
HAL Id: hal-01495055
https://hal.sorbonne-universite.fr/hal-01495055v1

Submitted on 24 Mar 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Centrally-Controlled Mass Data Offloading Using
Vehicular Traffic

Benjamin Baron, Prométhée Spathis, Hervé Rivano, Marcelo Dias de Amorim,
Yannis Viniotis, Mostafa Ammar

To cite this version:
Benjamin Baron, Prométhée Spathis, Hervé Rivano, Marcelo Dias de Amorim, Yannis Viniotis, et al..
Centrally-Controlled Mass Data Offloading Using Vehicular Traffic. IEEE Transactions on Network
and Service Management, 2017, 14 (2), pp.401-415. �10.1109/TNSM.2017.2672878�. �hal-01495055�

https://hal.sorbonne-universite.fr/hal-01495055v1
https://hal.archives-ouvertes.fr

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 1

Centrally-Controlled Mass Data Offloading
Using Vehicular Traffic

Benjamin Baron, Prométhée Spathis, Hervé Rivano, Marcelo Dias de Amorim,
Yannis Viniotis, and Mostafa Ammar

Abstract—With over 300 billion vehicle trips made in the USA
and 64 billion in France per year, network operators have the
opportunity to utilize the existing road and highway network
as an alternative data network to offload large amounts of
delay-tolerant traffic. To enable the road network as a large-
capacity transmission system, we exploit the existing mobility of
vehicles equipped with wireless and storage capacities together
with a collection of offloading spots. An offloading spot is a
data storage equipment located where vehicles usually park.
Data is transloaded from a conventional data network to the
closest offloading spot and then shipped by vehicles along their
line of travel. The subsequent offloading spots act as data relay
boxes where vehicles can drop off data for later pick-ups by
other vehicles, depending on their direction of travel. The main
challenges of this offloading system are how to compute the road
path matching the performance requirements of a data transfer
and how to configure the sequence of offloading spots involved
in the transfer. We propose a scalable and adaptive centralized
architecture built on SDN that maximizes the utilization of
the flow of vehicles connecting consecutive offloading spots. We
simulate the performance of our system using real roads traffic
counts for France. Results show that the centralized controlled
offloading architecture can achieve an efficient and fair allocation
of concurrent data transfers between major cities in France.

Index Terms—Offloading, Software-Defined Networking, Ve-
hicular Data Backhaul.

I. INTRODUCTION

We consider a large-scale data offloading system that takes
opportunistic advantage of the mobility of conventional ve-
hicles to transfer massive amounts of delay-tolerant traffic
using the road network. By leveraging a large number of
daily journeys involving vehicles, content providers or network
operators can alleviate the traffic load from conventional data
networks such as the Internet. In a previous work [1], [2], we
proposed to equip conventional vehicles with removable and
exchangeable storage devices as well as wireless interfaces
turning the vehicles into data carriers while making their
routine journeys.1 The scale of the road network, together with

Benjamin Baron, Prométhée Spathis, and Marcelo Dias de Amorim are
with the LIP6/CNRS Computer Science laboratory, Université Pierre et Marie
Curie, Paris, France. Emails: {bbaron,spathis,amorim}@npa.lip6.fr. Hervé
Rivano is with Inria, Université de Lyon, INSA-Lyon/CITI, Villeurbanne,
France. Email: herve.rivano@inria.fr. Yannis Viniotis is with NC State Univer-
sity. Email: candice@ncsu.edu. Mostafa Ammar is with Georgia Tech. Email:
ammar@cc.gatech.edu. This author’s work was supported in part by NSF
grant NETS 1409589.

A preliminary version of this paper appeared as: B. Baron, P. Spathis, H.
Rivano, M. Dias de Amorim, Y. Viniotis, and J. Clarke, “Software-Defined
Vehicular Backhaul”, Wireless Days, Rio de Janeiro, Brazil, Nov. 2014.

1A related system for large-scale data transport using removable storage
devices is used in the Amazon AWS Snowball system: https://aws.amazon.
com/importexport/.

the number of trips traveled, enables vehicles to transport data
in massive amounts and over long distances.

Our offloading system aims at the growth of data traffic
which might bring the Internet to a “capacity crunch” in a
near future [3], [4]. With the enhancement of access networks
and the demand increase in data traffic, CDN providers
such as Akamai have reported that the bottleneck is no
longer at the origin or the destination of the transfers, but
could also be at the core of the network, including peering
points between Internet Service Providers and within the
providers’ networks [5]. Furthermore, as reported by Hecht,
geo-distributed services are one of the biggest drivers of
demand for bandwidth, as they require transfers of massive
amounts of data for synchronization and maintenance [4].

Our system exploits the large number and wide coverage
of the trips made by private vehicles to extend the capacity
of conventional data networks, while avoiding costly infras-
tructure upgrades. In particular, we target services that can
tolerate transfers lasting several days. Examples of such ser-
vices include bandwidth-intensive background services such as
maintenance activities, data migration, and offline backups [6].

We complement the role of the storage-enabled vehicles
with the use of offloading spots. Offloading spots are data
storage equipments placed along the roads where vehicles
usually park long enough as part of their daily routines.
Examples of such locations are on-street parking spots, garage
parking, gas and electric charging stations, or supermarket
parking lots. Offloading spots serve two distinct purposes
depending on their relative position in respect to the offloading
process. The dual role of an offloading spot is depicted in
Figure 1, where massive amount of delay-tolerant background
data needs to be transferred between two remote data centers.
Part of or all the data originating from the data network is
first transloaded2 to the closest edge offloading spot until
transferred onto passing vehicles. Subsequent intermediate
offloading spots then act as data relay boxes where data
is transshipped3 between successive vehicles, allowing the
vehicles to drop off their data cargo as part of their route
for later pick-up by another vehicle. Once at the destination,
the data is transloaded back into the original data network.
Since transloading takes place over short distances, it can be
carried out by dedicated vehicles in charge of transporting data

2Objects are said to be “transloaded” if they are transferred between two
different modes of transportation – from the Internet to moving vehicles in
this case.

3Objects are said to be “transhipped” if they are moved between similar
carriers – from one vehicle to another in this case.

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 2

Data destinations

Transshipment

Offloading spots

Cargo
data

Data sources

Data
 center

Data
center Local

storage

Cargo data
drop-off

Available data
 pickup

En-route
data

Trans-
loading

Trans-
loading

Fig. 1: Overview of our vehicular data offloading system in the context of a
data transfer between two remote data centers offloaded from a conventional
data network to the road network.

or even high-throughput dedicated lines in case of continuous
data transfers.

To enable efficient and reliable transfers over the road
network, we propose a centralized architecture for flexible and
scalable configuration of the network of offloading spots. We
use the software-defined networking (SDN) paradigm, which
provides the necessary logistics for efficient and effective
vehicular transportation of data [7]. Our SDN-controlled ar-
chitecture consists of a central controller and a collection of
offloading spots. The controller receives demands to offload
data transfers onto the road network. An offloading demand
indicates the source and destination of the transfer as well as
its performance requirements (e.g., in terms of volume and
delay). The controller is in charge of mapping a data transfer
onto a sequence of offloading spots matching the direction of
a vehicle against the destination of the data.

To realize an efficient data offloading, our SDN-controlled
architecture addresses the following challenges. Firstly, we
must take all vehicular travels into account, including the
travels between intermediate offloading spots. Secondly, we
need an architecture that can cope with the complexity of
the road network topology and the large number of vehicular
trips. Thirdly, we need an efficient allocation process of the
road resources represented by the flows of vehicles traveling
between the offloading spots. This allocation should match
the performance requirements of the offloaded data transfers,
while guaranteeing a fair distribution of the road resources
to the data transfers. Finally, we must guarantee reliable
data transfers through retransmissions. Updates of allocation
decisions are also required for maintaining high utilization in
the face of changes in the road traffic.

We develop two novel algorithms implemented at the
controller to realize our centralized architecture. The first
algorithm copes with the complexity of the road network and
the large number of trips by computing a logical map of the
offloading infrastructure from the vehicle flows between the
offloading spots. The second algorithm is the vehicle flow
allocation that performs a fair allocation of the offloading
demands on the logical map. We formulate this algorithm
as a max-min fairness allocation problem. By solving this
problem, the controller determines the optimal network paths
that accommodate the requirements of each offloading de-
mand. A network path consists of a sequence of offloading
spots and the road segments connecting them together. The
controller dictates the behavior of each offloading spot by
installing the forwarding states resulting from the allocation
procedure. Forwarding states enable offloading spots to assign

the data to vehicles traveling the corresponding network paths
such that it guarantees a fair allocation of the road resources.
Finally, we ensure reliable data transfers by recovering from
vehicles failing to deliver data to the next offloading spot or
the final destination. The controller manages the reliability
of the data transmission using both redundancy techniques
(e.g., RAID level 6) and retransmission mechanisms (e.g.,
Automatic Repeat reQuest).

In a nutshell, the contributions of this paper are:
• Centrally controlled vehicular backhaul. We propose a

centralized architecture that enables scalable and adaptive
control of the road network to offload traffic.

• Road resource allocation. We design an allocation pro-
cedure that selects vehicle flows to match the performance
requirements of offloading demands.

• Reliable data transfers. We combine redundancy and re-
transmission mechanisms to recover data losses occurring
when vehicles fail to deliver the data they transport.

• Real-world evaluation. We evaluate our approach for
multiple offloading demands assigned on the French road
network using actual road traffic counts.

