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Abstract –We investigate energy exchanges through scales occurring when a surface wave reflects
on a harmonically oscillating wall. We first experimentally evidence the creation of Doppler-
shifted waves and measure their height as a function of the oscillation amplitude. Then, we
theoretically compute the amplitudes of these new waves in the gravity regime. Both results show
that even without bulk non-linearities, oscillating paddles in a fluid container lead to a complex
wave energy spectrum competing with the one predicted by wave turbulence. To exemplify this
point, we characterize a simple one-dimensional model consisting of a linear wave equation in an
oscillating cavity with distinct injection and dissipation mechanisms. It displays features usually
associated with non-linearities, as self-similarity in a spectral domain (the so-called inertial range),
appearance of energy at larger and/or lower scales than the forcing one and creation of shock waves.

Introduction. – The reflection of a wave on a mov-
ing obstacle can be investigated from the usual wave equa-
tion and leads for a constant velocity to the well-known
Doppler effect, a frequency shift between the incident and
reflected waves. This can be generalized to any motion of
the boundary, as, for instance, a vibration around a fixed
position. In the case of a harmonic oscillation at frequency
fw , Censor showed that the spectrum of the reflected wave
is of the form f0 + nfw , f0 being the frequency of the in-
cident wave and n any integer [1]. Since this result is
obtained from the wave equation, it holds both in electro-
dynamics and in mechanics. It has been discussed in detail
in acoustics through a controversy about the comparative
effect of the medium non-linearity (see [2] and references
therein) and later confirmed by experiments [3]. Surface
waves, on the other hand, cannot be described by a wave
equation when interactions with boundaries are consid-
ered. This results from the fact that the normal velocity
of the fluid has to be prescribed on the entire solid surface:
thus, the motion of a vertical wall creates surface waves,
whereas the one of a perfect mirror does not give rise to
any electric field (in the classical theory and if no field is
initially present).

The reflection of a surface wave on an oscillating wall is
therefore a quite different problem from the one of electro-
magnetic/mechanical waves and it has so far never been

considered. We start this study by experimentally evi-
dencing that the spectrum of a monochromatic surface
wave is broadened by such an interaction. The first cor-
rections are found to grow linearly with the oscillation am-
plitude of the wall. We then theoretically compute these
corrections for gravity surface waves. This shed light on
three characteristics of the generalized Doppler effect. (i)
Surface waves undergo sizable energy exchanges between
scales at the reflection on an oscillating boundary. (ii)
This process is linear with respect to the surface eleva-
tion, i.e., it does not involve the non-linear term of the
Navier-Stokes equation. (iii) In some limits, the first-
order correction is similar to the one obtained with the
usual wave equation.

Given these results, consider a typical setup for the
study of surface wave turbulence using wave-makers, that
are oscillating paddles (see, e.g., [4]). In the usual read-
ing of such experiments, wave-makers inject energy in a
given bandwidth and bulk non-linearities lead to energy
exchanges between waves. The phenomenology, close to
the one of hydrodynamic turbulence and involving direct
and/or inverse cascades, is called wave turbulence [5]. Ac-
cording to the discussion above, it seems natural to wonder
if such states could be notably altered by the continuous
bouncing of surface waves on the wave-makers. This ques-
tion turns out to be difficult to address since both bulk
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non-linearities and oscillating boundaries would have to
be considered simultaneously. We rather consider the fol-
lowing problem: what is the steady-state energy spectrum
of linear waves trapped in an oscillating cavity?

In the absence of dissipation and if the motion of the
wall is sinusoidal at a frequency close to twice an eigen-
frequency of the cavity, it has been shown that the en-
ergy eventually diverges as a consequence of a paramet-
ric resonance [6–8]. This has received considerable atten-
tion in quantum electrodynamics as it occurs even if the
initial state is the vacuum, hence creating photons from
zero point fluctuations (see the review [9] and references
therein). From a practical point of view, the motion of
the mirror becomes more and more difficult to sustain, a
phenomenon called dynamical Casimir effect.

