data assimilation has been widely used in land
surface applications. The assimilation of land surface tem-
perature (LST) is suitable for an extensive range of environ-
mental problems. As mentioned in Ridler et al. (2012), LST
is an excellent candidate for model optimization since it is a
solution of the coupled energy and water budgets, and per-
mits one to constrain parameters related to evapotranspira-
tion and indirectly to soil water content.

Castelli et al. (1999) expose a variational data assimila-
tion approach, including surface energy balance in the es-
timation procedure as a physical constraint (based on ad-
joint techniques). The authors worked with satellite data and
directly assimilated soil skin temperatures. They concluded
that constraining the model with such observations improves
model flux estimates, with respect to available measure-
ments. Huang et al. (2003) developed a one-dimensional land
data assimilation scheme based on an ensemble Kalman fil-
ter, used to improve the estimation of the land surface tem-
perature profile. They demonstrated that the assimilation of
LST into land surface models is a practical and effective way
to improve the estimation of land surface state variables and
fluxes.

Reichle et al. (2010) performed the assimilation of
satellite-derived skin temperature observations using an
ensemble-based, offline land data assimilation system. Re-
sults suggest that the retrieved fluxes provide modest but sta-
tistically significant improvements. However, these authors
noted strong biases between LST estimates from in situ ob-
servations, land modeling, and satellite retrievals that vary
with season and time of the day. They highlighted the im-
portance of taking these biases into account; otherwise, large
errors in surface flux estimates can result.

Ghent et al. (2011) investigated the impacts of data assim-
ilation on terrestrial feedbacks of the climate system. Assim-
ilation of LST helped to constrain simulations of soil mois-
ture and surface heat fluxes. Ridler et al. (2012) tested the ef-
fectiveness of using satellite estimates of radiometric surface
temperatures and surface soil moisture to calibrate a soil–
vegetation–atmosphere transfer (SVAT) model, based on er-
ror minimization of temperature and soil moisture model out-
puts. Flux simulations were improved when the model is cal-
ibrated against in situ surface temperature and surface soil
moisture versus satellite estimates of the same fluxes.

Bateni et al. (2013) employed the full heat diffusion equa-
tion to perform a variational data assimilation. Deviation
terms of the evaporation fraction and a scale coefficient were
added as penalization terms in the cost function. A weak
constraint was applied to data assimilation with model un-
certainty, accounting in this way for model errors. The cost

function associated with this experiment contains a term that
penalizes the deviation from prior values. When assimilating
LST into the model, the authors proved that the heat diffusion
coefficients are strongly sensitive. As a conclusion, it can be
seen that the assimilation of LST can improve the model sim-
ulated flows.

In the present study, we focused on the SECHIBA mod-
ule (Ducoudré et al., 1993), which is part of the ORCHIDEE
land surface model dedicated to the resolution of the surface
energy and water budgets. Our objective was to test the abil-
ity of 4D-VAR to estimate a set of its inner parameters. A
dedicated software (called SECHIBA-YAO) was developed
by using the adjoint semi-generator software called YAO de-
veloped at LOCEAN-IPSL (Nardi et al., 2009). YAO serves
as a framework to design and implement dynamical mod-
els, helping to generate the adjoint of the model, which per-
mits one to compute the model gradients. SECHIBA-YAO
provides an opportunity to control the most influent inter-
nal parameters of SECHIBA by assimilating LST (land sur-
face temperature) observations. At a given location and for
specific soil and climate conditions, twin experiments of as-
similation have been executed. These twin experiments con-
ducted on actual sites were used to demonstrate the accuracy
and usefulness of the code and the potential of 4D-VAR when
dealing with LST assimilation.

This paper is structured as follows. In Sect. 2, model and
data used to illustrate the capabilities of the SECHIBA-YAO
are detailed. In Sect. 3, fundamentals of variational data as-
similation are presented. In addition, principles of YAO and
of its associated modular graph formalism are shown. The
principle of the computation of the adjoint with YAO is pro-
vided. The implementation of SECHIBA-YAO and the de-
tails of the experiments that prove the efficiency of the 4D-
VAR assimilation are also given in Sect. 3. Sensitivity exper-
iments and simple twin experiments at two FLUXNET lo-
cations are presented in Sect. 4. These experiments illustrate
the convenience of YAO to optimize control parameters. Sec-
tion 5 consists in a discussion and a conclusion. Finally, the
specificities of the distributed software are given in Sect. 6.

2 Models and data

ORCHIDEE is a land surface model developed at the In-
stitut Pierre Simon Laplace (IPSL) in France. ORCHIDEE
is a mechanistic dynamic global vegetation model (Krinner
et al., 2005) representing the continental biosphere and its
different biophysical processes. It is part of the IPSL earth
system model (Dufresne et al., 2013) and is composed of
three modules: SECHIBA, STOMATE and LPJ. The version
used in this work corresponds to version 1.2.6, released on
22 April 2010. SECHIBA computes the water and energy
budgets at the biosphere–atmosphere interface, as well as the
gross primary production (GPP); STOMATE (Friedlingstein
et al., 1999) is a biogeochemical model which represents the
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processes related to the carbon cycle, such as carbon dynam-
ics, the allocation of photosynthesis respiration and growth
maintenance, heterotrophic respiration and phenology, and
finally, LPJ (Sitch et al., 2003) models the global dynam-
ics of the vegetation, interspecific competition for sunlight as
well as fire occurrence. ORCHIDEE has different timescales:
30 min for energy and matter, 1 day for carbon processes and
1 year for species competition processes. The full descrip-
tion of ORCHIDEE can be found in Ducoudré et al. (1993),
Krinner et al. (2005), d’Orgeval et al. (2006), and Kuppel et
al. (2012). In the present study, ORCHIDEE version 1.9 is
used in a grid-point mode (at a given location), forced by
the corresponding local half-hourly gap-filled meteorologi-
cal measurements obtained at the flux towers. In this study,
only the SECHIBA module is considered.

In SECHIBA, the land surface is represented as a whole
system composed of various fractions of vegetation types
called PFTs (plant functional types). A single energy bud-
get is performed at each grid point, but the water budget is
calculated for each PFT fraction. The resulting energy and
water fluxes between atmosphere, ground and the retrieved
temperature represent the canopy ensemble and the soil sur-
face. The main fluxes modeled are the net radiation (Rn),
soil heat flux (Q), sensible (H ) and latent heat (LE) fluxes
between the atmosphere and the biosphere, land surface tem-
perature (LST) and the soil water reservoir contents. Energy
balance is solved once, with a subdivision only for LE in bare
soil evaporation, interception and transpiration for each type
of vegetation. Water balance is computed for each fraction
of vegetation (plant functional type or PFT) present in the
grid. The SECHIBA version used in this work models the
hydrological budget based on a two-layer soil profile (Chois-
nel, 1977). The two soil layers represent, respectively, the
surface and the total rooting zone. The soil is considered ho-
mogeneous with no sub-grid variability and a total depth of
htot = 2 m. The soil bottom layer acts like a bucket that is
filled with water from the top layer. The soil is filled from
top to bottom with precipitation; when evapotranspiration is
higher than precipitation, water is removed from the upper
reservoir. Runoff arises when the soil is saturated. SECHIBA
inputs are Rlw the incoming infrared radiation; Rsw the in-
coming solar radiation; P the total precipitation (rain and
snow); Ta the air temperature; Qa the air humidity; Ps the
atmospheric pressure at the surface and U the wind speed.

