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Abstract 

This paper presents the 3-D multi-scale analysis of a cylindrical liquid ligament subjected to a 

capillary instability. This analysis aims to investigate the evolution of the ligament interface 

paying a specific attention to the physical mechanisms involved at small scales. The capillary 

instability behavior is obtained from direct numerical simulations. Calculations are performed 

for several wavenumbers of the initial sinusoidal perturbation. During the capillary instability, 

the scale space is divided in two regions: the small-scale region where a thinning mechanism 

is identified and the large-scale region where a thickening mechanism is observed. Although 

the characteristic scale dmax of the large-scale region displays a dynamics that agrees with the 

Rayleigh linear theory, this agreement is lost for the characteristic scale d1of the small scale 

region showing that the non-linear effects mainly concentrate on the small scales. The 

dynamics of the characteristic scale d1 follows three successive regimes. The development of 
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a simple model allows identifying the physical mechanisms related to these three regimes as 

well as their dependences with the wavenumber of the perturbation. Among other results it is 

found that the capillary contraction regime that develops when the breakup is approached is 

always preceded by an elongation mechanism whose effect is to increase the specific-surface-

area of the ligament.  

 

Keywords: Multi-scale analysis; two-phase flow; direct numerical simulation; capillary 

instability 
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1 Introduction 

Liquid atomization processes, which designates the deformation and breakup of a free liquid 

flow evolving in a gaseous environment, need specific investigations to be better understood 

and modelled. From an experimental point of view, the most common approaches to 

investigate these processes are based on image analysis (Dumouchel, 2008). Several 

characteristics are measured, i.e., the breakup length, the wavelength of perturbations, the size 

of liquid fragments or the diameter of droplets, etc. Despite of their physical relevance, these 

characteristics provide a split-up description of the process.  

The atomization of a liquid flow is a matter of energy exchange between the liquid-gas 

interface and the two fluids: the variation of the interface area is associated with energy 

transfer. Creation of interface requires energy, and inversely, interface reduction provides 

energy (Evers 1994). The liquid-gas surface stores energy, which, per unit mass, is equal to 

the product of the specific-surface-area (surface area per unit mass) and the surface tension 

(Evers, 1994). The specific-surface-area is conveyed by the shape of the liquid system. 

During an atomization process, this shape varies in a complex way. As example of this can be 

seen in Fig. 1 that shows the temporal evolution of an atomizing liquid ligament. Its 

deformation produces liquid swells and threads. The thickening of the ligament into swells is 

accompanied by a local reduction of the specific-surface-area (IR in Fig. 1) since the sphere 

ensures the smallest interface area for a given liquid volume. On the other hand, the thinning 

of threads locally increases the specific-surface-area (IC in Fig. 1). This demonstrates that 

events of interface reduction and creation occur at the same time but at different scales. Thus, 

a multi-scale approach is recommended to investigate liquid atomization processes. The scale 

distribution introduced in previous works (Dumouchel and Grout 2009, 2011; Dumouchel et 

al. 2015a, 2015b) is a possible alternative to achieve this.  
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The notion of scale-distribution is inspired from the Euclidean Distance Mapping method to 

measure fractal dimension (Bérubé & Jébrak 1999). The cumulative scale distribution En(d) 

measures the relative amount of the liquid system lost after the application of an erosion 

operation at scale d. The derivative in the scale space of this cumulative (dEn(d)/dd) is the 

scale-distribution en(d). In 3-D (n = 3), the scale distribution represents the surface area of the 

eroded system divided by twice the total volume of the system. For d = 0, this quantity is 

identical to the specific-surface-area introduced by Evers (1994).  

The application of the scale distribution to investigate a liquid atomization process has been 

presented in several works (Dumouchel and Grout 2009, 2011; Dumouchel et al. 2015a, 

2015b). The 2-D scale distribution, obtained by analyzing images of the atomization 

processes, evolves continuously during the flow deformation and fragmentation (Dumouchel 

and Grout 2009). The modeling of the temporal evolution of this distribution can be 

approached by the scale entropy diffusion model (Dumouchel and Grout 2009, 2011; 

Dumouchel et al. 2015b). Recently, the multi-scale analysis succeeded in identifying the 

physical mechanisms involved in the atomization of stretched ligaments emanating from 

turbulent liquid sheets (Dumouchel et al. 2015a). In particular that work shows that the 

presence of an elongation mechanism of the small structures is beneficial in terms of small 

drop production. The mechanisms controlling the interface evolution at small scales are 

therefore important and should be explored in detail.  

The present work aims to make use of the concept of scale distribution to investigate a 

deforming liquid system paying a specific attention to the mechanism involved at small 

scales. The fundamental case of a cylindrical ligament of liquid subject to a capillary 

instability isconsidered. Three main reasons motivated this choice. First, this instability has 

been widely studied as reported by the review articles due to Bogy (1979), Eggers (1997), 

Eggers and Villermaux (2008), Ashgriz and Yarin (2011). The advanced knowledge of the 
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physics of this instability may turn out to be useful in the present approach. Second, the 

capillary instability can be obtained from direct numerical simulation instead of experiments. 

This allows a perfect control of the operating conditions. Third, since cylindrical ligaments 

are unstable for axisymmetric disturbances only, a 3-D scale analysis is possible. As noted 

above this allows us having access to the specific-surface-area of the system. 

The elements of the multi-scale analysis are introduced in Section 2. Section 3 presents a 

review of the capillary instability as well as the results of the present simulation work. The 

multi-scale analysis is described in Section 4.  
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2 The multi-scale description 

The multi-scale analysis describes the liquid system by the cumulative scale function En(d) 

where d is the scale of observation. This function is obtained by applying successive erosion 

operations to the liquid system. An erosion operation is illustrated in Fig. 2 for a 2-D system. 

