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Abstract 16 

Ensemble niche modelling has become a common framework to predict changes in 17 

assemblages composition under climate change scenarios. The amount of 18 

uncertainty generated by the different components of this framework has rarely been 19 

assessed. In the marine realm forecasts have usually focused on taxa representing 20 

the top of the marine food-web, thus overlooking their basal component: the 21 

plankton. Calibrating environmental niche models at the global scale, we modelled 22 

the habitat suitability of 106 copepod species and estimated the dissimilarity between 23 

present and future zooplanktonic assemblages in the surface Mediterranean Sea. 24 

We identified the patterns (species replacement versus nestedness) driving the 25 

predicted dissimilarity, and quantified the relative contributions of different uncertainty 26 

sources: environmental niche models, greenhouse gas emission scenarios, 27 

circulation model configurations, and species prevalence. Our results confirm that the 28 

choice of the niche modelling method is the greatest source of uncertainty in habitat 29 

suitability projections. Presence-only and presence-absence methods provided 30 

different visions of the niches, which subsequently lead to different future scenarios 31 

of biodiversity changes. Nestedness with decline in species richness is the pattern 32 

driving dissimilarity between present and future copepod assemblages. Our 33 

projections contrast with those reported for higher trophic levels, suggesting that 34 

different components of the pelagic food-web may respond discordantly to future 35 

climatic changes. 36 

 37 

Introduction 38 

The last decade witnessed the emergence of environmental niche models as a 39 

popular tool for studying biogeography and macroecology (Zimmermann et al. 2010; 40 

Brotons 2014). Environmental Niche Models (ENMs) refer to a wide array of 41 

statistical methods that enable scientists to empirically relate the distribution of a 42 

species to a suite of abiotic predictors in order to approximate its environmental niche 43 

(sensu Hutchinson 1957). The constructed models can be used to infer areas of 44 

potential habitat suitability for the species within, or outside, its known spatial range 45 

(Guisan and Zimmermann 2000; Owens et al. 2012). In a context of climate change, 46 

ENMs have been increasingly coupled with climate models to forecast future 47 

changes in species habitat suitability and distributions (Pearson and Dawson 2003; 48 

Guisan and Thuiller 2005; Brotons 2014). ENMs can be used to identify regions with 49 



potential diversity losses or gains, and can therefore help in determining priority 50 

areas for biodiversity management (Bellard et al. 2012).  51 

The niche modelling procedure is sprinkled with decisional steps, from the initial 52 

conditions to the projections. Each step requires a decision among alternative 53 

options, and each option has a consequence on the final inference, thus generating 54 

variability (or uncertainty) around the mean projection (Araújo and New 2007; 55 

Beaumont et al. 2008). Uncertainty maps are often not provided with ENMs 56 

predictions (Rocchini et al. 2011). Studies quantifying and mapping uncertainties 57 

associated with niche models predictions are scarce and are generally based on 58 

terrestrial taxa such as New World birds (Diniz-Filho et al. 2009), freshwater fishes in 59 

France (Buisson et al. 2010), African vertebrates (Garcia et al. 2012), and European 60 

trees (Goberville et al. 2015). While these studies have identified the choice of the 61 

statistical technique to be the main driver of uncertainty, there is still no consensus 62 

on the best model. Ensemble forecasting has therefore been suggested as a solution 63 

to handle the variability of predictions based on different methods (Araújo and New 64 

2007). But distinct modelling strategies often rely on different theoretical assumptions 65 

and data properties (e.g. presence-only versus presence-absence data, or distance-66 

based versus regression-based methods), and therefore may not approximate the 67 

same facet of a species niche (Soberón and Nakamura 2009; Sillero 2011). 68 

Consequently, more research is needed to summarise the relative importance of the 69 

different choices made within the niche modelling framework (i.e. aims of the study, 70 

species’ ecological properties, ENM type and complexity, data characteristics etc.). 71 

Oceans play a key role in regulating Earth’s climate (Sabine et al. 2004) and provide 72 

energetic and food resources for people throughout the world. Since climate change 73 

is threatening marine biodiversity and the associated ecosystem services (Hoegh-74 

Guldberg and Bruno 2010; Gattuso et al. 2015), it is crucial to better understand how 75 

species may respond to environmental fluctuations and how the later may impact 76 

ecosystem functioning. Additionally, marine taxa live in habitats with different 77 

characteristics compared to their terrestrial peers: there are fewer barriers to 78 

dispersal (Steele 1991), and temperature gradients are declined over much larger 79 

spatial scales. Moreover, marine taxa present original life cycles and ecological 80 

characteristics (ontogenetic shifts, spatial aggregation, mobility), as well as peculiar 81 

data properties (and biases) which may pose new challenges for niche modelling 82 

(Robinson et al. 2011). Occurrence-based niche modelling has been relatively 83 

ignored in marine ecology (Robinson et al. 2011). Rather, marine ecologists have 84 

focused on the available abundance records to model the population dynamics of 85 

high trophic level taxa and their impact on food supplies (Cheung et al. 2010), or to 86 

relate their distribution shifts to climate fluctuations (Perry et al. 2005; Pinsky et al. 87 

2013). 88 

Amid all oceanic basins, the Mediterranean Sea occupies a particular position: this 89 

semi-enclosed basin is a hotspot for biodiversity (Myers et al. 2000; Bianchi and 90 

Morri 2000) that undergoes intense human pressures (The MerMex Group 2011; Coll 91 

et al. 2012) and strong rates of warming due to anthropogenic climate change (Giorgi 92 

2006). Ongoing and future warming of the basin will likely trigger biodiversity losses 93 

across different benthic communities (Danovaro et al. 2004; Garrabou et al. 2009; 94 

Coma et al. 2009). Pelagic communities are also likely to experience alterations in 95 

species composition due to the northwards migrations of species tracking their 96 

optimal thermal niche (Sabatès et al. 2006). Northwards migration would promote the 97 

replacement of cold-water species by warm-water competitors (Ben Rais Lasram et 98 

al. 2010; Albouy et al. 2012), thus leading to alterations in the food-web structure and 99 



modifications of the functional and phylogenetic components of biodiversity (Albouy 100 

et al. 2014, 2015). However, previous projections only concerned coastal fish 101 

assemblages. Potential community shifts in the lower trophic levels (i.e. the plankton) 102 

are still lacking despite their major ecological importance. Mediterranean fishes 103 

primarily feed on mesozooplankton (Stergiou and Karpouzi 2002; Costalago et al. 104 

2014), a group that is dominated (in terms of abundance and diversity) by copepods 105 

(Siokou-Frangou et al. 2010; Mazzocchi et al. 2014). Copepods represent a key 106 

group in pelagic trophic webs and are major contributors to the marine carbon cycle 107 