In the full version of SECHIBA-YAO, observations of LST
or brightness temperature can be used to constrain model in-
ner parameter or initial conditions of the model variables.
However, the simulated LST is hemispheric and does not ac-
count for solar configuration and viewing angle effects. In
order to compute a thermal infrared brightness temperature
from LST, and neglecting the directional effects, the total en-
ergy emitted by the surface (Rad) can be computed using the
following expression:

Rad= kemis ε LST4
+ (1− ε kemis) LWdown. (1)

In this equation, ε is the surface emissivity, kemis is the multi-
plicative factor for emissivity and LWdown is the longwave in-
cident radiation that is an input forcing of SECHIBA. Svend-
sen et al. (1990) proposed a transfer function to link the sur-
face emitted radiance towards an observed brightness tem-
perature TB measured in the [8,14] spectral band. The em-
pirical formulation is given by the expression

TB=
(

Rad− 7.84

6.7975.1011

)0.2

. (2)

In the following, the capabilities of the 4D-VAR are demon-
strated in a series of assimilation experiments using the
data provided by the FLUXNET network (Baldocchi et al.,
2001). FLUXNET is a network coordinating regional and
global analysis of observations from micrometeorological
tower sites. The flux tower sites use eddy covariance meth-
ods (Aubinet et al., 2012) to measure the exchange of carbon
dioxide (CO2), water vapor, and energy between terrestrial
ecosystems and the atmosphere. SECHIBA-YAO can be run
using other data as long as the same inputs needed to operate
SECHIBA are given.

Measurement towers sprang up around the world, grouped
into regional networks. The data from all networks are ac-
cessible to the scientific community via the FLUXNET web-
site (http://www.fluxdata.org). In this work, we selected two
sites: Harvard Forest and Skukuza Kruger National Park;
both present contrasted climate and land surface properties
suitable for testing the tools developed and assessing model
parameter sensitivities. Only climate measurements with the
same sampling frequency (30 min) from both sites are used
to force SECHIBA. Vegetation characteristics are prescribed
and only homogeneous grids are considered. Two cases were
studied with agricultural C3 (PFT 12) and bare soil (PFT 1).

2.1 Skukuza Kruger National Park

Located in South Africa at 25◦1′11′′ S and 31◦29′48′′ E,
this FLUXNET site was established in 2000. The tower
overlaps two distinct savanna types and collects informa-
tion about land–atmosphere interactions. The climate is
subtropical–Mediterranean. The total mean annual precipi-
tation is 650 mm, with an altitude of 150 m, and the mean
annual temperature is 22.15 ◦C.

2.2 Harvard Forest

Located in the United States of America, on land owned
by Harvard University, the station is located at 42◦53′78′′ N
and 72◦17′15′′W. It was established in 1991. The site has
a temperate–continental climate with hot or warm summers
and cold winters. The annual mean precipitation is 1071 mm,
the mean annual temperature is 6.62 ◦C and the altitude is
340 m.
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3 The methodology

3.1 Variational assimilation

Variational assimilation (4D-VAR) (Le Dimet et al., 1986)
considers a physical phenomenon described in space and its
time evolution. It thus requires the knowledge of a direct dy-
namical model M , which describes the time evolution of the
physical phenomenon. M computes geophysical variables,
which are compared to observations. By varying some model
parameters (control parameters), assimilation seeks to infer
geophysical variables that are the closet to observation val-
ues (LST in the present case). The control parameters can
be, as an example, initial conditions or physical parameters
of M leading to the computation of LST.

The basic idea is to determine the minimum of a cost func-
tion J that measures the misfits between the observations and
the model estimations. Due to the complexity of this func-
tion, the solution is classically obtained by using gradient
methods, which implies the use of the adjoint model of M .
This model is derived from the equations of the direct model
M . The adjoint model estimates changes in the control vari-
ables in response to a disturbance of the output values calcu-
lated by M . It is done by integrating the same model in the
backward direction (e.g., time integration is from the future
to the past). If observations are available, the adjoint allows
one to minimize the cost function J .

Formalism and notations for variational data assimilation
are taken from Ide et al. (1997). M represents the direct
model, x(t0) is the initial state of the model and k represents
the vector of the inner model parameters to be controlled, so
x(ti)=Mi(k,x(t0)), where Mi(k,x(t0)) is represented by
M◦M◦. . .◦M (k,x(t0)). The tangent linear model is denoted
M(ti, ti+1), which is the Jacobian matrix of M, in x(ti). The
adjoint model MT

i is the linear tangent transpose, defined as

MT
i =

i−1∏
j=0

M
(
tj , tj+1

)T
. (3)

M is used to estimate variables, which are observed through
an observation operator H, permitting one to compare the
observed values y0 with respect to the y calculated by
the composition H◦M, at the location (in time and space)
where observations are available. We suppose that yi =

Hi (Mi (xi,k))+ ε, where εi is a random variable with zero
mean. This term represents the sum of the model, observa-
tion and scaling error. Finally, the most general form of the
cost function is defined as follows:

J (k)=
1
2

(
k− kb

)T

B−1
(
k− kb

)
+

1
2

t∑
i=0

(
yi − y0

i

)T

R−1
i

(
yi − y0

i

)
. (4)

The background vector is defined as kb, which is an a priori
vector of the inner model parameters. The first part of the

cost function represents the discrepancy to kb and acts as a
regularization term. The second part represents the distance
between the observations and the model estimates. B is the
covariance error matrix of kb and Ri is the covariance error
matrix of yo at time ti .

The objective of this work is to show the capacity of 4D-
VAR to help determine the value of the principal inner pa-
rameters k of SECHIBA and the initial conditions for sur-
face water content. The present distributed software allows
the reader to do his or her own experiments using synthetic
or actual data. When the observations are synthetic (produced
by the model itself), no transfer functions from the estimation
to the observation are needed, and H is taken as the iden-
tity matrix. If actual data are used, a specific H is used that
transforms the soil temperature into brightness temperature
(see section Model and Data). In addition, the relationship
prior value/actual value determines the covariance matrix B;
however, in our case no covariance matrix is taken since the
actual control parameters values are out of the scope of this
work. Finally, in our work, reading the covariance of obser-
vations, the identity matrix is taken for R.

The minimization of the cost function (Eq. 4) is based on
gradient-descent approaches. The cost function gradient has
the form

∇kJ = B−1
(
k− kb

)
+

t∑
i=1

MT
i (k)∇yif, (5)

where ∇kJ and ∇yiJ are the gradients of the cost function J
with respect to k and yi , respectively.

The expression above allows us to compute ∇kJ by know-
ing ∇yiJ , in the form of a matrix product of this term by
the matrix MT

i (x,k), corresponding to the transpose of the
Jacobian matrix. The development of calculation gives the
expression of the gradient of y (Eq. 2):

∇kJ = B−1
(
k− kb

)
+

t∑
i=1

MT
i (k)H T

[
R−1

i (yi − y0)
]
. (6)

The control parameters are adjusted several times using
a L-BFGS method (Gilbert and LeMaréchal, 1989) until a
stopping criterion is reached.

3.2 YAO

Variational data assimilation requires the computation of the
adjoint code of the direct model, which is a heavy and com-
plex task, especially for a large model such as SECHIBA.
Usually, the adjoint code is computed with the help of spe-
cific softwares (automatic differentiators) (e.g., Bischof et
al., 1997; Giering and Kaminski, 2003; Hascoët and Pascual,
2004). These softwares are appropriate for the differentia-
tion of large codes, but their use will be optimal only under
specific coding conventions and a good level of modularity
of the codes (Talagrand, 1991). Moreover, manual optimiza-
tion of the produced code is often necessary. Therefore, in
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Figure 1. (Left) Example of a modular graph associated with
four basic functions and five basic connections, three input points
and three output points; (right) simplified description showing the
acyclicity of the graph. Source: Nardi et al. (2009).

many practical cases the automatic production of code will
not be totally optimal in terms of flexibility (e.g., when the
direct model is updated frequently, one has to re-differentiate
the whole code). These considerations motivated the devel-
opment of a slightly different but complementary approach
that focuses on the high-level structure of the numerical mod-
els, embedding implementation details inside simple enti-
ties that can be easily updated. This has led to the develop-
ment of the YAO assimilation software at LOCEAN/IPSL
(https://skyros.locean-ipsl.upmc.fr/~yao/).