The architecture we propose leverages logical centralization
to enable efficient configuration of the road network to offload
bulk data transfers. Our results show that data transfers in the
order of Petabytes can be offloaded on the roads over distances
of several hundreds of kilometers.

The rest of this paper is organized as follows. We give an
overview of our offloading system in Section II. In Section III,
we motivate the SDN-like architecture and introduce the
functions of its components. We then present the vehicle flow
allocation procedure with the implementation of the compo-
nent functions in Section IV. We evaluate the performance of
our offloading system with actual traffic counts in Section V.
Section VI provides a review of the related work. We then
discuss our results and the open issues in Section VII. In
Section VIII, we conclude the paper with a summary and give
an outlook of future work.

II. DATA OFFLOADING USING OFFLOADING SPOTS

The offloading system we propose relies on the use of pri-
vate vehicles equipped with storage capacities in combination
with a collection of fixed wireless data storage devices referred
to as offloading spots (as illustrated in Figure 1). Vehicles
are equipped with one or more removable storage devices
such as magnetic disks or other non-volatile solid-state storage
devices.

The vehicles transport data for the account of content
providers in exchange for their normal routine (e.g., to
synchronize backup data between remote data centers they
operate). A service provider is in charge of supervising the
offloaded transfers then charged to the content providers. The
service provider also provides incentives to the vehicle owners
for the data they transport (e.g., through a “get paid to drive”
program). The revenues generated by the offloaded transfers
balance the operational costs associated with the deployment
of the offloading infrastructure and its maintenance.

We define data cargo as the data carried by each vehicle in
its storage device. The flow of vehicles so equipped acts as a

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 3

mechanical backbone connecting offloading spots. These latter
are located where vehicles park for long enough as part of their
line of travel, including on-street parking spots, parking lots,
or gas stations.

An offloading spot is a fixed device offering short- to
medium-term data storage. Data is transloaded from a con-
ventional data network to the road network and stored until
shipped to destination by empty vehicles. We take advantage
of the parking time to opportunistically load on or unload
data from vehicles while stopped at the offloading spots.
Offloading spots and vehicles are both equipped with wireless
communication interfaces to support short-range radio data
exchanges. In the case of electric vehicles, the offloading spots
may be located at battery charging stations such as the ones
operated worldwide by ChargePoint.4 In this case, each spot
in the station is equipped with wireless transmission devices to
allow concurrent transfers when multiple vehicles are parked
at the same time.

Offloading spots remove the need of relying on a single
vehicle making the trip all the way from the source to the des-
tination of a data transfer. The data is stored until transferred
to a subsequent empty vehicle heading toward the intended
destination. As a result, data may be transferred to multiple
vehicles following different trajectories, thus increasing the
utilization of the road resources.

Our offloading system capitalizes on the many segments
of trips connecting consecutive pairs of offloading spots. By
allowing the data to hop-on and hop-off at any offloading
spot along the route between the source and destination, our
system is expected to maximize the capacity resulting from the
combined storage of all the vehicles. The offloading spots take
the decision whether to load data on or off vehicles according
to forwarding states installed by an SDN-like controller. The
offloading spots act similarly to forwarding engines under the
direct authority of the controller. The next section describes
the SDN centralized architecture we propose for efficient data
offloading onto the road network.

III. SDN CENTRALIZED CONTROL

We first motivate the use of software-defined networking
(SDN) and then describe the main components of our vehicle-
based offloading architecture as shown in Figure 2. We also
fully detail the operation of each component required to
offload data traffic on the road network.

A. SDN-enabled road network management

We leverage the advantages of the logical centralization pro-
vided by SDN to enable efficient control of the infrastructure
to offload bulk delay-tolerant data from a data network. SDN
provides the logistics including planning, implementing, and
controlling for the effective and efficient transportation of data
over the road network [7].

Following SDN’s original design, our architecture consists
of two components: a central controller and the offloading
spots acting as forwarding entities. These components are

4http://www.chargepoint.com/

Offloaded data
(background

traffic) Offloading spot
management

Data transfer
demands

Offloading spot

Controller

Data
destination

Data
source Interactive and elastic traffic

Source s
offloading spot

Destination t
offloading spot

Fig. 2: Centrally-controlled data haulage to offload bulk transfers of delay-
tolerant data between two data centers.

depicted in Figure 2. The controller receives the demands
to offload data transfers onto the road network. Each de-
mand specifies the volume and delay requirements for the
corresponding data transfer. The controller computes the road
path consisting of a sequence of offloading spots connected
by flows of empty vehicles whose number and speed match
the data transfer requirements. The controller connects to the
offloading spots and installs the forwarding states needed to
select the vehicles that will carry the data to their final desti-
nation with respect to the transfer requirements. The controller
also configures the scheduling policy that determines in which
order to assign data transfers if multiple transfers traverse the
same offloading spot.

The functions undertaken by each component are described
in the remainder of this section.

B. Controller

The controller maintains a holistic logical view of the
offloading infrastructure, including the offloading spots and
dynamics such as the traffic volumes on the road paths con-
necting the offloading spots. It may leverage traffic forecasting
techniques such as the ones we present in Section IV-A or
services such as Here5, TomTom6, or Airsage7 to characterize
the road paths in terms of bandwidth and to update its
logical view. The controller uses this logical view to allocate
the offloading demands and to make efficient use of the
road resources. For reliability purposes, the controller keeps
track of the progress of the data transfers at the offloading
spots through a low-capacity control channel (e.g., using a
cellular network, or long-range technologies such as SigFox8

or LoRa9) [8]. Information about the data transfers includes
the cargo waiting to be picked up at offloading spots and the
cargo in transit.

The controller also receives statistics about the vehicles
parking at offloading spots, including the historical locations
of the vehicles made available via the navigation system.
The historical locations are stored in a geographic database
managed by the controller to help the offloading spots predict
the remaining itinerary of the parking vehicles and determine
the next offloading spot they are more likely to visit on their

5https://www.here.com/business/traffic
6http://automotive.tomtom.com/en/connected-services/tomtom-traffic
7http://www.airsage.com/Products/Traffic-Insights/
8http://www.sigfox.com/
9https://www.lora-alliance.org/

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 4

ActionMatch

Controller

Offloading spot

Traffic
forecasting
services

Flow table

Local
storage

(available
data) Cargo data

Cargo data metadata
Floating car data
GPS data

Metadata
of data

waiting for
transshipment

Historical
database

Pickup
 available data
Keep
Remove
Drop-off
 cargo data

Pickup

Drop-off

Report
statistics

Customer
information

Fig. 3: Forwarding at an offloading spot when a vehicle is parking.

route. In Section VII-B, we review the existing techniques to
predict the future direction of the parking vehicles.

C. Offloading demands

The controller receives demands to offload part of or all
the data belonging to a transfer on the road network. Each
demand specifies the volume and delay requirements for the
corresponding data transfer, as well as the entry and exit
points. Upon receiving a request to offload a data transfer, the
controller computes the optimal road network paths by solving
the vehicle flow allocation problem as a multi-commodity
flow allocation model (presented in Section IV-C). A road
network path consists of a sequence of offloading spots that
can accommodate the data transfer requirements. Solving the
allocation problem also defines how much data to allocate to
the flow of vehicles traveling the stretches of road connecting
consecutive offloading spots along the road network paths.

D. Offloading spots

Data is offloaded from a traditional data network to the
closest offloading spot using a border dray transfer system.
Different techniques to implement such a system are presented
in Section VII. Offloading spots are featured with storage
capabilities where data is stored until transferred to a parking
vehicle via short-range radio. As depicted in Figure 3, subse-
quent offloading spots act as data relay boxes where the data
are dropped off for later pick-up by subsequent empty vehicles.
The decision of dropping off or picking up data are dictated
by the controller and results from matching the direction of
the passing vehicles against the destination of the transfer the
data belongs to. As so, the offloading spots act as forwarding
engines that select empty vehicles based on their destination to
move the offloaded data toward their final destination. Vehicle
selection is also driven by the efficient use of the road network
resources shared among concurrent offloaded data transfers.

Flow tables. The flow tables determine the forwarding be-
havior of an offloading spot. They match the direction of
the parking vehicles and the destination of the available data
cargo with a direction. They consist of a list of entries, each
installed for an individual data transfer. The controller adds a
new entry in the flow table of the offloading spots located on
the road network paths computed for a data transfer. A flow

Infer vehicle
direction

Direction
matches any
flow entry?

Yes

Get information on
data transfers

Yes

Yes

Cargo data
matches a flow

entry?

No

No

Remove cargo data

Load data on
vehicle (pickup)

No

NoBuffer cargo data in
the local storage

Vehicle carrying
cargo data?No

Yes

No

Select available data
corresponding to

the flow entry

Incoming vehicle

Perform no action

Load cargo data off
vehicle (drop-off)

Yes

Vehicle carrying
cargo data?

Direction
matching any

available
data?

Fig. 4: Forwarding process at an offloading spot.

table entry contains the next hop offloading spot to which the
data must be forwarded to reach the destination of the data
transfer corresponding to this entry. As depicted in Figure 3,
a flow table entry also contains a list of actions to perform
on the data. Common actions include loading data on or off
the vehicles while parking close to the offloading spot. The
controller defines these actions based on the information the
offloading spots report on the flows of vehicles.