To be in line with the phenomenology of wave turbu-
lence, we differ from these studies and consider distinct
injection and dissipation mechanisms. We report that: (i)
Interactions with the moving boundary may inject energy
at larger and/or lower scales than the forcing one. (ii)
Self-similar energy spectra can be observed over a large
frequency range. (iii) Shock waves can be formed. We
emphasize that all these features, usually associated with
non-linearities, result in this system from linear processes.

Experimental measurement. – We first experi-
mentally characterize the spectrum of a harmonic surface
wave that reflects on an oscillating wall, using a recent
measurement technique able to disentangle between coun-
terpropagating waves of identical frequencies [10]. The
setup is sketched in fig. 1 and consists of a basin of dimen-
sion 648× 846× 160 mm filled with water up to 130 mm,
one wave-maker being fixed at the left extremity (denoted
as WM1) and another one at the right extremity (WM2).
Each of them (oscillating paddle of size 120× 80× 4 mm
plunged 60mm below the free surface) is driven harmon-
ically by a Brüel & Kjær 4810 shaker and its motion is
tracked with a Brüel & Kjær 4393 accelerometer. WM1
oscillates at f1 = 15 Hz and WM2 at f2 = 3 Hz.
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Fig. 1: Experimental setup for the measurement of surface
waves. P stands for piezoelectric transducer.

Two piezoelectric transducers resonant at f0 = 41500Hz
are used: one emits a harmonic wave of normal incidence
and the other receives at θ = 45.2◦ the acoustic signal,
then processed by a HP 35670A spectrum analyzer. Sur-
face waves can be fully characterized by this scattered sig-
nal, the entire setup being equivalent to an acousto-optic
modulator [10]. For the upcoming discussion to be clear,
we sum up the main features of this technique:

1. If the scattered signal includes a component of fre-
quency f0+fw and amplitude Aw, then the insonified
area is crossed by a monochromatic wave, heading to-
ward the receiver (i.e., in the direction of WM1), of
frequency fw and height ηw = C(|fw|)Aw. C is a
function that can be experimentally measured.

2. If the scattered signal includes a component of fre-
quency f0 − fw and amplitude Aw, then the insoni-
fied area is crossed by a monochromatic wave, head-
ing away from the receiver (i.e., in the direction of
WM2), of frequency fw and height ηw = C(|fw|)Aw.
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Fig. 2: Spectra obtained for one or two oscillating wave-makers.
When active, the oscillation amplitude of WM1 is 56µm.

We then comment on the spectra shown in fig. 2 :

• If only WM1 is active (blue lower curve of fig. 2),
the measurement area is dominated by progressive
waves of frequency f1 = 15 Hz heading away from
WM1. A counterpropagating wave is distinguishable
and comes from the reflection on WM2 (at rest).

• If only WM2 oscillates (middle red curve of fig. 2),
the situation is reversed and waves of frequency f2 =
3 Hz are observed. Note that unlike the previous
ones, these waves are almost of similar amplitude, a
consequence of the damping frequency dependence.

• If both WM2 and WM1 are in motion (upper green
curve of fig. 2), the scattered acoustic spectrum does
not reduce to the superposition of the last two spec-
tra: two components of frequency f1 ± f2, leaving
WM1 are also observed. Waves at f2± f1 that would
also be expected are below the noise level.
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This demonstrates that the reflection of a progressive wave
of frequency f2 = 3 Hz on a vertical wall oscillating at f1 =
15 Hz creates two new components of frequency f2 ± f1.
Moreover, their amplitudes are directly proportional to
the wall oscillation one, see fig. 3. This is reminiscent of
the reflection of an electromagnetic/acoustic wave of wave
number k on a scatterer of oscillation amplitude δ [11]: if
δk ≪ 1, the Doppler effect reduces to these two sidebands,
whose amplitude linearly grows with δk. In the present
experiment, δk < 6.10−3 with k = 36m−1 based on f2.
Finally, note that the amplitudes of these Doppler-shifted
waves have been measured up to the function C(|fw|), and
that they have been reduced by another damping factor
depending on their frequencies on their way from WM1 to
the insonified area: the overlapping of the curves in fig. 3
is therefore fortuitous.
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Fig. 3: Growth of the sidebands with the oscillation amplitude.