Figure 2-left shows the initial system, which has a 2-D total surface area noted S2T. The 

system is eroded by circular structuring elements with a diameter d. The eroded system (dark-

gray area in Fig. 2-right) has a surface area noted S2(d). The erosion operation is applied for d 

varying from 0 to infinity and the cumulative surface-based scale distribution E2(d) is 

constructed as: 

 

 
 

T

T

S
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2
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  (1) 

 

When d increases, E2(d) monotonously increases from 0 to 1. The first derivative of E2(d) 

with respect to the scale is the surface-based scale distribution e2(d): 
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This derivative is equal to the ratio of the perimeter length L(d) of the eroded system at scale 

d on twice S2T. 

The extension of this definition in 3-D is straightforward. In this case, the system is 

characterized by its total volume VT, the erosion operation is performed with a sphere of 

diameter d and the cumulative volume-based scale function E3(d) involves the volume V(d) of 

the eroded system at scale d: 
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The first derivative of E3(d) is the volume-based scale distribution e3(d). This function is 

equal to the ratio of the 3-D surface area S3(d) of the eroded system divided by twice the 

system total volume: 
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The distributions en(d) (n = 2, 3) are monotonously decreasing functions, their dimension is 

the inverse of a length, and, being the derivative of a cumulative function, they are 

normalized, i.e.,   1d
0




dden . Note that e3(0) corresponds to the specific-surface-area 

introduced by Evers (1994). Therefore, e3(d) can be seen as a generalization at all scales of 

this concept. 

When the liquid system is subject to a deformation, all functions introduced above become 

dependent on time t except the total volume VT. Therefore, the temporal evolution of e3(d,t) 

always reflects a variation of the surface S3(d,t) (Eq. (4)) whereas the temporal evolution of 

e2(d,t) combines variations of the functions L(d,t) and S2T(t) (Eq. (2)).  

For simple systems, mathematical expressions for the scale distribution en(d) can be 

established. This is the case for a cylinder of diameter D and length L and a sphere of 

diameter D. As far as the cylinder is concerned, its lateral surface is considered only, i.e., the 

two circular ends are not counted as interface. The scale distributions of these systems are: 
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where n = 2 and 3 corresponds to the 2-D and 3-D description, respectively. In 2-D (n = 2 in 

Eq. (5)), the scale distribution of the cylinder is independent of d whereas the one of the 

sphere linearly depends on d. In 3-D (n = 3 in Eq. (5)), the scale distribution of the cylinder is 

linear and the one of the sphere is a second order polynomial. We see that the scale 

distribution discriminates cylinders from spheres. This feature is interesting in the context of 

liquid atomization processes where cylinders (ligaments) and spheres (drops) are frequently 

encountered objects. Note also that the diameter D of these systems is equal to the maximum 

scale dmax defined as the smallest scale for which en(d) = 0.  

The mechanisms of interface variation at small scales in liquid atomization processes often 

involve liquid-thread thinning. It is therefore instructive to consider the case of a thinning 

cylindrical ligament, i.e., a cylinder with a diameter D(t) that decreases with time. The 

temporal evolution of the scale distribution e2(d,t) and e3(d,t) calculated from Eq. (5) are 

shown in Figs. 3-a and 3-b. The scale distributions e2(d,t) are successive step functions 

whereas the scale distributions e3(d,t) are successive linear functions. As t increases, the 

characteristic features of this mechanism are a continuous increase of e2(d,t), a continuous 

decrease of the scale derivative   ddtdde ,3  and a scale independence of these two functions. 

We note also that the width of both distributions decreases with time as imposed by the 

diameter D(t) and that the specific-surface-area continuously increases.  
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Combining the quasione-dimensional continuity equation provided by Stelter et al. (2000) 

together with the fact that the section of the cylinder is constant along the axial direction z, we 

obtain the rate of stretching  , i.e.:  

 

 
 
t

tD

tDz

v

d

d2





  (6) 

 

where v designates the longitudinal velocity. Considering Eqs. (5) and (6), we can express the 

stretching rate   of the thinning cylinder as a function of the scale distributions: 
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where the dot indicates a temporal derivative and the prime a scale derivative. The stretching 

rate   is therefore independent of the scale d.  

From a physical point of view, the thinning of a liquid ligament can be due to an elongation 

mechanism or a contraction mechanism. In the first case, the ligament is elongated by an 

external constraint and its volume is constant. In the second case, the contraction is driven by 

surface tension forces and expulses liquid out of the ligament whose volume therefore 

decreases. If for both mechanisms the specific-surface-area increases, the absolute amount of 

surface area actually increases during the elongation and decreases during the contraction. In 

the second case, the reduction of the ligament diameter is not compensated by an increase of 

its length. Both mechanisms are associated to a positive stretching rate and the only way to 

dissociate them from each other is to get an information on the temporal variation of the 

ligament volume.  
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3 Capillary instability of liquid ligaments 

3.1 General considerations 

The capillary instability manifests on a cylindrical ligament subjected to disturbances that 

induce surface displacements and generate a gradient of surface tension forces. Under certain 

conditions, the pressure distribution caused by these gradients generates internal flows that 

concentrate the liquid in certain regions to the detriment of others and rearrange the ligament 

as a succession of crests and necks. This process continues until the ligament diameter at the 

necks is so small that a breakup occurs and produces one drop for each swollen region. 

Complete reviews on the investigations dedicated to this topic are available in the literature 

(Bogy 1979; Eggers, 1997; Eggers & Villermaux 2008; Ashgriz & Yarin 2011). General 

considerations useful for the present investigation are considered hereafter. 

