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We in this paper investigate the formation and evolution of primordial black holes (PBHs) in nonsingular 
bouncing cosmologies. We discuss the formation of PBH in the contracting phase and calculate the PBH 
abundance as a function of the sound speed and Hubble parameter. Afterwards, by taking into account 
the subsequent PBH evolution during the bouncing phase, we derive the density of PBHs and their 
Hawking radiation. Our analysis shows that nonsingular bounce models can be constrained from the 
backreaction of PBHs.

© 2017 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The matter bounce scenario [1–3] is one type of nonsingular 
bounce cosmology [4–9], which is often viewed as an important 
alternative to the standard inflationary paradigm [10–13]. By sug-
gesting that the universe was initially in a contracting phase dom-
inated by dust-like fluid (with a vanishing equation-of-state pa-
rameter w = 0), then experienced a phase of nonsingular bounce, 
and afterwards entered a regular phase of thermal expansion. The 
matter bounce cosmology can solve the horizon problem as suc-
cessfully as inflation and match with the observed hot big bang 
history smoothly. Based on primordial fluctuations generated dur-
ing matter contracting and their evolution through the nonsingular 
bounce, one can obtain a scale invariant power spectrum of cosmo-
logical perturbations. Unlike inflation, the matter bounce scenario 
does not need a strong constrain on the flatness of the potential 
of the primordial scalar field that drives the evolution of the back-
ground spacetime [14,15]. Also, this scenario can avoid the initial 
singularity problem and the trans-Planckian problem, which exists 
in inflationary and hot big bang cosmologies [16,17].

The aforementioned scenario has been extensively studied in 
the literature, such as the quintom bounce [18,19], the Lee–Wick 
bounce [20], the Horava–Lifshitz gravity bounce [21–23], the f (T )

teleparallel bounce [24–26], the ghost condensate bounce [27], the 
Galileon bounce [28,29], the matter-ekpyrotic bounce [30–32], the 
fermionic bounce [33,34], etc. (see, e.g. Refs. [1,35] for recent re-

E-mail addresses: chjw@mail.ustc.edu.cn (J.-W. Chen), xhl1995@mail.ustc.edu.cn
(H.-L. Xu), yifucai@ustc.edu.cn (Y.-F. Cai).
http://dx.doi.org/10.1016/j.physletb.2017.03.036
0370-2693/© 2017 Published by Elsevier B.V. This is an open access article under the CC
views). In general, it was demonstrated that on length scales larger 
than the time scale of the bouncing phase, both the amplitude and 
the shape of the power spectrum of primordial curvature pertur-
bations can remain unchanged through the bouncing point due 
to a no-go theorem [36,37]. A challenge that the matter bounce 
cosmology has to address is how to obtain a slightly red tilt on 
the nearly scale invariant primordial power spectrum. To address 
this issue, a generalized matter bounce scenario, which is dubbed 
as the �-Cold-Dark-Matter (�CDM) bounce, was proposed in [38]
and predicted an observational signature of a positive running of 
the scalar spectral index [39,40].

As a candidate describing the very early universe, the matter 
bounce scenario is expected to be consistent with current cosmo-
logical observations and to be distinguishable from the experimen-
tal predictions of cosmic inflation as well as other paradigms [7,
41]. Meanwhile, a possible probe of primordial black holes (PBHs) 
may offer a promising observational approach to distinguish vari-
ous paradigms of the very early universe [42,43]. PBHs could form 
at very early times of the universe, where a large amplitude of 
density perturbations would have obtained. Correspondingly, the 
formation process and the abundance of PBHs strongly depend on 
those early universe models, in which fluctuations of matter fields 
are responsible for such large amplitudes of density perturbations 
[44].

In the literature, most of attentions were paid on the com-
putation of PBH predictions from the inflationary paradigm (for 
instance see [45–49]), while so far, only a few works addressed the 
PBH formation in a bouncing scenario [50,51]. Furthermore, those 
studies of PBHs in a bouncing scenario have not yet been discussed 
in detail, for specific cosmological paradigms or been applied to 
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falsify various early universe cosmologies, especially the matter 
bounce scenario. In the context of matter bounce cosmology, there 
are several differences on the computation of the PBH abundance 
comparing with that in an expanding universe. First, comparing 
with inflation where the primordial fluctuations become frozen at 
the moment of the Hubble exit, those primordial fluctuations on 
matter fields in bounce cosmology would continue to increase after 
the Hubble exit during the contracting phase until the universe ar-
rive at the bouncing phase [9,20], and the contracting phase would 
yield a different initial condition for the PBH formation and evo-
lution. Second, once these PBHs have formed, the contraction of 
spacetime could also compress and enlarge the primordial matter 
density, thus change the PBH horizon radius which then can lead 
to effects on their evolution.