Forwarding process. The forwarding process determines the
data cargo to load on the vehicles parking at the offloading
spots from the available cargo waiting to be picked up. It is
represented by the flowchart depicted in Figure 4. Upon the
arrival of a vehicle, an offloading spot uses the controller to
determine the future direction of the vehicle and checks if
it matches one entry of its flow table. If none of the entries
matches, the vehicle unloads, if any, its data cargo onto the
offloading spot storage for future pick-ups and continues its
journey without performing any further actions. If multiple
entries match the direction of an empty vehicle, the offloading
spot selects one entry based on the scheduling strategies
presented in Section IV-D. After selecting one of the entries,
the offloading spot performs the actions specified in the entry.
If the vehicle already carries data, the offloading spot checks
if this data belongs to the data transfer represented by the
matching entry. If so, the vehicle keeps its cargo and continues
its journey. A copy of the cargo is buffered at the offloading
spot for reliability purposes. Otherwise, the vehicle unloads its
cargo at the offloading spot before resuming its journey. In case
the vehicle arrives empty, the offloading spot checks if some
data matching the vehicle direction was locally transshipped

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 5

Controller
Demand allocation
Reliability control
Offloaded data

1a

2a 2b

3b 4b
Demand issu

ed

Destination t
offloading spot

Source s
offloading spot

Leakage

3a

Fig. 5: Controller-to-offloading spot communication for the hop-by-hop
(dashed arrows 1a-3a and 2b-4b) and end-to-end (dashed arrows 1a, 4b)
retransmission strategies.

by a previous vehicle or transloaded from the conventional
data network. If such data is waiting to be shipped, the data
is transferred to the vehicle. Otherwise, the vehicle continues
its journey empty loaded.

E. Reliability

The offloading spots keep a copy of the data for later
recovery in case the vehicle unexpectedly changes direction
before reaching the next offloading spot, runs into an accident,
or breaks down. Such events result in data losses that we take
into account by introducing a parameter named data leakage.
To mitigate the effects of data leakage, the controller uses
retransmission and redundancy mechanisms.
Retransmissions. Retransmissions of the data cargo completely
recover from vehicles failing to deliver the data cargo to the
intended offloading spots. We propose a hop-by-hop (hbh)
retransmission strategy, as depicted in Figure 5. With this
strategy, each offloading spot buffers data for later recovery
in case a vehicle fails to deliver its cargo to the next-hop
offloading spot. This could result from errors in the prediction
of its future direction. In Section VII-B, we review existing
techniques to reduce errors in the prediction and to limit
the number of retransmissions needed. The controller receives
acknowledgments over a feedback channel from the next-hop
offloading spot (indicated by dashed arrows 2b, 3b, and 4b
in Figure 5) and notifies the previous offloading spot when to
retransmit the missing data (indicated by dashed arrows 1a, 2a,
and 3a in Figure 5). After a predefined number of attempts,
a loss is repaired via the original data network (from where
data was first transloaded) to make sure the deadline specified
in the offloading demand can be met.
Redundancy. To limit the number of retransmissions, we also
use redundancy mechanisms, such as RAID. Redundancy
reduces the effect of data leakage by transferring redundant
copies of the data, in addition to the original data. The
number of redundant copies is determined by the redundancy
mechanism (e.g., for one piece of data, two copies are needed
with RAID 1, while RAID 6 adds two redundant copies to an
array of n data, n−2 being available before redundancy). We
determine the data overhead resulting from the retransmission
and redundancy mechanisms in Section IV-B.

IV. VEHICLE FLOW ALLOCATION

In this section, we complete the functions of the controller
by describing the allocation procedure of the flows of vehicles

Max-min fairness
multicommodity
flow allocation

Incoming demand to
offload data transfer

Current allocated
demands

Install forwarding
states

Select paths in the
offloading overlay

Data forwarding
procedure

Report stats

Historical
customer patterns

Historical
database

Offloading overlay
computation

Origin-Destination
trip matrix

Traffic
forecasting
services

Logical link
characterization

Road map reduction

Data transfer
allocation
procedure

Offloading spotController

Fig. 6: Interactions between the functions of the controller and those of the
offloading spots.

to the offloaded data transfers. A chart of the interactions
between the functions of the controller with those of the
offloading spots is provided in Figure 6. The allocation proce-
dure involves a reduction of the map complexity we detail
in the next section. We then model the allocation of the
offloading demands on the road network by accounting for the
overhead of the retransmission and redundancy mechanisms
that ensure reliable data delivery. We also give more insights
into the scheduling policies used by an offloading spot to serve
concurrent data transfers.

A. Road map reduction

The controller receives the demands to offload data transfers
onto the road network. It assigns then data to vehicles accord-
ing to their trajectories and also in sufficient number to match
the transfer requirements. Prior to the allocation decisions,
the controller creates a logical representation resulting from a
mapping algorithm. The output of this algorithm is an overlay
network that captures the topology of the road network as well
as its traffic volumes. Nodes in the overlay network correspond
to the offloading spots and are connected through logical
links. A logical link corresponds to multiple road paths in the
underlying road network. Each logical link is characterized by
its capacity, transit time, and data leakage.

The overlay network, termed offloading overlay, reduces
the complexity of the road network and its high volume
of circulating vehicles. The offloading overlay provides the
controller with an abstract view of the resources (the flows of
vehicles) to be allocated to the offloading demands. This view
allows the use of linear programming techniques to solve the,
otherwise intractable, problem of allocating the vehicle flows
to offloaded data transfers.

In the following, we characterize the logical links of the
offloading overlay by expressing the flows of vehicles traveling
between adjacent offloading spots in terms of bandwidth. The
flows of vehicles are given by an origin-destination matrix
between the offloading spots. However, the dataset we use
in our simulations only gives the traffic counts in terms of
the number of vehicles per unit of time for a set of stretches
of road. Therefore, our algorithm leverages traffic forecasting

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 6

techniques from transportation research to estimate the origin-
destination matrix of the offloading spots from the traffic
counts. The algorithm consists of the following four steps.

1) Route determination. The first step consists in selecting
a subset of the alternative routes connecting each pair
of adjacent offloading spots in the road network. The
selection consists in choosing the k-shortest routes in
terms of travel time. The routes are also selected such
that they share a low degree of similarity in terms
of stretches of road in common. We implement this
selection process by using the algorithms proposed by
Abraham et al. [9].

2) Route assignment. The second step consists in assigning
weights to the selected routes using the C-logit route
assignment model [10]. The value of a weight is deter-
mined according to properties such as the travel time
and the distance of the route. Those weights reflect
the capacity of a route in attracting traffic, the higher
the weight of a route the more traffic it will receive.
The weights are then used in combination with the
traffic counts to estimate the traffic volume of the routes
selected in the first step between each pair of adjacent
offloading spots.

3) Trip matrix estimation. In the third step, we use the
entropy maximization model proposed by Zuylen and
Willumsen to compute the origin-destination trip matrix
consisting of all pairs of offloading spots in the offload-
ing overlay [11]. This model determines the most likely
distribution of the traffic across all the routes selected in
the first step subjected to the traffic counts of the routes’
stretches of road and the C-logit weights.

4) Logical link characterization. Finally, we determine the
attributes of each logical link (i, j) in the offloading
overlay. These attributes are relevant to the allocation of
the vehicle flows. The attributes are as follows:

• Capacity c(i, j). The capacity of (i, j) represents
the combined storage of all vehicles traveling be-
tween i and j. The capacity also reflects the market
penetration ratio, i.e., the ratio of vehicles equipped
with data storage devices.

• Travel time t(i, j). The transit time is computed as
the travel time average for each route selected in
the first step between i and j and weighted by the
route weights computed in the second step.

• Leakage l(i, j). The leakage represents the ratio of
vehicles that fail to deliver the data they transport
to the next offloading spot.

In the rest of this paper, we assume that the capacity
of the offloading spots is not limited and that there are no
constraints on the number of transfers they can serve. Each
vehicle transports a cargo of size σ. An offloading demand dst
represents a request to offload a data transfer between source s
and destination t. The demand is characterized by the amount
of data βst and the deadline τst before which the transfer
should be completed. For simplicity, we model the rate of the
demands at s by a Poisson distribution λst and its mean value
is the average throughput βst/τst. We denote by Pst the set of

TABLE I: Table of notations for the vehicle flow allocation problem

Variable Meaning
D Set of all offloading demands to allocate
dst Offloading demand between source s and destination t
τst Deadline to transfer the data of offloading demand dst
βst Amount of data to transfer for offloading demand dst
λst Poisson arrival rate at the source for offloading demand dst
Pst Set of simple paths between s and t on the offloading overlay
σ Storage capacity of the vehicles

c(i, j) Capacity of logical link (i, j)
t(i, j) Transit time on logical link (i, j)
l(i, j) Leakage of logical link (i, j)

lred
st (i, j) Leakage of logical link (i, j) with redundancy for offloading

demand dst
ored
st Weight of the redundancy mechanism on the flow for offload-

ing demand dst
oret
st (i, j) Weight of the retransmission mechanism on the flow at

logical link (i, j) for offloading demand dst
Rst(i, j) Average number of transmissions of a data cargo on logical

link (i, j) for offloading demand dst
δi data waiting time at offloading spot i

f(p) Flow on logical path p
t(p) Travel time of logical path p
Ost Overhead of the offloading demand dst

all possible logical paths between the source and destination,
respectively s and t. Each logical path p ∈ Pst consists of a
sequence of logical links connecting adjacent offloading spots
in the offloading overlay. We list the notations we use in the
rest of this paper in Table I.

