P. E. Munnik, K. P. De-jongh, and J. De, Recent Developments in the Synthesis of Supported Catalysts, Chemical Reviews, vol.115, issue.14, pp.6687-6718, 2015.
DOI : 10.1021/cr500486u

H. Stratakis and . Garcia, Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes, Chemical Reviews, vol.112, issue.8, pp.4469-4506, 2012.
DOI : 10.1021/cr3000785

R. Cuenya, Thin Solid Films, pp.3127-3150, 2010.

T. Campbell, The Energetics of Supported Metal Nanoparticles: Relationships to Sintering Rates and Catalytic Activity, Accounts of Chemical Research, vol.46, issue.8, pp.1712-1719, 2013.
DOI : 10.1021/ar3003514

J. Prieto, H. Ze?evi?, K. P. Friedrich, P. E. De-jong, and . De-jongh, Towards stable catalysts by controlling collective properties of supported metal nanoparticles, Nature Materials, vol.4, issue.1, pp.34-39, 2012.
DOI : 10.1038/nmat3471

V. Kondratenko, A. P. Amrute, M. Pohl, N. Steinfeldt, C. Mondelli et al., Superior activity of rutile-supported ruthenium nanoparticles for HCl oxidation, Catalysis Science & Technology, vol.138, issue.10, pp.2555-2558, 2013.
DOI : 10.1039/c3cy00372h

T. Bell, The Impact of Nanoscience on Heterogeneous Catalysis, Science, vol.299, issue.5613, pp.1688-1691, 2003.
DOI : 10.1126/science.1083671

N. Martins, S. Batail, S. Silva, A. Rafik-clement, D. P. Karelovic et al., CO2 hydrogenation with shape-controlled Pd nanoparticles embedded in mesoporous silica: Elucidating stability and selectivity issues, Catalysis Communications, vol.58, pp.11-15, 2015.
DOI : 10.1016/j.catcom.2014.08.027

URL : https://hal.archives-ouvertes.fr/hal-01100323

K. V. Mahata, V. Raghavan, C. Vishwanathan, M. A. Park, and . Keane, Phenol hydrogenation over palladium supported on magnesia: Relationship between catalyst structure and performance, Physical Chemistry Chemical Physics, vol.3, issue.13, pp.2712-2719, 2001.
DOI : 10.1039/b100237f

S. Chen and D. W. Goodman, Structure???activity relationships in supported Au catalysts, Catalysis Today, vol.111, issue.1-2, pp.22-33, 2006.
DOI : 10.1016/j.cattod.2005.10.007

A. Van-santen, Complementary Structure Sensitive and Insensitive Catalytic Relationships, Accounts of Chemical Research, vol.42, issue.1, pp.57-66, 2009.
DOI : 10.1021/ar800022m

. T. Campbell, Catalyst???support interactions: Electronic perturbations, Nature Chemistry, vol.49, issue.8, pp.597-598, 2012.
DOI : 10.1038/nchem.1412

T. Zhang and . Ren, Silica supported ruthenium oxide nanoparticulates as efficient catalysts for water oxidation, Chemical Communications, vol.87, issue.89, pp.11005-11007, 2012.
DOI : 10.1039/c2cc35272a

A. A. Aziz, A. A. Jalil, S. Triwahyono, and A. Ahmad, methanation over heterogeneous catalysts: recent progress and future prospects, Green Chem., vol.454, issue.114, pp.2647-2663, 2015.
DOI : 10.1016/j.fuproc.2014.10.009

R. Thampi, J. Kiwi, and M. Graetzel, Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure, Nature, vol.327, issue.6122, pp.506-508, 1987.
DOI : 10.1038/327506a0

J. Lunde and F. L. Kester, Carbon Dioxide Methanation on a Ruthenium Catalyst, Industrial & Engineering Chemistry Process Design and Development, vol.13, issue.1, pp.27-33, 1974.
DOI : 10.1021/i260049a005

P. Karelovic and . Ruiz, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts, Journal of Catalysis, vol.301, pp.141-153, 2013.
DOI : 10.1016/j.jcat.2013.02.009

A. Henderson, S. D. Worely, and S. D. Worley, An infrared study of the hydrogenation of carbon dioxide on supported rhodium catalysts, The Journal of Physical Chemistry, vol.89, issue.8, pp.1417-1423, 1985.
DOI : 10.1021/j100254a023

K. Urasaki, T. Endo, R. Takahiro, T. Kikuchi, S. Kojima et al., Effect of Support Materials on the Selective Methanation of CO over Ru Catalysts, Topics in Catalysis, vol.88, issue.7-10, pp.707-711, 2010.
DOI : 10.1007/s11244-010-9509-5

M. Erdohelyi, F. Pasztor, and . Solymosi, Catalytic hydrogenation of CO2 over supported palladium, Journal of Catalysis, vol.98, issue.1, pp.166-177, 1986.
DOI : 10.1016/0021-9517(86)90306-4

H. Over, Surface Chemistry of Ruthenium Dioxide in Heterogeneous Catalysis and Electrocatalysis: From Fundamental to Applied Research, Chemical Reviews, vol.112, issue.6, pp.3356-3426, 2012.
DOI : 10.1021/cr200247n

V. Balaraju, B. L. Rekha, R. B. Prabhavathi-devi, P. S. Prasad, N. Prasad et al., Surface and structural properties of titania-supported Ru catalysts for hydrogenolysis of glycerol, Applied Catalysis A: General, vol.384, issue.1-2, pp.107-114, 2010.
DOI : 10.1016/j.apcata.2010.06.013