In this paper, we perform a detailed survey on the PBH for-
mation and evolution in the background of the matter bounce 
cosmology. In Section 2, we briefly introduce the matter bounce 
scenario and describe the formation of the power spectrum of pri-
mordial curvature perturbation in an almost model-independent 
framework. In Section 3, a physical picture of the PBH formation in 
the contracting background is presented. After a process of detailed 
calculations, the threshold for forming PBHs and the corresponding 
mass fraction are provided. In Section 4, we discuss the evolution 
of PBHs in the bouncing phase by taking into account the effects 
arisen from the contraction of the background and the Hawking 
radiation. In Section 5, we summarize our results and discuss on 
some outlook of the PBH physics within the nonsingular bouncing 
cosmology.

2. Nonsingular bounce

Nonsingular bounce can be achieved in various theoretical 
models, namely, to modify the gravitational sector beyond Einstein, 
to utilize matter fields violating the Null Energy Condition (NEC), 
or in the background of non-flat geometries (see e.g. [52,53]). It is 
interesting to notice that, in general, on length scales larger than 
the time scale of the nonsingular bouncing phase, primordial cos-
mological perturbations remain almost unchanged throughout the 
bounce [36,37]. In this regard, one expects that the effective field 
theory approach should be efficient to describe the information of 
a nonsingular bounce model at background and perturbation level. 
Recently, it was found in [30] that a nonsingular bounce model can 
be achieved under the help of scalar field with a Horndeski-type, 
non-standard kinetic term and a negative exponential potential. 
Within this model construction, the matter contracting phase can 
be obtained directly by including the dust-like fluid or involving 
a second matter field [31]. Note that, in the present study we as-
sume that the effective field approach of bouncing cosmology is 
valid through the whole evolution without modifications to Gen-
eral Relativity.

2.1. The model

It turns out that, under the description of the effective field the-
ory approach, the background dynamics of the nonsingular bounc-
ing cosmology can be roughly separated into three phases: the 
matter-dominated contraction, the non-singular bounce, and the 
thermal expansion. We consider a simple model starting with a 
matter contracting phase (t < t−) from an initial time tinitial →
−∞, and then entering into a nonsingular bouncing phase at t− , 
which lasts till t+ . After the bounce ends at t+ , the universe begins 
the hot big bang expansion, which is in accordance to the current 
observations.

The evolution of the matter bounce cosmology in each stage 
can be approximately described as follows.
(i) In the matter contracting phase, the scale factor of the universe 
shrinks as

a(t) = a−
(

t − t̃−
t− − t̃−

)2/3

, (2.1)

where a− is the scale factor at time t− , and t̃− is related to 
the Hubble parameter at t− via the relation t− − t̃− = 2

3H− . The 
equation-of-state parameter during this phase is w = 0, which can 
be realized in many ways, such as by cold dust, by massive field or 
by the gravity sector involving non-minimal couplings. We param-
eterize these different mechanisms by introducing the sound speed 
cs , which can affect the propagation of primordial perturbations in 
the gradient terms.
(ii) In the nonsingular bouncing phase, the scale factor of the uni-
verse can be approximately described as [30]

a(t) = aBe
ϒt2

2 , (2.2)

where the coefficient aB is the scale factor exactly at the bouncing 
point, and from Eq. (2.2) one obtains a− = aB exp[ϒt2−/2]. ϒ is a 
model parameter describing the slope of Hubble parameter to time 
during the bouncing phase, as:

H(t) = ϒt . (2.3)

It can be seen that t = 0 corresponds to the bouncing point when 
the universe stops the contraction and starts the expansion. Thus, 
it can be found that t− = H−/ϒ , and the value of H vanishes at 
t = 0 which is at the bouncing point. Inserting Eqs. (2.2) and (2.3)
into the Friedmann equation, one can see that the null energy con-
dition ρ + p > 0 is violated around the bouncing point. It is the 
negative pressure that avoids the singularity and drives the uni-
verse to evolve from a contracting phase to an expanding phase.
(iii) In the era of radiation-dominated expansion, we have

a(t) = a+
(

t − t̃+
t+ − t̃+

)1/2

, (2.4)

where t+ = H+/ϒ , t+ − t̃+ = 1
2H+ and a+ = aBe

ϒt2+
2 . In present 

analysis we have adopted the assumption that the heating process 
happens instantly after the bounce (see [54,55] for relevant analy-
ses).