B. Reliability overhead

In this section, we express the overhead resulting from the
reliability mechanisms we use to mitigate the effects of data
leakage, namely redundancy and retransmissions.

RAID redundancy. Without loss of generality, we use RAID 6
to partially recover from losses resulting from a vehicle failing
to deliver its data cargo to the next offloading spot (equivalent
to a disk failure with the typical use of RAID 6). RAID 6
divides the βst data of an offloading demand dst into N arrays
of n ⩾ 4 cargo. An array consists of two redundant cargo for
n−2 cargo payloads. Therefore, a data transfer of N RAID 6
arrays requires nN vehicles, including 2N vehicles carrying
redundant cargo to recover the losses in the N(n − 2) other
vehicles.

RAID 6 redundancy increases the data overhead by a factor
ored
st . For a data transfer involving exactly n data cargo arranged

in N arrays, we express ored
st as follows [12]:

ored
st =

n

n− 2
· (1)

The data carried by n vehicles whose storage devices are
arranged in RAID 6 and traveling the logical link (i, j)
experiences a reduced data leakage denoted lred

st (i, j). We
express lred

st (i, j) in terms of l(i, j) (i.e., the data leakage (i, j)
without data redundancy protection) as follows [12]:

lred
st (i, j) = 1−

2∑
k=0

(
n

k

)
l(i, j)k

(
1− l(i, j)

)n−k
. (2)

Note that this expression assumes a data linkage equivalent to
the failure likelihood of a storage device, which is consistent
as both are independent and identically distributed.

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 7

We will explain how n (the number of storage devices per
array) is computed at the end of this section, as it depends on
the total amount of transmitted data (including redundant data
and the additional copies introduced by the retransmissions for
recovering losses that RAID cannot repair).
SR-ARQ retransmissions. In addition to data redundancy, we
use SR-ARQ (Selective-Repeat ARQ) to fully recover the
losses that RAID cannot recover [13]. With the hop-by-hop
strategy, the controller is informed of loaded vehicles leaving
offloading spot i. A copy of the data is stored by i until
successfully transmitted to j, the next-hop offloading spot.
If no acknowledgment is received from j after t(i, j) + ε (ε
constant), the controller notifies i to retransmit the missing
data. In the rest of this section, we will consider a noiseless
feedback control channel between the offloading spots and the
controller.

The hop-by-hop strategy introduces an overhead correspond-
ing to the average number of transmissions Rst(i, j) needed
to successfully deliver a data cargo on logical link (i, j). We
express Rst(i, j) as follows [13]:

Rst(i, j) =
1

1− lred
st (i, j)

· (3)

In the following, we will use oret
st(i, j) ≡ Rst(i, j) to

represent the overhead of the retransmission mechanism over
logical link (i, j). Note that, while oret

st(i, j) and Rst(i, j)
have the same value, they have different semantics: the former
represents an overhead on the allocated flows, whereas the
latter represents the number of transmissions on a logical link.
Determination of the array size n. RAID 6 redundancy dis-
tributes the data across arrays of n data cargo with n greater
than 4. The total number of data cargo n is defined so as
to minimize the data overhead Ost needed to ensure reliable
transfer in response to offloading demand dst:

n = max
{
4, argmin

n
{Ost}

}
.

The reliability overhead Ost for demand dst is expressed
as the summation of the retransmission overhead oret

st(i, j) of
the logical links (i, j) followed by the data cargo, weighted
by the redundancy overhead ored

st :

Ost = ored
st

∑
p∈Pst

(i, j)∈p

oret
st(i, j).

We propose to determine the optimal value of n by computing
the resulting overhead, for each value of n in [4, 50]. The
optimal value of n is the one that minimizes the resulting
overhead Ost for demand dst. The larger the leakage on logical
links (i, j), the larger the resulting retransmission overhead
oret
st(i, j), and the smaller n, as the redundancy must take

account of the additional retransmissions.

C. Vehicle flow allocation procedure

The controller receives the demands to offload data transfers
characterized by their performance requirements. The task
of the controller consists in selecting the empty vehicles
traveling in the direction of the transfer destinations such

that (i) the number of vehicles is sufficient to meet the
transfer requirements and (ii) the allocation of the vehicles’
combined storage is efficient and fair among the competing
transfers. To this end, the controller starts by computing the
logical paths consisting of a sequence of logical links selected
according to their properties as specified in the offloading
overlay. The controller then configures the offloading spots
along the selected logical paths.

In the following, Pst denotes the set of candidate logical
paths between s and t. Each logical path p ∈ Pst consists of a
sequence of logical links connecting pairs of offloading spots
in the offloading overlay. The travel time t(p) experienced by
the cargo assigned to successive vehicles over logical path
p is determined by the sum of two components: the transit
component and the waiting component. The transit component
is the sum of the transit time of each logical link in p. The
waiting component is the sum of the waiting times experienced
at each offloading spot connecting those logical links. We
express t(p) as a function of Rst(i, j), the average number
of transmissions to successfully deliver a cargo from i to j
for demand dst, as follows:

t(p) =
∑

p∈Pst

(i, j)∈p

Rst(i, j)[δi + t(i, j)], (4)

where δi is the waiting time at offloading spot i, large enough
to transfer σ data between the vehicle and the offloading spot.
Linear programming formulation. We formulate the vehicle
flow allocation procedure as a linear programming (LP) model
that determines the logical paths matching the performance
requirements of the offloading demands. The LP shown in
Figure 7 consists in allocating f(p) flows of data on the
vehicles traveling the logical paths listed in Pst. We first
present the inputs and then the allocation strategy we use
in the allocation procedure. The strategy relies on the multi-
commodity flow allocation problem we formulate as a linear
programming model.
Inputs. The vehicle flow allocation procedure takes the setD of
all demands to offload a data transfer on the road network. This
set includes the previous demands already allocated in addition
to the new demands. The allocation procedure also takes as
input Pst, the set of candidate logical paths between each pair
s and t for all demands in D. To enumerate the logical paths
in Pst, we propose to use Yen’s k-shortest paths algorithm
or a breadth-first search algorithm. In our simulations, we
reduce the search space by considering the logical paths sorted
according to the transit time of a single data cargo. The
offloading overlay and the properties of each logical link (e.g.,
capacity, transit time, and data leakage) are also inputs of the
allocation procedure.
Procedure. The controller allocates f(p) flows to the logical
paths of Pst for each demand and according to the Max-Min
fairness strategy. The Max-Min fairness strategy proceeds by
successive iterations. The first iteration allocates the minimum
flows to satisfy the requirements of the demands (given by the
first constraint in the MCF function). The following iterations
successively allocate the remaining capacity of the network to
the demands that can receive more flows. More specifically,

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 8

Input: Offloading demands D = {dst}, each between s
and t characterized by βst and τst
Set Pst of possible logical paths between s and t
Average transit time t(p) on logical path p
Capacity c(i, j) of logical link (i, j)

Output: Flow allocation A = {f(p)} to logical paths p

Procedure Allocation :
L← {Logical links (i, j)}
{f(p)} ← Max-Min Fairness(D, L)
return {f(p) : p ∈ Pst, (s, t) ∈ D}

Function Max-Min Fairness(D, L) :
Initialization: U ← D; i← 0; A← ∅
while U ̸= ∅ do

Maximize the i-th smallest allocation:
ϕi ← MCF(D, C, U, i, A)

Perform non-blocking test:
Ai ← Non-Blocking Test(U, A, ϕi)

Fix the allocation of demands in Ai to ϕi

U ← U\Ai

i← i+ 1

return {f(p) : p ∈ A}

Function MCF(D, C, U, i, A) :
Maximize ϕi

Subject to:∑
p f(p)

(
τst − t(p)

)
≥ βst ∀(s, t) ∈ D

ϕi −
∑

p f(p)
(
τst − t(p)

)
≤ 0 ∀(s, t) ∈ U

ϕk −
∑

p f(p)
(
τst − t(p)

)
= 0 ∀(s, t) ∈ Ak,

ϕk constant,
k = 0, . . . , i− 1∑

s, t o
red
st

∑
p

[
oret
st(i, j)f(p)

]
≤ c(i, j) ∀(i, j) ∈ L,

p s.t. (i, j) ∈ p
return {ϕi} ∪ {f(p) : p ∈ Pst, (s, t) ∈ D}

Fig. 7: Vehicle flow allocation procedure.

iteration i maximizes the minimal flow allocation noted ϕi

and fixes the allocation for the demands that cannot be better
served, i.e., because of the capacity constraints of the paths or
if the demand requirements are already satisfied. The following
iterations process the remaining demands. To determine for
which transfers the current allocation can be further increased,
we use the non-blocking test algorithm presented in Figure 8.

The core of the Max-Min fairness algorithm is the MCF
function shown in Figure 7. The MCF function computes the
multi-commodity flow allocation for the remaining demands.
The first constraint matches the amount of data that can be
offloaded within the deadline τst to the amount of data to
transfer βst. The following constraint ensures that the demands
belonging to the sets Ak, k ∈ [0, i − 1] keep the same
allocation they received at previous steps k. The objective of
the MCF function is to maximize the minimum allocation ϕi

such that all demands are satisfied. This objective is further
guaranteed by the third constraint of the linear problem. Fi-
nally, the last constraint limits the total allocation of the paths
crossing the logical links to the logical link capacity. Note that
this constraint takes the overhead of the retransmission and the
redundancy mechanisms into account.