(Mauchline 1998; Beaugrand et al. 2010). Climate variability has been shown to 108 

modify copepod biogeography and phenology (Beaugrand et al. 2002; Mackas et al. 109 

2012), therefore altering upper trophic levels through bottom-up processes 110 

(Beaugrand and Kirby 2010). Copepods have been identified as “beacons of climate 111 

change” (Richardson 2008) meaning they are an ideal group for monitoring changes 112 

in environmental conditions, and the ensuing ecosystem modifications. For these 113 

reasons, ENMs are appropriate and necessary tools to estimate climate change 114 

impacts on copepod assemblages (Sunday et al. 2012). 115 

Plankton belong to the taxa that are the least studied through occurrence-based 116 

niche modelling (Robinson et al. 2011). To our knowledge, only four studies have 117 

used ENMs to model species niches for oceanic phytoplankton (Irwin et al. 2012; 118 

Pinkernell and Beszteri 2014; Brun et al. 2015; Barton et al. 2016). Zooplankton has 119 

been subjected to more niche-based studies, yet nearly all ENMs were developed for 120 

the North Atlantic and they implied a limited set of model algorithms and species 121 

(Reygondeau and Beaugrand 2011; Beaugrand et al. 2013; Chust et al. 2013; 122 

Villarino et al. 2015; Brun et al. 2016). These studies have focused on predicting 123 

shifts in habitat suitability for a few species and on inferring changes in local 124 

biodiversity (α diversity). To account for changes in species assemblages 125 

composition, one can use indices of ß diversity (representing the variation of species 126 

assemblages composition; Anderson et al. 2011), and combine them with α diversity 127 

estimates to identify the patterns driving dissimilarity between present and future 128 

species assemblages (Dobrovolski et al. 2012). 129 

The aims of our study are to: (i) estimate potential shifts in zooplankton surface 130 

assemblages composition in the Mediterranean Sea under several climate change 131 

scenarios; and (ii) quantify the relative importance of uncertainty sources. Shifts in 132 

assemblages composition are derived from a set of ten ENMs, covering the majority 133 

of the commonly-used algorithms, and six different configurations of a regional 134 

circulation model. These configurations allow investigating the effects of greenhouse 135 

gas (GHG) emission scenarios and boundary forcings (BF), the consequences of the 136 

latter having never been explored before though it has been shown to be at least of 137 

the same order of magnitude as the one related to the GHG emission scenario 138 

(Adloff et al. 2015). In addition, five different levels in species prevalences are tested 139 

to investigate this potential source of substantial uncertainty (see below). 140 

  141 

Material and Methods 142 

Species data 143 

To select the copepod species to be modelled, we filtered those with more than 50 144 

occurrences in the Mediterranean Sea, based on a regional dataset (Supplementary 145 

material Appendix 1, Table A1) and, since these are not endemic, we selected only 146 

those represented globally in the Ocean Biogeographic Information System (OBIS; 147 

http://www.iobis.org), which lead to a total of 106 copepod species. Models were 148 

therefore calibrated using global data to avoid truncated distributions (Thuiller et al. 149 



2004). The species list represents nearly 20% of the total number of copepod 150 

species reported in the Mediterranean Sea (n = 560, Razouls et al. 2005-2016). Most 151 

of the missing species being rare, our species list does represent the most commonly 152 

sampled species in the basin (Siokou-Frangou et al. 2010, Mazzocchi et al. 2014). 153 

Observations were aggregated within the 0.25°x0.25° grid cells of the World Ocean 154 

Atlas 2013 (WOA13; Levitus et al. 2013). Ultimately, only the presences recorded 155 

across a defined 30-year baseline period (1965-1994) were kept. See Supplementary 156 

material Appendix 2, Table A2, for the final list of copepod species names and their 157 

corresponding numbers of global and regional occurrences after re-sampling on 158 

WOA13’s grid. 159 

 160 

Present and future climatic data 161 

Sea surface temperature (SST) and sea surface salinity (SSS) were used as 162 

environmental predictors. These variables are commonly used when modelling 163 

copepod distributions because copepods are: poikilothermic, passively dispersed, 164 

and not exploited by human activities (Richardson 2008; Reygondeau and 165 

Beaugrand 2011; Chust et al. 2013). 166 

Since the use of 30-year climatologies is often advocated for calibrating ENMs when 167 

predicting species distributions under climate change scenarios (Roubicek et al. 168 

2010; Harris et al. 2014), 30-year climatologies for the baseline period (1965-1994) 169 

were constructed as follows. First, four global seasonal (spring/summer/fall/winter) 170 

SST and SSS in situ climatologies were retrieved from the WOA13 (Locarnini et al. 171 

2013; Zweng et al. 2013; available at: https://www.nodc.noaa.gov/cgi-172 

bin/OC5/woa13/woa13.pl) at a 1/4° resolution, for each of the three decades 173 

constituting the chosen baseline periods: 1965-1974, 1975-1984, 1985-1994. For 174 

each variable, global decadal climatologies were computed by averaging the four 175 

initial seasonal climatologies. In addition, the standard deviation of SST was 176 

computed to obtain decadal climatologies of the seasonal variation of SST (σSST) for 177 

each of the three periods. The newly-defined decadal climatologies were used to 178 

compute the final estimates of average SST, average SSS, and average σSST for 179 

the 1965-1994 period, which were used to calibrate the ENMs. 180 

Future predictions of SST, SSS and σSST over the Mediterranean Sea were 181 

obtained from the regional ocean general circulation model NEMOMED8 (Beuvier et 182 

al. 2010) under multiple forcing configurations (Adloff et al. 2015). Its horizontal 183 

resolution is 1/8° (~9 to 12 km grid cells depending on latitude) and it has 43 vertical 184 

levels. NEMOMED8 has been previously used to project fish distributions under 185 

climate change scenarios (Ben Rais Lasram et al. 2010; Albouy et al. 2012; Hattab et 186 

al. 2014). 187 

This ocean model presents three main sources of boundary forcing: the Atlantic 188 

hydrography, the river runoff and the atmospheric surface fluxes. To assess 189 

projection uncertainty related to the choice of the GHG emission scenario and to the 190 

choice of the different boundary forcings, we used the 6-member ensemble scenario 191 

simulations of Adloff et al. (2015). In their numerical experiments, the origin of the 192 

model boundary forcings (surface flux, river runoff, and Atlantic hydrography) was 193 

alternatively changed, and three different scenarios of GHG emission were 194 

considered. The GHG emission scenarios used in their study are based on the 195 

Special Report on Emission Scenarios (SRES) of the Intergovernmental Panel for 196 

Climate Change (IPCC 2007). The authors’ annotations for the model runs were kept 197 

(A2, A2-F, A2-RF, A2-ARF, A1B-ARF, B1-ARF) with A2, A1B, and B1 indicating the 198 