From such parameterizations, the matter bounce cosmology can 
be approximately described by model parameters H− , H+ , ϒ , and 
also cs if perturbations are taken into account. In Fig. 1 we de-
pict the evolution of comoving Hubble length |H−1| = |aH |−1, and 
one can read that one Fourier mode of cosmological perturba-
tion in the matter bounce cosmology could exit the Hubble radius 
during the contracting phase, and then enter and re-exit the Hub-
ble radius during the bouncing phase, and eventually re-enter the 
Hubble radius again in the classical Big Bang era. Note that the 
change of the Hubble radius in the vicinity of the bouncing point 
can be very large. In the literature, observational constraints upon 
the bounce cosmology can be derived from various cosmological 
experiments such as the cosmic microwave background [41] and 
primordial magnetic fields [56]. In this work we will provide the 
independent constraints on the model parameters from PBHs.

2.2. Curvature perturbation during matter contracting phase

During the matter contracting phase, equation of motion for the 
curvature perturbation can be expressed as

v ′′
k + (c2

s k2 − z′′
)vk = 0 , (2.5)
z
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Fig. 1. Sketches of the evolutions of the comoving Hubble radius (green curve) 
|H|−1 = |aH|−1 and an effective length scale from the coefficient |z′′/z|−1/2 (red 
dashed) where z = a

√
ρ+p
H , in the nonsingular bounce cosmology. The black curve is 

the comoving length for wavenumber k. The horizontal axis corresponds to the co-
moving time which is defined by η ≡ ∫ dt

a . (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

where vk = zRk is the Mukhanov–Sasaki variable with Rk be-

ing the comoving curvature perturbation, z = a
√

ρ+p
cs H relies on the 

detailed evolution of the background dynamics, and the prime 
represents the derivative with respect to the comoving time η. 
Assuming that primordial perturbations originated from vacuum 
fluctuations at initial times,1 one can derive the solution of Eq. 
(2.5)

vk =
√

π(−η)

2
H (1)

3/2[csk(−η)] , (2.6)

where H (1)
3/2 is the 3

2 -order Hankel function of the first kind. From 
Eq. (2.6), the power spectrum of Rk is then given by

�2
R ≡ k3

2π2

∣∣∣ vk

z

∣∣∣2 = c2
s k3(−η)

24π M2
pa2

∣∣∣H (1)
3/2(−cskη)

∣∣∣2
, (2.7)

during the matter contracting phase. At large scales csk � |H|, 
�2

R � a3− H2−
48π2cs M2

pa3 is almost scale independent, and Rk �√
a3− H2−

24k3cs M2
p

a−3/2. This result is different from that in an expand-

ing spacetime, in which Rk is time independent at large scales. 
Moreover, at small scales csk 	 |H|, curvature perturbation is of 

quantum fluctuation with �2
R � a3− H2−

12π2cs M2
pa3

(
csk
H

)2
.

3. PBH formation during matter contracting phase

PBHs originate from the collapsed over-dense regions seeded by 
cosmological perturbations in early universe. When an over-dense 
region starts to form a black hole (BH), its radius R is expected 
to be larger than the Jeans radius R J ≡ cs

2

√
π
ρ̄ =

√
2
3 πcs|H−1| and 

smaller than the Hubble length |H−1| [42,44,48,58,59], which im-
plies,√

2

3
πcs|H−1| ≤ R ≤ |H−1| . (3.1)

For scales smaller than R J , the pressure gradient force would pre-
vent the collapsing of the over-dense region. It is clear that R J ≥

1 Note that the vacuum state is not necessarily the only choice of the initial 
condition for primordial curvature perturbations, namely, they may also arise from 
fluctuations of a thermal ensemble [20,57].
|H−1| when cs ≥ 0.39, and hence, there would be no PBH in this 
case.

We note that the PBH formation in the contracting phase is 
different from that in a purely expanding universe. In the expand-
ing universe, the PBH formation would begin only when the size 
of a region reenters the Hubble scale. However, in the contracting 
phase, when the size of the region exits the Jeans scale, the PBH 
formation would have started if this region is dense enough. Thus, 
we would like to focus on the fluctuations within the Jeans scale 
instead of the Hubble scale in the contracting universe.