Once the allocation ϕi fixed by the MCF function for
iteration i, the Max-Min fairness algorithm determines which

Input: Set U of demands allocated at step i
Set A of demands allocated at steps k < i
Allocation ϕi of step i

Output: Set Ai of commodities in U that cannot be
allocated more than ϕi in any solution

Function Non-Blocking Test(U, A, ϕi) :
Demands that have been satisfied are allocated:

Di = {(s, t) s.t.
∑

p f(p)
(
τst − t(p)

)
= βst}

U ← U\Di; Ai = Di

Demands allocated more than ti can be increased:
Ui ← {(s, t) s.t.

∑
p f(p)

(
τst − t(p)

)
> ϕi}

Test the allocation of the remaining demands:
foreach demand (s, t) ∈ U\(Ai ∪ Ui) do

Solve the following linear program:
Maximize

∑
p∈Pst

f(p)

Subject to:∑
p f(p)

(
τst − t(p)

)
≥ βst ∀(s, t) ∈ D

ϕk −
∑

p f(p)
(
τst − t(p)

)
= 0 ∀(s, t) ∈ Ak,

ϕk constant,
k = 0, . . . , i− 1∑

s, t o
red
st

∑
p

[
oret
st(i, j)f(p)

]
≤ c(i, j) ∀(i, j) ∈ C,

p s.t. (i, j) ∈ p
if
∑

p∈Pst
f(p)

(
τst − t(p)

)
≤ ϕi then

Ai ← Ai ∪ {(s, t)}
else

Ui ← Ui ∪ {(s, t)}

return Ai

Fig. 8: Non-blocking test for the Max-Min fairness allocation procedure.

demands can be further increased in their current allocation
using the non-blocking test algorithm shown in Figure 8. The
non-blocking test is derived from the algorithm proposed by
Pióro et al. [14]. This test compares the maximal throughput
of the flows allocated by a multi-commodity flow allocation
to the one resulting from the minimal flow allocation ϕi. If
the multi-commodity flow allocation improves the maximal
amount of data allocated to a demand, the demand is non-
blocking and will be fixed in the next iterations of the Max-
Min fairness algorithm. Otherwise, the demand cannot be better
increased, and it is fixed to ϕi. In case the requirements of a
demand are satisfied, the flows allocated to this demand can be
further increased because of the first constraint of the multi-
commodity flow function in Figures 7 and 8. As a result, the
transfer will be completed before the deadline provided in the
demand.

For backlogged demands, the amount of data is infinite
(i.e., βst = ∞). As a result, the demand rate is also infinite
(i.e., λst = ∞). In order for the above formulation of the
multi-commodity flow to remain valid, we need to ignore the
first constraint in the MCF function that satisfies the demand
requirements.

If the ratio βst/τst of a demand dst is larger than the
aggregated flows of vehicles

∑
p∈Pst

f(p) traveling the logical
paths p between s and t, the demand cannot be allocated. In
this case, the multi-commodity flow allocation does not give
any solutions. As a result, an access control policy could make
sure that the demand requirements are compatible with the
capacity offered by the system. If the demand is not feasible,
the policy can negotiate a larger deadline or a smaller amount
of data to transfer.

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 9

D. Data scheduling

Multiple entries in the flow table of an offloading spot i
may match the direction of a vehicle. Each entry corresponds
to different data transfers or the same transfer spanning many
paths in the road network. The offloading spot selects which
data cargo to load on the stopping vehicle according to the
weighted fair queuing scheduling policy configured by the
controller, resulting from the allocation procedure output.
We denote by f(dk, pl) the data flow on logical path pl
allocated to the transfer resulting of offloading demand dk. The
controller assigns a weight w(dk, pl) to the transfers allocated
to the logical paths in Pi, j = {(dk, pl) | ∀dk ∈ D, pl ∈
Pdk

, (i, j) ∈ pl}. Pi, j is the set of logical paths passing by
offloading spot i and sharing the same next-hop offloading
spot j. The controller computes w(dk, pl) by normalizing the
rate of flow f(dk, pl) with the total rate of the flows traveling
all paths in Pi, j :

w(dk, pl) =
f(dk, pl)∑
p∈Pi, j

f(p)
· (5)

The weights are used with a scheduling algorithm to de-
termine in which order to assign the cargo to a passing
vehicle if multiple transfers traverse the same offloading
spot. In our simulations, we considered a weighted round
robin scheduler [15] and a probabilistic weighted fair queuing
scheduler [16]. While they both have the same throughput
performance, we found that the former better distributes the
data amongst vehicles. The weighted round robin scheduler
helps overcome bufferbloat and improves the end-to-end delay
performance.

V. EVALUATION ON THE FRENCH ROAD NETWORK

In this Section, subsections V-A through V-B describe the
setup and subsections V-C through V-E present the results.
The objective of the simulation is to evaluate three metrics: (i)
maximum throughput to evaluate the capacity of our offloading
system, (ii) delay to transfer pre-defined amounts of data
depending on the number of offloading spots involved in the
data transfers, and (iii) fairness of the allocation of concurrent
transfers when using logical paths with similar lengths.

We consider the allocation procedure in the context of a net-
work of charging stations for electric vehicles deployed across
France. Data is loaded on and off the vehicles while charging
their batteries. We evaluate the performance resulting from
the different allocation strategies presented in Section IV-C.
The maximum throughput is expressed as the number of data
cargo of an arbitrary size delivered per second and the end-
to-end delay is for a data cargo size of σ = 1 Pb. In the rest
of this section, we consider a conservative market penetration
ratio of 10%. The market penetration ratio represents the share
of vehicles equipped with storage capabilities and ready to
participate in the data offloading. We also set the waiting time
δi = 30 minutes at each offloading spot i. This waiting time
corresponds to the time needed to provide up to 300 km of
range when an EV is charging its battery.10 This time allows

10https://www.tesla.com/supercharger

0 150 300
km

Road traffic/day
 1322 - 7534

 7603 - 15984
16675 - 34214
34732 - 124157
Offloading spots
Roads

Bordeaux

Paris

Lyon

Marseille

Offloading demands

Fig. 9: Deployment plan of charging stations and offloading overlay represent-
ing the network of charging stations for electric vehicles deployed to cover the
roads of France. The thickness of the lines are proportional to the computed
capacity of the logical links.

1 Tb transfers using state-of-the-art high-throughput wireless
technology (e.g., MIMO 802.11ac) between the EV and the
charging station [17].

A. French highway dataset

We implement a realistic deployment plan of charging
stations covering all of France as depicted in Figure 9. The
charging stations are located 150 km apart and their placement
is determined by solving a facility allocation problem [18]. The
resulting network of charging stations helps extend the driving
range of the electric vehicles, while minimizing the number of
charging stations. We feed the road map reduction algorithm
presented in Section IV-A with actual traffic counts provided
by the AADT (Annual Average Daily Traffic) of the major
roads in France covering a combined distance of 20,000 km.11

The resulting offloading overlay is shown in Figure 9.

B. Vehicle flow allocation

We evaluate the performance of the transfers resulting
from the allocation of three offloading demands on top the
offloading network consisting of charging stations deployed
in France as described above. The three demands are shown
in Figure 9: (i) dA from Paris to Lyon with arrival rate λA,
(ii) dB from Paris to Bordeaux with arrival rate λB , and (iii)
dC from Paris to Marseille with arrival rate λC . Note that the
road paths followed by the transfers resulting from demands
dA and dC share the same logical links in the offloading
network; as so dA and dC are competing over those links.
We use SUMO [19] to simulate microscopic vehicular traffic
and run our simulations, which each lasts 300,000 seconds
(3.5 days), including 43,200 seconds (12 hours) of warmup,
to give time for the first data cargo to reach their destination.
Data leakage is assumed to be the same for all logical links
in the offloading overlay with a default value of 30% unless
otherwise noted. We considered the same simulation run for
each of the experiments by recording the events when a vehicle
arrives to and departs from an offloading spot.

11Census of the road traffic on the French road network in 2011 (in French):
http://tinyurl.com/otfbewv

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 10

Without controller With controller

0.00

0.05

0.10

0.15 hop-by-hop

0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
Logical link leakageTh

ro
ug

hp
ut

 (d
at

a
ca

rg
o

/ s
ec

on
d)

allSimulated
allAllocated

Fig. 10: The maximum throughput achieved for offloading demands dA, dB
and dC (depicted in Figure 9) as a function of the logical link data leakage
(assumed to be the same on all the logical links).

C. Maximum throughput

To assess the need of a controller, we consider two schedul-
ing strategies, without a controller and with a controller, to
select the data transfer and to determine the amount of data
to load on the vehicles passing by each offloading spot. The
strategy with a controller consists in selecting the data transfers
in a round-robin order locally at each offloading spot, while
the strategy with a controller relies on the Max-Min fairness
allocation presented in Section IV-C. For both strategies, we
evaluate the maximum throughput achieved by each transfer
dA, dB , and dC .

To evaluate the maximum throughput that the system can
achieve, we consider an infinite backlog traffic generated at
the data sources (placed in Paris) for each demand (i.e., λA =
λB = λC = ∞). We evaluate the maximum throughput for
each strategy and the hop-by-hop retransmission mechanism
introduced in Section III-E.

We plot the maximum throughput in Figure 10 as a function
of the data leakage for the hop-by-hop retransmission mecha-
nism. The maximum throughput achieved for each of the trans-
fers is expressed in terms of data cargo delivered per second.
We represent the results of the simulations performed with
SUMO following the Max-Min fairness allocation procedure
with a controller.