The long wavelength initial perturbations are those for which the instability is triggered since 

they induce a reduction of the interface-surface-area and are therefore favored by surface 

tension (Plateau, 1849). The temporal linear-theory developed by Rayleigh (1878) 

demonstrates that only axisymmetrical surface perturbations are unstable and that their growth 

is exponential in time. Thus, the crest and neck diameters, Dc and Dn respectively, vary as: 
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where DL0 is the non-perturbed ligament diameter, t = 
3

0LLD  is the capillary time (L 

is the liquid density and  is the surface tension) and  is the non-dimensional temporal 

growth-rate that is given by: 
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 
 

 2

0

12 1 kk
kI

kI
  (9) 

 

In Eq. (9), k is the non-dimensional wavenumber of the perturbation; k = DL0/ (is the 

wavelength of the perturbation) and I0 and I1 are the modified Bessel functions. Equation (9) 

says that perturbations are unstable for k < 1, i.e., for  greater than the ligament 

circumference and that the maximum growth rate  = 0.343 occurs at k = 0.696. 

The linear theory does not provide a complete description of the capillary instability and non-

linear effects are often important. They induce an asymmetrical development of the initial 

sinusoidal perturbation (Yuen 1968) as well as time-dependent growth-rates for the neck and 

crest diameters (Goedde and Yuen 1970). When the breakup is approached the non-linear 

effects cause a pressure gradient in the axial direction such that the flux of fluid out of the 

neck is smaller than the flux into the swell causing a contraction between the neck and the 

swell and favoring the formation of a liquid thread that turns into a satellite droplet between 

two primary droplets (Goedde and Yuen 1970). This mechanism is enhanced when the 

wavenumber decreases. These non-linear effects and their dependence with the wavenumber 

were experimentally evidenced (Ruthland and Jameson, 1971; Pimbley and Lee, 1977; 

Vassallo and Ashgriz, 1991). The most relevant parameters controlling the formation of the 

satellites are the amplitude and the wavelength-to-diameter ratio of the initial perturbation. 

Numerical simulations of the capillary instability due to Ashgriz and Mashayek (1995) 

confirmed these results. In particular they reported that the size of the satellite decreases when 

the wavenumber or the initial amplitude of the perturbation increases. 
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On the other hand the question of the dynamics of the pinch-off mechanism occurring just 

before the breakup event has been widely addressed. This contraction mechanism driven by 

surface tension forces raises two main difficulties that are due to the local decrease to zero of 

the ligament diameter. From a theoretical point of view, the Navier-Stokes equation forms a 

singularity. From an experimental point of view, the measurement of the pinch-off diameter is 

difficult all the more so since it decreases faster and faster as the breakup is approached. The 

results provided by theoretical scaling arguments (Eggers 1993; Eggers and Dupont 1994, 

Lister and Stone 1998), experimental investigations (Kowalewski 1996, Brenner et al. 1997, 

Amarouchene et al. 2001) and numerical models and simulations (Papageorgiou 1995, 

Brenner et al. 1997) conclude that successive dynamic regimes exist during the pinch-off 

mechanism, i.e., an inertia regime and a visco-capillary regime. The inertia regime occurs first 

when the dominant resistance against surface tension stems from the inertia of accelerating 

fluid elements. The resulting dynamic of the pinch-off diameter writes (Lister and Stone 

1998): 

 

 
31

2





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


 ttD

L

L



 (10) 

 

Second, as the ligament diameter decreases, the visco-capillary regime manifests when the 

dominant resistance against surface tension stems from viscous forces. The resulting dynamic 

of the pinch-off diameter becomes (Lister and Stone 1998): 

 

  ttD
L

L



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where µL is the liquid dynamic viscosity.  
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3.2 Numerical Simulations and Results 

For the numerical solution of the flow, the momentum conservation equations of Navier and 

Stokes are taken in the following form: 

 

   s

T p
t




nIuuuu
u





.

1
.  (12) 

 

where u = (u,v,w) is the velocity field, and  and µ stand for the local density and dynamic 

viscosity, respectively. Pressure is designated by p with I representing an identity tensor. The 

last term on the right-hand side is the surface tension force, thus naturally n designates the 

vector field normal to the interface S, κ is the curvature and the restriction of the force to the 

interface is ensured by the Dirac distribution δs centered at S. For all calculations presented in 

this work, body forces are assumed zero and thus do not appear in Eq. (12). Note that Eq. (12) 

is presented in so-called one-fluid formulation (Tryggvason et al., 2011). Thus, due to two 

phases being present there is a discontinuity (jump) in , p and μ at the interface S which is 

how the surface tension force emanates. The flow is incompressible, thus the continuity 

equation is employed: 

 

0u.  (13) 

 

The flow Eqs. (12-13) are solved using the Archer 3D solver developed at the CORIA 

laboratory. It is a MAC (Marker-and-Cell) type solver using staggered, uniform grids. Initially 

written by Tanguy and Berlemont (2005) with DNS (Direct Numerical Simulation) of 

multiphase flows in mind, the code has since been successfully applied to model atomization 
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(Ménard et al. 2007; Berlemont et al. 2013), turbulent mixing and evaporation (Duret et al. 

2012) or instabilities (Aniszewski et al. 2014).  

Archer solves Eq. (12) by a well-established projection method (Tryggvason et al. 2011), 

meaning that the equation is first solved by assuming zero pressure, finding an intermediate 

solution and correcting it using Eq. (13) in the process. As one of the stages of the projection 

method, Poisson equation for the pressure field has to be solved; this is done using the 

Multigrid method with conjugate gradients (MGCG; Brandt, 1984). All derivatives, except 

the ones concerning the level set method as described below, are discretized using second 

order finite differences, with standard set of boundary conditions available. For the work 

presented here, symmetric boundary condition is used in all directions, and 1/8th of the liquid 

cylinder is simulated. 

Interface S is represented as a zero-level of the Level-Set function, in the framework of a 

method of the same name (Osher and Sethian, 1988; Osher and Fedkiw, 2001). As it is a 

passive scalar, its material derivative vanishes: 

 

0






.

t
u  (14) 

 

which is to say that is passively advected with the flow. The level-set  is a continuous 

distance function, i.e. it is, for an argument x, equal to the minimum distance between x and S. 

