T. Vaughan, 4T human MRI: Preliminary results, Magnetic Resonance in Medicine, vol.9, issue.56, pp.1274-1282, 2006.
DOI : 10.1002/mrm.21073

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4406343

P. Vedrine, The Whole Body 11.7 T MRI Magnet for Iseult/INUMAC Project, IEEE Transactions on Applied Superconductivity, vol.18, issue.2, pp.868-873, 2008.
DOI : 10.1109/TASC.2008.920786

G. Diakova, J. Korb, and R. G. Bryant, The magnetic field dependence of water T1 in tissues, Magnetic Resonance in Medicine, vol.13, issue.1, pp.272-277, 2012.
DOI : 10.1002/mrm.23229

J. Korb and R. G. Bryant, Magnetic field dependence of proton spin-lattice relaxation times, Magnetic Resonance in Medicine, vol.77, issue.1, pp.21-26, 2002.
DOI : 10.1002/mrm.10185

R. B. Lauffer, Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design, Chemical Reviews, vol.87, issue.5, pp.901-927, 1987.
DOI : 10.1021/cr00081a003

L. Helm, The Challenge of T1 Contrast Agents for High-Magnetic Field MRI, CHIMIA International Journal for Chemistry, vol.65, issue.9, pp.696-698696, 2011.
DOI : 10.2533/chimia.2011.696

P. Caravan, J. J. Ellison, T. J. Mcmurry, and R. B. Lauffer, Gadolinium(III) Chelates as MRI Contrast Agents:?? Structure, Dynamics, and Applications, Chemical Reviews, vol.99, issue.9, pp.2293-2352, 1999.
DOI : 10.1021/cr980440x

P. Caravan, C. T. Farrar, L. Frullano, and R. Uppal, contrast agents, Contrast Media & Molecular Imaging, vol.162, issue.2, pp.89-100, 2009.
DOI : 10.1002/cmmi.267

J. Garcia, J. Neelavalli, E. M. Haacke, and M. J. Allen, EuII-containing cryptates as contrast agents for ultra-high field strength magnetic resonance imaging, Chemical Communications, vol.1, issue.217, pp.12858-12860, 2011.
DOI : 10.1039/c1cc15219j

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3255567

S. H. Koenig and K. Kellar, Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles, Magnetic Resonance in Medicine, vol.22, issue.2, pp.227-233, 1995.
DOI : 10.1002/mrm.1910340214

Z. L. Shi, K. G. Neoh, E. T. Kang, B. Shuter, and S. C. Wang, Bifunctional Eu3+ -doped Gd2O3 nanoparticles as a luminescent and T-1 contrast agent for stem cell labeling, Contrast Media & Molecular Imaging, vol.5, pp.105-111, 2010.
DOI : 10.1002/cmmi.373

J. Jung, Europium-doped gadolinium sulfide nanoparticles as a dual-mode imaging agent for T1-weighted MR and photoluminescence imaging, Biomaterials, vol.33, issue.24, pp.5865-5874059, 2012.
DOI : 10.1016/j.biomaterials.2012.04.059

H. Hifumi, Dextran Coated Gadolinium Phosphate Nanoparticles for Magnetic Resonance Tumor Imaging, Journal of Materials Chemistry, vol.69, issue.35, pp.10-1039, 2009.
DOI : 10.1039/b902134e

M. Abdesselem, Multifunctional Rare-Earth Vanadate Nanoparticles: Luminescent Labels, Oxidant Sensors, and MRI Contrast Agents, ACS Nano, vol.8, issue.11, pp.11126-11137, 2014.
DOI : 10.1021/nn504170x

URL : https://hal.archives-ouvertes.fr/hal-01102505

C. F. Geraldes, Relaxometry, animal biodistribution, and magnetic resonance imaging studies of some new gadolinium (III) macrocyclic phosphinate and phosphonate monoester complexes, Magnetic Resonance in Medicine, vol.22, issue.6, pp.696-703, 1993.
DOI : 10.1002/mrm.1910300607

C. F. Geraldes, Preparation, physico-chemical characterization, and relaxometry studies of various gadolinium(III)-DTPA-bis(amide) derivatives as potential magnetic resonance contrast agents, Magnetic Resonance Imaging, vol.13, issue.3, pp.401-420, 1995.
DOI : 10.1016/0730-725X(94)00117-L