G. Sassoye, D. P. Muller, A. Debecker, S. Karelovic, C. Cassaignon et al., A sustainable aqueous route to highly stable suspensions of monodispersed nano ruthenia, Green Chemistry, vol.4, issue.11, pp.3230-3237, 2011.
DOI : 10.1016/j.apcatb.2011.02.033

C. Pillai, P. Periyat, R. George, D. E. Mccormack, M. K. Seery et al., Photocatalyst, The Journal of Physical Chemistry C, vol.111, issue.4, pp.1605-1611, 2007.
DOI : 10.1021/jp065933h

B. Wetchakun, K. Incessungvorn, S. Wetchakun, and . Phanichphant, Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol???gel method, Materials Letters, vol.82, pp.195-198, 2012.
DOI : 10.1016/j.matlet.2012.05.092

J. Ji, H. C. Lin, and . Zeng, Matrixes Involving ??????? Phase Transformation, Chemistry of Materials, vol.13, issue.7, pp.2403-2412, 2001.
DOI : 10.1021/cm001420q

A. Schaefer, W. Tebben, V. Gerhardt, A. Harald, and . Tebben, Zur Chemie der Platinmetalle. V Gleichgewichte mit Ru(f)5 RuO2(f)5 RuO3(g) und RuO4(g), Zeitschrift f???r anorganische und allgemeine Chemie, vol.25, issue.1-2, pp.41-55, 1963.
DOI : 10.1002/zaac.19633210105

G. Paquez, G. Amiard, C. De-combarieu, D. Boissiere, and . Grosso, Absorbing Sol???Gel Coatings for Solar Energy Conversion at High Temperature, Chemistry of Materials, vol.27, issue.7, pp.2711-2717, 2015.
DOI : 10.1021/acs.chemmater.5b00731

URL : https://hal.archives-ouvertes.fr/hal-01291231

W. Hansen, A. T. De-la-riva, S. R. Challa, A. K. Datye, A. T. Delariva et al., Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?, Accounts of Chemical Research, vol.46, issue.8, pp.1720-1730, 2013.
DOI : 10.1021/ar3002427

B. Simonsen, I. Chorkendorff, S. Dahl, M. Skoglundh, J. Sehested et al., Direct Observations of Oxygen-induced Platinum Nanoparticle Ripening Studied by In Situ TEM, Journal of the American Chemical Society, vol.132, issue.23, pp.7968-7975, 2010.
DOI : 10.1021/ja910094r

A. G. Hevia, A. P. Amrute, T. Schmidt, and J. Pérez-ramírez, Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts, Journal of Catalysis, vol.276, issue.1, pp.141-151, 2010.
DOI : 10.1016/j.jcat.2010.09.009

H. Madhavaram, H. Idriss, S. Wendt, Y. Kim, M. Knapp et al., Oxidation Reactions over RuO2: A Comparative Study of the Reactivity of the (110) Single Crystal and Polycrystalline Surfaces, Journal of Catalysis, vol.202, issue.2, pp.296-307, 2001.
DOI : 10.1006/jcat.2001.3281

C. Fernández, N. Sassoye, N. Flores, E. M. Escalona, C. Gaigneaux et al., Insights in the mechanism of deposition and growth of RuO2 colloidal nanoparticles over alumina. Implications on the activity for ammonia synthesis, Applied Catalysis A: General, vol.502, pp.48-56, 2015.
DOI : 10.1016/j.apcata.2015.05.023

A. Chiu, A. Genest, N. Borgna, N. Rösch, and . Rosch, C???O cleavage of aromatic oxygenates over ruthenium catalysts. A computational study of reactions at step sites, Phys. Chem. Chem. Phys., vol.4, issue.suppl 1, pp.15324-15330, 2015.
DOI : 10.1039/C5CP01027F

URL : http://mediatum.ub.tum.de/doc/1273946/document.pdf

A. Solymosi, . Erdohelyi, and . Stud, Methanation of CO2 on Supported Rhodium Catalysts, Surf. Sci. Catal, vol.7, pp.1448-1449, 1981.
DOI : 10.1016/S0167-2991(08)64768-0

A. Fisher and A. T. Bell, A Comparative Study of CO and CO2Hydrogenation over Rh/SiO2, Journal of Catalysis, vol.162, issue.1, pp.54-65, 1996.
DOI : 10.1006/jcat.1996.0259

C. Carenco, M. Sassoye, P. Faustini, D. P. Eloy, H. Debecker et al., The Active State of Supported Ruthenium Oxide Nanoparticles during Carbon Dioxide Methanation, The Journal of Physical Chemistry C, vol.120, issue.28, pp.15354-15361, 2016.
DOI : 10.1021/acs.jpcc.6b06313

URL : https://hal.archives-ouvertes.fr/hal-01347308

F. Magne, F. Dufour, G. Labat, O. Lancel, S. Durupthy et al., Effects of TiO2 nanoparticle polymorphism on dye-sensitized solar cell photovoltaic properties, Journal of Photochemistry and Photobiology A: Chemistry, vol.232, pp.22-31, 2012.
DOI : 10.1016/j.jphotochem.2012.01.015

URL : https://hal.archives-ouvertes.fr/hal-01494501

T. Rodriguez-carvajal, WinPLOTR, a graphic tool for powder diffraction, Phys. Rev, vol.56, pp.978-982, 1939.

A. P. Over, E. Seitsonen, M. Lundgren, J. N. Smedh, and . Andersen, On the origin of the Ru-3d5/2 satellite feature from RuO2(), Surface Science, vol.504, pp.196-200, 2002.
DOI : 10.1016/S0039-6028(01)01979-3

G. Goodwin-jr, Characterization of highly dispersed Ru catalysts by chemisorption, Journal of Catalysis, vol.68, issue.1, pp.227-232, 1981.
DOI : 10.1016/0021-9517(81)90063-4