Continuity of  makes Eq. (14) relatively easy to solve numerically: it can be done by 

representing spatial derivatives with chosen numerical scheme (in this work, the scheme is 

Weighted Essentially Non-Oscillatory, or WENO (Shu, 1997)). This means that the LS (Level 

Set) method evades the issues found in other interface tracking methods that employ 

discontinuous functions, such as VOF (Volume of Fluid). One example of such an issue is the 

efficiency in interfacial curvature calculation, leading to the phenomenon of numerically 
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induced spurious currents (Aniszewski et al., 2014). Solution of the temporal progression of 

Eq. (14) is fully coupled with the temporal scheme for Eq. (12) using a 3
rd

 order Runge-Kutta 

scheme. As the  function is known to lose the distance property |∇| = 1 far from the zero 

level  = 0 a redistancing procedure is correcting this by solving additional correction 

equation (Osher and Fedkiw, 2001). 

The method used to trace the interface is important in that it is used for multiple purposes in a 

numerical setup. First, the surface tension force term of Eq. (12), σnκδs has all its variables 

(except constant σ) calculated from the  function, most notably the curvature κ. Second-order 

accurate curvature computation is possible with LS method, which is of fundamental 

importance when simulating a surface-tension driven flow. Secondly, it is used to calculate 

the pressure jump over the interface, and, in the framework of the Ghost Fluid Method 

(Fedkiw et al. 1999), enables differentiation close to the interface. This is possible as the  

carrying strict distance information, can be used to extrapolate e.g. velocity values from 

within one phase to the other in close vicinity of the interface (several grid-points).  

An inherent shortcoming of the LS method is that it is prone to the ``loss of traced volume'' 

phenomenon (Tryggvason et al., 2011; Aniszewski et al., 2014), which is to say the 

information about small interfacial formations (small drops few grid-points across, thin films) 

is lost due to the lack of resolution in solution of Eq. (14). This is why in other applications of 

the Archer3D solver, CLSVOF (Coupled Level-Set Volume of Fluid) method of Sussman 

(Sussman and Puckett, 2000; Aniszewski et al., 2014) is used to impose mass conservation. 

However, in simulations of the Plateau-Rayleigh instability presented here, CLSVOF is not 

employed as the mass loss phenomenon does not occur - the simulations are halted once 

liquid breakup occurs. 

All the simulations have been performed using a 128x128 resolution in directions parallel to 

cylinder radius and 256 points along the cylinder axis. The time step has been computed using 
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the CFL condition based on convection, viscosity, gravity and capillary force using the 

method of Kang et al. (2000). 

 

The simulations are conducted for ligaments of water (L = 1000 kg/m
3
;  = 0.07 N/m, 

µL = 0.001 kg/(ms)) into air. The initial ligament diameter is Dj = 666 µm corresponding to a 

capillary time t = 2 ms and to an Ohnesorge number Oh = µL/(LDj)
0.5

 = 0.0065. The 

amplitude of the initial sinusoidal perturbation is kept constant, i.e., 0 = 17 µm 

(0/Dj = 0.025). Eight values of the non-dimensional wavenumbers k are considered, namely, 

0.55; 0.60; 0.65; 0.69; 0.75; 0.80; 0.88 and 0.95.  

The simulation result for k = 0.55 is shown in Fig. 4. The evolution of the ligament from t = 0 

to the breakup time tBU (= 8.13 ms for this case) undergoes three distinct steps. First (left 

column in Fig. 4), the ligament deformation increases in amplitude keeping a sinusoidal 

shape. Second (middle column in Fig. 4), the deformation of the ligament is not sinusoidal 

anymore. Two necks appear and a liquid thread develops between the main swells. Third 

(right column in Fig. 4), the necks do not travel anymore: they impose a local high-pressure 

that induces a pinch-off mechanism until breakup occurs.  

These three steps are observed for every wavenumber k. The main differences concern their 

time duration and the shape of the system at breakup time tBU. Figure 5 shows the ligaments at 

tBU for all wavenumbers. The images are on scale with each other and their width represents 

/2. For the present working conditions, we note that a liquid thread is always formed. This 

means that a satellite droplet is always produced. When the wavenumber increases, the length 

and size of this thread decrease meaning that the size of the satellite droplet decreases. These 

behaviors agree with those reported by Ashgriz and Mashayek (1995) for their case 

Oh = 0.005 (Re = 1/Oh = 200 in their paper) and 0/Dj = 0.05 which is the closest to ours. 

Figure 5 also indicates the breakup times tBU as well as the ratios tBU/tBUtheo (they are given in 
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parenthesis) where tBUtheo is the breakup time predicted by the linear theory (Rayleigh, 1878). 

This time is reached when the neck diameter Dn is equal to zero. According to Eq. (8), tBUtheo 

is given by: 

 













02
ln

8

1


 j

BUtheo

Dt
t  (15) 

 

where  is calculated from Eq. (9). When k increases, tBU decreases and then increases, but 

the smallest tBU is not obtained for k = 0.69 as reported by the linear theory but for k = 0.75. 

The difference between tBU and tBUtheo is a manifestation of non-linear effects. Globally 

speaking tBU > tBUtheo indicating that these effects slow down the process. Furthermore, as 

noticed above from the size and the length of the liquid thread, the breakup time underlines 

the decreasing influence of the non-linear effects when k increases.  
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4 Multi-scale analysis 

4.1 The scale distributions 

The measurements of the surface-based cumulative distributions E2(d,t) are performed with 

the software ImageJ from images similar to those shown in Figs. 4 and 5. The spatial 

resolution of these images is high (between 0.28 to 0.51 µm/pixel according to k). For this 

reason, the scale increment in the successive erosion operations is taken equal to 8 pixels. The 

calculation of the distribution e2(d,t) from the cumulative distribution E2(d,t) (see Eq. (2)) is 

performed with a Scilab routine. This routine also corrects e2(d,t) in the small-scale region 

where non-physical results are frequently obtained since erosions performed at small scales 

with ImageJ lacks accuracy. This distribution is expected to be linear in the small-scale 

region. In the present measurements, this linear behavior is always observed in the [50; 

100 pixel] scale range and the correction consists in extending it to d = 0. For the 

determination of the volume-based distribution, the liquid ligament is assumed axisymmetric 

at all times. This assumption is reasonable in the present context because axisymmetric 

disturbances are unstable only. The distributions e3(d,t) is directly calculated from ImageJ and 

do not require any correction in the small-scale range. For each value of k, the time dependent 

scale distributions en(d,t) are obtained from the analysis of several hundreds of images 

(between 200 and 600 according to k). 