YAO is based on the decomposition of a numerical model
into elementary modules interconnected by directional links.
On the one hand, the structure of the model (variables, de-
pendencies. . . ) is described as a graph structure. On the other
hand, the details of the physics are coded inside C/C++
basic modules that are ideally simple. The user can there-
fore separate the “high-level” structure of the model from
implementation details. It is also very easy to update a nu-
merical code within this framework. Regarding the assimi-
lation strategy, YAO computes the tangent linear and adjoint
codes from the elementary Jacobians of each module (pro-
vided by the user). Adjoint/cost function test tools are also
available. Finally, YAO includes routines devoted to the clas-
sical assimilation scenario (incremental form) and is inter-
faced with the M1QN3 minimizer (Gilbert and LeMaréchal,
1989), which has been designed to minimize functions de-
pending on a very large number of variables not subject to
constraints. The algorithm implements a quasi-Newton tech-
nique (L-BFGS) with a dynamically updated scalar or diago-
nal preconditioner. It uses a line search to enforce global con-
vergence; more precisely, the step size is determined by the
Fletcher–Lemaréchal algorithm and realizes the Wolfe con-
ditions.

3.3 Graph formalism

In YAO, a numerical model must be described as an ensem-
ble of modules related by connections in order to form a
graph. Let us define more precisely the main components of
the graph.

– A module is a basic entity of computation, representing
a deterministic (but possibly nonlinear) function trans-
forming an input vector into an output vector. A module

Figure 2. (a) Example of a modular graph with five modules, as-
sumed representative of the pointwise equations of a given model;
(b) partial view of the replication of the graph in space. Each ele-
mentary graph with five modules is associated with one grid point.
Source: Nardi et al. (2009).

is viewed graphically as a node of the graph; the sizes
of the vectors correspond to the number of input and
output connections associated with the node.

– A basic connection is an oriented link relating two
nodes of the graph. Most basic connections usually rep-
resent the transmission of the output of one module
taken as input by another one.

The external context is the ensemble of data input and out-
put points used as external data by a whole graph at a spe-
cific level of abstraction. Basic connections can link a data
input point located in the external context to one or several
module(s) (for instance, modules needing the specification
of some initial conditions, boundary conditions or model pa-
rameters). Inversely, the global outputs of the model link a
module to a data output point located in the external context.

The modular graph is the ensemble of the modules and
of their connections. It must be acyclic so that a topological
order may be defined on the nodes of the graph (i.e., if there
is connection Fp→ Fq , then Fp should be computed before
Fq) (see Fig. 1).

Typically, a modular graph describes the equations govern-
ing the system of interest and each physical variable appear-
ing in the governing equations is associated with a specific
module. However, supplementary modules can also be de-
fined to represent temporary variables required to simplify
computations for complex equations. The user has gener-
ally to specify modules at a single point (i,j,k, t) of space
(i,j,k) and time (t) and the dependency on space–time loca-
tions (e.g., i+ 1, j − 1, k, t − 1) of the discretized variables
taken as inputs. From the local description of the equations,
YAO is able to build a model on a given space domain and
on a given number of time steps by automatically replicating
the local graph in space–time (cf. Fig. 2).

By passing the different modules in topological order,
YAO is able to emulate the global model and to calculate
the global model outputs given model initial conditions and
parameters.

www.geosci-model-dev.net/10/85/2017/ Geosci. Model Dev., 10, 85–104, 2017
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Now, we will see that the usefulness of the graph modu-
lar approach is reinforced when the Jacobian matrix of each
basic function is known. For a basic function F such that
y = F(x), the Jacobian matrix F relates a perturbation of the
inputs to the associated perturbation of outputs: dy = Fdx.
Since the Jacobian of a composition of functions is the prod-
uct of the elementary Jacobians, the tangent linear model as-
sociated with a modular graph may also be obtained by pass-
ing the graph in the same topological order.

The “lin-forward” algorithm is the following.

1. Initialize the external context data input points with a
perturbation dxi (around a given linearization point).

2. Pass the modules in topological order and propagate the
perturbation.

3. Estimate the perturbation output dy on output data
points in the external context of the graph.

Following this procedure, YAO can emulate the global
tangent-linear model from elementary Jacobians. In the same
manner, a backward algorithm may be defined for adjoint
computations. From Eq. (1), it may be shown that the global
adjoint will be retrieved by back-propagating the graph, with
a few adjustments not detailed here (see Nardi et al., 2009,
for more details on the “backward” algorithm). This prop-
erty is the basis of the semi-automatic adjoint computation
by YAO.

An implementation of a variational assimilation procedure
with YAO follows the structure represented in Fig. 3. The
YAO compiler builds an executable file following the scheme
presented in Fig. 3. This file is independent of the assimila-
tion instructions. The executable file reads these instructions
from an instruction file. Due to the graph structure of the
model and its adjoint, it is easy to modify the model and its
adjoint, e.g., by updating some adequate modules; one can
systematically obtain the updated global direct model and the
global adjoint.

As mentioned in the Introduction, this paper gives access
to a compiled version of SECHIBA-YAO and allows one to
perform some assimilation experiments related to the control
of the 10 most influent internal parameters of SECHIBA by
observing the land surface temperature. YAO is a free soft-
ware that gives the opportunity to modify the SECHIBA code
provided in this paper.

3.4 Development of SECHIBA-YAO

The implementation of SECHIBA in YAO starts with the def-
inition of the modular graph describing the dynamics of the
model (see Appendix A). Elementary processes and intercon-
nections between modules are defined in order to represent
the computation flow in the model. The modular graph was
built as follows.

– Every component of the original code was carefully
studied line by line directly.

Figure 3. Structure of a project in YAO. The software generates an
executable program from input modules, hat and description files.
The generated program reads an instruction file to perform assimi-
lation experiments.

– A list of inputs and outputs for each subroutine was
made for every routine of SECHIBA. This permits one
to know exactly the information flow in the model.

– A second zoom in the subroutines was made in order to
understand the internal dynamics of the code. This is the
last step in the modular graph definition. When studying
the subroutines, their complexity was reduced by break-
ing the different steps into simpler elements. The idea is
to have a scalable code. Uncoupled modules give more
independence when changing part of the model. Cohe-
sive modules help to understand the model.

– The original six subroutines in the SECHIBA-Fortran
code are split into 130 modules by the SECHIBA-YAO
modular graph, corresponding to every process modeled
by SECHIBA and to a number of transitional modules
serving as auxiliary computing.

– It is important to mention that every variable and sub-
routine name was kept as in the original model. If a user
or developer of SECHIBA-Fortran sees the implemen-
tation in YAO, he will find his way easily.

3.4.1 Direct model

After defining the modular graph in YAO, the second step
in the SECHIBA-YAO implementation is the coding of the
direct model and the derivatives of the modules. Every mod-
ule is represented as a source file and the different processes
attributed to the module are implemented inside the source
file, allowing a better control of the physics; i.e., any change
in the physics could be made easily.

3.4.2 Module derivatives

Once the direct model has been coded and validated, there
are two options to code the derivatives: they can be coded
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line-by-line based on the forward computing, in order to ob-
tain the Jacobian matrix of the module, or they can also be
produced routinely, using an automatic differentiation tool
(for example, Tapenade; Hascoet and Pascual, 2013). For
SECHIBA-YAO, the derivative process was made line-by-
line. The outputs are derived with respect to every input.
YAO generates automatically, based on these derivatives, the
tangent linear and adjoint model.