3.1. PBH mass fraction

The background dust-like fluid inside the over-dense regions 
may collapse into PBHs, and the abundance of PBHs is depicted 
by the mass fraction, which in the matter contracting phase is

β = ρPBH

ρPBH + ρbg
, (3.2)

where ρPBH denotes the density of PBHs and ρbg the density of 
the remnant dust-like fluid. In general, PBHs and remnant dust-
like fluid together drive the evolution of background ρPBH + ρbg =
3M2

p H2. Note that this relation only holds when the subsequent 
evolutions, including the accretion and Hawking radiation, of the 
formed PBHs are not considered.

The mass fraction can be obtained from the Press–Schechter 
theory [60] (see [42,44,48] also):

β(t) =
δm∫

δc

2√
2πσ

exp(− δ2

2σ 2
)dδ

= erfc

(
δc√

2σ(t)

)
−erfc

(
δm√
2σ(t)

)
, (3.3)

where δ ≡ δρ
ρ̄ is the fractional density fluctuations, σ ≡ √〈δ2〉 is 

the mean mass fluctuation at the Jeans scale, which can be derived 
from the power spectrum of curvature perturbation �2

R , δc is the 
threshold of the PBH formation, and the upper limit δm ensures 
that the PBHs are no larger than the Hubble scale [42,44,48]. Note 
that Eq. (3.3) is based on the assumption that δ obeys the Gaussian 
distribution N[0, σ ].

The value of threshold δc is determined as follows. Considering 
a spherical over-dense region with a radius R , the space inside the 
region satisfies Friedmann equation [61,62]

(H + δH)2 = H2 (1 + δ) − δK

a2
= H2(1 + δ̃) , (3.4)

where H is the Hubble parameter of the background, a is the scale 
factor inside the over-dense region, δH and δK are the perturbed 
Hubble parameter and curvature respectively, and δ̃ ≡ δ− δK

a2 H2 . It is 
noticed that H < 0 for a contracting phase, and δH < 0 in the over 
dense region. The outer region (> R) is thought to be unperturbed 
for simplicity. We assume that when the region collapses to a BH, 
its surface has an additional physical speed v = 1 with respect to 
the conformally static background, i.e. collapsing at the speed of 
light. In the comoving slicing, it is written as

δH · R = −1 . (3.5)

Inserting Eq. (3.4) into the above equation, one obtains the thresh-
old for an arbitrary scale R

δ̃c = δc − δKc

a2 H2
= 1

H2 R2
+ 2

|H|R . (3.6)

On the Jeans scale R J , one has δ̃c =
√

6
πc + 3

2 2 .

s 2π cs



JID:PLB AID:32717 /SCO Doctopic: Astrophysics and Cosmology [m5Gv1.3; v1.208; Prn:22/03/2017; 11:43] P.4 (1-8)

4 J.-W. Chen et al. / Physics Letters B ••• (••••) •••–•••

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130
The mass of BH with a radius R , in the contracting background, 
can be determined by

M(R) = 4π

3
R3ρ̄

(
1 + δ̃c

)
= R

2G
(1 + |H|R)2 . (3.7)

Note that, both the density and curvature fluctuations could con-
tribute to the BH mass, as shown in [48]. We mention that the 
above description of BH is a rough estimate, and hence, Eq. (3.7)
slightly differs from the Misner–Sharp mass M = R

2G . The accurate 
description of the BH in the matter contracting phase should be 
based on the Tolman–Bondi–Lemaitre metric [63–65], which will 
be addressed in our follow-up study. In present analysis, however, 
we note that at small scale R � |H−1| the above model natu-
rally recovers the solution of a Schwarzschild BH M = R

2G in a flat 
spacetime, which indicates that this estimate remains reliable.

To derive the values of δc and σ , one needs to know the rela-
tions among the variables δ, δK and Rk . It is convenient to take 
the comoving gauge, in which

H2δ = 2

3
∇2�(x, t) ,

δK

a2
= −2

3
∇2R(x, t) , (3.8)

where �(x, t) is the Bardeen potential and R(x, t) is the curvature 
perturbation [45,66,67]. The relation between their Fourier compo-
nents �k and Rk is given by [45,67]

−(1 + w)Rk = 5 + 3w

3
�k + 2�̇k

3H
, (3.9)

where the dot denotes the derivative with respect to the cosmic 
time t . The solution during the matter contracting era Rk ∝ a−3/2

is

�k = −3

2
Rk , (3.10)

differing from �k = − 3
5Rk in the matter dominant expanding era. 

