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Observation of nonlinear sloshing induced by wetting dynamics
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Université P. et M. Curie, Université Paris Diderot, Paris, France

(Dated: March 20, 2017)

Back-and-forth oscillations of a container filled with fluid often result in spilling as the gravest
mode gets excited, a well-known phenomenon experienced in everyday life and of particular im-
portance in industry. Our understanding of sloshing is largely restricted to linear response, and
existing extensions mostly focus on nonlinear coupling between modes. Linear theory is expected
to correctly model the dynamics of the system as long as the amplitude of the mode remains small
compared to another length scale, so far unknown. Using a fluid in the vicinity of its critical point,
we demonstrate that in perfect wetting this length scale is neither the wavelength nor the capillary
length but a much shorter one, the thickness of the boundary layer. Above this crossover length
scale, the resonance frequency remains roughly constant while dissipation significantly increases.
We also show that dynamical wetting is involved in both linear and nonlinear dissipative processes.

PACS numbers: 47.35.Bb, 64.60.F-, 05.45.-a, 47.55.np

Introduction.— Although the study of sloshing in the
simplest configuration of a cylindrical container can be
traced back to Poisson at the beginning of the 19th cen-
tury [1], a significant gap still exists between theory and
experiments even for the linear response of the gravest
mode. While effective devices have long been investi-
gated to prevent excessive surface deformations, the most
famous ones being antislosh baffles (see Ref. [2] for a
review), sloshing control could be improved by under-
standing the precise dissipative processes resulting from
back-and-forth displacements of a container. Moreover,
the limit of linear theory is unknown: If we were asked if
a linear damping correctly describes the oscillations tak-
ing place in a cup of coffee, many of us would hesitate
before giving an opinion. The associated damping time
scale computed from linear theory is more than 10 s [3],
thus providing a strong hint that nonlinearities occur. In
this Rapid Communication, we evidence that dynamical
wetting processes contribute to linear damping and that
such linear theory is restricted in perfect wetting to oscil-
lations smaller than the thickness of the boundary layer
(a fraction of a millimeter in the case of a cup of coffee).
The characteristics of the gravest mode for an inviscid,

irrotational, and incompressible flow with a free surface
can be found in many textbooks (e.g., Refs. [2, 4]). Nat-
ural frequency computed in this framework differs from
the experimental values from less than 1% [5, 6] up to
around 10% [7–9]. In contrast, measurements of damping
are associated with larger discrepancies: a theory based
on dissipation localized in bottom and wall boundary lay-
ers underestimates experimental dissipation from a few
percent [7] to as much as a few hundred percent [5, 8, 9].
These disparities have been ascribed to both surface con-
tamination and capillary effects close to the contact line.
It is common knowledge that a free surface quickly

gets polluted unless care is taken to avoid it: full con-
tamination occurs within an hour for water and signifi-
cantly increases the damping of surface waves [10]. This

correction to the natural frequency and to the damping
has been first computed in circular geometry by Miles
[11], with Marangoni elasticity having been later added
in some limit by Nicolás and Vega [12]. Even though it is
clearly an efficient damping mechanism, the exact values
of these corrections strongly depend on chemical prop-
erties (e.g., solubility of the contaminant or Marangoni
elasticity of the film) whose measurements are difficult.
Dissipation caused by the motion of the meniscus has

also been studied theoretically, by considering the work of
capillary forces (those involved in the equilibrium Young
contact angle). This has been first achieved by Miles
for various wetting configurations [11, 13]. Experiments
show that a meniscus strongly increases dissipation [14],
the damping being maximal for zero contact angle [15].
However, dissipation considered in these theoretical stud-
ies vanishes for perfect wetting. In addition, we note that
the computation of viscous energy loss in a meniscus un-
dergoing an oscillating motion is still an open problem.
In the present experiment, we measure the natural