Generalized Doppler effect for gravity waves. –

To provide a theoretical support to these observations,
we compute in this section the amplitudes of these side-
bands. We restrict to gravity waves and thus disregard
the complex meniscus dynamics. This only approximately
models the previous experiment that involves gravity cap-
illary waves. Moreover, we consider the limit of inviscid
fluid, small wave steepness and small oscillation ampli-
tude so that both viscosity and bulk non-linearities can
be dropped from the Navier-Stokes equation.

Let ~v = −~∇φ be the total velocity field, xw(t) =
δ sin(ωwt) the wall position and h the height of the fluid.
Given that non-linearities are neglected, the potential φ is

φ(~r, t) = φw(x, z, t) + φinc(x, z, t) + φref(x, z, t), (1)

where φw describes the flow induced by the wall motion in
the absence of any external wave, and φinc and φref stand
for these additional incident and reflected waves. x and
z are the horizontal and vertical directions, such that at
rest the fluid lies within (x > 0, h > z > 0). Within our

assumptions, φ verifies

∂xxφ(x, z, t) + ∂zzφ(x, z, t) = 0 (2)

∂zφ(x, z = 0, t) = 0 (3)

∂ttφ(x, z = h, t) = −g∂zφ(x, z = h, t) (4)

∂xφ(x = xw(t), z, t) = −ẋw(t) (5)

We consider an incident progressive plane wave of angular
frequency ω0 and of velocity potential

φinc(x, z, t) = Ψinccosh(k0z)e
i(ω0t+k0x) (6)

ω2
0 = gk0tanh(k0h) (7)

The computation of φw has been first carried out by Have-
lock in 1929 for gravity waves [12], and it provides an
explicit expression for the amplitudes of free waves emit-
ted by a wave-maker. Additional effects such as capillarity
have been later considered, see [13] and references therein.
This potential is such that

∂xφw(x = xw(t), z, t) = −ẋw(t), (8)

and the boundary condition fulfilled by φref thus reads

∂xxφref(x, z, t) + ∂zzφref(x, z, t) = 0 (9)

∂zφref(x, z = 0, t) = 0 (10)

∂ttφref(x, z = h, t) = −g∂zφref(x, z = h, t) (11)

∂xφref(x = xw(t), z, t) = −∂xφinc(x = xw(t), z, t) (12)

This last equation can be decomposed into a basis of har-
monic functions using (6) and a first-order expansion in
the small parameter (k0δ):

∂xφref(x = xw(t), z, t) =

− ik0Ψinccosh(k0z)(e
iω0t +

k0δ

2
eiω1t − k0δ

2
eiω−1t) (13)

with ωn = ω0+nωw. The method for solving this problem
turns out to be very similar to the one used by Havelock
to compute φw. The velocity potential we are looking for,
φref , can not simply be expressed as a sum of free waves:
even though (9 - 11) would be verified, (13) would not. In
addition, evanescent waves have to be considered and the
proper decomposition is

φref(x, z, t) =
∑

n

ϕn(x, z, t) + ψn(x, z, t) (14)

ϕn(x, z, t) = ϕncosh(knz)e
i(ωnt−knx) (15)

ψn(x, z, t) =
∑

m

ψn,mcos(k̃n,mz)e
iωnt−k̃n,mx (16)

ω2
n = gkn tanh(knh) = −gk̃n,m tan(k̃n,mh) (17)