 

Figure 6 presents the distributions en(d,t) for k = 0.55: the surface-based scale distribution 

e2(d,t) is shown in Fig. 6-a and the volume-based scale distribution e3(d,t) in Fig. 6-b. These 

figures show a thickening mechanism at large scale and a thinning mechanism at small scales. 

The thickening mechanism is recognized by a continuous increase of the maximum scale dmax. 

Defined as the smallest scale for which en(d,t) = 0, this scale is equal to the crest diameter of 

the ligament at all time. At the breakup time (tBU = 8.13 ms in Fig. 6), e2(d,t) is linear in the 
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large-scale region (between 400 and 1200 µm in this case). According to Eq. (5), this 

indicates that the swollen part of the ligament is spherical. This observation actually depends 

on the wavenumber as illustrated in Fig. 7 where e2(d,tBU) is plotted for five wavenumbers. 

We see that as k increases, the linear behavior of e2(d,tBU) in the large-scale region doesn’t 

extent to the maximum scale. Therefore, at tBU, the large structure is less spherical when k 

increases. This corresponds to what Fig. 5 shows.  

The thinning mechanism at small scale is recognized by the continuous temporal increase of 

e2(d,t) or a continuous temporal decrease of  tde ,'3  in this region (see Section 2). 

Furthermore, since e2(d,t) and  tde ,'3  are both independent of the scale, this mechanism is 

similar to the thinning of a cylindrical ligament (see Fig. 3-a and 3-b). The largest scale d1(t) 

concerned by this mechanism is introduced. It is defined as the smallest scale for which e2(d,t) 

stops increasing with time or  tde ,'3  stops decreasing with time. Therefore d1(t) is the 

smallest scale for which     0,', 32  tdetde  . We see in Fig. 6 that d1(t) decreases with time. 

Figure 6-b shows that the specific-surface-area e3(0,t) globally decreases over the whole 

process. This decrease is found for every k as shown in Fig. 8 which plots e3(0,0) and e3(0,tBU) 

versus the wavenumber. The dots are the results obtained from the present simulations and the 

lines are the results obtained from the linear theory. For the latter case, e3(0,tBU) is calculated 

by supposing that the perturbation is still sinusoidal at breakup and that its amplitude is equal 

to the radius of the ligament, paying attention that the volume is well conserved. The 

simulated and theoretical results report a decrease of the specific-surface-area of the ligament 

at breakup which is a known characteristic feature of the capillary instability. We see that this 

decrease is less when the wavenumber increases. Furthermore, whereas for k > 0.7 the 

simulated and theoretical results are in agreement, the reduction of the simulated specific-

surface-area is less than the theoretical one for k < 0.7. Being a manifestation of the non-linear 
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effects, this result says that these effects limit the decrease of the specific-surface-area and 

that they are negligible for high wavenumbers.  

 

4.2 Characteristic scales and elongation rate 

The dynamics of the characteristic scales dmax and d1 are examined in this section. Being 

defined as the smallest scale for which en(d,t) = 0, dmax is also the smallest one for which 

En(d,t) = 1. It is determined here as the smallest scale that satisfies the condition 

E2(d,t) >0.999. Figure 9 shows the temporal evolution dmax(t) obtained for four wavenumbers. 

After a time delay at least equal to 2 ms, the scale dmax reports an exponential increase with 

time which writes: 

 
















t

t

D

d
mm

j

8exp21max  (16) 

 

This equation is similar to Eq. (8) which makes sense since dmax(t) and Dc(t) are identical by 

definition. Examples of the mathematical fit are shown in Fig. 9. The parameters m and m 

are calculated for every k and reported in Table 1. The delay of the exponential behavior 

results in an initial amplitude smaller than the one imposed by the simulation. However, the 

temporal growth rates m are found to agree very well with those predicted by the linear 

theory (see Fig. 10). Note however in Fig. 9 that for k = 0.95, dmax slightly deviates from the 

exponential growth when the breakup time is approached.  

The scale d1(t) is the smallest scale for which     0,', 32  tdetde  . We see in Fig. 11 that 

these two equations are satisfied for the same scale. In the present analysis, d1(t) is determined 

from the function  tde ,2
 . An example of d1(t) is presented in Fig. 12 (k = 0.69). d1(t) 

continuously decreases with time according to three regimes which correspond to the three 
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steps identified in Fig. 4. Furthermore, the dynamics associated to these regimes are those 

reported in the literature for the neck diameter of the ligament and expressed by Eqs. (8), (10) 

and (11). The Regime 1 is an exponential decrease similar to the one reported by the linear 

theory for the neck diameter (see Eq. (8)) and expresses as: 

 











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
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t
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811  (17) 

 

The Regime 2 starts at t = t
*
 for which d1(t

*
) is noted d1

*
. The decrease now shows a t

2/3
 

dependence: 
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where the characteristic capillary time 
3

1
*

L
*

dt  . Finally the Regime 3 starts at t = t
**

 

for which d1(t
**

) is noted d1
**

. The decrease shows a linear dependence with time: 
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where the characteristic visco-capillary time 
****

µdt 1 . The mathematical fits provided 

by Eqs. (17) to (19) are plotted in Fig. 12. The characteristic times t
*
, t

**
 and scales d1

*
 and 

d1
**

 are graphically determined. The three regimes are found for every wavenumber k and the 

mathematical fits are determined for each case. Reported in Table 2, the mathematical 

parameters appear dependent on the wavenumber. The duration of Regime 1, given by the 
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time t
*
, increases with k and the growth rate  increases and then decreases. A maximum is 

found for k = 0.80. These growth rates shown in Fig. 10 are smaller than those reported by the 

linear theory, except for k = 0.88 and 0.95 for which good agreements are obtained. These 

differences are attributable to non-linear effects and, once again, show that these effects are 

negligible for high k. On the other hand, this result says that a growth rate  smaller than the 

one predicted by the linear theory as found for small k is an early manifestation of non-linear 

effects. Concerning Regimes 2 and 3, we see that their durations decrease when k increases. 