Firstly, we examine the maximum throughput resulting from
the strategy without a controller. We can see that this strategy
does not guarantee a fair throughput distribution among the
transfers resulting from the three demands. The maximum
throughput for demand dC is lower compared to the ones
achieved for demands dA and dB . As depicted in Figure 9, dA
and dC compete for the same resources, as they both follow
road paths sharing common logical links. The strategy without
a controller allocates the flow of vehicles traveling those links
to the respective destinations of dA and dC without taking
into account that destination of demand dC is farther away
compared to demand dA. Thus, this strategy favors dA at
the expense of demand dC . The data transfer resulting from
demand dB is not affected by the unfairness of the strategy
since the flow of vehicles allocated to dB travel separate
logical paths compared to demands dA and dC . We can also
note that the resulting maximum throughput for demands dB
and dA share the same values since destinations of both
transfers are equally distant from their source.

Road traffic/day
(normalized)

 0.0 - 0.25
 0.25 - 0.5

0.5 - 0.75
0.75 - 1.0
Offloading spots
Roads

Offloading demands

Bordeaux

Paris

Lyon

Marseille

Bordeaux

Paris

Lyon

Marseille

Bordeaux

Paris

Lyon

Marseille

Bordeaux

Paris

Lyon

Marseille

(a) Two hops (b) Three hops

(c) Four hops (d) Five hops

Fig. 11: Representation of the allocation of demands dA, dB , and dC resulting
of the strategy with controller with different values for the maximal length of
the candidate logical paths.

Secondly, we examine the strategy with a controller. We can
see that this strategy performs better than the strategy without
a controller in terms of cumulative throughput. This result is
the direct consequence of the design of the strategies. Recall
that the controller allocates the flows of vehicles by solving
the Max-Min fairness allocation presented in Section IV-C.
The higher performance of the strategy with a controller
further confirms its need compared to an architecture without
a controller.

The results also confirm that the strategy with a controller
guarantees a fair allocation among the transfers resulting from
the three offloading demands. Indeed, by design, the strategy
with a controller uses the Max-Min fairness allocation model,
which achieves a fair allocation of the flows of vehicles
among all data transfers. For cargos of 1 Tb in size, the
allocation resulting from the strategy with a controller gives
a cumulative throughput of 114 Gbps when using the hop-by-
hop retransmission mechanism with a conservative 30% data
leakage, which amounts to 38 Gbps per transfer on average.

D. Number of offloading spots per data transfers

In a second step, we examine the impact of the number of
offloading spots on the duration needed to satisfy demands
dA, dB , and dC . We now consider that each demand requests
a transfer of 10 PB of data without specifying any deadline,
and each vehicle can transport a data cargo of size σ =1 Tb.
The flows of vehicles are allocated to each demand according
to the strategy with a controller. Data losses are recovered
by using the hop-by-hop strategy given that all logical links
share a data leakage of 30%. The results are shown by the
bar plot in Figure 12. We measure the transfer duration for
dA, dB , and dC as a function of the maximal length of
the logical paths followed by each transfer expressed by the
number of offloading spots. We also measure the mean travel
time of a 1 Tb cargo which corresponds to the cargo size
of a vehicle. Our objective is to show the fairness of the
strategy with a controller in the allocation of the transfers as
a function of the degree of similarity of the paths they follow.

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 11

0

1

2

3

1 2 3 44 5 6 7

Number of hops

D
ur

at
io

n
to

 tr
an

sf
er

 1
0

Pb
of

 d
at

a
(d

ay
s)

Demands

1 Tb data cargo
travel time

Fig. 12: The duration needed to complete a 10 Pb transfer (in lighter colors)
and the travel time of a 1 Tb data cargo (in darker colors) as a function of
the candidate path maximal length in terms of hops.

We examine the results in Figure 12 together with Figure 11
where we represent the logical paths allocated for each demand
depending on the maximal length of the candidate paths.

We observe that none of the three destinations can be
reached with a one-hop logical path. By increasing the logical
path maximal length up to two hops, Lyon becomes the only
city that can be reached, as shown in Figure 11a. The high
duration for dA is due to the low number of paths available
and therefore of allocable vehicles, which results in a low
throughput. If we consider logical paths of three hops or less,
Bordeaux is now reachable in addition to Lyon. Figure 11b
shows that, in addition to the two-hop paths, there are more
candidate paths between Paris and Lyon. As a result, more
vehicles are allocated to dA which decreases its transfer
duration. Regarding transfer dB , the long transfer duration is
explained by the few logical three-hop paths connecting Paris
to Bordeaux in a similar way to dA and the logical paths
of two-hop maximum length. With four-hop logical paths,
Marseille is now also reachable, as shown in Figure 11c.
Nevertheless, the number of four-hop logical paths is still
limited between Paris and Marseille, in a similar way as the
two-hop paths to Lyon and the three-hop paths to Bordeaux.
What is more, Marseille is located farther away from Paris
compared to Lyon and dC competes for logical paths already
passing by Lyon. This results in a longer transfer duration
for dC but also in an increase of dA transfer duration. At
the same time, increasing the length of the candidate paths to
four hops enables the allocation of more logical paths between
Paris and Bordeaux, which results in a clear decrease in the
transfer duration of dB . This decrease is also explained by the
low degree of similarity between the logical paths allocated to
dB and those allocated to dA and dC , as shown in Figure 11c.
Finally, with logical paths of five hops and more, the transfer
durations are equivalent among all the demands. This further
confirms that the strategy with controller guarantees a fair
allocation in terms of throughput among all the demands. A
slight increase in the transfer duration for all demands follows
each increment in the number of hops as a direct consequence
of the longer logical paths followed by all transfers. A similar
trend can be observed for the travel time of 1 Tb cargo. Note
that for paths of five hops and more, a deadline τst = 3 days

0 150 300
km

Road traffic/day
 1322 - 7534

 7603 - 15984
16675 - 34214
34732 - 124157
Offloading spots
Roads
Offloading sources
and destinations

Bordeaux

Paris

Lyon

Marseille
Toulouse

Perpignan

Basel

Strasbourg

Lille

Rennes

Nantes

Fig. 13: Traffic matrix to be allocated among the cities represented on the
map.

is sufficient to transfer the data of each demand.

E. Complete traffic matrix

We increase the stress on our system by allocating concur-
rent demands, all issued among the eleven cities represented
in Figure 13. We use the strategy with a controller to allocate
the demands at the same time and consider again the hop-by-
hop retransmission mechanism, given a 30% data leakage for
all logical links.

This results in a total of 110 concurrent demands to allocate
on the French roads. We represent in Figure 14 the throughput
resulting from the Max-Min Fairness allocation procedure for
each transfer, expressed as the number of cargo data delivered
per second times 1,000. We first note that the minimum
throughput allocated to the demands is 0.0038 data cargo per
second, which is equivalent to 3.8 Gbps for data cargo of
size σ = 1 Tb. Secondly, the total aggregated throughput is
equal to 0.822 data cargo per second, which is almost three
times greater than the aggregated throughput of the experiment
presented in Section V-E (compared to 0.11 data cargo per
second). Since the demands cover a larger area of the road
network, they get more capacity than the demands of the
previous section. Thirdly, we notice that some demands receive
significantly more throughput than other demands. This is the
case of the following demands, listed as source-destination
pairs: (Marseille, Lyon), (Paris, Nantes), (Rennes, Paris), and
(Rennes, Nantes). These demands benefit from high-capacity
logical paths of a few hops that correspond large highways in
the road network.

VI. RELATED WORK

A. Delay-Tolerant Networking

Our work shares some features with the paradigm of delay
tolerant networks (DTNs), which leverages on the mobility of
a wide range of entities including vehicles. The main focus of
the research on DTN has been on routing in sparse, partially
connected networks operating in challenging environments
where low node density and lack of infrastructure have moti-
vated the introduction of the so-called store, carry, and forward
principle. Data is transported by mobile nodes and passed on
hop-by-hop asynchronously when a node encounters another
peer. Encounters between nodes are seen as opportunities for

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 12

6.51

6.72

6.51

3.8

17.18

17.18

6.72

9.49

6.51

3.8

6.51

6.51

31.83

3.8

6.51

6.51

6.51

6.51

6.72

3.8

6.72

6.51

6.51

3.8

6.72

6.72

6.72

6.72

6.51

3.8

6.51

40.87

6.51

3.8

6.51

6.51

6.51

6.51

6.72

3.8

3.8

3.8

3.8

3.8

3.8

3.8

3.8

3.8

3.8

23.04

17.18

6.51

6.72

6.51

3.8

29.14

6.72

9.49

6.51

3.8

17.18

6.51

6.72

6.51

3.8

29.14

6.72

9.49

6.51

3.8

6.72

6.51

6.72

6.51

3.8

6.72

6.72

6.72

6.51

3.8

9.49

6.51

6.72

6.51

3.8

9.49

9.49

6.72

6.51

3.8

6.51

6.72

6.51

6.72

3.8

6.51

6.51

6.51

6.51

3.8

3.8

3.8

3.8

3.8

23.04

3.8

3.8

3.8

3.8

3.8

BASEL
BORDEAUX

LILLE
LYON

MARSEILLE
NANTES

PARIS
PERPIGNAN

RENNES
STRASBOURG

TOULOUSE

BASEL

BORDEAUX
LIL

LE
LY

ON

MARSEIL
LE

NANTES
PA

RIS

PERPIG
NAN

RENNES

STRASBOURG

TOULOUSE

Origins

D
es

tin
at

io
ns

10 20 30 40
Allocated demands
(throughput in data cargo / second x 1000)

Fig. 14: Traffic matrix of the cities depicted in Figure 13 with the throughput
of allocated demands expressed in terms of data cargo per second × 1000.

forwarding data until eventual delivery to remote locations
with poor or non-existing connections.