GHG emission scenario, F the updated surface fluxes conditions, R the updated river 199 

https://www.nodc.noaa.gov/cgi-bin/OC5/woa13/woa13.pl
https://www.nodc.noaa.gov/cgi-bin/OC5/woa13/woa13.pl


runoff conditions, and A the updated Atlantic hydrography conditions. The sensitivity 200 

to each of the ocean model boundary forcings can be assessed through the “one to 201 

one” comparison among the simulations A2, A2-F, A2-RF, and A2-ARF. The 202 

comparison between A2-ARF, A1B-ARF, and B1-ARF allows to assess the 203 

uncertainty related to the choice of the GHG emission scenario. The latest IPCC 204 

report provides more recent GHG concentration scenarios (Representative 205 

Concentration Pathways RCPs; IPCC 2013), but to date there is no regionalized 206 

climate change model for the Mediterranean Sea under RCP scenarios. 207 

Monthly outputs of the ocean model were used to calculate seasonal and decadal 208 

climatologies of mean SST, mean SSS, and mean σSST following the WOA13 mode 209 

(Levitus et al. 2013) for two future 30-year periods: 2020-2049 and 2069-2098. 210 

Similarly, monthly outputs for the baseline period were used to construct additional 211 

climatologies of mean SST, SSS and σSST. These were used to compute the 212 

modelled climatological anomalies for the three environmental predictors. The 213 

modelled climatological anomalies were added to the baseline in situ climatologies to 214 

obtain future fields of SST, SSS, and σSST that are corrected for the bias between 215 

NEMOMED8 outputs and the observations. Therefore, the ENMs that were calibrated 216 

on observational climatologies were not directly projected on modelled data (Hattab 217 

et al. 2014). 218 

The final climatologies were then used to project the habitat suitabilities of the 106 219 

species in 2020-2049 and 2069-2098 using the ENMs (Fig. 1). See Supplementary 220 

material Appendix 3, Table A3, for a comparison of NEMOMED8 outputs against 221 

WOA13 observations, and a summary of the climatic anomalies used for predicting 222 

species habitat suitabilities in 2020-2049 and in 2069-2098. 223 

 224 

Environmental niche modelling and uncertainty due to species prevalences 225 

To investigate the uncertainty due to the choice of the ENM, we used ten algorithms 226 

that cover the complexity range of the commonly-used statistical methods (Merow et 227 

al. 2014): three regression-based models: Generalized Linear Model (GLM), 228 

Generalized Additive Model (GAM), Multivariate Adaptive Regression Splines 229 

(MARS); one classification-based model: Flexible Discriminant Analysis (FDA); two 230 

tree-based models: Random Forest (RF), Classification Tree Analysis (CTA); and 231 

three machine learning models: Boosted Regression Trees (BRT), Artificial Neural 232 

Networks (ANN), and Maximum entropy (MAXENT; Phillips et al. 2006). These nine 233 

models require either presence/absence (P/A) data or presence-background (P/B) 234 

data (for MAXENT, Yackulic et al. 2013; Guillera-Arroita et al. 2014). An additional 235 

presence-only (P/O) ENM was also used: Surface Range Envelope (SRE, equivalent 236 

to the Bioclim model; Busby 1991).  237 

For the nine algorithms requiring P/A (or P/B) data, pseudo-absences (psA) were 238 

randomly generated after defining both environmental and spatial weighting (Engler 239 

et al. 2004; Hengl et al. 2009), to place them in regions of lowest environmental 240 

suitability and far from the known presences (Hattab et al. 2014). The method 241 

employed to generate pseudo-absences strongly impacts ENMs outputs, and should 242 

be chosen in light of the species’ ecological characteristics (Chefaoui and Lobo 2008; 243 

VanDerWal et al. 2009; Barbet-Massin et al. 2012). Zooplankton is composed of 244 

ectotherms whose population dynamics are tightly coupled to climate (Hays et al. 245 

2005; Richardson 2008; Beaugrand et al. 2013), and whose individuals are passively 246 

dispersed over very large spatial scales in relatively short time periods (Jönsson and 247 

Watson 2016). Building on the results of Chefaoui and Lobo (2008), we chose to 248 

employ the following method to randomly draw psA.  249 



Firstly, the reverse environmental weighting was based on a P/O ecological niche 250 

factor analysis (ENFA; Hirzel et al. 2002). This multivariate ordination technique 251 

allocates a degree of similarity (ranging between 0 and 100) to each cell (at the 252 

global scale for ENM calibration) by comparing the species environmental envelope 253 

to the environmental conditions (using the three selected predictors). It therefore 254 

provides an habitat suitability index (HSI) that was used together with the distance to 255 

presences to produce the following probability distribution τ (Hengl et al. 2009): 256 

 257 

𝛕𝑥 = [
𝑑𝑥 + (100 −  𝐻𝑆𝐼𝑥)

2
]

2

 258 

 259 

with dx being the distance to presences normalized by the maximum distance, and 260 

pseudo-absences are increasingly drawn at the edge of low HSI values because of 261 

the squared term. τ was used as a probability density function to randomly simulate 262 

pseudo-absences in unsuitable habitats and further away from known presences. We 263 

argue that this method allows to draw the psA in the environment that is theoretically 264 

reachable for the studied species (as recommended by Barve et al. 2011) because at 265 

decadal time scales, planktonic communities are well-connected anywhere in the 266 

ocean, as recently demonstrated by Jönsson and Watson (2016). 267 

The chosen number of psA also impacts ENMs projections (Barbet-Massin et al. 268 

2012; Meynard et al. 2013). Considering that the regional occurrence data do not 269 

allow to approximate each species’ prevalences in the Mediterranean Sea (because 270 

of the low surface coverage of scientific cruises), we chose to draw a varying number 271 

of psA for each species. This allowed to investigate the relative amount of uncertainty 272 

related to species prevalence. Different levels of species prevalences were 273 

considered by increasing the ratio of drawn pseudo-absences over the number of 274 

presences (which was kept constant at the number of observations): 1 (npsA = nP), 275 

0.67 (npsA = 1.5*n), 0.5 (npsA = 2*nPres), 0.1 (npsA = 10*nP), and 0.02 (npsA = 276 