Furthermore, the increase of their temporal growth rate combined with the decrease of the 

characteristic times t
*
 and tµ

**
 reveals a tremendous acceleration of the breakup mechanism 

when the wavenumber increases. 

The ligament thinning mechanism identified in the small-scale region is characterized by the 

stretching rate   introduced in Eq. (7) for the case of a cylindrical ligament. In the present 

simulation, the shape of ligament is not cylindrical at all times. Therefore, the use of the 

distribution e2(d,t) to calculate the stretching rate is not appropriate. This rate is determined 

with the functions  tde ,'3  and  tde ,'3
  which are both independent of d (see Fig. 11). The 

averages in the scale space of  tde ,'3  and  tde ,'3
  are calculated for d < d1. The resulting 

functions are noted  te '3  and  te '3
  respectively and: 

 

 
 
 te

te
t

'

'

3

3


   (20) 

 

For all wavenumbers, Fig. 13 presents the stretching rate  t  as a function of the non-

dimensional time t/t
*
. It appears that  t  always increases with time. The thinning 

mechanism is the small-scale region never stops. In Regime 1 (t/t
*
 < 1), the acceleration of 

 t  is negative whereas in Regimes 2 and 3 (t/t
*
 > 1) the acceleration is positive and imposes 
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a sharp increase of  t . As far as the influence of the wavenumber is concerned, we see that 

 t  increases with k (this behavior is not observed for k = 0.95 in Regime 1 but the 

acceleration of  t  in this regime in higher than for the other wavenumbers). The impact of 

the continuous thinning mechanism on the specific-surface-area of the whole system can be 

seen in Fig. 14. This figure presents the temporal evolution of the ligament specific-surface-

area e3(0,t) as a function of t/t
*
 for five wavenumbers. The specific-surface-area first 

increases, reaches a maximum and then decreases to a final value smaller than the initial one. 

This latter point is a characteristic feature of the capillary instability as discussed in Fig. 8. 

Figure 14 also shows that globally speaking, the increase of the specific-surface-area 

corresponds to Regime 1 (t/t
*
 < 1). Furthermore the maximum specific-surface-area correlates 

with the value of the stretching rate. Therefore, the thinning mechanism during Regime 1 

produced interface and is likely an elongation mechanism. This is not the case for Regimes 2 

and 3 during which the specific-surface-area decreases. In these regimes, the mechanism 

operating at small scales is likely a contraction mechanism. Note that the dynamics in 

Regimes 2 and 3 (Eqs. (18) and (19)) are known in the literature to be associated to capillary 

contraction mechanisms. To confirm these conclusions the volume of liquid subject to the 

thinning mechanism in the small scales should be evaluated during time. This is the purpose 

of the simple model presented in the last section.  

 

4.3 Model of the scale distribution e3(d,t) 

If we consider a System 1 with a volume-based scale distribution e3,1(d,t) and a System 2 with 

a scale distribution e3,2(d,t), the scale distribution of the system made by the sum of Systems 1 

and 2 is the sum of e3,1(d,t) and e3,2(d,t) each of them being weighted by the relative volume 

they represent. The idea of the present model is to apply such a decomposition to the scale 

distribution of the liquid ligament at each time, i.e.:  
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          tdettdettde ,1,, 2,31,33    (21) 

 

where (t) indicates the relative volume of System 1: (t) = V1(t)/VT where V1(t) is the 

volume of System 1, V2(t) is the volume of System 2 and VT is the total system volume 

(VT = V1(t) + V2(t)). The decomposition expressed by Eq. (21) is built so that System 1 is 

subject to the thinning mechanism identified at small scales and System 2 is subject to the 

thickening mechanism identified in the large scales. At small scales, the thinning mechanism 

is similar to the thinning of a cylindrical ligament. System 1 is therefore chosen as a 

cylindrical ligament with a diameter D1(t), i.e. (see Eq. (5)): 
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Being subject to the thickening mechanism, System 2 must evolve from a cylinder to a sphere. 

According to Eq. (5), the volume-based scale distribution of such a system can be written: 
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where n(t) varies from 2 to 3. At initial time, System 2 is a cylinder and n(t) = 2 and D2(t) is 

the diameter of the cylinder. At final times, System 2 approaches a sphere and n(t) approaches 

3 and D2(t) is the diameter of this sphere. The combination of Eqs. (21-23) leads to: 
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To complete the model, the functions D1(t), D2(t), (t) and n(t) must be determined. The 

diameter D2(t) is also the maximum scale dmax(t). We therefore impose: 

 

   tdtD max2   (25) 

 

The thinning mechanism in the small-scale region introduces two characteristic scales: the 

one used in the calculation of the stretching rate, i.e.  te '2 3  (see Eq. (20)) and the one 

delimiting the small-scale region, i.e., d1(t). The diameter D1(t) should include these two 

scales. We suggest: 
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The functions (t) and n(t) are then determined by using e3(0,t) and  te ,0'3 . Equation (24) 

allows writing the following system: 
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The system of Eq. (27) is solved using Eqs.(25) and (26). Scales dmax and d1 that appear in 