With these expressions, (9 - 11) are directly fulfilled and
(13) is the last remaining constraint. Note that for δ = 0,
ϕ0 = Ψinc while ϕn6=0 and ψn,m vanish and are therefore
of first order (or more) in (k0δ). ∂xφref(x = xw(t), z, t) is
then expressed from (14-16), expanded in the first order of
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(k0δ) and decomposed over the harmonic functions eiωnt

of (13). On eiω1t, we get

−ik0Ψinc cosh(k0z)(
k0δ

2
) = ik0ϕ0 cosh(k0z)(

k0δ

2
)

− ik1ϕ1 cosh(k1z) (18)

+ i
∑

n,m

ink̃n,mψn,m cos(k̃n,mz)I1−n(−k̃n,mδ)

where In are modified Bessel functions of the first kind.
The integration

∫ h

0 (18)× cosh(k1z)dz removes the contri-
butions of evanescent waves at this order and leads to

k20δΨinc
cosh(k0h) cosh(k1h)

g(k21 − k20)
(ω2

1 − ω2
0) =

k1ϕ1

(

h

2
+

sinh(2k1h)

4k1

)

. (19)

A similar expression is obtained for ϕ−1. We sum
up these results using the wave height η (e.g., ηinc =
−k0Ψinc sinh(k0h)/ω0) instead of the velocity potential
(e.g., Ψinc): a surface gravity wave ηinc sin(ω0t+ k0x) re-
flecting on a vertical wall at xw(t) = δ sin(ωwt) gives rise
at the first order in k0δ to a reflected free wave of the form

ηinc sin(ω0t−k0x)+η1 sin(ω1t−k1x)+η−1 sin(ω−1t−k−1x)
(20)

where ω±1 = ω0 ± ωw and k±1 are related to ω±1 via the
dispersion relation. η±1 are given by

η1
ηinc

= (k0δ)
k0(ω

2
1 − ω2

0)

ω0ω1h(k21 − k20)

(

sinh(2k1h)

1 + sinh(2k1h)
2k1h

)

(21)

η−1

ηinc
= −(k0δ)

k0(ω
2
0 − ω2

−1)

ω0ω−1h(k20 − k2−1)





sinh(2k−1h)

1 + sinh(2k
−1h)

2k
−1h





(22)

The linear growth of the sidebands η±1 ∝ δ is consistent
with the experimental observations of fig. 3. The shallow
water and deep water limits of (21) are

η1
ηinc

=
h→0

k0δ (23)

η1
ηinc

=
h→∞

2k0δ
ω0ω1

ω2
0 + ω2

1

=
ωw≪ω0

k0δ (24)

In acoustics and electromagnetism, η obeys the wave equa-
tion and vanishes at the moving boundary. In the limit of
small oscillations, Censor computed η±1/ηinc = ±k0δ [11],
i.e., exactly what is found both for deep water with small
oscillation frequency and shallow water. Therefore, to de-
scribe the Doppler effect in these limits, surface waves can
be modelled by the wave equation with a pinned contact
line. This is natural for shallow water, since vx becomes
in this limit independent of z and directly proportional to
the wave height η. However, we can think of no way to an-
ticipate this result for deep water. In order to extend this
calculation to gravito-capillary waves, one should take into

account the meniscus, whose specific dynamics when un-
dergoing an oscillating motion is an active research area,
see e.g., [14]. Phenomenological boundary conditions may
be used, as has been done for the wave-maker problem [13]
or for the reflection of a gravity capillary surface wave on
a steady wall [15]. We also point out that the additional
work required to sustain the wall oscillation, crucial to dis-
cuss energy exchanges, could be derived by comparing the
incident and reflected waves energies. The second-order
correction at the incident wave frequency ω0 would then
have to be worked out.