One also obtains

δk = k2

a2 H2
Rk , (3.11)

where δk is the Fourier component of the density perturbation δ. 
From (3.6) and (3.8), one also has δ = 3δK

2a2 H2 = 3δ̃. Therefore, the 

threshold is δc = 3
√

6
πcs

+ 9
2π2c2

s
.

The value of the upper limit δm for the Jeans scale is fixed as 
follows. If δ = δm, the fluid inside the Hubble radius would form a 
BH,2 which would have

4π

3
R3

J ρ̄
(

1 + δ̃m

)
+ 4π

3
ρ̄(|H−3| − R3

J ) = 2|H−1|
G

, (3.12)

where the first term on the left side is the mass of the over-
dense region and the second term is the mass outside the R J

but inside the Hubble radius. As a result, we obtain δm = 3δ̃m =
9 
(√

2
3 πcs

)−3

.

From Eq. (3.11), one can get the power spectrum of the density 
perturbation

�2
δ = k3

2π2
|δk|2 = k4

a4 H4
�2

R . (3.13)

Accordingly, σ is determined by

2 In this case, the PBH is formed by an over-dense core with radius R J , and a 
shell of the background fluid within the radius from R J to |H−1|.
Fig. 2. β(t−) varying from the model parameters H− and cs . The value of β is 
illustrated by the color, decreasing from red to purple. The isoline of β(t−) = 0.1 is 
shown. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)

σ 2 =
∫

dk

k
�2

δ W

(
kR J

a

)
=

kJ∫
0

dk

k
�2

δ , (3.14)

where W
( kR J

a

)
is the window function. For simplicity, we take

W

(
kR J

a

)
=

{
1 k ≤ kJ

0 k > kJ
,

and then obtain

σ = 3

4c2
s

√
a3−H2−

48π2cs M2
pa3

. (3.15)

Therefore, the PBH mass fraction by (3.3) is

β(t) � erfc

[
(48c3/2

s + 9.355c1/2
s )

( Mp

|H−|
)(a(t)

a−

)3/2
]

− erfc

[
10.9427

c1/2
s

( Mp

|H−|
)(a(t)

a−

)3/2
]

, (3.16)

for cs < 0.39; and β(t) = 0 for cs ≥ 0.39. It can be seen that the 
value of β increases as a(t) becomes smaller along with the con-
tracting and reaches its maximum value at the end of the matter 
contracting phase t− .

From the above expression, one can read that the maximal 
value of β is unity, which corresponds to the case that the universe 
is dominated by black holes. Accordingly, we expect that β � 1 so 
that the universe is dominated by the background dust-like fluid. 
By numerically solving Eq. (3.16), we therefore derive the param-
eter space of |H−| and cs for each fixed value of β as shown in 
Fig. 2. From this figure, one can read that the non-vanishing mass 
fraction β(t−), when cs < 0.39, is small in both the very low en-
ergy regime |H−| � Mp and very high one |H−| 	 Mp. In the high 
energy regime, the density fluctuation is generally large σ 	 1
according to Eq. (3.15), but β(t−) is small due to the constraint 
that PBHs ought to be within the cosmic apparent horizon. The 
constraint of β from today’s observation could be loose. For in-
stance, if one assumes that PBHs constitute the totality of dark 
matter in the universe, then the value of β could be of order 



JID:PLB AID:32717 /SCO Doctopic: Astrophysics and Cosmology [m5Gv1.3; v1.208; Prn:22/03/2017; 11:43] P.5 (1-8)

J.-W. Chen et al. / Physics Letters B ••• (••••) •••–••• 5

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130
O (0.1) at most which might have occurred at the moment of 
matter-radiation equality (see for example [68] for related analy-
ses). Therefore, if one considers the case of β � 0.1 and cs = 10−4

as a specific example, then Eq. (3.16) yields |H−| � 10−1 Mp or 
|H−| � 104Mp. Note that, |H−| � 10−1Mp can be easily satisfied, 
but |H−| � 104Mp is disfavored from model construction.

4. Evolution of PBH in bouncing phase

It is important to point out that the subsequent evolutions of 
PBHs after their formation are not considered in the above sec-
tion. Associated with the evolutions, including the accretion and 
the evaporation due to Hawking radiation, one can obtain con-
straints upon bouncing cosmology. This is the main subject in this 
section. For simplicity, we only consider the PBH evolutions during 
the bouncing phase.