Eqs. (25) and (26) are calculated from Eq. (16) and Eqs. (17) to (19), respectively. (The 

parameters for each equation are given in Tables 1 and 2.) Furthermore, the measured values 

for e3(0,t) and  te ,0'3  are used in Eq. (27). During the resolution of Eq. (27), we pay attention 

to maintain n(t) between 2 and 3. If n(t) < 2 (which can happen at early times) we impose 

n(t) = 2 and if n(t) > 3 (which can happen at later times) we impose n(t) = 3. In both cases, the 

corresponding (t) is determined from the first equation of Eq. (27). Finally, if the condition 

n(t) = 3 returns a negative (t), then the condition (t) = 0 is imposed and n(t) is determined 

accordingly. In every case, the application of this model gives satisfactory results. Two 

examples are shown in Fig. 15 (k = 0.55). At t = 7.71 ms, we see that the slope change 

between the small-scale and the large-scale regions is found by the model at a higher scale. 

This problem is believed to be related to the approximation chosen for the parameter D1(t) 

(Eq. (26)). The disagreement caused by this choice is never greater than the one shown in Fig. 

15. 

 

Figure 16 presents the specific-surface-area of System 1 as a function of t/t
*
 for five 

wavenumbers. Since System 1 is subject to a thinning mechanism, its specific-surface-area 

always increases with time. In Regime 1, this increase is independent of the wavenumber. In 

Regimes 2 and 3, the increase rate of e3,1(0,t) increases with the wavenumber. Similarly, Fig. 

17 presents the specific-surface-area of System 2 as a function of t/t
*
 for five wavenumbers 

and Fig. 18 shows the corresponding evolution of the parameter n(t). During the first period of 

time, e3,2(0,t) decreases with time while the parameter n(t) is constant and equal to 2. Thus, 

System 2 is a thickening cylinder during this period. Then, e3,2(0,t) increases with time while 

n(t) increases. The increase of n(t) illustrates a deformation of System 2 and explains the 
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increase in specific-surface-area. Finally, when n(t) has reached its final value, e3,2(0,t) 

decreases again. Note that the final value of n(t) is less than 3 for the high wavenumbers since 

the swollen part of the ligament is not spherical as noticed in Fig. 5.  

Finally, the parameter (t) is shown in Fig. 19 for the same k as in Figs. 16 to 18. Globally 

speaking, (t) is almost constant during Regime 1 (t/t
*
 < 1) meaning that the volumes of 

Systems 1 and 2 are almost constant. System 1 is therefore a cylinder with an increasing 

specific-surface-area and a constant volume: it is subjected to an elongation mechanism. 

During Regime 1, an elongation mechanism controls the small scale dynamics in the capillary 

instability. Note that whereas the specific-surface-area evolution is not a function of the 

wavenumber (Fig. 16), the proportion of liquid concerned by this mechanism increases with k. 

Indeed, Fig. 19 reports an increase of (t) with the wavenumber. However, since the total 

volume of the ligament decreases as k increases (VT = 
2
Dj

3
/k), the initial volume of System 1 

(at t = 0) always decreases with k.  

For t/t
*
 > 1, (t) decreases with time. System 1 is subjected to a mechanism that increases its 

specific-surface-area (Fig. 16) and decreases its volume. This confirms that the mechanism in 

Regimes 2 and 3 is a contraction mechanism due to surface tension forces. In Regime 2, the 

contraction mechanism is therefore controlled by inertia forces whereas it is controlled by 

viscous forces in Regime 3. Figure 19 also shows that (t) is fairly independent of k at 

t/t
*
 = 1. Therefore the volume of System 1 at the beginning of Regime 2 decreases with k. 

This explains why the duration of the capillary driven contraction mechanisms in Regimes 2 

and 3 significantly decreases as the perturbation wavenumber k increases.  

The capillary instability of a cylindrical ligament is a process where the mechanism of 

breakup is always preceded by an elongation mechanism at small scales. When k increases, 

this elongation mechanism reaches higher stretching rates and it is found that the subsequent 

contraction mechanism is delayed and the pinch-off occurs on smaller threads, creating 
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smaller satellite drops. Furthermore, all this is accompanied by a smaller reduction of the 

specific-surface-area of the system. We therefore see that an elongation mechanism at small 

scale is favorable to a better atomization. This conclusion agree with the one reported by 

Marmottant and Villermaux (2004) on the behavior of stretched liquid ligaments. 
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5 Conclusion 

The multi-scale analysis of the simulated capillary instability of cylindrical liquid ligaments 

relies on the measurement of the scale distribution en(d,t). Using images of the 2D projection 

of the ligament, the surface-based scale distribution e2(d,t) is obtained. Furthermore, since the 

ligaments are axisymmetric, the volume-based scale distribution e3(d,t) is obtained also. At 

d = 0, this latter distribution reports the specific-surface-area of the ligament which is a 

characteristic feature in liquid atomization processes.  

During the capillary instability, the scale space may be divided in two regions, i.e., the small-

scale region where a thinning mechanism operates and the large-scale region where a 

thickening mechanism is identified. The regions are respectively associated with the 

characteristic scales d1(t) and dmax(t). These two characteristic scales report different 

dynamics. The dynamic of dmax(t) fully agrees with the one reported by the linear theory 

which is not the case for d1(t). This result says that the non-linear effects mainly affect the 

small-scale dynamics. In agreement with works of the literature, it is found that these effects 

are less pronounced as the wavenumber increases.  

The dynamics of the characteristic scale d1(t) follows three successive regimes. 