Wave energy transfer in an oscillating cavity. –

So far, we have focused on the simplest configuration of a
monochromatic wave reflecting on a harmonically oscillat-
ing wall. However, most experiments dealing with surface
waves are conducted in closed basin without any specific
care to damp reflected waves, as a beach would do. This is
especially relevant in wave turbulence, where dissipation is
sought as small as possible, hence the use of fluids with low
kinematic viscosity or pinned contact line on the steady
boundaries. Moreover, a typical way of creating surface
waves is to use a wave-maker, which is an oscillating wall
(other geometries exist, as flaps hinged below the free sur-
face). In most experiments of wave turbulence, its motion
is not harmonic but consists of a filtered noise. Therefore,
waves emitted by the wave-maker reflect a large number of
time on it until they are eventually damped. The steady
state associated with these cumulative Doppler effects has
so far never been investigated in this context and we pro-
pose a simple model expected to capture its main features.
As a first approach, we consider a one-dimensional dissi-

pative and linear wave equation for a perturbation η(x, t),

∂2η

∂t2
+ σ

∂η

∂t
= c2

∂η2

∂x2
, (25)

where c is the wave velocity and σ the dissipation coeffi-
cient. The use of a wave equation is reasonable since first-
order corrections have been found similar in some limits.
However, even if non-linear interactions between waves are
more restricted in hydrodynamics than in acoustics (it re-
spectively involves three or four waves processes even more
in one dimension vs. two-waves processes), it should be
kept in mind that sharp structures that shall arise would
clearly lead to non-linear dynamics. Equation (25) also ne-
glects dispersion of water waves, since c does not depend
on the frequency. The boundary conditions are

η(0, t) = ηf sin(nfωt),
(

ω =
πc

L
, nf ∈ N

)

(26)

η(L + ξ(t)) = 0, (27)

eq. (26) corresponds to an energy injection by an external
operator at a resonance frequency and eq. (27) is the
reflection on the moving boundary, the cavity being of
mean length L modulated by ξ(t). The energy balance
can be derived directly from these equations. Defining the

energy by E(t) = 1
2

∫ L+ξ(t)

0
dx
(

(∂tη)
2 + c2(∂xη)

2
)

, we get
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dE

dt
=− σ

∫ L+ξ(t)

0

dx

(

∂η

∂t

)2

(28)

− c2
(

∂η

∂t

)

(0, t)

(

∂η

∂x

)

(0, t)

− ξ′(t)
(c2 − ξ′(t)2)

2

(

∂η

∂x

)2

(L + ξ(t), t),

where the terms are, respectively, dissipation, work done
by the operator and interaction with the moving wall via
radiative pressure. In a steady-state, the mean value of
(28) vanishes and dissipation is balanced by injection of
energy by the operator and by the motion of the wall.
Thereafter periodic and stochastic oscillations of the cav-
ity are considered successively.

The periodic motion. – We first consider a low-
frequency periodic motion of the wall,

ξ(t) = ξw sin(ωt) (29)

with ω = πc
L

the first eigenfrequency of the cavity. The so-
lution will be found at first order in the two dimensionless
parameters D = σL/c and ǫ = πξw/L. We define the ratio
of these numbers as α = D/ǫ, roughly the ratio of dissi-
pation to the oscillation amplitude. Note that the Mach
number Ma, representing the ratio of the wall velocity to
the speed of the waves, remains smaller than one:

Ma =
ξwω

c
= ǫ≪ 1. (30)

We look for a periodic steady state of period 2L/c. If
ǫ = 0, the wall is at rest and the solution is η(x, t) =
ηfη+(x, t) with

η+(x, t) =
2

D (− sin(
nfωx

c
) cos(nfωt) (31)

+
D
2
(1 − x

L
) cos(

nfωx

c
) sin(nfωt)).

If ǫ > 0, the steady state is of the form η(x, t) =
ηf(η+(x, t) +

∑

nAnηn(x, t)), with ηn(x, t) other eigen-
modes of (25),

ηn(x, t) =
2

D ( sin(
nωx

c
) cos(nωt) (32)

+
Dx
2L

cos(
nωx

c
) sin(nωt)).