DakNet [20] proposes to bring asynchronous Internet con-
nectivity to rural villages by relying on mobile access points
(MAP) consisting of portable storage devices mounted on
buses, motorcycles, or bicycles acting as data carriers between
kiosks and Internet access points called hubs. A MAP ex-
changes data whenever in the vicinity of a kiosk where data
is collected from or delivered to residents in the surrounding
area. Whenever the MAP comes within range of a hub, data is
then uploaded to or downloaded from the Internet. An example
of real deployment of such network is the UMass DieselNet
testbed [21]. DieselNet is a DTN network consisting of 40
buses equipped with WiFi capabilities serving the surrounding
area of UMass Amherst campus. The testbed was used to
measure and to model the intermittent connectivity between
buses, as well as to evaluate MaxProp, a routing protocol
for delay-tolerant networks. In the case of MaxProp, the data
forwarding results from local decisions made by each bus
according to a Delivery Likelihood estimation based on history
information about past meetings with other buses.

The MULE (Mobile Ubiquitous LAN Extensions) architec-
ture aims to provide connectivity within sparse sensor net-
works by exploiting the random mobility of humans, animals,
and vehicles [22]. The MULE architecture enables oppor-
tunistic collection of sensed data from the source sensors to
central repositories for analysis purposes. Instead of relying on
random node mobility, Zhao et al. proposed the use of small,
inexpensive battery-powered devices equipped with storage
and wireless interfaces called throwboxes [23]. Throwboxes
enhance the delivery likelihood of DTN networks by increas-
ing the contact opportunities when placed at strategic loca-
tions. A mobile node can offload its messages to the closest
throwbox where it will be stored until transmitted later to
another mobile node. The forwarding decision which amounts
to transmit a message to and from a throwbox requires the
knowledge of the node mobility.

In a companion work, Zhao et al. considered special mobile
nodes, called message ferries acting as relays in charge of
carrying data between disconnected nodes [24]. The mobility
of the message ferries is controlled so they get closer to other

nodes and enhance the data delivery ratio.
While most research achievements on DTNs have focused

on the forwarding strategies or the prediction of node mobility
to enhance the delivery success in sparse networks, our work
leverages the increasing number of private vehicles and miles
traveled to overcome the capacity limitation of conventional
data networks such as the Internet by offloading large data
cargo on the road network.

B. Offloading techniques

Offloading techniques aim at using alternative communica-
tion channels to relieve and assist conventional data networks
from large amounts of data. These techniques were originally
proposed in the context of cellular networks such as 3G/4G
LTE, to use complementary wireless communications such as
WiFi to access the Internet [25]. There are two ways to carry
out the offloading. The first is to use fixed WiFi access points
to provide additional and efficient connectivity to mobile users.
This technique is used by major carriers with deployed access
points to relieve their cellular networks [26]. In the context of
vehicular Internet access, Balasubramanian et al. proposed to
study the feasibility of data offloading from 3G base stations
using these WiFi access points [27]. The second is to use direct
communications between mobile users, thus creating a delay-
tolerant network. The data delivered from the cellular base
stations to a small fraction of mobile users, either humans or
vehicles, that will in turn disseminate the data as they move
and encounter other users [28], [29].

While these offloading techniques aim to provide an alterna-
tive access to the Internet to mobile users, our system creates
an alternative communication channel from the movements of
private vehicles carrying data. In our use case, we use this
channel to deliver massive amounts of data between remote
locations. Related offloading approaches propose to exploit the
mobility of airline passengers traveling on scheduled flights
to transfer data between airports [30]. In this approach, data
is loaded on passenger phones before take-off and unloaded
when they land at their destination. Another proposal suggests
shipping data stored on hard drives packed in parcels using the
postal service [31]. Contrary to the aforementioned vehicle-
based delay tolerant networks, those proposals use mobile
entities dedicated to passenger transportation or parcel deliv-
ery. They exhibit thus deterministic and predictable mobility
patterns resulting from the predefined schedules they follow.
In our work, the control and management of a vehicular
offloading system are made more challenging due to the non-
deterministic mobility of the private vehicles we exploit along
their line of travel.

C. Transportation research

An alternative solution to our offloading system consists
in operating a fleet of trucks dedicated to the door-to-door
transportation of data. To make up for the restricted size
of the fleet in comparison to the number of private cars
being operated on the roads, trucks should be equipped with
higher capacity data storage and higher data-rate wireless
communication capabilities compared. An offloading service

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 13

provider may be in charge of planning the delivery routes
performed by the fleet of trucks so equipped. The allocation of
the resources (in this case, the dedicated trucks) to transport
the data parcels refers to the transportation problem [32], a
common problem in transportation research. If data needs to
be shipped across a sequence of intermediate transport hubs
before reaching final destination, the problem refers then to
the transshipment problem [33], also a very common problem
in transportation research.

VII. FURTHER IMPLEMENTATION ISSUES

A. Transloading phase

As shown in Figure 1, the data have to be transloaded, that
is transferred both from its source (e.g., a data center) to the
first edge offloading spot of the transfer and from the last
edge offloading spot to the data destination (e.g., a remote data
center). Note that the transloading is equivalent to the first and
last mile of the access networks in an Internet-based transfer.
The transloading can be carried out by different means:

• Dedicated lines (e.g., optical fiber channels) can be set
up between the different locations that specifically need
transloading. This solution seems adapted to connect
locations that require continuous large data transfers.
Although, it may not fit temporary data transfers, as it
is a costly solution (e.g., the sources and destinations of
a data transfer are only temporary).

• Dedicated vehicles may provide transloading between the
different locations. These vehicles would be equipped
with storage and communication capabilities, with the
data size and rates greater in magnitude than the private
vehicles we consider in the paper.

B. Prediction of a vehicle’s direction

The forwarding process at the offloading spots relies on the
itinerary prediction of the stopped vehicles. The itinerary gives
the next stop the vehicle will make at another offloading spot.
The current offloading then uses this information to select the
available data cargo to load in the vehicle’s storage. Most of
the previous work on modeling and predicting transportation
routines rely on the location history of the drivers: drivers often
go where they have been before. In our offloading system, we
can leverage the central controller that gather information from
the offloading spots.

Some vehicles may be equipped with a route planner device
programmed to give an itinerary to the destination intended
by the driver. The drivers may share their planned itinerary
with the offloading spot, which includes the planned route and
intended destination of the vehicle.

Historical databases managed by the controller log the stops
the participating vehicles made at the offloading spots. The
future route of the vehicle can be predicted by knowing
partial trajectories of the vehicles, using probabilistic tools,
such as Hidden Markov Models [34], maximum entropy [35],
or Bayesian networks [36], [37]. The partial trajectories of
the vehicles can be known through the successive locations
recorded by the route planner device.

The current road traffic in the vicinity of the offloading spot
can help predict the most likely routes vehicles will take [38].
The offloading spot offloads the information collected on the
vehicles to the controller. The controller then infers the next
stop the vehicle will most likely make and determines the
traffic flow to which the vehicle belongs. The decision is
transmitted to the offloading spot, which selects the data cargo
to load on the vehicle. The selection follows the scheduling
algorithm derived from the installed forwarding states.

VIII. CONCLUSION AND PERSPECTIVES

In this paper, we take advantage of the bandwidth resulting
from the mobility of private vehicles equipped with storage
capabilities to offload massive amounts of delay-tolerant traffic
from the Internet. We propose an SDN-based architecture
consisting of a controller and a collection of fixed wireless data
storage devices called offloading spots acting as forwarding
engines. The controller receives the demands to offload all or
part of a data transfer and selects the flows of vehicles con-
necting a sequence of offloading spots that match the transfer
performance requirements in terms of bandwidth and latency.
The controller computes the sequence of offloading spots by
solving the vehicle flow allocation problem with a Max-Min
fairness allocation and connects to those offloading spots to
install the forwarding states and configures the scheduling
strategy.

We leverage on the advantages of the logical centralization
provided by SDN to alleviate the complexity of the road
network topology and the large number of vehicular trips. SDN
allows flexible and scalable configuration of the offloading
infrastructure for efficient and fair allocation of the vehicles’
combined storage among the competing transfers. We evaluate
our approach with simulated road traffic for multiple offload-
ing demands assigned on the French road network using actual
road traffic counts. With only 10% of vehicles equipped with
1 Tb of storage, our results show that several Petabyte of data
can be offloaded in a single transfer covering several hundreds
of kilometers, while delivered in less than a day.

As future work, we plan to extend our architecture by
transferring the forwarding capabilities of the offloading spots
to the vehicles, as data can be exchanged without requiring
stationary data relays. We also intend to equip vehicles with
sensing and processing capabilities, as they can be turned into
mobile sensors in the context of smart cities and the Internet
of things.

REFERENCES

[1] B. Baron, P. Spathis, H. Rivano, M. D. De Amorim et al., “Vehicles
as big data carriers: Road map space reduction and efficient data
assignment,” in IEEE VTC-Fall, Vancouver, Canada, Sep. 2014.