Mathematically speaking, Regime 1 reports an exponential dependence with time similar to 

the linear theory prediction. It is found that the growth rate is less than the one reported by the 

theory when non-linear effects are non-negligible. During Regimes 2 and 3, d1(t) shows a 

temporal dependence as t
2/3

 and t, successively, corresponding to the dynamics of the pinch-

off mechanism reported in the literature. The presence of these regimes indicate that the small 

scales are subjected to successive mechanisms. Thanks to a simple model, these mechanisms 

have been identified. Regime 1 corresponds to an elongation mechanism which results in the 

increase of the specific-surface-area of the ligament. Regimes 2 and 3 correspond to a 

contraction mechanism due to surface tension forces and successively controlled by inertia 
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and viscous forces. These regimes contribute to a decreases of the specific-surface-area of the 

ligament.  

When k increases, the duration and stretching rate of the elongation mechanism increase. The 

effect of this is to damp the surface tension contraction and to delay the pinch-off mechanism. 

The live time of the elongation mechanism is therefore very important. We believe it to be 

directly connected with the temporal evolution of the shape of the swollen part of the ligament 

which also strongly depends with k. Further investigation should be performed on this point.  

This work shows to which extend the multi-scale analysis used here can help identifying and 

characterizing the basic mechanisms involved in the evolution of a two-phase system whose 

interface area continuously varies with time. It must be borne in mind that the present 

conclusions are valuable for the working conditions of this study only and, in particular, for a 

given initial amplitude of the perturbation. It is known that this parameter influences the non-

linear effects in capillary instability of liquid ligaments. The influence of this parameter on the 

present conclusions would be indeed an interesting and valuable complement to this work. 
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Fig. 1. Temporal evolution of an atomizing water ligament into air. Time gap between two 

consecutive images 40 µs. IC: Local specific-interface-area creation; IR: Local 

specific-interface-area reduction (From Dumouchel et al.; 2015a) 

 

 

Fig. 2. Illustration of an erosion operation. Left: Initial 2-D system. Its total surface area is 

noted S2T; Right: Erosion at scale d. The light gray strip is removed. The eroded 

system has a surface area noted S2(d) (dark gray area) 
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Fig. 3. Temporal evolution of the scale distribution of a thinning cylindrical ligament: a –

 e2(d,t), b – e3(d,t) 

 

 

Fig. 4. Simulation results. Temporal evolution of the ligament for k = 0.55 
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Fig. 5. Simulation results – Shape of the ligament at breakup time, influence of the 

wavenumber (The images are on scale with each other, their width represents 

/2. The number in parenthesis is the ratio tBU/tBUtheo) 
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Fig. 6. Temporal evolution of the scale distributions for k = 0.55: a – e2(d,t), b – e3(d,t)  
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Fig. 7. Scale distribution e2(d,t) at breakup time. Influence of the wavenumber 
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Fig. 8. Initial and Final specific-surface-area as a function of the wavenumber k. 

Comparison between the simulation results and the linear theory 
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Fig. 9. Temporal evolution of the scale dmax for several wavenumbers and mathematical fit 

given by Eq. (16) 
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Fig. 10. Growth rates m (Eq. (16)) and  (Eq. (17)). Comparison with the Rayleigh theory 
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Fig. 11. Temporal derivatives  tde ,2
  and  t,d'e3  in the small-region (k = 0.55, 

t = 7.49 ms) 
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Fig. 12. Temporal evolution of scale d1 and mathematical fits given by Eqs. (17), (18) and 

(19) (k = 0.69) 
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Fig. 13. Stretching rate given by Eq. (20) (all wavenumbers) 
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Fig. 14. Temporal evolution of the specific-surface-area (five values of k) 

 

 

Fig. 15. Selected results of the volume-based scale distribution model (k = 0.55, 

t = 3.90 ms, t = 7.71 ms)) 
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Fig. 16. Temporal evolution of the specific-surface-area of System 1 (five wavenumbers) 
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Fig. 17. Temporal evolution of the specific-surface-area of System 2 (five wavenumbers) 
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Fig. 18. Temporal evolution of the parameter n(t) (five wavenumbers) 
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Fig. 19. Temporal evolution of the parameter (t) (five wavenumbers) 
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Table 1. Parameters of Eq. (16) (all wavenumbers). 

k 

(-) 
m 

(-) 

m 

(-) 

0.55 0.0125 0.318 

0.60 0.0125 0.329 

065 0.0124 0.338 

0.69 0.0122 0.340 

0.75 0.0122 0.336 

0.80 0.0122 0.324 

0.88 0.0125 0.278 

0.95 0.0128 0.192 

 

 

Table 2. Parameters of Eqs. (17) (18) and (19) (all wavenumbers). 

 

k 

(-) 

Regime 1 

(Eq. (17)) 

Regime 2 

(Eq. (18)) 

Regime 3 

(Eq. (19)) 

 

(-)
 

(-) 

d1* 

(µm) 

t* 

(ms) 
t* 

(ms) 

* 

(-) 

d1** 

(µm) 

t** 

(ms) 
tµ** 

(ms) 

** 

(-) 

0.55 0.063 0.216 477 5.02 1.24 0.299 132 7.96 1.89 10
-3

 8.32 10
-3

 

0.60 0.062 0.222 459 5.09 1.18 0.345 100 7.63 1.43 10
-3

 9.76 10
-3

 

065 0.058 0.233 441 5.14 1.11 0.396 121 7.28 1.73 10
-3

 7.99 10
-3

 

0.69 0.054 0.254 431 5.20 1.07 0.452 83 7.20 1.18 10
-3

 12.21 10
-3

 

0.75 0.052 0.255 425 5.27 1.05 0.493 80 7.08 1.14 10
-3

 11.17 10
-3

 

0.80 0.046 0.269 413 5.50 1.00 0.541 64 7.19 0.91 10
-3

 12.81 10
-3

 

0.88 0.038 0.261 382 6.50 0.89 0.621 61 7.89 0.87 10
-3

 15.58 10
-3

 

0.95 0.035 0.194 367 8.96 0.84 0.689 41 10.23 0.59 10
-3

 36.83 10
-3

 

 

 