This solution verifies (25) and (26). Equation (27) fixes
the constants {An} via a recurrence relation. It has a
simple form if only the first modes are considered (n ≪
ǫ−1), that is with δji the Kronecker delta

−An−1(n− 1) + αAn +An+1(n+ 1) = nf(δ
nf−1
n − δnf+1

n ).
(33)

In this range of parameters, we get local interactions,
i.e., mode coupling restricted to neighbors in the spec-
tral domain. This is directly related to the work of Cen-
sor mentioned in the introduction [1] and to our previous

study: if a wave of frequency f0 and wave number k0 re-
flects on a moving boundary oscillating at a frequency fw
and amplitude ξw ≪ k−1

0 , sidebands of frequency f0 ± fw
appear. Conversely, if ξwk0 & 1, harmonics at f0 ± nfw
(n > 2) are of similar amplitudes as the ones at f0 ± fw.
Modes at n & ǫ−1 therefore lead to non-local interactions
and are neglected in this study.
Equation (33) can be solved for any value of nf , and we

will detail low- and high-frequency forcing. It can be seen
as the equilibrium state of a shell model with local linear
coupling between modes (shell models are phenomenolog-
ical equations used to describe systems with non-linear
coupling between modes, e.g., turbulent states [16]).

Low-frequency forcing: nf = 1. We derive the follow-
ing expressions for the constants {An}:

An ∼ (n− 1)!

αn−1
, (2 6 n≪ α) (34)

An ∼ n−1−α

2 .
(

α ≪ n≪ ǫ−1
)

(35)

Given that the energy of the n-th mode is En ∼ (nAn)
2, it

displays a self-similar range for α≪ n≪ ǫ−1, where En ∼
n−α. In the non-dissipative limit, the energy spectrum
becomes independent of n. Figure 4 shows examples of
such spectra obtained by solving (33) numerically for α =
20 and α = 40. Approximate expressions (34) and (35)
are superimposed. Since eq. (33) is local in frequency, the
dissipation can be made frequency dependant (α → α(n)):
a dissipation-free range is also displayed, obtained with
α(n) = 0 if n ∈ [10, 100] and 10 otherwise.
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E
n
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E
n

∼
(n

A
n
)2

Number of the mode n

α = 40
α = 20

α = 10 with inertial range
models for n ≪ α and n ≫ α

Fig. 4: Spectra for the low-frequency forcing. Several values
of α are reported, with the approximate expressions (34-35).
For α = 10, dissipation is taken equal to zero in the range
n ∈ [10, 100].

As the dissipation vanishes or as the amplitude of the
motion increases, i.e., in the limit α→ 0, a shock wave is
formed. In this limit, the additional wave field reduces to
(according to (35)),

ηf
∑

n

Anηn(x, t) ∼
α→0

2ηf
D
∑

n

sin(nωx
c

) cos(nωt)

n
. (36)
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The right-hand side (RHS) of (36) describes a sawtooth
wave bouncing between the walls of the cavity at a celerity
c. It is shown in fig. 5 for two values of t.
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Fig. 5: Discontinuous wave field induced by the periodic motion
of the boundary in the limit α → 0.

High-frequency forcing: α ≪ nf ≪ ǫ−1. The coeffi-
cients {An} have these expressions,

An ∼ (−1)n−1αn−1

n!
, (2 6 n≪ α) (37)

An ∼ (−1)n−1n−1+α

2 , (α≪ n 6 nf − 1) (38)

An ∼ n−1−α

2 . (nf + 1 6 n≪ ǫ) (39)

The scaling law for the energy at frequencies larger than
the forcing one is the same as before. However, we note
that energy can be injected to frequencies lower than the
forcing one with the Doppler effect, where it gets even-
tually either dissipated or stored depending on the local
value of α.

The situation in which dissipation vanishes at scales
larger than the forcing one is of particular interest. In
this case, energy is neither injected nor dissipated at these
scales and the energy spectrum is found constant: this
may correspond to a thermal equilibrium. It has for in-
stance been numerically observed in hydrodynamic turbu-
lence [17]. However, the present state turns out to be very
different from an equilibrium one because of phase cou-
pling between modes: strong gradients are formed that
would result in a shock wave as the number of modes in-
volved increases.