[2] B. Baron, P. Spathis, H. Rivano, and M. D. de Amorim, “Offloading
massive data onto passenger vehicles: Topology simplification and traffic
assignment,” to appear in IEEE/ACM Transactions on Networking, 2016.

[3] Cisco Visual Networking Index (VNI), “Forecast and methodology,
2015-2020,” Jun. 2016.

[4] J. Hecht, “The bandwidth bottleneck that is throttling the Internet,”
Nature, vol. 536, no. 7615, p. 139, Aug. 2016.

[5] E. Nygren, R. K. Sitaraman, and J. Sun, “The akamai network: a
platform for high-performance internet applications,” ACM SIGOPS
Operating Systems Review, vol. 44, no. 3, pp. 2–19, 2010.

SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, AUGUST 2016 14

[6] N. Laoutaris, G. Smaragdakis, R. Stanojevic, P. Rodriguez, and R. Sun-
daram, “Delay-tolerant bulk data transfers on the Internet,” IEEE/ACM
Transactions on Networking, vol. 21, no. 6, pp. 1852–1865, Jan. 2013.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” in ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, Mar. 2008, pp. 69–74.

[8] M. Anteur, V. Deslandes, N. Thomas, and A.-L. Beylot, “Ultra narrow
band technique for low power wide area communications,” in IEEE
GLOBECOM, San Diego, CA, USA, Dec. 2015.

[9] I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck, “Alternative
routes in road networks,” ACM JEA, vol. 18, pp. 1.3:1–17, Apr. 2013.

[10] E. Cascetta and A. Nuzzolo, “A modified logit route choice model
overcoming path overlapping problems: specification and some cali-
bration results for interurban networks,” in Internaional symposium on
transportation and traffic theory, Lyon, France, Jul. 1996.

[11] H. J. Van Zuylen and L. G. Willumsen, “The most likely trip matrix
estimated from traffic counts,” Elsevier Transportation Research Part
B: Methodological, vol. 14, no. 3, pp. 281 – 293, Sep. 1980.

[12] P. Chen, E. Lee, and G. Gibson, “RAID: High-Performance, Reliable
Secondary Storage,” ACM Computing, 1994.

[13] S. Lin and D. J. Costello, Error control coding. Prentice-hall Englewood
Cliffs, 2004.

[14] M. Pióro, P. Nilsson, E. Kubilinskas, and G. Fodor, “On efficient max-
min fair routing algorithms,” in IEEE ISCC, Kemer, Turkey, Jun. 2003.

[15] M. H. Ammar and J. W. Wong, “The design of teletext broadcast cycles,”
Elsevier Performance Evaluation, vol. 5, no. 4, pp. 235–242, 1985.

[16] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit
round-robin,” IEEE/ACM Transactions on Networking, vol. 4, no. 3,
pp. 375–385, 1996.

[17] R. Van Nee, “Breaking the gigabit-per-second barrier with 802.11 ac,”
IEEE Wireless Communications, 2011.

[18] C. Toregas, R. Swain, C. ReVelle, and L. Bergman, “The location of
emergency service facilities,” INFORMS Operations Research, vol. 19,
no. 6, pp. 1363–1373, 1971.

[19] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo-
simulation of urban mobility-an overview,” in SIMUL, Barcelona, Spain,
Oct. 2011.

[20] A. Pentland, R. Fletcher, and A. Hasson, “Daknet: Rethinking connec-
tivity in developing nations,” IEEE Computer, vol. 37, no. 1, pp. 78–83,
Jan. 2004.

[21] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “MaxProp: Rout-
ing for vehicle-based disruption-tolerant networks,” in IEEE INFOCOM,
Barcelona, Spain, Apr. 2006.

[22] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data mules: Modeling and
analysis of a three-tier architecture for sparse sensor networks,” Elsevier
Ad Hoc Networks, vol. 1, no. 2, pp. 215–233, Sep. 2003.

[23] W. Zhao, Y. Chen, M. Ammar, M. Corner, B. Levine, and E. Zegura,
“Capacity enhancement using throwboxes in DTNs,” in IEEE MASS,
Vancouver, BC, Canada, Oct. 2006.

[24] W. Zhao, M. Ammar, and E. Zegura, “A message ferrying approach
for data delivery in sparse mobile ad hoc networks,” in ACM MobiHoc,
Tokyo, Japan, May 2004.

[25] F. Rebecchi, M. D. De Amorim, V. Conan, A. Passarella, R. Bruno, and
M. Conti, “Data offloading techniques in cellular networks: a survey,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 580–603,
2015.

[26] J. Research, “Data Offload Connecting Intelligently,” White Paper,
2013.

[27] A. Balasubramanian, R. Mahajan, and A. Venkataramani, “Augmenting
mobile 3g using wifi,” in ACM Mobisys, San Francisco, CA, USA, Jun.
2010.

[28] Y. Li, G. Su, P. Hui, D. Jin, L. Su, and L. Zeng, “Multiple mobile
data offloading through delay tolerant networks,” in ACM International
Workshop on Challenged Networks (CHANTS), Las Vegas, NV, USA,
Sep. 2011.

[29] F. Rebecchi, M. D. de Amorim, and V. Conan, “Droid: Adapting to
individual mobility pays off in mobile data offloading,” in IEEE/IFIP
Networking Conference, Trondheim, Norway, Jun. 2014.

[30] A. Keränen and J. Ott, “DTN over aerial carriers,” in ACM CHANTS,
Beijing, China, 2009.

[31] R. Y. Wang, S. Sobti, N. Garg, E. Ziskind, J. Lai, and A. Krishnamurthy,
“Turning the postal system into a generic digital communication mech-
anism,” in ACM SIGCOMM Computer Communication Review, vol. 34,
2004, pp. 159–166.

[32] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the Society for Industrial & Applied Mathematics,
vol. 5, no. 1, pp. 32–38, Mar. 1957.

[33] B. Hoppe and É. Tardos, “The quickest transshipment problem,” IN-
FORMS Mathematics of Operations Research, vol. 25, no. 1, pp. 36–62,
Feb. 2000.

[34] R. Simmons, B. Browning, Y. Zhang, and V. Sadekar, “Learning to
predict driver route and destination intent,” in IEEE ITSC, Toronto, ON,
Canada, Sep. 2006.

[35] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in AAAI, Chicago, IL, USA,
Jul. 2008.

[36] L. Liao, D. J. Patterson, D. Fox, and H. Kautz, “Learning and inferring
transportation routines,” Elsevier Artificial Intelligence, vol. 171, no. 5,
pp. 311–331, 2007.

[37] J. Krumm and E. Horvitz, “Predestination: Inferring destinations from
partial trajectories,” in Springer UbiComp 2006: Ubiquitous Computing,
Orange County, CA, USA, Sep. 2006.

[38] G. Xue, Z. Li, H. Zhu, and Y. Liu, “Traffic-known urban vehicular
route prediction based on partial mobility patterns,” in IEEE ICPADS,
Shenzhen, China, Dec. 2009.

Benjamin Baron is a researcher working at UPMC Sorbonne Universités. He
received his Ph.D. in Computer Science from UPMC in 2016. His research
interests include the study and design of delay-tolerant networks in mobile
environments.

Prométhée Spathis is an associate professor at UPMC Sorbonne Universités
since 2005. He received his Ph.D. in Computer Science from UPMC in 2003.
His main research interest is in the study of data kinematics in large-scale
mobile systems.

Hervé Rivano is a senior INRIA researcher. He is the head of the Inria
Agora team in the Inria/INSA Lyon CITI laboratory. He graduated from Ecole
Normale Supérieure de Lyon in 2000 and got his Ph.D. from University of
Nice Sophia Antipolis in 2003. His research interests include combinatorial
optimization applied to Smart Cities networks design and provisioning.

Marcelo Dias de Amorim (http://www-npa.lip6.fr/˜amorim)
is a CNRS Research Director at the LIP6 Computer Science laboratory
from UPMC Sorbonne Universités. His research interests focus on mobile
networked systems.

Yannis Viniotis received his Ph.D. from the University of Maryland, College
Park, in 1988 and is currently a Professor with the Department of Electrical
and Computer Engineering at North Carolina State University. Dr. Viniotis is
the author of over one hundred technical publications, including two engineer-
ing textbooks. He has served as the cochair of two international conferences
in computer networking. His research interests include virtualization, service
engineering, IoT and design and analysis of stochastic algorithms as they
apply to network management. Dr. Viniotis was the cofounder of Orologic,
a successful startup networking company in Research Triangle Park, NC,
that specialized in ASIC implementation of integrated traffic management
solutions for high-speed networks.

Mostafa H. Ammar (F02) received the S.B. and S.M. degrees from the
Massachusetts Institute of Technology, Cambridge, MA, USA, in 1978 and
1980, respectively, and the Ph.D. degree in electrical engineering from the
University of Waterloo, Waterloo, ON, Canada, in 1985. He is a Regents
Professor with the College of Computing, Georgia Institute of Technology
(Georgia Tech), Atlanta, GA, USA. He has been with Georgia Tech since
1985. His research interests are network architectures, protocols, and services.
He has contributions in the areas of multicast communication and services,
multimedia streaming, content distribution networks, network simulation, dis-
ruption tolerant networks, mobile cloud computing and network virtualization.
He has published extensively in these areas and, to date, graduated 35 PhD
students. He served as the Editor-in-Chief of the IEEE/ACM TRANSACTIONS
ON NETWORKING from 1999 to 2003. He is a Fellow of the ACM.