Nevertheless, the derivative process introduced errors re-
lated to the coding process, to inexact derivatives (e.g., ex-
pressions that were not differentiable). In order to reduce it
to a minimum number of bugs, the adjoint of the model was
validated (as it was made with the direct model). This guar-
antees the accuracy when performing assimilation. The vali-
dation of the adjoint model is presented in Sect. 4.1.

4 Data assimilation experiments

In this section we present several experiments that have been
realized using the SECHIBA-YAO system. They were de-
signed to control the 11 most influential internal parameters
of SECHIBA when we assimilate the land surface tempera-
ture (LST).

In order to deal with non-dimensional control parameters
with the same order of magnitude, preprocessing has been
applied. The control parameters were first divided into two
groups. The first group includes physical parameters, which
have a physical dimension. In the present work, these param-
eters were normalized by dividing them by their prior val-
ues in order to control non-dimensional parameters. In such a
way, given that the prior value is the true value (in the case of
twin experiments), a value of 1 for these parameters indicates
that the control parameter has been correctly reconstructed.
The second group corresponds to physical parameters that
are multiplied by a “multiplicative factor”, which is dimen-
sionless (Verbeeck et al., 2001). The multiplying factors are
the control variables of the second group and are set to 1 at
the beginning of the assimilation process. The normalization
process on the one hand and the use of multiplicative factors
on the other hand allow us to deal with numbers of the same
order of magnitude, which facilitates the comparison of the
sensitivity of the different control variables in the assimila-
tion process.

In the following, all variables are supposed to be prepro-
cessed, so they are normalized and centered around 1.

The model inner parameters are the following (see Ta-
ble 1): rsolcste is a numerical constant involved in the soil
resistance to evaporation. This parameter limits the soil evap-
oration, so the greater its value, the lower the evaporation;
humcste, mxeau and mindrain are related to soil water pro-
cesses: the higher their values, the more water will be avail-
able in the model reservoir, affecting water transfers and es-
pecially evapotranspiration; dpucste represents the soil depth
in meters. The other parameters are multiplicative factors;

they all have a value equal to 1: krveg, which is used in the
calculation of the stomatal resistance, limits the transpiration
capacity of leaves; the greater its value, the lower the transpi-
ration; kemis controls the soil emissivity used to compute land
surface temperature. This parameter takes part in the net ra-
diation calculation which determines the energy balance be-
tween incoming and outgoing surface fluxes; kalbedo weights
the surface albedo, which is defined as the reflection coeffi-
cient for shortwave radiation; kcond and kcapa take part in the
thermal soil capacity and conductivity, both involved in the
computation of the soil thermodynamics, and kz0 weights
the roughness height, which determines the surface turbulent
fluxes. Since the control parameters are normalized, we ap-
ply a perturbation which is of the form of a random noise
limited up to 50 % of the true parameter whose value is 1, so
the perturbed value belongs to [0.5, 1.5]. If the control pa-
rameter values posterior to the assimilation process are close
to 1, it means that the assimilation was successfully achieved.
Differences between the values retrieved and the prior values
represent relative errors in the parameter estimation posterior
to assimilation.

In order to show the benefit of data assimilation
in SECHIBA, we conducted several experiments using
SECHIBA-YAO. Prior to the assimilation process, different
scenarios were defined for the tests (Table 3). A scenario
makes reference to the experimental conditions. It includes
the definition of the vegetation functioning type (PFT), the
type of observation to be assimilated, the observation sam-
pling, the time sampling, the atmospheric forcing file, the
subset of control parameters, the assimilation window size
and the time of the year to start the assimilation. The differ-
ent scenarios were calculated using the adjoint model for sev-
eral typical conditions of the two FLUXNET sites selected.
The dates presented in this paper are representative of sunny
days in summer or winter, with no perturbation coming from
clouds and without rainfall events. In Eq. (4), we take R as
the identity matrix, which means that we assume the errors of
the observations are uncorrelated. The next section explains
the scenarios for the different experiments performed in this
work.

4.1 Variational sensitivity analysis

In order to show the accuracy of the distributed SECHIBA-
YAO code, we present an analysis that allows us to rank the
11 parameters according to their sensibility estimated by us-
ing the adjoint model and to compare the results to those ob-
tained by using finite differences. We identify the most sensi-
tive parameters to the estimation of land surface temperature
(LST) by computing the gradients obtained with the adjoint
model. This analysis corresponds to a first-order sensitivity
estimate of the influence of the control parameters on the
land surface temperature. In order to do so, local sensitivi-
ties were determined by computing the parameter gradients
both by finite difference and by adjoint calculation (Saltelli,
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Table 1. SECHIBA inner parameters used in this work. There are five inner parameters involved in the model estimations that are controlled,
plus six multiplicative factors, all equal to 1.

Parameter Description Prior value Unit

rsolcste Evaporation resistance 33 000 S m−2

humcste Water stress {5,2} m−1

mxeau Maximum water content 150 Kg m−3

mindrain Diffusion between reservoirs 0.001 S m−2

dpucste Total depth of soil water pool 2 m

Table 2. Sensitivity analysis results. Parameter hierarchy according to each site and vegetation fraction. The parameters are ranked by
decreasing sensibility.

Site Bare soil (PFT 1) Agricultural C3 crop (PFT 12)

Harvard Forest kemis, kcond, kcapa, kz0, kalbedo, dpucste,
rsolcste, mxeau, mindrain, krveg, humcste

kemis, krveg, kcond, kcapa, kz0, mxeau,
humcste, kalbedo, dpucste, rsolcste,
mindrain

Kruger Park kemis, kcond, kcapa, kz0, kalbedo, dpucste,
rsolcste, mxeau, mindrain, krveg, humcste

kemis, krveg, kcond, kcapa, kz0, mxeau,
humcste, kalbedo, dpucste, rsolcste,
mindrain

2008). This method is really local and the information pro-
vided is related to a definite point in space. The values of
the inner parameters (Table 1) and multiplicative factors (all
equal to 1) represent the initial values where the experiments
have been conducted. Because humcste is related to vegeta-
tion type, in this work only the values for PFT 1 (5 m−1) and
PFT 12 (2 m−1) are considered.

The sensitivity analysis was performed for a subset of
inner parameters related to the energy and water physical
processes on bare soil (PFT 1) and agricultural C3 crop
(PFT 12), in order to quantify the role of the vegetation
in the land surface temperature parameters’ sensitivity. The
land functional types are useful for distinguishing the dif-
ferent soil types. In the present case we used the agricul-
tural C3 grass type whose parameters are Vcmax, opt (op-
timal maximum RuBisCO-limited potential photosynthetic
capacity)= 90 mol/m−2 s−1; Topt (optimum photosynthetic
temperature)= 27.5+ 0.25 Tl ◦C; Tl (function of multian-
nual mean temperature for C3 grasses); maxLAI (maximum
leaf area index (LAI) beyond which there is no allocation
of biomass to leaves) = 6; zroot (exponential depth scale for
root length profile)= 0.25 m; leaf (prescribed leaf albedo)=
0.18; h (prescribed height of vegetation) = 0.4 m; Ac (criti-
cal leaf senescence) = 150 days; Ts (weekly temperature be-
yond which leaves are shed if the seasonal temperature trend
is negative)= 10 ◦C; and Hs (weekly moisture stress beyond
which leaves are shed) = 0.2.