4.1. The growth of PBH mass

At first, we calculate the growth of PBH by accreting the mass 
around in the contracting background. For simplicity, we still as-
sume that the space outside the BH horizon is unperturbed Fried-
mann universe and the matter which flows into the horizon is due 
to the cosmic contracting. For a BH with mass M and radius R , 
the mass increased equals to that flowing into the horizon, with 
the speed |H |R ,

Ṁ = 4π R2ρ̄|H|R . (4.1)

We shall investigate the evolution in the contracting era of the 
bouncing phase t− < t < 0. During this stage, the Hubble length 
diverges quickly (see Fig. 1), and all PBHs can be treated as 
Schwarzschild BHs and R = 2GM , according to the arguments in 
the last section. Therefore, Eq. (4.1) reduces to

Ṙ = −3R3 H3 = −3R3ϒ3t3 , (4.2)

and the solution is

R(t) =
√√√√ 1

1
R2(t−)

+ 3
2 ϒ3(t4 − H4−/ϒ4)

. (4.3)

It is obvious that, the BH radius increases with t approaching to 
the bouncing point. Eq. (4.3) also gives a constraint as follows,

R2(t−) ≤ 2ϒ

3H4−
. (4.4)

For the models violating the constraints above, the mass of PBH 
will grow to infinity before the bouncing point. According to (3.1), 
one can read that R(t−) ≥

√
2
3 πcs|H−1− |, and hence, the above con-

straint yields explicitly that3

ϒ ≥ c2
s π

2 H2− , (4.5)

for cs ≤ 0.39. Eq. (4.5) implies that the bouncing phase is expected 
to proceed rapidly so that the mass of PBHs would not become 
divergent and the universe is safe from collapsing into the black 
hole completely.

3 We note that, in fact, if cs is not very small, the radius of BH suffers an in-
creasing after the bouncing begins, but this effect has been ignored in the present 
consideration for simplicity.
4.2. Backreaction and theoretical constraints

The bouncing phase is driven by the background fluid which 
violates NEC in the frame of general relativity. From the Fried-
mann equations not considering PBHs, the density and pressure 
of the background fluid at the bouncing point are ρbg = 0 and 
pbg = −2M2

pϒ respectively. To include the contribution of back-
reaction from PBHs, the Friedmann equation at the bouncing point 
can be written as

ä

a
= − 1

6M2
p
(ρBR − 6M2

pϒ) , (4.6)

where ρBR = ρPBH + ργ + 3pγ is the effective density of the back-
reaction, ρPBH is the density of PBH, ργ and pγ are the density 
and pressure of Hawking radiation respectively. For simplicity, we 
assume all Hawking radiation particles are ultra-relativistic, which 
satisfy the relation pγ = ργ /3. If the back reactions neutralize the 
negative pressure of background ρBR − 6M2

pϒ > 0, the universe 
would not expand any more, as mentioned in Section 2. In the 
following, we will constrain the model through PBHs.

Recall that the energy density of PBHs is

ρPBH = 〈M〉
L3

= 4π M2
p〈R〉

L3
, (4.7)

which depends on the mean PBH mass 〈M〉 or the mean PBH ra-
dius 〈R〉, and the mean PBH separation L. At the beginning of the 
bouncing phase t− , the PBH density is known

ρPBH(t−) = β(ρPBH + ρbg) = 3M2
p H2−β(t−) , (4.8)

according to Eq. (3.2), where the evolution of the earlier formed 
PBHs is not considered. If 〈M〉 at the moment t− is known, one can 
obtain the mean PBH separation L(t−) from Eqs. (4.7) and (4.8). To 
obtain 〈M(t−)〉, one should first calculated the mass function of 
PBHs. Here we assume that all PBHs have the same mass, which is 
a simplification generally used [49], and all PBHs are of the Jeans 
scale 〈R(t−)〉 �

√
2
3 πcs|H−1− |. Therefore, the mean separation at t−

is

L(t−) = R(t−)(
c2

s β
) 1

3

. (4.9)

At the present investigation, we have neglected the newly formed 
PBHs during the bouncing phase. Therefore, the mean separation 

follows L(t) ∝ a(t), and accordingly, L(0) � L(t−)e− H2−
2ϒ . Note that 

the PBH evaporation due to Hawking radiation has been studied 
clearly in [43]. Following this, one can estimate the lifetime of PBH 
to be

τ � 13.7 Gyr

(
M

5 × 1014 g

)3

� 5 × 103 M3

M4
p

. (4.10)