frequency and damping of the first sloshing mode in a
cylindrical container. Using a fluid in the vicinity of
the liquid-vapor critical point allows a continuous mod-
ification of physical parameters involved in the sloshing
dynamics and provides a better control of surface con-
tamination and wetting properties. Standard linear the-
ory is found to accurately describe the natural frequency,
whereas it clearly underestimates the damping. Since the
surface is clean and the wetting is perfect, this provides a
measurement of viscous energy dissipation in the contact
line. The nonlinear dynamics of this oscillator is also ad-
dressed by tuning the forcing amplitude: We report that
the first nonlinearity to arise is a damping enhancement
that we attribute to the wetting dynamics. We demon-
strate that the crossover between linear and nonlinear
dynamics occurs when the amplitude becomes of the or-
der of the thickness of the boundary layer, a surprisingly
small characteristic length.
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Experimental setup.— The experimental setup is
sketched in Fig. 1 and consists of a cylindrical container
of radius R = 50 mm and height 2h = 25 mm filled with
SF6 of purity > 99.97%. The total density ρ has been
set close to the critical density ρc so that in the vicin-
ity of the critical point the liquid and gas phases have
the same volume, the height of the liquid being therefore
h = 12.5 mm. The pressure P and the temperature T in-
side the cell are measured with a Kistler 4500B pressure
sensor and a Pt100 resistance thermometer: the relation
P (T ) in the supercritical domain with the data from Ref.
[16] leads to ρ = 720 kg.m−3. This container is sur-
rounded by a Lauda Master thermostated bath, making
temperature fluctuations less than 0.01 K. Four windows
allow the observation of the surface motion: two lateral
ones of radius 5 mm, and two on the upper and lower
surfaces of radius 20 mm.
The entire device is subjected to a harmonic horizon-

tal translation ∆X cos(ωt + φ) imposed by a BK 4809
vibration exciter. The actual displacement is measured
by a noncontact Electro Corp sensor and processed by a
SR 830 lock-in amplifier that gives access to ∆X and φ.
A laser aligned with and close to the cylinder axis is de-
flected at the liquid-vapor interface and the motion of the
beam along the translational direction, Rlas cos(ωt+θlas),
is tracked by a UDT 301-DIV position sensing detector.
This signal is handled by a similar lock-in amplifier: Rlas,
∆X , θlas and φ are finally recorded with a NI-acquisition
card. For a given forcing amplitude ∆X , the sloshing dy-
namics is therefore characterized by the amplitude and
phase responses, respectively Rlas and θlas − φ.

TTL
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∆Xcos(ωt+ φ)
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Position
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∆X φ Rlas θlas
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FIG. 1. Experimental setup

The liquid and vapor densities (resp. ρ(ℓ) and ρ(v)),
the refractive indices (resp. n(ℓ) and n(v)) and the sur-
face tension σ evolve close to the critical temperature Tc

according to











ρ(ℓ) = ρc(1 +B0ǫ
β), ρ(v) = ρc(1−B0ǫ

β)

n(ℓ) = nc(1 +A0ǫ
β), n(v) = nc(1−A0ǫ

β)

σ = σ0ǫ
µ

(1)

where ǫ = (Tc − T )/Tc is the dimensionless distance to
the critical point, nc is the refractive index of the super-
critical phase and (β ≃ 0.325, µ ≃ 1.26) are critical ex-
ponents. In our experiment Tc = (318.782± 0.004)K and
ǫ has been tuned from 10−1 to 10−3. Close to the crit-
ical point, the kinematic viscosities ν(ℓ) and ν(v) verify
ν(ℓ) ≃ ν(v) ≃ ν ≃ 5.7 10−8 m2.s−1 [17].
Dynamics of the first sloshing mode.— Gently increas-

ing ω for a fixed displacement ∆X reveals a large number
of resonances, and we thereafter focus on the first one.
The amplitude of this mode η̄1,1(t) is expected to be mod-
eled for small forcing amplitudes by a damped harmonic
oscillator equation, that is

d2η̄1,1
dt2

+

(

ω1,1

Q

)

dη̄1,1
dt

+ ω2
1,1η̄1,1 = F(t), (2)

where ω1,1 is the angular resonance frequency,
ω1,1/(2πQ) is the linear bandwidth and F(t) is
the external driving force. For a lateral excitation
∆X cos(ωt + φ), F comes from the difference of inertial
accelerations between the two phases and scales as

F ∝
ρ(ℓ) − ρ(v)

ρ(ℓ) + ρ(v)
∆Xω2 cos(ωt+ φ). (3)

The two characteristics of this oscillator that are (ω1,1/Q)
and ω1,1 are experimentally measured for a given dis-
placement ∆X from a linear fit of the phase response
close to the resonance, where [18]

θlas − φ ≃ −π

2
− 2

Q

ω1,1
(ω − ω1,1). (4)