50*nP). These 5 prevalence levels were finally used in the variance analysis (see 277 

below) as an additional uncertainty factor, together with ENM choice, SRES, BF and 278 

the ensuing interaction terms. 279 

To account for the stochasticity in the psA generation process, 10 different psA 280 

realisations were carried out for each species (so each species presents 50 P-psA 281 

datasets). For every species and every ENMs algorithm, the 50 P/psA datasets were 282 

split into a calibration set (80%) and a testing set (20%). Models were evaluated 283 

according to the True Skill Statistic (TSS) criterion (Allouche et al. 2006) with a three-284 

fold cross-validation. See Supplementary material Appendix 4 and 5, Fig. A4-5, for 285 

the species and the ENMs evaluation scores. 286 

 287 

Mapping future shifts in species assemblages 288 

P/A distribution maps were generated from the habitat suitabilities over the 289 

Mediterranean Sea for each species (Fig. 1), and for each combination of ENM 290 

(n=10), cross-validation runs (n=3), prevalence level (n=5), pseudo-absence 291 

realisation (n=10) and hydrodynamical model’s boundary forcings (n=6). This was 292 

done for the two future time periods. Species assemblages (i.e. the sum of species 293 

modelled as present or absent in each cell grid) were built by stacking all the species 294 

P/A maps (according to the identity of the above-mentioned parameters). Species 295 

assemblages for the baseline period were simulated in the same manner, but for a 296 

single set of environmental conditions (WOA13 baseline climatologies). 297 



By comparing the present to the future assemblages, indices of community shifts 298 

related to α and ß diversity were computed within each grid cell: difference in species 299 

richness (∆SR), and Jaccard’s dissimilarity index (ßjac).  300 

For each period, the sum of the species modelled as present was used to estimate 301 

species richness. ∆SR was computed as the difference between future species 302 

richness and the baseline species richness, and was used to assess whether climate 303 

changes would promote or weaken copepod α diversity. 304 

Pairwise Jaccard’s dissimilarity index (ranging between 0 and 1) is given by: 305 

 306 

ß𝑗𝑎𝑐 =  
𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐
 307 

 308 

where a is the number of species present at both time periods, b is the number of 309 

species present in the baseline period only, and c is the number of species present in 310 

the future time period only. It was used to assess the temporal changes in species 311 

assemblages composition. In addition, by applying the framework of Baselga et al. 312 

(2012), ßjac values were decomposed into its two additive components: nestedness 313 

(ßjne) and turnover (ßjtu). The latter expresses species replacement without the 314 

influence of ∆SR between time steps as follows: 315 

 316 

ß𝑗𝑡𝑢 =   
2min (𝑏, 𝑐)

𝑎 + 2min (𝑏, 𝑐)
 317 

 318 

The difference between ßjac and ßjtu expresses the nestedness component ßjne 319 

that accounts for the amount of dissimilarity that is due to differences in richness 320 

(ßjne = ßjac - ßjtu). It is formulated as follows: 321 

 322 

ß𝑗𝑛𝑒 =  
max(𝑏, 𝑐) −  min (𝑏, 𝑐)

𝑎 + 𝑏 + 𝑐
×

𝑎

𝑎 + 2min (𝑏, 𝑐)
  323 

 324 

Moreover, the ratio between ßjne and ßjtu (ßratio = ßjne/ ßjac) was computed and 325 

related to ∆SR in order to understand which component has the highest contribution 326 

to future changes in the species assemblages (Dobrovolski et al. 2012; Albouy et al. 327 

2012). For instance, a ßratio value greater than 0.5 indicates that the observed 328 

dissimilarity is driven by nestedness, which can occur under both increases or 329 

decreases in richness. Alternatively, a value lower than 0.5 indicates the shift is 330 

driven by species replacement. When ∆SR is positive and turnover drives the 331 

dissimilarity in the assemblage, it means that climate change promotes diversity by 332 

creating favourable conditions for species that were not present previously. When 333 

∆SR is positive and nestedness drives the dissimilarity, climate change promotes 334 

richness while not changing the initial assemblage composition. 335 

 336 

Processing novel climate conditions 337 

To identify where niches are projected into novel combinations of environmental 338 

predictors (Zurell et al. 2012; Mesgaran et al. 2014), cells where ENMs extrapolation 339 

occurs were determined according to the species Multivariate Environmental 340 

Similarity Surface (MESS; Elith et al. 2010). It enables to evaluate how dissimilar the 341 

environment used for projecting the ENMs is from the species native range (i.e. 342 

reference envelope used for ENMs calibration). The MESS maps present both 343 



positive and negative values, the later indicating the cells where novel climate 344 

conditions occur. Since the maps depend on the calibration dataset, MESS values 345 

were computed for each species and for every combination of prevalence level and 346 

future circulation model forcing conditions (i.e. SRES and BF, thus 30 maps per 347 

species). The psA realisations or the ENMs’ cross-evaluation runs do not significantly 348 

affect the MESS, so they were not taken into account when identifying novel climate 349 

conditions. 350 

Within each cell, the species presenting negative MESS values were discarded from 351 

the assemblage’s species list, and changes in α and ß diversity were computed 352 

without them. The ratio of species being discarded was computed and mapped for 353 

each prevalence and NEMOMED8 configuration (data not shown) in order to assess 354 

where non analog climates have the strongest impact. In the cases where novel 355 

conditions do not allow to predict changes in copepod diversity (because all species 356 

had to be discarded from the assemblages), the corresponding cells were left blank 357 

in the consensus projections and were ignored in the subsequent variance analysis 358 

(see below). All analyses were also carried out while ignoring MESS outputs, but as it 359 

did not alter the main results, only those obtained when accounting for non analog 360 

climates are presented. Density distributions in future Mediterranean environmental 361 

ranges were visually compared to the current ones to identify the combination of 362 

predictors that may lead to the appearance of novel climate conditions. 363 

 364 

Consensus projections and partitioning sources of uncertainties 365 

To identify the dominant patterns in assemblages shifts, consensus maps were 366 

drawn for each of the calculated indices by averaging their values within each cell 367 

and across every model run. The associated standard deviation was used to assess 368 

variability between runs as well as its spatial distribution over the basin. 369 

Three-way ANOVA was used to assess the contributions of the different uncertainty 370 

sources to the overall variability in ∆SR (Diniz-Filho et al. 2009; Garcia et al. 2012): 371 

ENMs, emission scenario (SRES), circulation model boundary forcing (BF), species 372 

prevalence, and the associated interaction terms. BF and SRES were treated 373 

separately in the variance analyses because not all BF have been coupled with every 374 

SRES. The relative amount of uncertainty attributable to the sources was estimated 375 

as the proportion of sum of squares with respect to the total sum (Diniz-Filho et al. 376 