We have adopted the approximation that for massive PBHs 
τ > |t−|, or ϒ > H4−/(108c3

s M2
p), the Hawking radiation is sub-

dominant. A closer analysis combing both the Hawking radia-
tion and the growth of PBHs will be addressed in our follow-up 
study. As a result, the evolution of the PBHs follows Eq. (4.3), and 

their size approximately takes R(0) � R(t−) 
(

ϒ

ϒ−c2
s π

2 H2−

)1/2

at the 

bouncing point. Otherwise, PBH would have evaporated completely 
before the universe reaches the bouncing point with R(0) = 0. As a 
result, we can estimate the energy density of PBHs at the bouncing 
point as
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ρPBH(0) = 4π M2
p R(0)

L(0)3

=

⎧⎪⎨
⎪⎩

6M2
p H2−
π β(t−)

√
ϒ

ϒ−c2
s π

2 H2−
e

3H2−
2ϒ , ϒ >

H4−
108c3

s M2
p

0, ϒ <
H4−

108c3
s M2

p

.

(4.11)

Similarly, we analyze the backreaction due to the Hawking radia-

tion. For ϒ >
H4−

108c3
s M2

p
, the Hawking radiation can be ignored and 

ργ (0) = 0. In the limit that PBHs finish their evaporation at t− , 
one has ργ (t−) = ρPBH(t−) and then ργ ∝ a−4. In the limit that 
the effective evaporation happens at the bouncing point, ργ (0) =
ρPBH(0), and ρPBH ∝ a−3 before its evaporation. Therefore, one has

ργ (0) =

⎧⎪⎨
⎪⎩

0 , ϒ >
H4−

108c3
s M2

p

ρPBH(t−)
(

e
H2−
2ϒ

)n
, ϒ <

H4−
108c3

s M2
p

, (4.12)

where ρPBH(t−) is given by Eq. (4.8) and n is a parameter that 
describes the moment of the complete evaporation of PBH. For 
instance, n = 4 corresponds to the limit that the evaporation hap-
pens at t−; and, n = 3 corresponds to this limit at the bouncing 
point.

Inserting Eqs. (4.11) and (4.12) into the Friedmann equation 
(4.6), in order not to neutralize the negative pressure p̄ = −2M2

pϒ , 
the following constraint should be satisfied

ρBR

|p̄| =

⎧⎪⎨
⎪⎩

β(t−)H2−
πϒ

√
ϒ

ϒ−c2
s π

2 H2−
e

3H2−
2ϒ < 1, ϒ >

H4−
108c3

s M2
p

β(t−)H2−
ϒ

(
e

H2−
2ϒ

)n
< 1, ϒ <

H4−
108c3

s M2
p

. (4.13)

The resulting constraints are numerically shown in Fig. 3 for the 
model with cs = 10−3. It is seen that the lines of ϒ = c2

s π
2 H2−

and ϒ = H4−
108c3

s M2
p

, which represent the limit case of (4.5) and the 
boundary between the PBH growth and evaporation respectively, 
play important roles in the constraints. The two lines shape the 
forbidden parameter space in which PBH grows into infinity. Fur-
thermore, two lines intersect at the characteristic energy scale 
H2− � 109c5

s M2
p. At the low energy H2− � 109c5

s M2
p, ϒ = c2

s π
2 H2− is 

the asymptote for all isolines of ρBR/|p̄|. Therefore, the constraint 
ρBR/|p̄| < 1 reduces to Eq. (4.5) at the low energy.

4.3. Estimates of observational constraints

After the bouncing phase, PBHs will evolve in the regular ex-
panding universe, and hence can be constrained by today’s obser-
vations. In this subsection, we briefly estimate the constraints upon 
the bouncing models though the observational limits of PBHs.

For massive PBHs with an initial mass M > 1015 g, they could 
survive until today and their density scales as a−3 approximately 
in the expanding universe [43]. As a result, the current PBH (M >

1015 g) density parameter can be expressed as

�PBH � ρPBH(0)

3M2
p H2

0

(
ab

a0

)3

,

where a0 and H0 denote the scale factor and Hubble parameter of 
today, ab is the scale of bounce, and ρPBH(0) is the PBH density at 
the bouncing point. Since the PBHs may contribute to part of dark 
matter, one immediately has the rough constraint �PBH < �DM �
0.25 and thus can get a bound
Fig. 3. The back reaction ρBR/|p̄| varying from model parameters H− and ϒ , with 
cs = 10−3 and n = 4 taken. The value of ρBR/|p̄| is illustrated by color, increasing 
from purple to red. The white thick curve is the isoline ρBR/|p̄| = 1, and only the 
parameter space over this curve is allowed. The light blue curve is the boundary 
between PBH growth and evaporation ϒ = H4−