Typical plots of (θlas − φ) for a fixed temperature (ǫ =
0.017) as a function of the forcing frequency f = ω/(2π)
are reported in Fig. 2. They exhibit a nonlinear be-
havior since data for different forcing amplitudes do not
coincide.
The addition of a quadratic nonlinearity in the dis-

sipation correctly models all experimental data and we
consider instead of (2) an oscillator equation of the form

d2η̄1,1
dt2

+
ω1,1

Q
(1 +CNLη̄

2
1,1)

dη̄1,1
dt

+ ω2
1,1η̄1,1 = F(t). (5)

A straightforward analysis reveals that for such an os-
cillator, the lowest order correction to (4) reduces to a
modification of the slope as the forcing increases, such
that

2
Q

ω1,1
⇒ 2

Q

ω1,1

(

1− CNLF2Q2

4ω2
1,1

)

. (6)
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FIG. 2. Typical phase evolution close to resonance (ǫ = 0.017)

For the temperature considered in Fig. 2, we extract
from linear fits of the phase response the resonance fre-
quency (when θlas − φ = −π/2) and the slope of these
lines, see Fig. 3. Whereas the resonance frequency can be
reasonably considered as constant, the slope has a clear
dependence on the square of the forcing amplitude: for
all considered temperatures, the relative variation of the
slope reaches 100% before the variation of the frequency
gets to 1%.
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FIG. 3. Evolution of the phase close to resonance as a function
of the displacement ∆X (ǫ = 0.017)

For each temperature, we therefore have a direct mea-
surement of the resonance frequency ω1,1/(2π), the linear
bandwidth ω1,1/(2πQ) and the linear amplitude response
at resonance G defined by Rlas = G∆X for small ampli-
tudes (obtained by a direct fit of Rlas, similar to the one
in Fig. 3, not reported here for brevity). From the slope
of the fit in Fig. 3, we also have access to the nonlinear
coefficient C∆X

NL , such that at the lowest order

1 + CNLη̄
2
1,1 = 1 + C∆X

NL (∆X)2. (7)

Discussion.— In the linear potential theory of surface
waves, the surface elevation η(r, θ, t) can be decomposed

into a sum of modes of the form [2, 4]

η̄n,m(t)
Jm(kn,mr)

Jm(kn,mR)
cos(mθ + θn,m), (8)

where Jm is the Bessel function of order m, θn,m is a
constant that can be removed by considering independent
sine and cosine functions of mθ, kn,m is the wave-number
(such that kn,mR is the nth root of J ′

m) and η̄n,m(t) is a
harmonic function of frequency

fn,m =
1

2π

√

(

ρ(ℓ) − ρ(v)

ρ(ℓ) + ρ(v)

)

gkn,mtanh(kn,mh). (9)

The derivation of (9) assumes that both phases have the
same height h and that surface tension can be ignored.
Since we restrict this study to the mode of lowest fre-
quency, corresponding to m = n = 1, this last assump-
tion is valid. Close to the critical point, using (1), (9)
reduces to f1,1 = Cǫβ/2, where C is a constant that de-
pends on g, h, k1,1 = 1.8412/R and B0 (B0 = 1.62 for
SF6 [19]). This accurately describes our experimental
data, cf. Fig. 4. Minor corrections to (9) resulting from
the damping or the wetting conditions exist (see, e.g.,
[13]) but they are less than the uncertainty on B0 and
can therefore not be determined here.
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We also checked that G has the correct scaling versus
ǫ: stating that the displacement of the laser is related to
the refraction indices and that at resonance the forcing
term is fully balanced by dissipation, we get

Rlas ∝ ∆nη̄1,1 ∝ ∆n
Q

ω1,1
ω1,1∆ρ∆X. (10)

Assuming that ω1,1/Q ∝ ǫβ/4 (see below), G is directly
related to ǫ via

G ∝ ǫβ−β/4+β/2+β ∝ ǫ9β/4. (11)
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Fitting our data with G ∝ ǫexp (see Fig. 4) leads to a
critical exponent 0.756± 0.009, compatible with 9β/4 ≃
0.731.
We now consider the dissipative term, whose computa-

tion relies on an expansion on the small parameter δk1,1,

where δ =
√

ν/ω1,1 is the thickness of the viscous bound-
ary layers. The very small kinematic viscosity of fluids
close to the critical point (a few times 10−8m2.s−1) com-
pared to the ones of more usual fluids (1.10−6 for water)
makes this parameter small enough not to consider sec-
ond order contributions (as bulk dissipation), that can
be of importance otherwise [20]. If neither surface con-
tamination nor capillary effects close to the meniscus are
considered, damping thus reduces to the contributions of
top, bottom and lateral boundary layers and [7]

