E. O. Budrene and H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, vol.376, issue.6535, p.49, 1995.
DOI : 10.1038/376049a0

E. F. Keller and L. A. Segel, Model for chemotaxis, Journal of Theoretical Biology, vol.30, issue.2, p.225, 1971.
DOI : 10.1016/0022-5193(71)90050-6

E. F. Keller and L. A. Segel, Traveling bands of chemotactic bacteria: A theoretical analysis, Journal of Theoretical Biology, vol.30, issue.2, p.235, 1971.
DOI : 10.1016/0022-5193(71)90051-8

M. J. Tindall, P. K. Maini, S. L. Porter, and J. P. Armitage, Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis II: Bacterial Populations, Bulletin of Mathematical Biology, vol.178, issue.6, pp.1570-1607, 2008.
DOI : 10.1016/0022-5193(75)90174-5

T. Hillen and K. J. Painter, A user???s guide to PDE models for chemotaxis, Journal of Mathematical Biology, vol.15, issue.1, pp.183-217, 2009.
DOI : 10.1007/BF02458292

P. K. Maini, M. R. Myerscough, K. H. Winters, and J. D. Murray, Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation, Bulletin of Mathematical Biology, vol.295, issue.5, pp.701-719, 1991.
DOI : 10.1007/978-3-662-08539-4

M. Mimura and T. Tsujikawa, Aggregating pattern dynamics in a chemotaxis model including growth, Physica A: Statistical Mechanics and its Applications, vol.230, issue.3-4, pp.499-543, 1996.
DOI : 10.1016/0378-4371(96)00051-9

G. Nadin, B. Perthame, and L. Ryzhik, Traveling waves for the Keller-Segel system with Fisher birth terms " , Interface free bound, pp.517-538, 2008.

K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D: Nonlinear Phenomena, vol.240, issue.4-5, pp.363-375, 2011.
DOI : 10.1016/j.physd.2010.09.011

W. Alt, Biased random walk models for chemotaxis and related diffusion approximations, Journal of Mathematical Biology, vol.137, issue.2, p.147, 1980.
DOI : 10.1007/BF00532948

H. G. Othmer, S. R. Dunbar, and W. Alt, Models of dispersal in biological systems, Journal of Mathematical Biology, vol.25, issue.3, p.263, 1988.
DOI : 10.1007/978-3-642-69888-0_7

R. Erban and H. G. Othmer, From Individual to Collective Behavior in Bacterial Chemotaxis, SIAM Journal on Applied Mathematics, vol.65, issue.2, p.361, 2004.
DOI : 10.1137/S0036139903433232

Y. Dolak and C. Schmeiser, Kinetic models for chemotaxis: Hydrodynamic limits and spatio-temporal mechanisms, Journal of Mathematical Biology, vol.23, issue.6, p.595, 2005.
DOI : 10.1099/00221287-85-2-321

N. Bellomo, A. Bellouquid, J. Nieto, and J. Soler, MULTICELLULAR BIOLOGICAL GROWING SYSTEMS: HYPERBOLIC LIMITS TOWARDS MACROSCOPIC DESCRIPTION, Mathematical Models and Methods in Applied Sciences, vol.51, issue.supp01, pp.1675-1693, 2007.
DOI : 10.1090/conm/353/06434

N. Bellomo, N. K. Li, and P. K. Maini, ON THE FOUNDATIONS OF CANCER MODELLING: SELECTED TOPICS, SPECULATIONS, AND PERSPECTIVES, Mathematical Models and Methods in Applied Sciences, vol.60, issue.04, pp.593-646, 2008.
DOI : 10.1016/j.bulm.2004.08.001

T. Hillen and H. G. Othmer, The diffusion limit of transport equations derived from velocityjump processes, SIAM J. Appl. Math, vol.61, p.751, 2000.

H. Othmer and T. Hillen, The Diffusion Limit of Transport Equations II: Chemotaxis Equations, SIAM Journal on Applied Mathematics, vol.62, issue.4, p.1222, 2002.
DOI : 10.1137/S0036139900382772

F. A. Chalub, P. Markowich, B. Perthame, and C. Schmeiser, Kinetic Models for Chemotaxis and their Drift-Diffusion Limits, Monatshefte f???r Mathematik, vol.142, issue.1-2, p.123, 2004.
DOI : 10.1007/s00605-004-0234-7

URL : http://www.hyke.org/preprint/2003/10/103.ps

N. Bournaveas, V. Calvez, S. Gutiérrez, and B. Perthame, Global Existence for a Kinetic Model of Chemotaxis via Dispersion and Strichartz Estimates, Communications in Partial Differential Equations, vol.105, issue.1, pp.79-95, 2008.
DOI : 10.1090/S0273-0979-04-01004-3

N. Bournaveas and V. Calvez, Global existence for the kinetic chemotaxis model without pointwise memory effects, and including internal variables, Kinet. Relat. Mod, vol.1, pp.29-48, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00256288