The work was done on a daily basis, in order to observe
the diurnal variations of sensitivities. At each half-hour time
step, model outputs are computed. At each time step, a gradi-
ent is computed in order to have the updated gradient value.
As we make the assumption that the errors in prior values

are very large in comparison with errors in observations, we
discard the background term in the cost function (defined in
Sect. 2). This simplification is valid as soon as the system
is overdetermined (i.e., the number of control parameters is
smaller than the number of observations). The initial values
of the parameters (before optimization) are those of Table 1.
We recall that for numerical purposes, the control parame-
ters have been normalized in order to have the same order of
magnitude (i.e., equal to 1). Calculations were performed for
both FLUXNET sites considered in this work.

Figure 4 compares, for 28 August 1996 at Harvard Forest,
the sensitivities computed for each control parameter with
both finite differences and model gradients. Bare soil results
are presented in Fig. 4a. The agricultural C3 crop scenario is
illustrated in Fig. 4b. The efficiency of the adjoint calculation
is first demonstrated in these plots, because the 11 desired
parameter sensitivities are obtained in a single integration,
whereas it takes 11 runs of the model to compute the same
quantity using finite differences. By using the same method-
ology, sensitivity curves were computed at FLUXNET site
Kruger Park (Fig. 5). The comparison between sensitivity
analysis done using the adjoint and using finite differences
shows a very good agreement between the two methods for
both sites. The diurnal characteristics of the parameter sensi-
tivities with a maximum around noon in phase with the diur-
nal variation of solar radiation are clearly visible.

Table 2 presents, for Harvard Forest and Kruger Park, the
11 parameters ranked with respect to their influence. Accord-
ing to the four scenarios defined (two sites and two PFTs), it
can be seen that the hierarchy changes with the vegetation
but remains the same for both sites. Parameter hierarchy re-
vealed that the highest gradient values correspond to those
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Table 3. Scenario properties and description.

Properties Description

Assimilation period Time window of the assimilation period
Number of assimilations For each experiment, a number of assimilations are made with the same scenario but with dif-

ferent control parameter initial values.
Control parameters Parameters to be optimized in the assimilation procedure. The number of parameters depend

on the experiment. They are chosen among the following parameters: kemis, kcond, kcapa, kz0,
kalbedo, dpucste, rsolcste, mxeau mindrain, krveg, humcste.

Observations Model variables considered as observations: LST in the present study
Observation sampling Frequency sampling of the observations
Forcing Data forcing used to perform the assimilation for a given site and a given date
Vegetation type Vegetation fraction considered in the experiment

that have the largest influence on the land surface tempera-
ture estimate. Clearly kemis is the most influential parame-
ter in the calculation of land surface temperature, regardless
of the climatology used and vegetation fraction. In addition,
mindrain is the least influential parameter for all scenarios.

The parameters kcapa,kcond, kzo and kalbedo are the most
influential in bare soil conditions, after kemis. In the presence
of vegetation, several sensitivities change radically: krveg be-
comes the most important multiplicative factor after kemis;
the factor kalbedo is less sensitive compared to its influence in
the bare soil case and mxeau is more sensitive, given that less
water is available when a fraction of vegetation is present.
The other parameters show equivalent sensitivity values re-
gardless of the scenario. For humcste and krveg, sensitivities
are equal to 0 for bare soil, because these parameters affect
surface temperature only in the presence of vegetation.

Parameters with persistent positive sensitivity are rsolcste,
krveg and humcste. Parameters with persistent negative sen-
sitivity are kz0, kalbedo and emis. The sign of the gradients
reflects the positive or negative feedback on the surface tem-
perature of the processes involved. For example, the parame-
ters involved in the evapotranspiration processes present neg-
ative sensitivities because a reduction of (or an increase in)
the evapotranspiration will lead to an increase (or a decrease)
in the land surface temperature when the soil water content
is sufficient.

Transpiration processes influence directly the land surface
temperature in the presence of vegetation and are the dom-
inant processes at the studied sites. Therefore krveg has a
higher sensitivity than kcond, kcapa and kalbedo. For bare soil,
by contrast, the dominant processes are those related to the
soil thermodynamics, explaining why kcapa, kcond and kemis
are the most sensitive parameters.

In general, sensitivities are higher in bare soil conditions
for the control parameters, except for mindrain and mxeau.
Since mindrain is not sensitive to the land surface tempera-
ture, this parameter is no longer controlled. Only the 10 most
influential parameters are used in the following sections.

The next section presents the different assimilation exper-
iments that we have performed using the SECHIBA-YAO
software.

4.2 Twin experiments

Twin experiments permit one to check the robustness of
the variational assimilation method by assimilating synthetic
data. First the direct model is run with a set of parameters
Ptrue (the initial conditions) in order to produce pseudo ob-
servations of land surface temperature LST. Then Ptrue is
randomly noised to obtain Pnoise. Assimilations of land sur-
face temperature LST were then performed in the model run
with Pnoise as new initial conditions for the control param-
eters during several days (most of the time, 1 week), lead-
ing to a new set of optimized parameters denoted as Passim.
Passim is then compared to Ptrue in order to estimate the
performances of the assimilation process. Five different as-
similation experiments were performed. These experiments
are available in the distributed version of SECHIBA-YAO.

4.2.1 Definition of experiments

The 10 most sensitive parameters are considered in the twin
experiments (all the above parameters except mindrain). We
present hereinafter the results obtained with different assim-
ilation realizations. Each assimilation experiment was con-
ducted by perturbing the initial conditions of the control pa-
rameters with a uniform distribution random noise reaching
50 % of the parameter nominal values. This procedure per-
mitted us to obtain the relative errors of the control param-
eters and the root mean square error (RMSE) of the model
fluxes, based on their value before and after the assimilation
process.

A scenario for a single experiment is defined by several
properties described in Table 3. Scenarios for all the assimila-
tion experiments are presented in Table 4. All parameters are
controlled at the same time. The duration of each assimilation
experiment is 1 week or 1 month, depending on the experi-
ment. The time steps 1T of each experiment are 30 min, ex-
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Figure 4. Comparisons for 28 August 1996 at Harvard Forest of the sensitivities obtained for each control parameter with both the finite
differences and the model gradients computed with the adjoint model. Sensitivity analysis results for PFT 1 are in (a) and for PFT 12 in
(b). The sensitivities were computed on the surface temperature for Harvard Forest. Blue curves represent the LST derivative with respect
to each parameter given by the adjoint each half hour over a day. Red curves represent the LST derivative computed with a finite difference
discretization of the model.
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Figure 5. Comparisons for 11 February 2003 at the Kruger Park site of the sensitivities obtained for each control parameter with both the
finite differences and the model gradients computed with the adjoint model. Sensitivity analysis results for PFT 1 are in (a) and for PFT 12
in (b). The sensitivities were computed on the surface temperature. Blue curves represent the LST derivative with respect to each parameter
given by the adjoint each half hour over a day. Red curves represent the LST derivative computed with a finite difference discretization of
the model.
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Table 4. Characteristics of the scenarios for each of the twin experiments.

Scenario Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Assimilation
period

11/02/2003, 1 month
Kruger Park
28/08/1996, 1 month
Harvard Forest

11/02/2003, 1 week
(Kruger Park)
28/08/1996, 1 week
(Harvard Forest)

11/02/2003, 1 week
(Kruger Park)
28/08/1996, 1 week
(Harvard Forest)

11/02/2003, 1 week
(Kruger Park)
28/08/1996, 1 week
(Harvard Forest)

11/02/2003, 1 week
(Kruger Park)
28/08/1996, 1 week
(Harvard Forest)

Number of as-
similations

5 experiments
for each site

500 experiments for
each site

5 experiments for
each site

5 experiments for
each site

5 experiments for
each site

Control param-
eters

krveg, kemis, kcond,
kcapa, kz0, kalbedo

krveg, kemis, kcond,
kcapa, kz0, kalbedo

kemis, kcond, kcapa,
kz0, kalbedo

kemis, krveg, kcond,
kcapa, kz0

All parameters, ex-
cept mindrain

Observations Soil temperature Soil temperature
with noise

Soil temperature Soil temperature Soil temperature

Observation
sampling

30 min, 2, 6, 12 and
24 h

1 h 30 min 30 min 30 min

Forcing Kruger Park and Har-
vard Forest

Kruger Park and
Harvard Forest

Kruger Park and Har-
vard Forest

Kruger Park and
Harvard Forest

Kruger Park and
Harvard Forest

Vegetation type PFT 12 PFT 12 PFT 1 PFT 12 PFT 12

Table 5. Sampling frequencies for Experiment 1.