ω1,1

Q
=

1

R

√

νω1,1

2

(

1.84 + 3.68
1− h/R

sinh(3.68h/R)

)

. (12)

Note that although this expression has been derived in
[7] in the absence of gas, it also describes the present
experiment given that phases have almost the same
height and kinematic viscosity. Equation (12) predicts
ω1,1/(2πQ) = 9.5ǫ0.081 mHz, while a fit of our data leads
to ω1,1/(2πQ) = (24.3± 0.2)ǫ0.074±0.002 mHz, cf. Fig. 5.
This indicates that other first order dissipative terms (all
in ǫ0.081) have to be considered.
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Such terms could result from surface contamination,
but we regard this possibility as unlikely. Indeed, the
gathering of contaminants close to the interface results
from a sizable surface tension σ, and σ vanishes at the
critical point (for the range of temperature considered,
σ < 0.2 mN.m−1 [17]). Dissipation caused by capillary
forces at the meniscus could also be a guess, but we disre-
gard this possibility as it vanishes for zero contact angle
[13]. Indeed, there is strong evidence indicating that the
wetting is perfect: first, perfect wetting always occurs
in the vicinity of the critical point [21]. In addition, we

have measured the equilibrium meniscus height between
SF6 and the glass for a large range of temperature and it
coincides with the expected value with zero contact an-
gle. We therefore consider that the additional dissipation
measured in this experiment results from viscous loss in
(or close to) the meniscus and also scales as

√
νω.

A power law also describes the behavior of the nonlin-
ear term: C∆X

NL = (647 ± 17)ǫ0.972±0.007 mm−2 (see Fig.
5). The critical law of CNL follows from

CNL ∝ C∆X
NL

(

∆X

η̄

)2

∝ C∆X
NL

(

ω1,1

Q

1

ω1,1∆ρ

)2

, (13)

that gives CNL ∝ ǫ0.160±0.007. This exponent turns out
to be very close to δ−2 ∝ ǫβ/2 (β/2 ≃ 0.1625), and the
equation of this oscillator (5) can finally be cast in the
form

d2η̄1,1
dt2

+
ω1,1

Q
(1+C(

η̄1,1
δ

)2)
dη̄1,1
dt

+ω2
1,1η̄1,1 = F(t), (14)

where C is a dimensionless constant that does not de-
pend on ǫ. This proves that linear damping correctly
describes sloshing as long as the oscillation amplitudes
remain small compared to the thickness of the bound-
ary layer. This result is quite surprising: one could
have guessed this crossover length scale to be the size
of the meniscus (the so-called capillary length) or the
wavelength of the wave, the steepness (k1,1η̄1,1) charac-
terizing nonlinear coupling between modes [22, 23]. For a
perfect wetting and using octane and air instead of SF6,
Cocciaro et al. reported a decrease of the dissipation as
the forcing increases [5]. This shows that the nonlinear-
ity observed here does not result from the dynamics of
the bottom, top and lateral boundary layers, identical in
both experiments. In contrast, a specificity of the present
experiment is that energy dissipation occurs both in the
liquid and in the gas: since the fluid motions are similar
in these two phases except in the vicinity of the contact
line, we propose this nonlinear damping to also result
from viscous dissipation in or close to the meniscus.
Conclusion.— Our experiment sheds light on two as-

pects of sloshing theory in perfect wetting. First, it shows
that linear damping can reasonably be assumed as long as
the oscillation amplitude remains small compared to the
thickness of the boundary layer δ =

√

ν/ω. This char-
acteristic length is very small and is quickly exceeded in
practice. For this reason, we emphasize the importance
of measurements of decay up to very small displacements
in experiments dealing with sloshing. Second, we found
that damping is underestimated if only viscous bound-
ary layers are considered: a substantial dissipation arises
as a consequence of the contact line motion. The study
of wetting in nonsteady states represents a substantial
experimental and theoretical challenge and our results
point out its relevance for sloshing.
This work is supported by CNES and ANR-12-BS04-

0005-02.
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