The stochastic motion. – In the previous section,
we showed how the ground state (31) was affected by a pe-
riodic modulation of the cavity length. We now turn to a
noisy motion of the boundary ξ(t), whose one-sided power
spectral density is denoted by Sw(w̃). We still consider the
limit of low dissipation (D ≪ 1) and small motion of the
wall (〈ξ(t)2〉 ≪ (nω/c)−2 for the modes considered). The
wave field can be approximated as a sum of the motionless

solution and an induced perturbation:

η(x, t) = ηf

(

η+(x, t) +
∑

n

η̄n(t) sin(
nπx

L
)

)

(40)

Integrating the wave equation (25) times sin(nπx
L

) on the
entire domain leads in the mentioned limits to an equation
for η̄n(t) (n 6= nf):

d2η̄n
dt2

+ σ
dη̄n
dt

+(nω)2η̄n =
2nωc

Lηf
(η(0, t)− η(L, t)) cos(nπ)

(41)
Given that the quality factor of this damped harmonic os-
cillator nπ/D is very large, out-of-resonance forcing is in-
efficient. The spectral component at angular frequency nω
of the left-hand side (LHS) of (41), governing the dynam-
ics of η̄n, is found by expanding the boundary condition
(27):

η(L, t) ≃ −ξ(t)∂η
∂x

(L, t) (42)

≃ −ηfξ(t)
∂

∂x

(

η+(x, t) +
∑

m

η̄m(t) sin(
mπx

L
)

)

(L, t).

(43)

Equation (43) provides two kinds of resonant terms. The
first one results from interactions between the motion of
the wall ξ(t) and the induced perturbations {η̄m(t)}, hence
generating a coupling between all oscillators. The second
one is direct interaction with the forcing mode η+(x, t).
Depending on the spectrum of ξ(t), especially on the am-
plitudes of high frequencies, one of this forcing term will
dominate the other. We restrict this study to coupling
with η+(x, t), i.e., to large-band stochastic motion ξ(t), as
would be a thermal motion (relevant for applications in
electromagnetism discussed in the conclusion) or a poorly
filtered bandwidth noise. The dynamics of η̄n is then ruled
by

d2η̄n
dt2

+ σ
dη̄n
dt

+ (nω)2η̄n =
4s(nω)(nfω)ξ(t) cos(nfωt)

LD ,

(44)
with s = − cos(nπ) cos(nfπ) = ±1. As mentioned above,
the high quality factor of the oscillator makes the dynam-
ics insensitive to the components of the noise that would
result in out-of-resonance forcing. The LHS of (44) can
then be approximated by a white noise of identical spec-
tral density at angular frequency nω, i.e.,

d2η̄n
dt2

+ σ
dη̄n
dt

+ (nω)2η̄n = ζn(t) (45)

〈ζn(t)ζn(t+ τ)〉 = C(n)

2

(

2nnfω
2

LD

)2

δ(τ) (46)

C(n) = Sw(|n− nf |ω) + Sw((n+ nf)ω) (47)

We obtain a Langevin equation where the dissipation and
injection processes are of distinct origin and are not linked
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by a fluctuation-dissipation relation. This system can be
fully characterized, in particular the mean energy at a
scale n is found to be

〈En〉 =
L(nω)2η2f 〈η̄2n〉

2
=
Lπ

4σ

C(n)

2

(

2nnfω
2ηf

LD

)2

. (48)

The statistics of the injected power fluctuation by radia-
tive pressure can also be computed, see [18].
As an example, we detail the case of a low-frequency

forcing (nf = 1) and a low-frequency motion of the bound-
ary,

Sw(w̃) =
2
√
2〈ξ(t)2〉

πω
(

(1− ( ω̃
ω
)2)2 + 2( ω̃

ω
)2
) . (49)

Equation (49) stands for a second-order low-pass filter
with a cut-off frequency equal to ω and a quality factor
1/