Test Sampling Observations Observation
number frequencies per day per month

1 30 min 48 1440
2 2 h 24 720
3 6 h 4 120
4 12 h 2 60
5 24 h 1 30

cept for Experiment 1, where the time step varies. All exper-
iments presented in this work use Harvard Forest and Kruger
Park as forcing. For each experimental setting, five different
assimilation realizations were made, except for Experiment
2, where 500 independent assimilations were run. The mean
errors are presented in Table 4.

– In Experiments 1 and 2, the six most sensitive param-
eters are controlled. In both cases the vegetation type
is PFT 12. In Experiment 1 several observation as-
similation samplings are tested, going from 30 min up
to 24 h. During 1 month, five independent assimilation
tests were run for each observation sampling. In Exper-
iment 2, a weighted random noise was introduced in the
observations, going from 10 up to 50 % of the true value
of the observation. Both Experiments 1 and 2 use con-
stant perturbations of the control parameters (50 % of its
prior value for Experiment 1 and 10 % for Experiment
2) in order to assess the impact of varying the observa-
tion sampling and the noise in the observations.

– In Experiment 3 the five most sensitive parameters ac-
cording to the sensitivity analysis (Table 2) were con-
trolled in bare soil conditions (PFT 1) at the Harvard

Forest and Kruger Park sites. In this experiment the
noise added on the prior values is 50 %.

– In Experiment 4 the five most sensitive parameters for
each PFT were controlled in the conditions of agricul-
tural C3 (PFT 12), according to the sensitivity analysis
(Table 2), in the Harvard Forest and Kruger Park sites.
In doing so, we were able to assess the effect of the
vegetation fraction on the assimilation system. In ad-
dition, taking only the most sensitive parameters in the
control set permitted us to increase the assimilation per-
formances, given that the more the observed variable
is sensitive to a parameter, the easier the minimization
process finds its optimal value, consequently reducing
the estimation error. In this experiment the noise added
on the prior values is 50 %.

– In Experiment 5, all parameters, except mindrain, were
controlled (since mindrain has no impact on the land sur-
face temperature estimation), during a week in Harvard
Forest and Kruger Park.

Comparing Experiment 5 with Experiments 3 and 4 allows us
to study the impact of taking a larger number of control pa-
rameters on the assimilation process. In addition, we want to
test whether LST observation provides enough information
to constrain all the model parameters at the same time and
whether we can hope to improve all model state variables. In
this experiment the noise added on the prior values is 50 %.

4.3 Results

4.3.1 Effect of the observation sampling

Experiment 1 investigates the impact of the observation sam-
pling (30 min, 2 h, 6 h, 12 h, 24 h) in the assimilation, since
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Table 6. Results of Experiment 1 using the Harvard Forest and Kruger Park sites. (a) The first two columns give the computed fluxes prior
to the assimilation. The last five columns present the RMSE (prior-estimated) for each run. (b) The first two columns give the noise interval
(in %) introduced for each control parameter with respect to the initial value of 1. The last five columns present the relative error in % in the
control parameters for the five sampling frequencies reported in Table 5.

(a) RMSE

Fluxes Prior 1 2 3 4 5

Kruger Park H (W m−2) 25 0.437 0.138 0.43 4.7 10.34
LE (W m−2) 15.7 0.0601 0.592 0.594 2.43 10.8
LST (K) 7.98 0.0601 0.0243 0.592 0.594 1.9

Harvard Forest H (W m−2) 13.42 0.15 0.98 1.84 3.98 4.08
LE (W m−2) 86.23 0.22 0.35 3.81 5.17 11.95
LST (K) 5.98 0.08 0.65 0.86 1.27 1.61

(b) Error (in %)

Control parameters Noise interval in % 1 2 3 4 5

Kruger Park kcond 50 0.0183 0.261 0.340 0.921 4.96
kcapa 50 0.0427 0.172 0.4006 0.91 3.77
kz0 50 0.00103 0.0162 0.147 0.24 1.34
krveg 50 0.418 0.909 3.845 4.01 14.97
kemis 50 0.1704 0.2733 0.77 1.27 4.4
kalbedo 50 0.128 1.384 3.214 4.15 25.01

Harvard Forest kcond 50 0.37 0.54 3.7 5.7 10.14
kcapa 50 0.36 2.86 4.16 10.55 20.74
kz0 50 0.0592 0.15 7.61 13.74 16.73
krveg 50 0.31 0.75 5.25 7.24 17.8
kemis 50 0.11 0.17 5.82 10.86 13.74
kalbedo 50 1.54 4.81 12.69 34.11 37.8

varying the observation frequency leads to varying the num-
ber of observations available. Each test was labeled with a
number. This number serves as a reference to compare the
different results. Table 5 presents the several tests we con-
ducted as well as their initial conditions. For example, in Test
4, only two observations per day are taken at noon and at
midnight. In Test 5, we have one observation per day, taken
at noon, and so on.

Prior and final errors before and posterior to the assimila-
tion process are presented in Table 6 for the Kruger Park and
Harvard Forest sites. The columns represent the different as-
similations performed with different frequency sampling in
the observations. Five independent assimilations were done
for each test. Table 6 reports the mean value of the perfor-
mances of the assimilation system. Even though small errors
were found for the different tests, we do notice that the as-
similation system is sensitive to the observation sampling.

The contribution of the observations is demonstrated by
an improvement in the optimization when increasing the fre-
quency of observations, both for the controlled parameters
and the computed fluxes H and LE that are major outputs of
the model. The final error values in the different tests increase
by a factor of 10 when reducing the sampling frequency.

4.3.2 Effect of random noise in the observation

Experiment 2 aims at studying the impact of introducing
a random noise in the synthetic observations. The random
noise follows a normal distribution with zero mean and vari-
ance 1. The perturbed observations are computed using the
following equation:

LST∗ = LST+]amp ·ϕ, (7)

with LST∗ the perturbed observation, LST the original land
surface temperature, amp a factor weighting the random
noise going from 10 to 50 %, and ϕ the normal distribution
random noise. The control parameter set is composed of the
six most influential parameters in the computation of LST.
The initial conditions of the parameters are obtained by per-
turbing them 10 % uniformly from their prior values. Three
tests were performed, aiming to check the impact of introduc-
ing different magnitudes of errors prior to the assimilation
process. Results are presented in Table 7. The mean value of
the 500 independent assimilations is presented. Posterior to
each experiment, the parameter relative error and the model
flux RMSE are computed to quantify the quality of the re-
sults.
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Table 7. Experiment 2 (different amplitudes of random noise in the observations) using the Harvard Forest and Kruger Park sites. We present
the mean values for 500 experiments: (a) the first two columns give the computed fluxes prior to the assimilation. The last three columns
present the RMSE (prior minus estimated) for a given level of noise added to the observations (10, 30, 50 %). (b) The first two columns give
the noise interval (in %) introduced for each control parameter with respect to the initial value of 1. The last three columns present the mean
error in % in the control parameters for different levels of noise (10, 30, 50 %) added to the observations (LST).