R. Kimmich and E. Anoardo, Field-cycling NMR relaxometry, Progress in Nuclear Magnetic Resonance Spectroscopy, vol.44, issue.3-4, pp.257-320, 2004.
DOI : 10.1016/j.pnmrs.2004.03.002

J. B. Livramento, High Relaxivity Confined to a Small Molecular Space: A Metallostar-Based, Potential MRI Contrast Agent, Angewandte Chemie International Edition, vol.2, issue.276, pp.1480-1484, 2005.
DOI : 10.1002/anie.200461875

M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, and H. Weinmann, Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths, Investigative Radiology, vol.40, issue.11, pp.715-724, 2005.
DOI : 10.1097/01.rli.0000184756.66360.d3

H. M. Vieth, S. Grosse, F. Gubaydullin, H. Scheelken, and A. Yurkovskaya, Field cycling by fast NMR probe transfer: Design and application in field-dependent CIDNP experiments, Appl Magn Reson, vol.17, pp.211-225, 1999.

A. G. Redfield, Shuttling device for high-resolution measurements of relaxation and related phenomena in solution at low field, using a shared commercial 500 MHz NMR instrument, Magnetic Resonance in Chemistry, vol.84, issue.10, pp.753-768, 2003.
DOI : 10.1002/mrc.1264

A. Redfield, High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument, Journal of Biomolecular NMR, vol.50, issue.2, pp.159-177, 2012.
DOI : 10.1007/s10858-011-9594-1

C. Y. Chou, M. Chu, C. F. Chang, and T. H. Huang, A compact high-speed mechanical sample shuttle for field-dependent high-resolution solution NMR, Journal of Magnetic Resonance, vol.214, pp.302-308, 2012.
DOI : 10.1016/j.jmr.2011.12.001

A. Krahn, Shuttle DNP spectrometer with a two-center magnet, Physical Chemistry Chemical Physics, vol.15, issue.3, pp.5830-5840, 2010.
DOI : 10.1039/c002814m

URL : http://hdl.handle.net/11858/00-001M-0000-0012-D69D-7

C. Charlier, Nanosecond Time Scale Motions in Proteins Revealed by High-Resolution NMR Relaxometry, Journal of the American Chemical Society, vol.135, issue.49, pp.18665-18672, 2013.
DOI : 10.1021/ja409820g

URL : http://doi.org/10.1021/ja409820g

C. Chou, High sensitivity high-resolution full range relaxometry using a fast mechanical sample shuttling device and a cryoprobe, Journal of Biomolecular NMR, pp.1-8, 2016.
DOI : 10.1007/s10858-016-0066-5

URL : https://hal.archives-ouvertes.fr/cea-01383405

D. Kruk, H relaxation enhancement induced by nanoparticles in solutions: Influence of magnetic properties and diffusion, The Journal of Chemical Physics, vol.140, issue.17, p.4871461, 2014.
DOI : 10.1021/jp110514r

P. J. Ganssle, Ultra-Low-Field NMR Relaxation and Diffusion Measurements Using an Optical Magnetometer, Angewandte Chemie International Edition, vol.135, issue.37, pp.9766-9770, 2014.
DOI : 10.1002/anie.201403416

C. Chou, F. Ferrage, G. Aubert, and D. Sakellariou, Simple method for the generation of multiple homogeneous field volumes inside the bore of superconducting magnets, Scientific Reports, vol.100, issue.1, pp.10-12200, 1038.
DOI : 10.1073/pnas.1133497100

URL : https://hal.archives-ouvertes.fr/hal-01223310

D. Giaume, Organic Functionalization of Luminescent Oxide Nanoparticles toward Their Application As Biological Probes, Langmuir, vol.24, issue.19, pp.11018-11026, 2008.
DOI : 10.1021/la8015468

D. Casanova, Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells, Nature Nanotechnology, vol.129, issue.9, pp.581-585, 2009.
DOI : 10.1038/nnano.2009.200

URL : https://hal.archives-ouvertes.fr/hal-00818493

D. Casanova, size determination of single lanthanide-ion doped oxide nanoparticles, Applied Physics Letters, vol.89, issue.25, 2006.
DOI : 10.1016/S0006-3495(94)80939-7