N. Vauchelet, Numerical simulation of a kinetic model for chemotaxis, Kinetic and Related Models, vol.3, issue.3, pp.501-528, 2010.
DOI : 10.3934/krm.2010.3.501

URL : https://hal.archives-ouvertes.fr/hal-00844174

F. James and N. Vauchelet, Chemotaxis: from kinetic equations to aggregate dynamics, Nonlinear Differential Equations and Applications NoDEA, vol.2, issue.3, p.101, 2013.
DOI : 10.1070/SM1967v002n02ABEH002340

URL : https://hal.archives-ouvertes.fr/hal-00605479

G. Si, M. Tang, and X. Yang, Chemotaxis: Mathematical Derivation and Its Hyperbolic and Parabolic Limits, Multiscale Modeling & Simulation, vol.12, issue.2, pp.907-926, 2014.
DOI : 10.1137/130944199

L. Almeida, C. Emako, and N. Vauchelet, Existence and diffusive limit of a two-species kinetic model of chemotaxis, Kinet. Relat. Models, vol.8, p.359, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00980594

C. Xue, Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling, Journal of Mathematical Biology, vol.108, issue.12, p.1, 2015.
DOI : 10.1103/PhysRevLett.108.128101

J. Liao, Global solution for a kinetic chemotaxis model with internal dynamics and its fast adaptation limit, Journal of Differential Equations, vol.259, issue.11, pp.6432-6458, 2015.
DOI : 10.1016/j.jde.2015.07.025

B. Perthame, M. Tang, and N. Vauchelet, Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway, Journal of Mathematical Biology, vol.108, issue.1, p.1161, 2016.
DOI : 10.1103/PhysRevLett.108.128101

URL : https://hal.archives-ouvertes.fr/hal-01131101

V. Calvez, Chemotactic waves of bacteria at the mesoscale, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01340375

S. Mischler and Q. Weng, On a linear runs and tumbles equation, Kinetic and Related Models, vol.10, issue.3, pp.799-822, 2017.
DOI : 10.3934/krm.2017032

URL : https://hal.archives-ouvertes.fr/hal-01272429

J. Saragosti, V. Calvez, N. Bournaveas, B. Perthame, A. Buguin et al., Directional persistence of chemotactic bacteria in a traveling concentration wave, Proceedings of the National Academy of Sciences, vol.151, issue.2, p.16235, 2011.
DOI : 10.1016/j.jsb.2005.06.002

URL : https://hal.archives-ouvertes.fr/hal-00789064

G. Rosser, A. G. Fletcher, D. A. Wilkinson, J. A. De-beyer, C. A. Yates et al., Novel Methods for Analysing Bacterial Tracks Reveal Persistence in Rhodobacter sphaeroides, PLoS Computational Biology, vol.142, issue.10, p.1003276, 2013.
DOI : 10.1371/journal.pcbi.1003276.s016

URL : https://doi.org/10.1371/journal.pcbi.1003276

C. Emako, C. Gayrard, A. Buguin, L. Almeida, and N. Vauchelet, Traveling Pulses for a Two-Species Chemotaxis Model, PLOS Computational Biology, vol.97, issue.6, p.1004843, 2016.
DOI : 10.1371/journal.pcbi.1004843.t001

URL : https://hal.archives-ouvertes.fr/hal-01302632

M. Rousset and G. Samaey, INDIVIDUAL-BASED MODELS FOR BACTERIAL CHEMOTAXIS IN THE DIFFUSION ASYMPTOTICS, Mathematical Models and Methods in Applied Sciences, vol.28, issue.11, p.2005, 2013.
DOI : 10.1137/070711505

URL : https://hal.archives-ouvertes.fr/inria-00425065

M. Rousset and G. Samaey, SIMULATING INDIVIDUAL-BASED MODELS OF BACTERIAL CHEMOTAXIS WITH ASYMPTOTIC VARIANCE REDUCTION, Mathematical Models and Methods in Applied Sciences, vol.15, issue.12, p.2155, 2013.
DOI : 10.1073/pnas.96.20.10945

URL : https://hal.archives-ouvertes.fr/hal-00643324

C. Yang and F. Filbet, Numerical simulations of kinetic models for chemotaxis, SIAM J. Scientific Computing, vol.36, p.348, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00798822

J. Ritter, A. Klar, and F. Schneider, Partial-moment minimum-entropy models for kinetic chemotaxis equations in one and two dimensions, Journal of Computational and Applied Mathematics, vol.306, pp.300-315, 2016.
DOI : 10.1016/j.cam.2016.04.019

URL : http://arxiv.org/pdf/1601.04482

L. Berlyand, P. Jabin, and M. Potomkin, Complexity Reduction in Many Particle Systems with Random Initial Data, SIAM/ASA Journal on Uncertainty Quantification, vol.4, issue.1, pp.446-474, 2016.
DOI : 10.1137/140969786