2009; Garcia et al. 2012). 377 

The three-way ANOVA was performed in a linear mixed-effect model framework that 378 

allowed to account for the variation in effect size produced when iterating 3 cross-379 

validation runs within 10 psA realisations. 380 

To further examine how projections differ under combinations of ENMs and ocean 381 

model configurations, values of ∆SR were averaged to obtain consensus projections 382 

for each combination of BF/SRES and ENMs (e.g. SRE-A2, MAXENT-B1ARF, GLM-383 

A2F etc.). Similarity between these projections were assessed by analysing their 384 

loadings on the first principal component of an unscaled Principal Component 385 

Analysis (PCA; Legendre and Legendre 2012). 386 

All statistical analyses were conducted under the R environment (R Core Team 387 

2014) using the biomod2 package (Thuiller et al. 2013) for ENMs and the betapart 388 

package (Baselga and Orme 2012) for biodiversity indices’ estimates. 389 

 390 

Results 391 

Consensus patterns of α and ß diversity show that species nestedness with 392 

decreases in richness is the main pattern driving the dissimilarity between present 393 



and future copepod assemblages (∆SR < 0 and ßratio < 0.5; Fig. 2). Indeed, 91.63% 394 

and 95.85% of the cells exhibit a decline in species richness by 2020-2049 and 2069-395 

2098 respectively. Mean ∆SR is -2.13 for the mid-century and -5.13 for the end-of-396 

century period (mean SR for the baseline period being 75.83). The projected patterns 397 

are spatially structured. The largest decreases in richness are observed in the 398 

eastern Mediterranean (Fig. 2c-d). The few cells that show positive ∆SR (8.37% by 399 

2020-2049; 4.15% by 2069-2098) are located in the northwestern area (Gulf of Lions, 400 

Ligurian Sea), the Alboran Sea, and the northernmost parts of the Adriatic and the 401 

Aegean Seas (Fig. 2c-d), which are characterised by milder temperature and lower 402 

salinity waters, both now and in the future. Gains and losses in richness are mainly 403 

associated with nestedness. Most of Mediterranean cells show mean ßratio values 404 

higher than 0.5 for 2020-2049 (total mean ßratio = 0.63). By 2069-2098, 98,31% of 405 

the cells exhibit a higher contribution of nestedness than turnover in assemblages' 406 

dissimilarity (total mean ßratio = 0.77). Gains in species richness associated with 407 

turnover only appear in the Alboran and Marmara Seas by 2069-2098 (Fig. 2d). 408 

As shown on Fig. 2c,d, non analog conditions occur in the central Aegean Sea and 409 

the easternmost part of the Levantine basin by 2069-2098, due to non analog SSS 410 

values (future SST and σSST were always within the range of the calibration data). 411 

The entire Levantine basin is actually affected by novel salinity conditions, as nearly 412 

50% of the species had to be discarded from the assemblages, depending on the 413 

considered model forcings and prevalences (data not shown). 414 

 415 

Standard deviations of ∆SR were computed within each cell to assess its variability 416 

across runs (Fig. 3). The amplitude of the predicted losses in species richness scales 417 

with its variability (R2 = 0.54, P-value < 2.2x10-16), which is also true for the cells that 418 

exhibit positive ∆SR value (R2 = 0.59, P-value < 2.2x10-16). The strongest differences 419 

in richness and assemblage dissimilarity rates occur in the eastern part of the 420 

Mediterranean basin. Uncertainties across model runs are therefore larger for these 421 

regions. 422 

 423 

Three-way ANOVA based on linear mixed-effects models helped disentangling the 424 

relative contribution of different sources of uncertainty. For both future time periods, 425 

the choice of the ENMs explains most of the variability in projections of ∆SR (Fig. 426 

4a,b). The same result was obtained for the dissimilarity indices, and are therefore 427 

not presented. On average, the relative contribution of ENMs to the total sum of 428 

squares increases from 72.68% in 2020-2049 to 74.14% in 2069-2098, when 429 

accounting for the choice of BF. When accounting for SRES rather than BF, ENMs’ 430 

average contribution decreases from 82.25% in 2020-2049 to 68.66% in 2069-2098. 431 

The second most important contributing factors are the interaction terms, indicating 432 

divergent ENMs responses according to different BF and SRES configurations 433 

(23.16% in 2020-2049 and 17.96% in 2069-2098 when accounting for BF; 14.44% in 434 

2020-2049 and 19.81% in 2069-2098 with SRES). The choice of the BF, of the 435 

SRES, or of the prevalence level, always show mean relative contributions lower 436 

than 6%. 437 

 438 

Predicted shifts in species assemblages are mainly driven by the ENMs and their 439 

interactions with either the BF or the SRES. Therefore similarities across the ENMs’ 440 

average ∆SR projections were examined through a PCA. The first two Principal 441 

Components (PC1 and PC2) explain 87.73% of total variance. However the SRE 442 

predictions’ relative contribution to PC1 and PC2 reaches 48.85% (Fig. 5a). Since all 443 



PCs are orthogonal to one another and the P/A ENMs are contributing to non-444 

significant components, SRE projections should not be averaged together with the 445 

other methods in an ensemble forecasting framework. When averaging SRE 446 

projections, higher consensus values of negative ∆SR and nestedness are obtained 447 

(Fig. 5b). Mean ∆SR in the Mediterranean Sea for 2069-2098 decreases to -11.21 448 

while the mean ßratio increases up to 0.95. The proportion of cells exhibiting strictly 449 

positive ∆SR slightly increases from 4.15% to 7.85%. 450 

A second PCA was performed with the P/psA models’ projections only. Again, the 451 

loading coordinates are used to explore their degree of similarity in their ∆SR 452 

forecasts (Fig. 6). Examining the maps of mean ∆SR for each P/psA ENM revealed 453 

that the loadings along PC1 (64.00% of total variance) are to be interpreted as an 454 

increasing gradient in the predicted species loss. All nine p/psA ENMs present the 455 

same spatial pattern in species richness increases, while the range of their predicted 456 

decreases vary. ENMs with higher loadings on PC1 are those that predict greater 457 

declines in richness (Fig. 6). MARS projections are the most pessimistic regarding 458 

∆SR values, with all its configurations having higher loadings than the other ENMs. 459 

The more pessimistic models include MARS, CTA and ANN (in order of pessimism). 460 

The least pessimistic forecasts are produced by the remaining models: MAXENT, 461 

RF, FDA, GAM, GBM and GLM. 462 

The ENMs predicting the most negative values of ∆SR are the ones with the most 463 

variability in loadings along PC1 (MARS followed by CTA and ANN). A significant 464 

correlation was found between the ENMs average loadings and the range of loadings 465 

(the distance between the least conservative configuration (A2ARF) and the most 466 

conservative one (B1ARF) (R2 = 0.82, P-value < 0.001). This indicates the most 467 

pessimistic ENMs are also the most sensitive to the choice of the BF and SRES. 468 

 469 

Discussion 470 

In the present study, we explored the uncertainties in future composition changes in 471 

Mediterranean copepod assemblages. Different combinations of species 472 

prevalences, ENMs, circulation model boundary forcings, and emission scenarios 473 

were used to forecast shifts in species assemblages for the 21st century. Our results 474 

have implications for studies aiming to forecast changes in habitat suitability for 475 

planktonic species with ENMs, from both technical and theoretical perspectives. 476 