URL : https://hal.archives-ouvertes.fr/hal-00144455

A. Abragam, The Principles of Nuclear Magnetism, 1961.

Y. Takikawa, S. Ebisu, and S. Nagata, Van Vleck paramagnetism of the trivalent Eu ions, Journal of Physics and Chemistry of Solids, vol.71, issue.11, pp.1592-1598, 2010.
DOI : 10.1016/j.jpcs.2010.08.006

J. H. Van-vleck, The Theory of Electric and Magnetic Susceptibilities, The Mathematical Gazette, vol.18, issue.231, 1932.
DOI : 10.2307/3605487

H. B. Na, Development of aT1???Contrast Agent for Magnetic Resonance Imaging Using MnO Nanoparticles, Angewandte Chemie International Edition, vol.298, issue.28, pp.5397-5401, 2007.
DOI : 10.1002/anie.200604775

N. Bloembergen and L. Morgan, Proton Relaxation Times in Paramagnetic Solutions. Effects of Electron Spin Relaxation, The Journal of Chemical Physics, vol.5, issue.3, pp.842-850, 1961.
DOI : 10.1063/1.1742867

E. Strandberg and P. Westlund, 1H NMRD Profile and ESR Lineshape Calculation for an Isotropic Electron Spin System withS= 7/2. A Generalized Modified Solomon???Bloembergen???Morgan Theory for Nonextreme-Narrowing Conditions, Journal of Magnetic Resonance, Series A, vol.122, issue.2, pp.179-1910193, 1996.
DOI : 10.1006/jmra.1996.0193

M. Corti, Magnetic and relaxometric properties of polyethylenimine-coated superparamagnetic MRI contrast agents, Journal of Magnetism and Magnetic Materials, vol.320, issue.14, pp.316-319, 2008.
DOI : 10.1016/j.jmmm.2008.02.115

Y. I. Park, Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent, Advanced Materials, vol.47, issue.44, pp.4467-4471, 2009.
DOI : 10.1002/adma.200901356

J. Zhou, Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties, Biomaterials, vol.31, issue.12, pp.3287-3295040, 2010.
DOI : 10.1016/j.biomaterials.2010.01.040

F. Luc, G. Yves, H. Aline, and F. Marc-andré, Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticles, Nanotechnology, vol.22, p.295103, 2011.

N. O. Nunez, Surface modified Eu:GdVO4 nanocrystals for optical and MRI imaging, Dalton Transactions, vol.95, issue.30, pp.10725-10734, 2013.
DOI : 10.1039/c3dt50676b

E. D. Smolensky, Scaling laws at the nanosize: the effect of particle size and shape on the magnetism and relaxivity of iron oxide nanoparticle contrast agents, Journal of Materials Chemistry B, vol.181, issue.197, pp.2818-2828, 2013.
DOI : 10.1039/c3tb00369h

P. Caravan, M. T. Greenfield, and J. W. Bulte, Molecular factors that determine Curie spin relaxation in dysprosium complexes, Magnetic Resonance in Medicine, vol.118, issue.5, pp.917-922, 2001.
DOI : 10.1002/mrm.1277

L. P. Hwang and J. Freed, Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids, The Journal of Chemical Physics, vol.63, issue.9, pp.4017-4025, 1975.
DOI : 10.1063/1.431841

A. Borel, Chelates:?? LODEPR Measurements and Models for Electron Spin Relaxation, The Journal of Physical Chemistry A, vol.106, issue.26, pp.6229-6231, 2002.
DOI : 10.1021/jp0203752

M. Holz, S. R. Heil, and A. Sacco, Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements, Physical Chemistry Chemical Physics, vol.2, issue.20, pp.4740-4742, 2000.
DOI : 10.1039/b005319h

J. Jolivet, M. Henry, and J. Livage, Metal Oxide Chemistry and Synthesis: From Solution to Solid State, 2000.

G. Mialon, S. Türkcan, A. Alexandrou, T. Gacoin, and J. Boilot, New Insights into Size Effects in Luminescent Oxide Nanocrystals, The Journal of Physical Chemistry C, vol.113, issue.43, pp.18699-18706, 2009.
DOI : 10.1021/jp907176x

URL : https://hal.archives-ouvertes.fr/hal-00818489

B. Fleury, :Eu Nanoparticles, ACS Nano, vol.8, issue.3, pp.2602-2608, 2014.
DOI : 10.1021/nn4062534

URL : https://hal.archives-ouvertes.fr/hal-01021511