S. Yasuda, Monte Carlo simulation for kinetic chemotaxis model: An application to the traveling population wave, Journal of Computational Physics, vol.330, pp.1022-1042, 2017.
DOI : 10.1016/j.jcp.2016.10.066

B. Perthame and A. L. Daibard, Existence of solutions of the hyperbolic Keller-Segel model, Transactions of the American Mathematical Society, vol.361, issue.05, pp.2319-2335, 2009.
DOI : 10.1090/S0002-9947-08-04656-4

A. Chertock, A. Kurganov, X. Wang, and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinetic and Related Models, vol.5, issue.1, pp.51-95, 2012.
DOI : 10.3934/krm.2012.5.51

URL : http://www.aimsciences.org/journals/doIpChk.jsp?paperID=6915&mode=full

N. Bellomo, A. Bellouquid, Y. Tao, and M. Winkler, Toward a mathematical theory of Keller???Segel models of pattern formation in biological tissues, Mathematical Models and Methods in Applied Sciences, vol.33, issue.09, pp.1663-1763, 2015.
DOI : 10.1016/j.jmaa.2014.11.031

N. Bellomo and M. Winkler, A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up, Communications in Partial Differential Equations, vol.44, issue.3, pp.436-473, 2017.
DOI : 10.1016/j.matpur.2013.01.020

B. Perthame, N. Vauchelet, and Z. Wang, Modulation of stiff response in E. coli Bacterial populations

H. C. Berg and D. A. Brown, Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking, Nature, vol.90, issue.5374, pp.500-504, 1972.
DOI : 10.1038/239500a0

D. F. Blair, How Bacteria Sense and Swim, Annual Review of Microbiology, vol.49, issue.1, pp.489-522, 1995.
DOI : 10.1146/annurev.mi.49.100195.002421

Y. V. Kalinin, L. Jiang, Y. Tu, and M. Wu, Logarithmic Sensing in Escherichia coli Bacterial Chemotaxis, Biophysical Journal, vol.96, issue.6, pp.2439-2448, 2009.
DOI : 10.1016/j.bpj.2008.10.027

URL : https://doi.org/10.1016/j.bpj.2008.10.027

S. M. Block, J. E. Segall, and H. C. Berg, Adaptation kinetics in bacterial chemotaxis, J. Bacteriol, vol.154, pp.312-323, 1983.

R. A. Fisher, The advance of advantageous genes, Ann. Eugenics, vol.65, pp.335-369, 1937.

A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piskunov, Etude de l'´ equation de la diffusion avec croissance de la quantité dematì re et son applicationàapplicationà unprobì eme biologique, Moskow. Univ. Math. Bull, vol.1, pp.1-25, 1937.

R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: a brief review, Journal of Mathematical Biology, vol.72, issue.4, pp.35-75, 2012.
DOI : 10.1140/epjb/e2009-00370-5

K. Hadeler, Reaction transport equations in biological modeling, Mathematical and Computer Modelling, vol.31, issue.4-5, pp.75-81, 2000.
DOI : 10.1016/S0895-7177(00)00024-8

URL : https://doi.org/10.1016/s0895-7177(00)00024-8

H. Schwetlick, Travelling fronts for multidimensional nonlinear transport equations, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, vol.17, issue.4
DOI : 10.1016/S0294-1449(00)00127-X

URL : https://doi.org/10.1016/s0294-1449(00)00127-x

H. Poincaré, Analyse non linéaire 17, pp.523-550, 2000.

E. Bouin, V. Calvez, and G. Nadin, Propagation in a Kinetic Reaction-Transport Equation: Travelling Waves And Accelerating Fronts, Archive for Rational Mechanics and Analysis, vol.179, issue.2, pp.571-617, 2015.
DOI : 10.1006/jdeq.2002.4023

URL : https://hal.archives-ouvertes.fr/hal-00849405

A. M. Turing, The Chemical Basis of Morphogenesis, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.237, issue.641, pp.37-72, 1952.
DOI : 10.1098/rstb.1952.0012

D. A. Clark and L. C. Grant, The bacterial chemotactic response reflects a compromise between transient and steady-state behavior, Proceedings of the National Academy of Sciences, vol.58, issue.24, pp.9150-9155, 2005.
DOI : 10.1073/pnas.82.24.8364

X. Zhu, G. Si, N. Deng, Q. Ouyang, T. Wu et al., Chemotaxis Behavior, Physical Review Letters, vol.108, issue.12, p.128101, 2012.
DOI : 10.1137/S0036139903433232

H. Salman, A. Zilman, C. Loverdo, M. Jeffroy, and A. Libchaber, Solitary Modes of Bacterial Culture in a Temperature Gradient, Physical Review Letters, vol.112, issue.11, p.118101, 2006.
DOI : 10.1038/239500a0

J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan et al., Mathematical Description of Bacterial Traveling Pulses, PLoS Computational Biology, vol.33, issue.8, p.1000890, 2010.
DOI : 10.1371/journal.pcbi.1000890.s001

URL : https://hal.archives-ouvertes.fr/hal-00440108