√
2. This is a possible thermal equilibrium spectrum of

the wall as long as it is not perturbed by the radiative
pressure. 〈ξ(t)2〉 is then proportional to the temperature
of the wall. According to (48), the energy spectrum of
the waves at large frequencies compared to the cut-off one
(n≫ 1) is

〈En〉 =
2
√
2〈ξ(t)2〉ω3η2f
n2D3c

. (50)

In particular, 〈En〉 ∝ η2f results from the linearity of the
initial equations and 〈En〉 ∝ n−2 is a consequence of the
second-order nature of the noise Sw. The proportional-
ity 〈En〉 ∝ 〈ξ(t)2〉 differs from the periodic motion and
is a sign of the loss of temporal coherence of the forcing.
Finally, 〈En〉 ∝ D−3 shows that this effect will be of im-
portance in high Q-factor cavities.
The validity of (44) can be checked afterwards by com-

paring the spectral power density of the considered forcing
term with the neglected one. We get

Sw(nω)ω
2〈η+(L, t)2〉

Sw(n)(nω)2〈η̄n(L, t)2〉
∼ D
(

nω
c

)2 〈ξ(t)2〉
, (51)

and eq. (50) is then valid in the limit of small vibration
of the boundary.
The stochastic and periodic regimes have therefore spe-

cific features, including the absence or presence of shock
waves and the scaling of the energy spectra. This traces
back to the temporal coherence of the forcing and to the
nature of the energy transfers: the n-th mode is directly
coupled with the forcing scale in the noisy case, whereas it
is driven by the (n±1)-th mode if the motion is harmonic.

Conclusion. – We have described how the oscillation
of a boundary affects the reflection of surface waves. We
experimentally evidenced this generalized Doppler effect,
then computed it for gravity waves and discussed a model
in which the cumulative effects of such interactions can
be studied in a simple manner. Since self-similar spectra
have been found to arise as a consequence of the Doppler
effect, the comparison of such energy transfers with the

non-linear ones would be an interesting follow-up in or-
der to clarify experiments of surface wave turbulence. We
finally detail possible applications of our study in two do-
mains other than hydrodynamics.
First, in electrodynamics, where the motion of mirrors

has been extensively discussed when it spontaneously gen-
erates photons from vacuum fluctuations. For this effect
to be sizable, the mirror has to move at a velocity close
to the speed of light, hence the resort to other devices in
practice (e.g., superconducting circuits, see [19]). Since
the aim of our last model was not to investigate the quan-
tum creation of photons but to describe how energy can
be generated at frequencies different from the forcing one,
an additional injection mechanism acting as a source of
photons was set. This process no longer requires high ve-
locities to be relevant, especially since the development of
high Q-factor cavities (a striking example being the ones
used to test quantum mechanics principles [20], where pho-
tons of frequency f ∼ 50 GHz are trapped in cavities with
Q up to 3.108). The present study can be used, for in-
stance, to know how the electromagnetic field is affected
by the thermal motion of a Fabry-Pérot interferometer
with a high coefficient of finesse.
Secondly, in acoustics, where a system very similar to

the model presented here is commonly used in laborato-
ries under the name of acousto-optic modulator, or ”Bragg
cell”. Proposed by Brillouin nearly a century ago [21], it
consists of a cavity where acoustic waves are generated
by a periodically oscillating surface (a piezoelectric trans-
ducer) and are reflected at the other extremity by a fixed
wall. Contrary to the idealisation of linear acoustics pre-
sented here, bulk non-linearities may have to be taken into
account and have been studied using devices in which re-
flection at one extremity is cancelled [22]. In the usual
Bragg cell configuration, our model shows that a forcing
at a resonant frequency leads to the apparition of strong
pressure gradients and our results can be used to predict
whether or not non-linearities have to be considered.
The author is thankful to S. FAUVE, F. PÉTRÉLIS

and B. GALLET for fruitful discussions. This work is
supported by CNES and ANR-12-BS04-0005-02.
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