(a) RMSE

Fluxes Prior 10 % 30 % 50 %

Kruger Park H (W m−2) 24.7 7.26 7.81 8.32
LE (W m−2) 4.06 3.78 3.9 6.22
LST (K) 7.12 0.019 4.48 6.23

Harvard Forest H (W m−2) 25 5.92 11.13 24.01
LE (W m−2) 15.7 4.77 14.04 15.05
LST (K) 7.98 0.046 1.42 2.59

(b) Mean error (%)

Control parameters Noise interval in % 10 % 30 % 50 %

Kruger Park kcond 10 4.5 4.9 11.12
kcapa 10 1.51 3.35 14.9
kz0 10 3.24 3.99 4.09
krveg 10 6.91 10.1 11.5
kemis 10 2.79 3.14 4.08
kalbedo 10 1.12 2.01 3.02

Harvard Forest kcond 10 0.83 4.32 7.6
kcapa 10 4.47 9.05 9.21
kz0 10 3.85 4.5 7.3
krveg 10 1.36 7.01 8.04
kemis 10 2.39 3.62 6.47
kalbedo 10 1.02 2.58 7.85

We note in Table 7a and b that the parameter restitution
is degraded when adding random noise to the observations.
This shows that the sensitivity of the assimilation system to
the noise affecting the LST observations is quite high. When
increasing the amplitude of the error, the various errors ob-
tained for the three tests not only suggest the need to take
into account the quality of the observations in the model,
but also the fact that the parameters are not affected in the
same way by the data uncertainties. However, perturbations
are still limited and a deeper exploration should be performed
to assess the impact on the assimilation performance of noisy
observations.

4.3.3 Effect of the control parameter set size

The RMSE errors of the assimilations for Experiments 3, 4
and 5 are presented in Tables 8 and 9, corresponding to the
Harvard Forest and Kruger Park sites. For all the experiments
the noise added on the parameters was 50 %. In Experiment
3 for PFT 1, the mean errors in the retrieved values for all
the control parameters are on the order of 10−8. Regarding
the LST retrieval, the mean RMSE ranges from 4.82 K prior
to assimilation to 2.1×10−5 K after the assimilation process.

The same behavior is observed for the different model fluxes.
Both FLUXNET sites used as forcing have more or less the
same behavior with regards to the error reduction. In Experi-
ment 4 for PFT 12, similar results were observed. The assim-
ilation process permits the reduction of the parameter errors
for both sites and both PFTs used (Table 8b). In Experiment
5, the relative value of the RMSE with respect to the syn-
thetic measurements, for LST, LE and H , is reduced at both
FLUXNET sites. The same results hold for the mean relative
error of the control parameters.

Comparing the results from Experiments 3 and 4 to Exper-
iment 5, degradation in fluxes and parameter restitution can
be observed. Effectively, we find higher errors in the fluxes
and the final control parameters when increasing the size of
the control parameter set (Experiment 5). The best perfor-
mances in the parameter restitution are obtained when con-
trolling five parameters only. When we control the 10 most
sensitive parameters, as in Experiment 5, degradation in the
final value of the parameters is observed. Indeed, the larger
the control parameter set, the more easily the cost function
may converge toward a local minimum (that can be far from
the global optimum). In addition, it is difficult to retrieve ac-
curately parameters that are insensitive to LST; thus, the as-
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Table 8. Results for Experiments 3 (PFT 1) and 4 (PFT 12). RMSE of model fluxes (a) and parameter relative errors (b) before and after the
assimilation process on FLUXNET Harvard Forest and Kruger Park.

(a) RMSE

Fluxes Experiment 3 (PFT 1) Experiment 4 (PFT 12)

Prior Final Prior Final

Kruger Park H (W m−2) 4.22 4.1× 10−12 2.18 2.4× 10−9

LE (W m−2) 4.51 2.6× 10−4 6.86 3.2× 10−5

LST (K) 7.15 2.3× 10−5 2.32 8.3× 10−9

Harvard Forest H (W m−2) 2.33 2.2× 10−12 1.52 1.5× 10−10

LE (W m−2) 2.45 7.3× 10−4 8.34 2.4× 10−6

LST (K) 5.14 4.3× 10−5 1.37 7.1× 10−10

(b) Mean error (%)

Control parameters Experiment 3 (PFT 1) Experiment 4 (PFT 12)

Prior Final Prior Final

Kruger Park kcond 25.4 3.17× 10−11 27.3 6.37× 10−6

kcapa 25.3 3.1× 10−11 27.3 5.64× 10−6

kz0 25.1 6.7× 10−11 26.3 7.97× 10−5

krveg – – 28.1 2.76× 10−6

kemis 25.8 3.01× 10−11 27.5 6.08× 10−5

kalbedo 25.9 5.2× 10−11 – –

Harvard Forest kcond 24.1 5.58× 10−5 26.9 5.85× 10−6

kcapa 25.4 5.57× 10−6 25.8 7.84× 10−7

kz0 24.4 1.27× 10−5 25.8 7.84× 10−7

krveg – – 22.1 8.31× 10−6

kemis 25.5 5.71× 10−4 24.2 5.96× 10−7

kalbedo 23.4 1.99× 10−4 – –

similation of this variable in order to optimize these parame-
ters is not efficient.

5 Discussion and conclusion

In this study the adjoint of SECHIBA was implemented us-
ing adjoint semi-generator software denoted YAO. The land
surface temperature gradients with respect to each control pa-
rameter were computed by SECHIBA-YAO, which permitted
us to carry out a sensitivity analysis of the parameter influ-
ence on the synthetic LST estimation on the one hand and to
conduct several assimilation experiments on the other hand.

The first contribution of this paper was the sensitivity anal-
ysis results. They showed exactly which parameters of the
model are the most sensitive and have to be controlled during
the assimilation process. However, it is important to mention
that sensitivity analysis depends on the region, the forcing,
the PFT, and the time period (hour and day), among other fac-
tors. Once the parameter hierarchy was set, twin experiments
were performed for different scenarios, aiming at testing the
robustness of the assimilation scheme.

The second contribution of this work is that we showed the
usefulness of the variational data assimilation of LST (land
surface temperature) for improving the SECHIBA parameter
estimations. LST assimilation has the potential to improve
the LSM parameter calibration, by adjusting them properly
during the control process. In a forecasting approach, this
can be valuable, due to the fact that the simulation can be
more reliable, since the model parameters are fitted on actual
measurements. Improvement in the fluxes computed by the
model after the assimilation of LST was demonstrated. Twin
experiments showed the power of variational data assimila-
tion to improve the model parameter estimation. Different
experiments conducted for different scenarios and forcing
sites were successfully accomplished, meaning that a reduc-
tion in the fluxes errors was obtained by introducing infor-
mation given by the LST synthetic observations. In addition,
the influence of the size of the control parameter set in the
assimilation performance was proven.

Estimating only the most sensitive parameters to LST in-
creases our chances of finding acceptable values for them af-
ter assimilation. Optimizing a larger control parameter set, as
in Experiment 5, makes it more difficult for the assimilation
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Table 9. Results for Experiment 5 (PFT 12). RMSE of model fluxes
(a) and parameter relative errors (b) before and after the assimi-
lation process, on the FLUXNET Harvard Forest and Kruger Park
sites.