108c3
s M2

p
, the area over the boundary is 

the PBH growing region, and that under the boundary is the evaporation region. 
The gray region is the forbidden parameter space due to Eq. (4.5), and the upper 
boundary of this region is ϒ = c2

s π
2 H2− illustrated by green curve. (For interpre-

tation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

ρPBH(0) < 3M2
p H2

0�DM

(
ab

a0

)−3

. (4.14)

For the light PBHs with M < 1015 g, they have been completely 
evaporated today. Therefore, the density parameter of the Hawking 
radiation �HR is approximately estimated as

�HR � ρPBH(0)

3M2
p H2

0

(
ar

a0

)4 (
ab

ar

)3

>
ρPBH(0)

3M2
p H2

0

(
ab

a0

)4

, (4.15)

where ar is the scale factor when PBHs complete the evaporation, 
and ab < ar < a0. �HR is not allowed to be larger than the total 
density of today’s radiation �r ∼ 10−4, measured by the CMB ex-
periments. As a consequence, one gets

ρPBH(0) < 3M2
p H2

0�r

(
ab

a0

)−4

. (4.16)

In Fig. 4, we provide the constraints on ρPBH(0) along with ab/a0
from the bounds (4.14) and (4.16), respectively. The PBH mass M
and density ρPBH(0) are functions of cs , H− and ϒ , which are pro-
vided in the previous subsection. As a result, we find that the non-
singular bounce models can be constrained by observations due to 
(4.14) and (4.16). We note that these constraints are quite loose. 
More stringent constraints can be obtained by taking the observa-
tional bounds of �PBH and �HR from the CMB, gamma-ray burst 
and BBN etc. [43].

5. Conclusion and outlook

In this paper, we have investigated the formation and evolu-
tion of PBHs in the matter bounce cosmology. Firstly, we described 
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Fig. 4. The constraints on ρPBH(0) along with ab/a0. The blue shadowed region is 
given by (4.14) for PBHs with M > 1015 g, and the red shadowed region is given 
by (4.16) for M < 1015 g. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

the general matter bounce models by some parameters like cs , H−
and ϒ . The comoving curvature perturbation Rk is also calculated 
during the matter contracting phase, which seeds the PBH forma-
tion. Then we had a discussion about the condition of PBH forma-
tion in the contracting background, which is different from that 
in the expanding universe. By taking a simple collapsing model, 
the threshold of the density fluctuation for forming a PBH is de-
rived. Furthermore, in the comoving gauge, the density fluctuation 
and its threshold are all related to the curvature perturbation Rk . 
Therefore, we can calculate the mass fraction of PBHs β in the con-
tracting phase from the Press–Schechter theory, and constrain the 
bouncing models from PBHs. PBH formation depends on the model 
parameters cs and H− . For instance, PBHs can form in the con-
tracting phase only if cs ≤ 0.39, since the BHs are not allowed to 
be larger than the cosmic apparent horizon. When cs ≤ 0.39, β is 
small and the model is safe for |H−| � Mp or |H−| 	 Mp, but only 
the low energy regime is favored from the model construction.

The subsequent evolution of PBHs in the bouncing phase is also 
investigated, with the PBH accretion and Hawking radiation con-
sidered. The growth behavior of PBH yields a constraint to the 
model ϒ ≥ c2

s π
2 H2− , in case that the mass of PBHs grow to infin-

ity before the bouncing point. Moreover, the back reaction of PBH 
and its Hawking radiation is calculated to constrain models, in or-
der not to neutralize the negative pressure pbg = −2M2

pϒ , since 
in such case the universe cannot expand again. The constraint re-
duces to ϒ ≥ c2

s π
2 H2− at the low energy scale H2− � 109c5

s M2
p. 

Afterwards, a rough constraint of bouncing model though the PBH 
observations is given, and the constraint is stringent only when ϒ
is slightly larger than c2

s π
2 H2− . A more precise analysis taken into 

account both the PBH growth and the Hawking evaporation as well 
as the detailed constraints from cosmological observations will be 
addressed in our follow-up works.

We note that while our paper was being prepared, an inde-
pendent work was being carried out by another group [59], which 
explores similar features of BH formation in bouncing cosmology.
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