 477 

Main sources of uncertainties 478 

Our results are in agreement with previous studies (Diniz-Filho et al. 2009; Buisson 479 

et al. 2010; Garcia et al. 2012) that documented the variability in forecasts related to 480 

the differences between ENMs outputs (Fig. 4). The main divergence occurs 481 

between the SRE model, the sole P/O ENM considered here, and the other ENMs 482 

that were all based on P/psA (or P/B for MAXENT) data (Fig. 5). 483 

Dissimilarity between present and future assemblages was much greater when 484 

predicted by the SRE than with the other ENMs, but nestedness in species losses 485 

remained the dominant pattern driving the dissimilarity. Previous studies comparing 486 

P/O to P/A (or P/psA and P/B) methodologies consistently found SRE models to 487 

underestimate species ranges, which translated into more pessimistic forecasts of 488 

changes in richness (Pearson et al. 2006; Hijmans and Graham 2006). The SRE 489 

uses percentile distribution to draw a rectangular “box” (a range envelope) around 490 

the presence data in environmental space (Busby 1991). SRE projections depend on 491 

the overlap between the defined envelope and the future conditions, whereas P/A 492 

models (e.g. GLM-derived response curves) allow to recognise favourable areas 493 



even beyond the range of the observed presences. The large discrepancies between 494 

the SRE and the P/psA models are also due to the methodology chosen to generate 495 

psA. Environmental and spatial weightings were applied such that psA were 496 

assigned in unsuitable areas as far as possible from known presences (Hengl et al. 497 

2009). Therefore the environmental range captured by the SRE is much narrower 498 

than the one captured by the other models. 499 

The similarity between correlative ENMs along the first component of a PCA can be 500 

related to the similarity between the models’ algorithms (Fig. 6). Regression-based 501 

methods forecasts are quite similar to one another (GLM, GAM, FDA). The same is 502 

evidenced for complex classification-trees (GBM, RF). GBM predictions are similar to 503 

regression models because the algorithm used here is equivalent to boosted 504 

regression trees (Ridgeway 1999; Friedman 2001). MAXENT projections are similar 505 

to both GBM’s and regression-based models’, as its core algorithm contains a 506 

machine-learning piece (Elith et al. 2011), and it may be close to GLMs depending on 507 

the tuning of its parameters (Guillera-Arroita et al. 2014; Halvorsen et al. 2015). 508 

MARS-based projections forecasted the greatest rates of species loss among P/psA 509 

models. It may seem surprising that MARS projections were not closer to regression-510 

based models since they rely on a non-parametric regression procedure that is often 511 

seen as an extension of GLMs and GAMs (Friedman 1991; Franklin 2009). The 512 

greater species losses predicted by MARS models could be due to the first-order 513 

interactions that were enabled between the predictive variables (they were disabled 514 

for the other models). 515 

The interaction terms between ENMs and BF, and/or the choice of the SRES, were 516 

identified as the second uncertainty-generating factor (Fig. 4). The BF can have an 517 

important but very local impact, meaning it is restricted to the few cells located near 518 

the forcing fluxes (e.g. the Alboran Sea for the Atlantic hydrography, and the 519 

Northern Aegean sea for the river runoff, since the Black Sea is treated as a river in 520 

this circulation model). The sensitivity to the choice of the SRES slightly increases 521 

between the two future periods (Fig. 4b) consistently with the response of the 522 

physical variables in climate scenarios. Due to the long lifetime of anthropogenic CO2 523 

in the atmosphere, the magnitude of oceanic response is smaller in the first half of 524 

the 21st century. 525 

Our results have important implications for interpreting previous studies that have 526 

predicted shifts in habitat suitability for fishes over the Mediterranean continental 527 

shelf (Ben Rais Lasram et al. 2010; Albouy et al. 2012). Their results were all based 528 

on species habitat suitabilities that were estimated through a weighted average 529 

consensus across seven ENMs, including the SRE. Combining the SRE in ensemble 530 

predictions will lead to less conservative changes (i.e. higher predicted rates of 531 

species loss) than excluding it based on the evaluation criterion score (which is the 532 

most common criterion for weight attribution). From the present results, we argue that 533 

P/O and P/psA (or P/B) models outputs should be compared (e.g. with a PCA) before 534 

being mixed together as they rely on different data and assumptions, and are likely to 535 

model different components of the species niche (Brotons et al. 2004; Sillero 2011). 536 

Indeed, the PCA identified these two types of methods as two different “visions” of 537 

the species niches, both leading to two different scenarios of biodiversity change. 538 

 539 

Guidelines for modelling zooplankton with ENMs 540 

Modelling habitat suitabilities through P/O or P/A methods holds different implications 541 

depending on the ecological properties of the species (Hernandez et al. 2006; Tsoar 542 

et al. 2007; Jimenez-Valverde et al. 2008). One group of methods might be better 543 



suited than another according to the taxa of interest. Brotons et al. (2004) suggested 544 

that P/O models may be more accurate for species that are far from equilibrium with 545 

their environment. For several reasons, we argue that correlative models, based on 546 

environmentally-weighted psA, are appropriate for modelling zooplanktonic taxa. 547 

First, they are short-lived ectotherms whose physiology and population dynamics are 548 

tightly coupled with climate variability (Hays et al. 2005; Richardson 2008). Sunday et 549 

al. (2011; 2012) showed that the spatial ranges of marine ectotherms closely match 550 

their thermal tolerance limits. Most of the zooplankton are not commercially exploited, 551 

so in absence of direct human harvesting they are likely to be near equilibrium with 552 

the environment, and their geographical distribution is a good indicator of their abiotic 553 

preferences. 554 

Copepods exhibit very broad latitudinal ranges (Razouls et al. 2005-2016) which 555 

result from both wide environmental preferences and huge dispersal potential due to 556 

turbulent oceanic circulation (Jönsson and Watson 2016). However, the potentially 557 

worldwide distributions of these organisms (Finlay 2002; Cermeño and Falkowski 558 

2009; de Vargas et al. 2015), combined with spatially (and temporally) biased data 559 

sets, limit the ENMs’ capacity to link species occurrences to environmental predictors 560 

properly. In consideration of the datasets attributes (large spatial autocorrelation due 561 

to sampling biases coarse resolution etc.), future niche modelling studies should not 562 

focus on using complex ENM algorithms. Since they are likely to fit spurious 563 

relationships, or natural stochasticity (visible through noisy response curves), and 564 

thus to be less transferable in time and space (Jimenez-Valverde et al. 2008; 565 