(a) RMS

Fluxes Experiment 5 (PFT 12)

Prior Final

Kruger Park H (W m−2) 30.4 2.1
LE (W m−2) 34.1 3.1
LST (K) 3.12 3.2× 10−1

Harvard Forest H (W m−2) 41.5 5.4
LE (W m−2) 24.1 2.3
LST (K) 5.2 5.1× 10−1

(b) Mean error (%)

Control parameters Experiment 5 (PFT 12)

Prior Final

Kruger Park kcond 23.4 2.3× 10−1

kcapa 26.6 2.1× 10−1

kz0 22.2 1.5× 10−1

krveg 25.9 3.1× 10−1

kemis 24.5 2.3× 10−1

kalbedo 23.8 1.8× 10−1

mxeau 26.3 6.8× 10−1

humcste 22.4 1.9× 10−1

dpucste 25.6 3.2× 10−1

rsolcste 23.1 1.9× 10−1

Harvard Forest kcond 25.1 3.30× 10−1

kcapa 26.7 2.61× 10−1

kz0 25.4 1.79× 10−1

krveg 27.5 2.8× 10−1

kemis 26.3 2.1× 10−1

kalbedo 24.7 2.37× 10−1

mxeau 25.8 7.34× 10−1

humcste 25.2 2.7× 10−1

dpucste 24.2 2.2× 10−1

rsolcste 25.4 2.36× 10−1

system to retrieve the prior value of the control parameters
with a high accuracy. After presenting the different experi-
ments, some aspects of data assimilation arise when analyz-
ing the results. The first one concerns the presence of several
local minima due to the nonlinearity of the SECHIBA model.
Second, we have also shown a significant improvement in the
assimilation performances when the sampling frequency of
observations is increased, as evaluated in Experiment 1. This
suggests that the ability of the model to be constrained de-
pends, among other things, on the observation frequency. By
decreasing the number of observations, the control parame-
ter adjustment is less accurate, and the assimilation proce-
dure estimates variables with a larger error. Therefore it can
be verified that if we have more LST observations, the as-
similation system will fit the parameters better so improved
estimations are obtained.

Finally, we observe a strong dependence between the qual-
ity of observations and the parameter restitution, as shown in
Experiment 2. It seems crucial to take into account the un-
certainty in the observations, because they do not affect the
assimilation performance in the same way when estimating
each parameter in the minimization process. If we compare
Experiments 1 and 2 (Tables 6 and 7), it is clear that the
noise on the observations dramatically increases the mean
error on the computed fluxes L and H ; the LSTs that are
assimilated, are retrieved with a better accuracy. The intro-
duction of a regularization term on the parameters could be
used to mitigate this problem. Constraining parameters and
weighting observations according to their confidence in the
minimization phase can be modeled through the introduction
in the cost function of the variance–covariance error matrices
(background B and observation R). It is an important aspect
to consider for assimilating real observations.

Adding extra parameters to the control set increases the
complexity of the cost function. By taking into consideration
the results of assimilation of LST when controlling the 10
most sensitive parameters (Experiment 5), we could see that,
after having made several assimilation runs, LST does not
provide enough information to constrain the parameter set, in
order to improve the estimation of the SECHIBA parameters.
In the case of controlling all parameters we cannot hope to
improve the estimation of all model parameters unless we
assimilate additional observations or we add a background
term in the cost function.

Assimilation with the YAO approach permits the imple-
mentation of different assimilation scenarios in a very flex-
ible way when performing different twin experiments: the
control parameters and the observed variables (once the ad-
joint code has been generated), the assimilation windows, the
observation sampling, the time sampling and other different
features can be changed easily.

A distributed version of SECHIBA-YAO code and several
examples with different scenarios are available at a GitHub
dedicated site. YAO can be downloaded upon request at
https://skyros.locean-ipsl.upmc.fr/~yao/. Direct use of this
software will allow one to perform other experiments using
different physical conditions or even to change several equa-
tions of the model.

6 Code and data availability

The distributed version of SECHIBA-YAO provides an op-
portunity for scientists to perform their own assimilation.
The distributed version allows the control of the five most
influent internal parameters of SECHIBA, depending on the
vegetation type. In addition, LST or satellite brightness tem-
perature can be used as observations.

The distributed version of SECHIBA-YAO is available in
a GitHub repository (https://github.com/brajard/sechibavar/
archive/v1.0.zip); the user can download the software, save
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it in a local repertory and run the makefile in order to build
a local executable. Documentation and two instruction files
are available in order to guide the user towards their own
implementation. Users can modify the forcing file, the ini-
tial date to the assimilation, the parameter value and their
perturbation if needed. The assimilation frame (1 week), the
step time (30 min), the observed variable (land surface tem-
perature), the control parameters (only five) and other initial
parameters are imposed. If a user wants to have access to a
full modifiable version, the YAO software has to be installed
(https://skyros.locean-ipsl.upmc.fr/_yao/).

The instruction files given with the distributed version cor-
respond to the twin experiments presented in this paper. Ini-
tial parameters like the assimilation time frame and the ob-
served variable (LST) cannot be changed in the distributed
version. However, the other initial parameters used to build
different scenarios can be changed easily through the in-
struction file (initial parameter values, PFT, observation files,
forcing, initial date, etc.).
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Appendix A: SECHIBA-YAO

The version of SECHIBA implemented in YAO includes
the two-layer hydrology of Choisnel (1977), mentioned in
Sect. 2. SECHIBA original code is implemented in a modu-
lar scheme with a set of well-defined routines, independent
in its processes and with a single entry point (a main routine
handling the rest of the functionalities).

A set of prognostic variables is defined for each module
and its assignation depends on the forcing conditions, phys-
ical phenomena, etc. SECHIBA can work coupled with the
other components of ORCHIDEE (STOMATE and LPJ) or
it can be used offline, as it was used in this work. Once
SECHIBA is coded in YAO, it can be easily coupled with
the other modules of ORCHIDEE.

In SECHIBA, the different routines were originally coded
in the Fortran language and can be run at any resolution and
over any region of the globe. The version of SECHIBA im-
plemented in YAO is denoted SECHIBA-YAO and follows
the Fortran code. In its present form, it can only be run at one
point at a time.

ORCHIDEE uses MODIPSL and IOIPSL in its in-
ternal processes (see http://forge.ipsl.jussieu.fr/igcmg/wiki/
platform/documentation for more information). Developed
at IPSL, the first one is a set of scripts allowing the extrac-
tion of a given configuration from a computing machine and
the compilation of the specific machine configuration com-
ponents. MODIPSL is the tree that will host models and tools
for configuration. IOIPSL helps to manage the variables state
history, variable normalization, and file lecture, among oth-
ers.

The main routines in SECHIBA-Fortran are presented in
Fig. A1. These are also the routines considered in the YAO
implementation of the model. First, DIFFUCO computes the
diffusion and plant transpiration coefficients based on the
atmospheric conditions, solar fluxes, dry soil height, soil
moisture stress and fraction of vegetation. ENERBIL corre-
sponds to the energy budget module. Surface energy fluxes
related to the soil are computed, based on atmospheric con-
ditions, radiative fluxes, resistances, surface-type fractions
and surface drag. HYDROLC is the hydrological budget
module, taking as inputs the rainfall, snowfall, evaporation
components, soil temperature profile and vegetation distribu-
tion. CONDVEG helps in the computation of the vegetation
conditions. The thermodynamics of the model is computed
in THERMOSOIL, based on a seven-layer soil profile. Fi-
nally, SLOWPROC computes the soil slow processes. When
SECHIBA is decoupled from STOMATE, this module also
deals with the LAI evolution.

The different SECHIBA components are interconnected
as shown in Fig. A2. The output of the different modules
serves as inputs for the next one, thus resulting in an interde-
pendency among modules to be considered when modeling
SECHIBA-YAO.

Figure A1. SECHIBA subroutines and their corresponding outputs.
Source: Benavides Pinjosovsky (2014).

Figure A2. SECHIBA hyper-graph, showing general model dynam-
ics. Source: Benavides Pinjosovsky (2014).
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