Heinanen et al. 2012; Merow et al. 2014). 566 

We advocate that P/psA methods applied to zooplankton should be coupled with 567 

environmentally-weighted simulations of pseudo-absences because (i) absence data 568 

are impossible to ascertain in the plankton realm, and (ii) marine ectotherms are at 569 

equilibrium with their environments. Multiple methods of model evaluation and 570 

comparison should be considered (Brun et al. 2016), such as niche transferability 571 

tests in space and time (niche hindcasting), or comparison with mechanistic models 572 

outputs and/or response curves from laboratory experiments. Habitat suitability 573 

estimates along environmental gradients will be of great use for marine ecologists as 574 

they can easily be coupled with functional traits data (Benedetti et al. 2016) to better 575 

explore trait biogeography, and their link with ecosystem functioning (Albouy et al. 576 

2015). 577 

 578 

Future shifts in zooplankton surface assemblages 579 

Previous studies modelling climate change impacts on zooplankton have generally 580 

focused on changes of habitat suitability or species richness (Reygondeau and 581 

Beaugrand 2011; Beaugrand et al. 2015). Here, we extended the use of planktonic 582 

niche models for measuring ß diversity. We predicted that climate change might lead 583 

to a loss of copepod diversity throughout most of the surface of the Mediterranean 584 

Sea (although some northern regions exhibit increases in species richness), with 585 

nestedness as the main pattern driving the dissimilarity between present and future 586 

assemblages (Fig. 2). Our results imply that future copepod assemblages in most of 587 

the surface Mediterranean Sea will be composed of less species, all remnants being 588 

present in the initial assemblages. Areas of potential future increases in copepod 589 

diversity are restricted to the coldest regions: the Gulf of Lions, the Alboran Sea and 590 

the northern Adriatic and Aegean Seas. Again, our predictions imply that climate 591 

change might make these areas suitable for new species, without removing the ones 592 

present in the initial assemblages. 593 



This pattern may be explained by the northward shifts of temperature and salinity 594 

sensitive species towards the Gulf of Lions, and the northern Adriatic and Aegean 595 

Seas. These results are in agreement with the rate of climate change estimated by 596 

Burrows et al. (2014), who tracked SST isotherms modelled by a global ocean model 597 

that was forced by the RCP 8.5 emission scenario. 598 

Nestedness was also the dominant pattern in forecasted changes in Mediterranean 599 

coastal fish assemblages (Albouy et al. 2012). However, the rates of changes in 600 

species richness we found for copepods are arguably much lower. In addition, 601 

Albouy et al. (2012) predicted higher proportions of cells displaying increases in 602 

species richness, and in more diverse locations throughout the basin. They predicted 603 

increases in fish diversity in the central Adriatic, the central and northern Aegean, 604 

and the coastal Levantine. Meanwhile, we predict higher diversity losses in these 605 

regions, that will experience the strongest rates of warming and saltening (Adloff et 606 

al. 2015). 607 

The fact that planktonic copepods present broader environmental niches, compared 608 

to coastal fishes, may explain this discrepancy. The considered fishes include 609 

endemic species with much narrower thermal amplitudes (Ben Rais Lasram et al. 610 

2010) than planktonic species characterized by global scale distributions. This is in 611 

line with the results from Mediterranean coastal time series that demonstrated the 612 

strong resilience of copepod communities to highly variable conditions, over pluri-613 

decadal scales (Siokou-Frangou et al. 2010; Mazzocchi et al. 2011). 614 

The comparison between our results and previous studies conducted on other 615 

components of Mediterranean marine ecosystems implies that different components 616 

of the pelagic food web may not respond to climate changes in unique ways. 617 

Consequently, predicting climate-induced shifts in ecosystems requires to account for 618 

multiple trophic levels. 619 

 620 

Limitations 621 

A notable limitation of our study is that we were unable to test the relative 622 

contribution of the choice of the regional circulation model because of data 623 

availability. Previous studies have shown this factor to be the second-most important 624 

in explaining variability across predictions, persistently ranking in front of interaction 625 

terms (Diniz-Filho et al. 2009; Buisson et al. 2010; Garcia et al. 2012). Consequently, 626 

it is reasonable to believe that it could represent a second-order uncertainty factor in 627 

our case as well. But it is not likely to overstep ENMs as the major source of 628 

uncertainty (Garcia et al. 2012). It is noteworthy that different regional ocean 629 

circulation models generally agree on the future impacts of climate change on the 630 

overall Mediterranean circulation and physical conditions (Dubois et al. 2012; Gualdi 631 

et al. 2013). So we are confident our consensus patterns of shifts might not 632 

drastically change when switching to another regional circulation model. 633 

Additionally, zooplankton is known to perform diel vertical migrations that can span 634 

several hundreds of meters depending on the species (Roe 1974; Ohman 1990). So 635 

it is crucial to note that our habitat suitability predictions are only valid for the surface 636 

waters of the Mediterranean Sea. Changes in the species surface habitat suitability 637 

could lead to horizontal spatial range shifts as the species track optimal growth 638 

conditions (Sunday et al. 2012; Poloczanska et al. 2013), but it could also trigger a 639 

deepening of their distribution (Dulvy et al. 2008). The exact depth of the species 640 

occurrences is difficult to establish for each observation which limits the development 641 

of three-dimensional niche models (Bentlage et al. 2013). Still, we point out that the 642 

majority of the occurrence data used here comes from surface layers (0-200m 643 



depth), and that only a few of the studied copepod species do perform large vertical 644 

migrations in the Mediterranean basin (Scotto di Carlo et al. 1984; Benedetti et al. 645 

2016). 646 
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     915 

Figure captions 916 

 917 

Fig. 1) Schematic summary of the analytical framework of the study. For each 106 918 

species, environmental weighting and spatial buffering are used to generate 10 919 

P/psA datasets and each is used to calibrate 10 different ENMs. The niche models 920 

are used to project species habitat suitabilities in present (1965-1994) and future 921 

(2020-2049; 2069-2098) time periods at the regional scale. Different configurations 922 

(SRES and BF) of the regional circulation model are used to investigate their relative 923 

contribution to uncertainties. Habitat suitability maps are transformed into binary 924 

(P/A) maps (maximizing TSS threshold criterion) which are used to generate the 925 

species assemblages. Differences in species richness (∆SR) and composition (ßdiv 926 

indices) are computed by comparing the assemblages of 2020-2049 and 2068-2098 927 

to the 1965-1994 assemblages. 928 

 929 

Fig. 2) Changes in species richness and composition between the baseline period 930 

(1965-1994) and 2020-2049 (a,c) and 2069-2098 (b,d) for the copepod assemblages 931 

of the surface Mediterranean Sea. Changes in species composition are quantified 932 

using Jaccard’s dissimilarity index ßjac (a,b) and the ßratio index (c,d). Numbers in 933 

(d) indicate the main Mediterranean sub-basins: 1) Alboran Sea 2) Algerian and 934 

Tunisian waters 3) Gulf of Lions 4) Ligurian Sea 5) Tyrrhenian Sea 6) Sicilian Strait 935 

7) Tunisian and Libyan shelf waters 8) Ionian Sea 9) Adriatic Sea 10) Levantine Sea 936 

11) Aegean Sea. 937 

 938 

Fig. 3) Linear relationships between the average value of predicted ∆SR and the 939 

associated standard deviation, for the Mediterranean cells exhibiting both losses and 940 

increases in richness. Mean ∆SR values come from all ENMs predictions for the 941 

2069-2098 period. The two linear model statistics are given in the figure. 942 

 943 

Fig. 4) Proportion of the total sum of square attributed to the following source of 944 

uncertainties: (a) ENM, GHG emission scenario (SRES), species prevalence, and 945 

associated interaction terms, and (b) ENM, boundary forcings, species prevalence 946 

and associated interaction terms, for the two future time periods (2020-2049; 2069-947 

2098). 948 

      949 

Fig. 5) (a) Relative contribution of the 10 ENMs to the first two Principal Components 950 

of a PCA, SRE projections are incomparable to presence-absence and presence-951 

background ENMs’ forecasts. (b) Consensus changes in species richness and 952 

surface assemblages composition between the baseline (1965–1994) and the future 953 

(2069–2098) time periods, based on SRE models only, quantified using the Jaccard’s 954 

dissimilarity index ßjac.  955 

 956 

Fig. 6) ENMs loadings (excluding SRE) on the first Principal Component (72.36% of 957 

explained variance) of an un-scaled PCA based on their mean projections of ∆SR for 958 

the 2069-2098 period. Colors and shapes describe the forcing configuration of the 959 

circulation model (BF and SRES). PC1 represents a gradient in predicted species 960 

losses (negative ∆SR), ENMs with higher loadings are the ones predicting greater 961 



rates of species loss. Within-ENM spreading of the loadings along PC1 indicates the 962 

method sensitivity to the choices of the SRES/BF (i.e. the strength of interactions). 963 
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Supplementary material Appendix 998 

 999 

Supplementary Table A1 - References used to build the copepod species list, with 1000 

the associated number of occurrences, the covered subregion of the Mediterranean 1001 

Sea and the time period encompassing the occurrences. 1002 

 1003 

Supplementary Table A2 - Copepod species list and corresponding numbers of 1004 

global, and regional, presence cells (after re-sampling on WOA13’s grid, 0.25x0.25° 1005 

resolution). 1006 

 1007 

Supplementary Table A3 - Summary of the regional ocean circulation model 1008 

(NEMOMED8) outputs in terms of SST, σSST and SSS for each of its configurations 1009 

(i.e. combination of SRES and BF). Differences against WOA13 climatologies and 1010 

modelled anomalies are also given. 1011 

 1012 

Supplementary Figure A4 - Species average TSS scores (plus the associated 1013 

confidence intervals). ENMs were cross-validated by dividing each P/psA dataset into 1014 

a training set (80% of the data) and a testing set (remaining 20%). 1015 

 1016 

Supplementary Figure A5 - ENMs average TSS (plus the associated confidence 1017 

intervals). ENMs were cross-validated by dividing each P/psA dataset into a training 1018 

set (80% of the data) and a testing set (remaining 20%). 1019 

 1020 

Supplementary material Appendix, Tables captions 1021 

 1022 

Table A1) References used to build the regional occurrence database and the 1023 

copepod species names list. The associated number of occurrences, the covered 1024 

subregion of the Mediterranean Sea, and the time period covering the occurrences 1025 

are given. 1026 

 1027 

Table A2) Copepod species list and corresponding numbers of global, and regional, 1028 

presence cells (0.25x0.25° resolution). 1029 

The species names list was obtained as follows: several regional (i.e. Mediterranean) 1030 

datasets were merged (see Suppl. Table S1) to build a regional occurrence database 1031 

which recorded 361 different species; then, only the species with at least 50 different 1032 

records (meaning at least 50 different observation points in time and space) were 1033 

kept in order to get rid of species rarely occurring in the basin of interest (n=193); 1034 

finally, in order to avoid truncated response curves (Thuiller et al. 2004) as all 1035 

species are not proven endemic to the Mediterranean Sea (Razouls et al. 2005-1036 

2016), the species name list was further restricted to species presenting several 1037 

occurrences in other oceanic basins on the OBIS online database (assessed on the 1038 

11 December 2014). It consists of the species that are the most commonly sampled 1039 

in the surface (0-300m depth) of the Mediterranean Sea (Siokou-Frangou et al. 2010; 1040 

Mazzocchi et al. 2014; Benedetti et al. 2016). 1041 

The occurrences of the final 106 chosen species were re-sampled on the WOA13 1042 

grid cell (0.25x0.25° resolution; Levitus et al. 2013). The final number of global, and 1043 

regional, grid cells with presences are given here. In the regional database, species 1044 

can present several occurrences belonging to a single 0.25x0.25° cell (because of 1045 

records that are spatially close), so that their final number of regional presence cells 1046 

is less than 50. 1047 



 1048 

Table A3) Summary of the regional ocean circulation model (NEMOMED8) outputs 1049 

in terms of SST, σSST and SSS for each of its configurations (i.e. combination of 1050 

SRES and BF). Differences against WOA13 climatologies and modelled anomalies 1051 

are also given. 1052 

For the baseline period (1965-1994), average values of SST, σSST and SSS come 1053 

from WOA13 climatologies and the two historical configurations of NEMOMED8 (HIF 1054 

and HIS-F, see Adloff et al. 2015 for full details). Mean differences between 1055 

NEMOMED8 and WOA13 outputs are shown. For the two future time periods (2020-1056 

2049; 2069-2098), mean values are computed on the final climatologies (i.e. the 1057 

ones used to project the ENMs) that result from the addition of NEMOMED8 1058 

anomalies (as shown in the table) on WOA13 climatologies. Said anomalies were 1059 

computed by subtracting historical climatologies (based on HIS runs for the A2 1060 

configuration, and HIS-F for all the others, Adloff et al. 2015) to the climatological 1061 

future runs. 1062 

 1063 

Figure A4) Frequency distribution of the species’ average TSS scores, per bins of 1064 

0.01 TSS values. The scores were computed with the maximum-threshold method. 1065 

ENMs were cross-validated by dividing each P/psA dataset into a training set (80% of 1066 

the data) and a testing set (remaining 20%). 1067 

 1068 

Figure A5) ENMs’ average TSS scores (plus associated standard deviations), 1069 

computed with the maximum-threshold method. ENMs were cross-validated by 1070 

dividing each P/psA dataset into a training set (80% of the data) and a testing set 1071 

(remaining 20%). 1072 
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